General

Rectangular Face: 19 in. Diagonal
Electrostatic Focus: Magnetic Deflection
Deflection Angle: 110° Diagonal
Aluminised Screen: White Fluorescence
Grey Glass: 75% Transmission (approx.)
Straight Gun: Non Ion Trap

External Conductive Coating

Heater Voltage: $V_h = 6-3$ V
Heater Current: $I_h = 0-3$ A

The cathode ray tube heater should always be connected at the chassis end if used in a series heater chain.

Design Centre Ratings

Maximum Second and Fourth Anode Voltage: $V_{a2,a4}(\text{max}) = 20^*$ kV
Minimum Second and Fourth Anode Voltage: $V_{a2,a4}(\text{min}) = 13$ kV
Maximum Third Anode Voltage: $V_{a3}(\text{max}) = +1000$ to -500 V
Maximum First Anode Voltage: $V_{a1}(\text{max}) = 700$ V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.): $V_{h-k}(\text{max}) = 250$ V
Maximum Peak Heater to Cathode Voltage, Heater Negative: $V_{h-k}(\text{pk})_{\text{max}} = 400^*^*$ V
Maximum Impedance Grid to Cathode (50 Hz): $Z_{g-k}(\text{max}) = 0-5$ MΩ
Maximum Resistance Grid to Cathode: $R_{g-k}(\text{max}) = 1-5$ MΩ

All voltages referred to cathode.

* For $a_2 + a_4 = 0$.
† Absolute rating.
‡ During a warming-up period not exceeding 45 seconds.

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.
INTER-ELECTRODE CAPACITANCES

<table>
<thead>
<tr>
<th>Inter-electrode capacitance</th>
<th>$C_{k\text{-all}}$</th>
<th>$C_{g\text{-all}}$</th>
<th>$C_{a2,a4-M}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode to all</td>
<td>3.0 pF</td>
<td>7.0 pF</td>
<td>1250 pF</td>
</tr>
<tr>
<td>Grid to all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second and Fourth Anode to External Conductive Coating (approx.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ Inter-electrode capacitances with holder capacitance balanced out.

ϕ Total inter-electrode capacitances including a typical B88 holder.

TYPICAL OPERATION—Grid Modulation (Voltage referred to cathode)

- Second and Fourth Anode Voltage: $V_{a2,a4-k}$ = 18 kV, V_{a3-k} = 35.5 V
- First Anode Voltage: V_{a1-k} = 400 V
- Final Anode Current: $I_{a2,a4}$ = 0.500 to 0.500 mA
- Third Anode Voltage Range for Focus: V_{a3-k} = 0 to 400 V
- Average Peak to Peak Picture Modulating Voltage: V_{g-k} = 35.5 to 40.5 V
- Grid to Cathode Voltage for Cut-off of Raster: V_{k-g} = 31.5 to 35.5 V

TYPICAL OPERATION—Cathode Modulation (Voltage referred to grid)

- Second and Fourth Anode Voltage: $V_{a2,a4-g}$ = 18 kV
- First Anode Voltage: V_{a1-g} = 400 V
- Final Anode Current: $I_{a2,a4}$ = 0.500 to 0.500 mA
- Third Anode Voltage Range for Focus: V_{a3-g} = 0 to 400 V
- Average Peak to Peak Picture Modulating Voltage: V_{g-k} = 31.5 to 35.5 V
- Cathode to Grid Voltage for Cut-off of Raster: V_{k-g} = 51 V

* Within this range a higher First Anode Voltage will provide an improved focus performance.

PICTURE CENTRING

- Maximum magnet flux density at centre of neck should not be less than 17 Gs
- Maximum distance of centre of magnetic field from reference line = 53 mm

NOTE

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

DEFLECTION ANGLES

- Height: 82°
- Width: 99°
- Diagonal: 110°

WEIGHT

- Approximate Single Tube Weight: Net = 7.2 kg (16 lb), Packed = 9.1 kg (20 lb)
All dimensions in mm.

Notes:
* During the face sealing operation the glass in this area (total 22mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
† Determined by Reference Gauge No. 16 (JEDEC No. 126).
**The socket for the B8H button base should not be rigidly mounted, it should have flexible leads and be allowed to move freely. The design of the socket should be such that the wiring cannot impress lateral strains through the socket contacts on the base. Bottom circumference of base wafer will fall within a circle concentric with the bulb axis and having a diameter of 44mm.

The maximum dimensions at the face seal may be 3.5 mm larger than the maximum face dimensions but at any point around the seal the bulge will not protrude more than 2 mm.

There is an annular region of anti-corona coating with diameters of 30 mm and 100 mm surrounding the CT8 cap, the tube should not be handled in this region.
GRID MODULATION

\[I_{a_2 + a_4} / V_{g - k} \]

\[V_{a_2 + a_4} = 14 \text{ to } 20 \text{kV} \]

FIGURES FOR EXTINCTION OF FOCUSED RASTER.

\[V_{a_1 - k} \] 400 450 500 (V)

\[V_{g - k} \] -57 -63 -69 (V)
CATHODE MODULATION

\[I_{a_2} + a_4 / V_{k-g} \]

\[V_{a_2} + a_4 = 14 \text{ to } 20 \text{kV} \]

FIGURES FOR EXTINCTION OF FOCUSED RASTER

\[V_{a_1-g} = 400, 450, 500 \text{ (V)} \]

\[V_{k-g} = 51, 56, 62 \text{ (V)} \]