- Canons à électrons du type unipotentiel.
- Luminophores à rendement élevé.
- Rapport des courants de faisceaux voisins de 1
- Brillance élevée de l'écran.
- Montage à compensation thermique du masque perforé : dispositif PERMA-CHROME.
- Suppression de l'épanouissement à brilliance élevée.

- Coefficient de transmission de la dalle-écran : 43.5 %.
- Diagonale de la dalle-écran : 49 cm.
- Angle de déviation : 90°.
- Concentration électrostatique.
- Déviation magnétique.
- Convergence magnétique.
- Écran aluminisé à triades de points luminescents, rouge, vert, bleu de rendement lumineux élevé.
- Autoprotection par ceinture métallique munie de 4 oreilles pour la fixation du tube dans l'ébénisterie.

- Surface de l'écran 1161 cm² env.
- Diamètre du col 36,5 ± 1,6 mm
- Longueur maximale hors-tout.............. 453,5 ± 9,5 mm
- Chauffage filament 6,3 V - 0,9 A
- Tension maximale d'anode.................. 22,5 kV
CARACTERISTIQUES GENERALES

Canons à électrons
Trois canons du type unipotentiel, produisant les 3 couleurs primaires : rouge, vert, bleu et dont les axes sont inclinés pour converger au centre de l'écran.

Filaments
(Les filaments des 3 canons sont connectés en série).
Tension (1) .. Vf 6,3 V
Courant ... If 0,9 A

Capacités interélectrodes
Grille n° 1 de chaque canon à toutes les autres électrodes .. \(C_{g1}/R \) 7,5 pF env.
Les 3 cathodes à toutes les autres électrodes \(C_{k}/R \) 15 pF env.
Grille n° 4 à toutes les autres électrodes \(C_{g4}/R \) 6 pF env.
Revêtement extérieur à l'anode \(C_{m/a} \) 2 100 pF max.
... \(1 500 \) pF min.

Concentration ... électrostatique
Convergence ... magnétique
Déviation ... magnétique
Angles de déviation
diagonal ... 89°
horizontal ... 78°
vertical ... 63°

CARACTERISTIQUES OPTIQUES

Dalle-écran .. verre filtrant
Coefficient de transmission au centre 43,5 % env.
Surface de la glace de protection polie
Ecran, sur la face interne de la dalle constitué de triades de points de couleurs, aluminisé

Luminophores
3 luminophores distincts, l'ensemble type P 22
Matière pour les couleurs vert et bleu sulfures de zinc et cadmium
Matière pour la couleur rouge composé d'yttrium activé à l'euroïpium

Fluorescence et phosphorescence de chacun des luminophores, respectivement rouge, vert, bleu
Persistance de l'ensemble brève
Disposition des points sur l'écran groupe de 3 points : un rouge, un vert, un bleu, disposés en triangle (triade)

Distance entre centres de triades adjacentes 0,58 mm env.

(1) Pour obtenir une durée de vie maximale des cathodes, il est recommandé de réguler la tension du filament à 6,3 V.
CARACTERISTIQUES MECAENIQUES

Dimensions hors-tout (sans les oreilles de fixation)
- Longueur: 453,5 ± 9,5 mm
- Hauteur: 354,5 mm max
- Largeur: 438,5 mm max
- Diagonale: 500,5 mm max
- Longueur du col: 170 ± 5 mm

Entraxes des trous de fixation
- horizontal: 411 mm
- vertical: 330 mm

Dimensions minimales de l'écran (en projection)
- Hauteur: 309,5 mm
- Largeur: 396 mm
- Diagonale: 459 mm
- Surface: 1 161 cm²

Culot: 12 broches, JEDEC B12-244

Sortie d'anode, sur l'amphoule
- la broche n° 12 est située dans le plan passant par l'axe du Cathoscope et le contact à cavité du côté de celui-ci.

