INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator voltage</td>
<td>$V_{g2,g4,g5(l)}$</td>
</tr>
<tr>
<td>Display area</td>
<td>80 x 60 mm²</td>
</tr>
<tr>
<td>Deflection coefficient, horizontal</td>
<td>M_x</td>
</tr>
<tr>
<td></td>
<td>M_y</td>
</tr>
</tbody>
</table>

SCREEN

<table>
<thead>
<tr>
<th>colour</th>
<th>persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>D10-160CH</td>
<td>green</td>
</tr>
<tr>
<td>D10-160GM</td>
<td>yellowish green</td>
</tr>
<tr>
<td></td>
<td>medium short</td>
</tr>
<tr>
<td></td>
<td>long</td>
</tr>
</tbody>
</table>

Useful screen diameter

| min. 85 mm |

Useful scan

| horizontal | min. 80 mm |
| vertical | min. 60 mm |

The useful scan may be shifted vertically to a max. of 5 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by AC or DC; parallel supply

Heater voltage

| V_f | 6.3 V |

Heater current

| I_f | 300 mA |
MECHANICAL DATA

Fig. 1 Outlines.

Fig. 2 Pin arrangement.

Fig. 3 Electrode configuration.

Mounting position

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length
Face diameter

Base 14 pin all glass

Net weight

approx. 400 g

Accessories

Socket (supplied with tube) type 55566
Mu metal shield type 55547
CAPACITANCES

\(x_1 \) to all other elements except \(x_2 \)
\(x_2 \) to all other elements except \(x_1 \)
\(y_1 \) to all other elements except \(y_2 \)
\(y_2 \) to all other elements except \(y_1 \)
\(x_1 \) to \(x_2 \)
\(y_1 \) to \(y_2 \)
Control grid to all other elements
Cathode to all other elements

\[
\begin{align*}
C_{x1}(x2) & \quad 4 \text{ pF} \\
C_{x2}(x1) & \quad 4 \text{ pF} \\
C_{y1}(y2) & \quad 3.5 \text{ pF} \\
C_{y2}(y1) & \quad 3 \text{ pF} \\
C_{x1}x2 & \quad 1.6 \text{ pF} \\
C_{y1}y2 & \quad 1.1 \text{ pF} \\
C_g & \quad 5.5 \text{ pF} \\
C_k & \quad 4 \text{ pF}
\end{align*}
\]

FOCUSING
- electrostatic

DEFLECTION
- double electrostatic
- see note 3
- symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between \(x \) and \(y \) traces \(90 \pm 10^\circ \)

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current \(I_g = 10 \mu A \).

Line width \(l.w. \) \(0.27 \text{ mm} \)

As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:

a) under typical operating conditions, apply a small raster display (no overscan), adjust \(V_{g1} \) for a beam current of approx. 10 \(\mu A \) and adjust \(V_{g3} \) and \(V_{g2}, g4, g5, \varphi \) for optimum spot quality at the centre of the screen.

b) under these conditions, but no raster, the deflection plate voltages should be changed to:
\(V_{y1} = V_{y2} = 1500 \text{ V}; V_{x1} = 800 \text{ V}; V_{x2} = 1200 \text{ V} \), thus directing the total beam current to \(x_2 \).
Measure the current on \(x_2 \) and adjust \(V_{g1} \) for \(I_{x2} = 10 \mu A \) (being the beam current \(I_g \)).

c) set again for the conditions under a), without touching the \(V_{g1} \) control. Now a raster display with a true 10 \(\mu A \) screen current is achieved.

d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
TYPICAL OPERATING CONDITIONS see note 3

Accelerator voltage $V_{g2.g4.g5.l}$ 1500 V
Astigmatism control voltage $\Delta V_{g2.g4.g5.l}$ ± 30 V see note 1
Focusing electrode voltage V_{g3} 140 to 275 V
Control grid voltage for visual extinction of focused spot V_{g1} max. -50 V approx. 10 V
Grid drive for 10 µA screen current
Deflection coefficient, horizontal M_x max. 32 V/cm
vertical M_y max. 13.7 V/cm

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage $V_{g2.g4.g5.l}$ max. 2200 V min. 1350 V
Focusing electrode voltage V_{g3} max. 2200 V
Control grid voltage, negative $-V_{g1}$ max. 200 V min. 0 V
Cathode to heater voltage V_{kf} max. 125 V
$-V_{kf}$ max. 125 V
Grid drive, average
Screen dissipation W_f max. 3 mW/cm²

Control grid circuit resistance R_{g1} max. 1 MΩ

Notes

1. All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and certainly the mean y plate potential was made equal to $V_{g2.g4.g5.l}$ with zero astigmatism correction.

2. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

3. The mean x and certainly the mean y plate potentials should be equal to $V_{g2.g4.g5.l}$ with astigmatism adjustment set to zero.

4. A graticule, consisting of concentric rectangles of 50 mm x 60 mm and 49 mm x 58.6 mm is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.