ВИ4-100/50
Высоковольтный импульсный кенotron ВИ4-100/50 предназначен для работы в циклическом или пакетно-импульсном режимах в качестве клиппирующего элемента.

ОБЩИЕ СВЕДЕНИЯ
Катод — оксидный косвенного накала.
Оформление — металлостеклянное.
Охлаждение анода — воздушное принудительное.
Рабочее положение — вертикальное анодом вниз.
Высота не более 470 мм.
Диаметр не более 134,5 мм.
Масса не более 6,5 кг.

The ВИ4-100/50 pulse rectifier tube is designed to operate as a clipping element in a cyclic or pulse burst mode.

GENERAL
Cathode: indirectly heated, oxide-coated.
Envelope: glass-to-metal.
Anode cooling: forced air.
Working position: upright with anode down.
Height: at most 470 mm.
Diameter: at most 134.5 mm.
Mass: at most 6.5 kg.

ДОПУСТИМЫЕ ВОЗДЕЙСТВУЮЩИЕ ФАКТОРЫ ПРИ ЭКСПЛУАТАЦИИ
Вибрационные нагрузки:
диапазон частот, Гц .. 1–80
ускорение, м/с² .. 98
Многократные ударные нагрузки:
ускорением, м/с² .. 392
Температура окружающей среды, °C −60–+85
Относительная влажность воздуха при температуре до +35 °C, % .. 98

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ
Электрические параметры
Напряжение накала, В .. 27
Ток накала, А ... 23–35
Обратное напряжение анода в импульсе, кВ, не менее .. 50
Падение напряжения в импульсе (при токе анода в импульсе 100 А, длительности импульса
1–3 мкс и скважности 200), кВ:
при напряжении накала 27 В, не более .. 2,5
при напряжении накала 24,3 В, не более .. 2,65
Время готовности (при падении напряжения анода 2,5 кВ, тока анода в импульсе 90 А, длительности импульса
1–3 мкс и скважности 200), с .. 180

OPERATING ENVIRONMENTAL CONDITIONS
Vibration loads:
frequencies, Hz .. 1–80
acceleration, m/s² .. 98
Multiple impacts with acceleration, m/s² .. 392
Ambient temperature, °C .. −60 to +85
Relative humidity at up to +35 °C, % .. 98

BASIC DATA
Electrical Parameters
Heater voltage, V .. 27
Heater current, А .. 23–35
Peak anode reverse voltage, kV, at least .. 50
Peak voltage change (at peak anode current 100 А, pulse duration 1–3 μs, pulse 1/duty factor 200), кV:
at heater voltage 27 V, at most .. 2,5
at heater voltage 24,3 V, at most .. 2,65
Warm up time (at anode voltage change 2.5 kV, peak anode current 90 A, pulse duration 1–3 μs, pulse 1/duty factor 200), s .. 180
Высоковольтный импульсный кенотрон
PULSE RECTIFIER TUBE

ВИ4-100/50

<table>
<thead>
<tr>
<th>Максимальные предельно допустимые эксплуатационные данные</th>
<th>Limit Operating Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение накала, В:</td>
<td>Heater voltage, V:</td>
</tr>
<tr>
<td>наименьшее</td>
<td>maximum</td>
</tr>
<tr>
<td>24,5</td>
<td>minimum</td>
</tr>
<tr>
<td>наименьший</td>
<td>29,5</td>
</tr>
<tr>
<td>Ток накала, А:</td>
<td>Heater current, A:</td>
</tr>
<tr>
<td>наименьший</td>
<td>maximum</td>
</tr>
<tr>
<td>23</td>
<td>minimum</td>
</tr>
<tr>
<td>наименьший</td>
<td>35</td>
</tr>
<tr>
<td>Наибольшее напряжение анода (положительное), кВ</td>
<td>Anode voltage (positive), kV</td>
</tr>
<tr>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Наибольшее обратное напряжение анода в импульсе, кВ</td>
<td>Peak anode reverse voltage, kV</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Рассеиваемая наибольшая мощность анодом, кВт</td>
<td>Anode dissipation, kW</td>
</tr>
<tr>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Наибольший ток анода в импульсе, А</td>
<td>Peak anode current, A</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Наименьшее время готовности, с</td>
<td>Minimum warm up time, s</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Наибольшая скважность по току анода в импульсе</td>
<td>Minimum peak anode current 1/duty factor</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Наибольшая длительность импульса, мкс</td>
<td>Maximum pulse duration, μs</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Наибольшая температура, °C:</td>
<td>Temperature, °C:</td>
</tr>
<tr>
<td>анода</td>
<td>anode</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>баллона</td>
<td>bulb</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
</tr>
</tbody>
</table>