Position recommandée de montage
- axe horizontal et contact à cavité placé en haut (1)

Poids approximatif: 14 kg

BROCHAGE

- Broche n° 1: filament
- Broche n° 2: cathode du canon rouge
- Broche n° 3: grille n° 1 du canon rouge
- Broche n° 4: grille n° 2 du canon rouge
- Broche n° 5: grille n° 2 du canon vert
- Broche n° 6: cathode du canon vert
- Broche n° 7: grille n° 1 du canon vert
- Broche n° 8: manque
- Broche n° 9: grille n° 4
- Broche n° 10: manque
- Broche n° 11: cathode du canon bleu
- Broche n° 12: grille n° 1 du canon bleu
- Broche n° 13: grille n° 2 du canon bleu
- Broche n° 14: filament

L'anode est reliée au contact à cavité placé sur l'amphoule.

(1) Les écarts maximaux de position, mesurés au centre de l'écran, mentionnés dans les "Gammes de valeurs caractéristiques" (voir plus loin) sont valables dans cette position recommandée du cathoscope.
LIMITES D'UTILISATION
Système des limites hybrides

Sauf indication contraire, les limites s'appliquent à chaque canon et les tensions sont positives par rapport à la cathode.

Tension d'anode .. \(V_a \) 22 500 V max
... 17 000 V min
Courant total d'anode (valeur moyenne)........................... \(I_a \) 1 mA max
Tension de grille nº 4 (électrode de concentration)
\(V_{g4} \) 1 100 V max
valeur positive .. \(V_{g4} \) 550 V max
valeur négative .. \(-V_{g4} \)
Tension de crête de grille nº 2 (y compris la tension du signal vidéo) .. \(V_{g2,cr} \) 1 000 V max

Tension de grille nº 1
valeur négative de crête .. \(V_{g1,cr} \) 400 V max
valeur négative de polarisation \(-V_{g1} \) 140 V max
valeur positive de polarisation \(V_{g1} \) 0 V max
valeur positive de crête .. \(V_{g1,cr} \) 2 V max

Tension de chauffage du filament (alternative ou continue)
en fonctionnement (1) .. \(V_f \) 6,8 V max
en position d'attente (2) .. \(V_f \) 5,8 V min

Tension de crête entre filament et cathode
pendant une période de chauffage de 15s, le filament négatif par rapport à la cathode .. \(V_{fk} \) 450 V max
en régime normal (3) .. \(V_{fk} \) 200 V max

(1) Pour une durée de vie maximale de la cathode, il est recommandé de réguler la tension du filament à 6,3 V.

(2) Cette limite maximale concerne les applications où l'on désire une mise en service rapide après une période d'attente. Toutes les autres tensions appliquées normalement au Cathode doivent être coupées pendant cette même période d'attente.

(3) La composante continue est limitée à :
200 V avec filament négatif par rapport à la cathode,
0 V avec filament positif par rapport à la cathode.
GAMMES DE VALEURS CARACTERISTIQUES
POUR PROJETS D’ETUDES

Sauf indication contraire, les valeurs s’appliquent à chaque canon et les tensions sont positives par rapport à la cathode.

Pour les tensions d’anode comprises entre 17 000 et 22 500 V:
Tension de grille n° 4 (électrode de concentration), \(V_{g4} \) - 75 à 400 V
Tension de grille n° 1 et de grille n° 2 pour l’extinction
des points d’image concentrés ... voir diagramme
page 2.5

Rapport maximal entre les tensions extrêmes de grille
n° 2 des canons d’un tube quelconque (pour une
tension de blocage de grille n° 1 de -100 volts)
(voir page 2.4)... 1,86
Courant total de grille n° 4 .. \(I_{g4} \) - 60 à +60 \(\mu \)A
Courant de grille n° 2 .. \(I_{g2} \) - 5 à +5 \(\mu \)A

Conditions de production d’une lumière blanche de 9 300° K + 27 MIPC
(coordonnées CIE : \(x = 0,281 \) \(y = 0,311 \)).

Pourcentage du courant total d’anode fourni par chaque
canon (valeur moyenne)
rouge... 34 %
vert... 34 %
bleu... 32 %

Rapports des courants de cathode
rouge par rapport au bleu.................................. \(0,75 \) \(1,10 \) \(1,50 \)
rouge par rapport au vert.................................. \(0,65 \) \(1,00 \) \(1,50 \)
bleu par rapport au vert.................................. \(0,60 \) \(0,91 \) \(1,30 \)

Ecart maximaux de position des spots au centre de l’écran

Pour un registre préalablement réglé à son point optimal
et pour une interaction négligeable des effets des composants extérieurs au cathoscope.

Décalage du spot blanc P (1) (c’est-à-dire des spots
rouge, vert et bleu amenés en convergence) par
rapport au centre géométrique C de l’écran (fig. A):
décalage horizontal .. \(H \) 12 mm max
décalage vertical ... \(V \) 11,5 mm max

(1) Pratiquement le spot jaune (spots rouge et vert amenés en convergence) suffit à
la mesure, puisque de toute façon le spot bleu doit être finalement superposé au
spot jaune.
Décalage radial naturel (1), de chacun des spots (rouge, vert et bleu) par rapport à l'emplacement P du spot blanc (ou jaune) précédent (fig. B) \(R_r, R_b, R_v \) 9,5 mm max

Décalage latéral naturel (1) du spot bleu par rapport à l'emplacement P du spot blanc (ou jaune) précédent (fig. B) : .. \(L_b \) 6,5 mm max

FIG. A

- Convergence radiale "vert"
- Convergence radiale "rouge"
- Centre géométrique de l'écran
- V = décalage horizontal
- \(H \) = décalage vertical

FIG. B

- \(R_r \) = décalage radial "rouge"
- \(R_v \) = décalage radial "vert"
- \(R_b \) = décalage radial "bleu"
- Lb = décalage latéral "bleu"

Écart maximal de registre au centre de l'écran (2)

Pour une convergence préalablement réglée, après annulation de toute correction de registre, et pour une interaction négligeable des effets des composants extérieurs au cathoscope.

Erreur de registre dans toutes les directions (effet du champ magnétique compris et pour un blindage convenablement désaimanté).. 0,13 mm max

Mesure pratique de l'erreur de registre :
Déplacement du spot blanc (ou jaune) par rapport à l'emplacement P défini à la rubrique précédente.. 13 mm max

(1) C'est-à-dire après suppression de tout dispositif de convergence ou de ses effets.

(2) Le registre est défini comme la position relative des points d'impact des trois faisceaux par rapport aux triades de points lumineux associés.
EXEMPLES D'UTILISATION DES GAMMES DE VALEURS CARACTÉRISTIQUES

Sauf indication contraire, les valeurs s'appliquent à chaque canon et les tensions sont positives par rapport à la cathode.

Tension d'anode .. Va 20 000 V
Tension de grille n° 4 (électrode de concentration)... Vg4 -75 à 400 V
Tension de grille n° 2 si l'on prévoit une tension de grille n° 1 de -100V pour l'extinction des points d'image concentrés.. Vg2 150 à 390 V
Tension de grille n° 1 pour l'extinction des points d'image concentrés si l'on prévoit une tension de grille n° 2 de 200 V.. Vg1bl -57 à 125 V
Tension filament
en fonctionnement (1) Vf 6,3 V
en position d'attente Vf 5,0 V

Brillance de l'écran, au centre, pour un blanc de:
9 300°K + 27 MPCI (x = 0,281 y = 0,311) avec un courant de faisceau de 1 mA et une image de 396 × 309,5 mm (coefficient de transmission de 43,5 % (cf. fig. 4)) ... 90 cd/m²

PRÉCAUTIONS À PRENDRE DANS LES CIRCUITS ASSOCIÉS AU CATHOSCOPE

Circuits de basse tension
Résistance effective du circuit entre la cathode et la grille
n° 1 (pour chaque canon) ... 0,75 MΩ max

De plus, une analyse des circuits de basse tension (y compris ceux de filaments) doit être faite en supposant que le filament du cathoscope est relié directement à la masse. Dans cette condition, l'ensemble des circuits comprenant le filament du cathoscope - et éventuellement les filaments d'autres tubes - et tous les circuits associés au même enroulement d'alimentation de filaments du récepteur doit avoir une impédance équivalente telle que le courant de court-circuit à la masse supposée ne puisse excéder 750 mA.

Enfin, il est recommandé d'éloigner d'une distance suffisante les fils de connexion des autres circuits de ceux du cathoscope pour éviter un transfert d'énergie à ces derniers.

L'ensemble de ces précautions permettra d'éviter que des arcs en cascade puissent endommager le Cathoscope trichrome.

(1) Pour obtenir une durée de vie maximale des cathodes, il est recommandé de réguler la tension du filament à 6,3 V.
VUES DE DETAIL
DU PLAN D'ENCORBELEMENT (Voir p. 2.2 et 2.3)

Détail : A

(1) La vis de fixation du cathoscope doit être située dans ce cercle de 8,5 mm de diamètre.
(2) L'une des oreilles peut s'écarter de 2 mm du plan passant par les 3 autres, tout en restant à l'intérieur des tolérances de sa position individuelle par rapport au point Z.
CARACTERISTIQUES DE FONCTIONNEMENT

Tension de blocage de la grille n°1

On peut utiliser la tension de grille n° 2 pour compenser les dispersions normales de tension de blocage de la grille n° 1 et de pente, pour chaque canon d'un tube quelconque et d'un tube à un autre.

Dans les systèmes de commande qui fonctionnent avec une tension de blocage fixe et un signal vidéo d'amplitude réglable, la tension de grille n° 2 de chaque canon peut être ajustée pour obtenir la valeur choisie de la tension de blocage, dans les limites indiquées.

Dans les autres systèmes de commande, la tension appliquée à la grille n° 2 de chaque canon peut être ajustée en tenant compte de sa limite maximale, pour choisir la tension de blocage qui permet d'obtenir les caractéristiques d'attaque désirées, à rapport constant, pour chaque canon.

Le diagramme de tension de blocage (fig. 1) donne la relation entre les valeurs minimales et maximales de la tension de blocage de la grille n° 1, d'une part et celles de la tension de grille n° 2, d'autre part. En fait, ce diagramme donne les caractéristiques de canons situés aux limites. Ces caractéristiques ne peuvent pas être appliquées aux trois canons d'un tube quelconque parce que le rapport maximal entre les tensions extrêmes de grille n° 2 des trois canons ne peut dépasser la valeur de 1,86 (voir le paragraphe : Gammes de valeurs caractéristiques pour projets d'études). Les valeurs caractéristiques correspondantes d'un tube donné peuvent être relevées et portées sur la figure 1 : pour ce faire, on mesure la tension de grille n° 1 à l'extinction du spot de chacun des trois canons, pour une valeur choisie de la grille n° 2.

Conditions de commande

Les caractéristiques nominales de commande du A49-210 X sont données sur les figures 2 et 3.

Pour obtenir un fonctionnement satisfaisant du A49-210 X dans la reproduction des images noir et blanc, il est essentiel qu'il n'y ait pas de variation de couleur avec les variations d'intensité de lumière émise. Comme les luminophores ont une saturation de courant négligeable dans la gamme des densités de courant utilisées, il est nécessaire, pour maintenir constante la température de couleur, que le pourcentage du courant total d'anode fourni par chaque canon reste constant dans la gamme de luminance désirée, afin d'éviter une coloration des fortes lumières et des ombres.
Fig. 1

Tension filament = 6,3 V
Tension anode - cathode = 17 000 à 22 500 V
Tension grille n°4 - cathode = réglée pour la concentration optimale

Limite minimale

Limite maximale
de $V_{g,k}$ pour
un canon quelconque

Pour l'extinction des points d'image

3-70 CIFTE 2.5
Paramètre : V_{BL} tension de blocage grille n° 1 - cathode (extinction du spot)
- Tension filament : 6,3 V
- Tension anode-cathode : 17 000 à 22 500 V
- Tension grille n° 4 - cathode : réglée pour la concentration optimale.
- Tension grille n° 2 - cathode : réglée de façon à obtenir l'extinction du spot de chaque canon pour la valeur V_{BL} choisie.

Point de polarisation nulle ($i_{G1K} = 0$).

Pour chaque canon

$V_{Eg} = $ Tension d'entrée (vidéo) appliquée à la grille et comptée à partir de V_{BL}

Fig. 2

CIFTE 3-70
Paramètre: $-V_{BL}$ = tension de blocage cathode-grille n° 1 (extinction du spot).
- Tension filament = 6,3 V
- Tension anode-grille n° 1: 17 000 à 22 500 V
- Tension grille n° 4-grille n° 1: ajustée pour la concentration optimale.
- Tension grille n° 2-grille n° 1: réglée de façon à obtenir l'extinction du spot de chaque canon pour la valeur $-V_{BL}$ choisie.
- Point de polarisation nulle, ($V_G, K = 0$).

Pour chaque canon:
- Tension d'entrée (vidéo) appliquée à la cathode et comptée à partir de V_{BL}.
Système de commande à tension de blocage fixe et signal vidéo d'amplitude réglable

Dans les systèmes de commande fonctionnant avec une tension de blocage et un signal vidéo d'amplitude réglable, les réglages doivent maintenir les rapports de courants nécessaires. Les rapports de signaux vidéo exigés peuvent être déterminés à partir des diagrammes de caractéristiques de commande (figures 2 et 3) et du pourcentage du courant total d'anode à fournir par chaque canon.

Système de commande à signal vidéo fixe

Les figures 2 et 3 montrent que, plus faible est la valeur de la tension de blocage, plus faible sera la tension de signal vidéo, pour un même courant d'anode, mais plus faible sera également le courant maximal d'anode que l'on peut obtenir à polarisation nulle (voir l'extrémité supérieure des courbes).

Ce système de commande peut être utilisé pour compenser des variations de rendement des luminophores. En effet, on peut choisir une tension de blocage plus faible, obtenue avec une tension de grille n° 2 plus faible, en combinaison avec un luminophore de plus faible rendement, pour augmenter le courant d'anode du canon correspondant et obtenir ainsi les rapports de courant nécessaire entre les canons.

Les caractéristiques de l'émission lumineuse pour un blanc de 9300°K + 27 MPCD sont données figure 4.

La courbe spectrale d'énergie relative correspondante est donnée fig. 5.
- Tension filament : 6,3 V
- Tension anode-cathode = 20 000 V
- Tension grille n° 4 - cathode : réglée pour la concentration optimale
- La commande de chaque canon est réglée de façon à donner un courant d'anode total correspondant à une lumière blanche de 9300°K + 27 MPCD (canon rouge : 34% - Canon vert : 34% - Canon bleu : 32%).
- Dimensions de la trame : 396 x 309,5 mm
- La luminance est mesurée dans un cercle de 10 cm de diamètre centré sur la face-écran

![Graph](image.png)
Excitation simultanée des luminophores rouge, vert et bleu pour la production d'une lumière blanche de 9 300° K + 27 MPCD

$x = 0,281$ - $y = 0,311$.

Energie relative (%)

- Rouge : $x = 0,660$ - $y = 0,340$
- Vert : $x = 0,300$ - $y = 0,600$
- Bleu : $x = 0,152$ - $y = 0,063$

Pointe à 405
Pointe à 175