Data handbook

Electron tubes

Part 8 May 1977

TV picture tubes

ELECTRON TUBES

Part 8

May 1977

General section

Colour TV picture tubes
Black and white TV picture fubes
Index
.

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.
ELECTRON TUBES BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS RED
COMPONENTS AND MATERIALS GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

[^0]
ELEECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1a	Transmitting tubes for communication		Decembet 1975
Part 1b	Transmitting tubes for communica Tubes for r.f. heating Amplifier circuit assemblies		January 1976
Part 2	Microwave products		May 1976
	Communication magnetrons Magnetrons for microwave heating Klystrons Travelling-wave tubes Isolators, Circulators	Diodes Triodes T-R switches Microwave semiconductor devices	
Part 3	Special Quality tubes Miscellaneous devices		January 1975
Part 4	Receiving tubes		Miarch 1975
Part 5a	Cathode-ray tubes		August 1976
Part 5b	Camera tubes Image intensiřier tubes		May 1975
Part 6	Products for nuclear technology	Geiger-Müller tubes	January 1977
	Channel electron multipliers Neutron tubes		
Part 7a	Gas-filled tubes		March 1977
	Thyratrons Industrial rectifying tubes	Ignitrons High-voltage rectifying tubes	
Part 7b	Gas-filled tubes		March 1977
	Segment indicator tubes Indicator tubes	Switching diodes Dry reed contact units	
Part 8	TV picture tubes		May 1977
Part 9	Photomultiplier tubes Phototubes (diodes)		June 1976

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1b Diodes

Part 1a Rectifier diodes, thyristors, triacs

Rectifier diodes
Voltage regulator diodes ($>1,5 \mathrm{~W}$)
Transient suppressor diodes

Small signal germanium diodes
Small signal silicon diodes Special diodes

Part 2 Low-frequency transistors
Part 3 High-frequency and switching transistors

Part 4a Special semiconductors
Transmitting transistors
Microwave devices
Field-effect transistors

Part 4b Devices for optoelectronics
Photosensitive diodes and transistors
Light emitting diodes
Displays

Part 5a Professional analogue integrated circuits

Part 5b Consumer integrated circuits
Radio - Audio
Television

Part 6 Digital integrated circuits
May 1976
LOCMOS HE family
GZ family
March 1976
Rectifier stacks
Thyristors
Triacs

October 1975
Voltage regulator diodes ($<1,5 \mathrm{~W}$)
Voltage reference diodes
Tuner diodes

December 1975

April 1976

June 1976
Dual transistors
Microminiature devices for thick- and thin-film circuits

July 1976
Photocouplers
Infrared sensitive devices
Photoconductive devices

November 1976

March 1977

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part $1 \begin{aligned} & \text { Functional units, Input/output devices, } \\ & \text { Peripheral devices }\end{aligned}$
November 1975
High noise immunity logic FZ/30-Series Circuit blocks 40 -Series and CSA70
Counter modules 50 -Series
NORbits 60-Series, 61-Series
Part 2a Resistors
Fixed resistors
Variable resistors
Voltage dependent resistors (VDR)
Light dependent resistors (LDR)

Part 2b Capacitors
Electrolytic and solid capacitors Paper capacitors and film capacitors

Part 3 Radio, Audio, Television
FM tuners
Loudspeakers
Television tuners and aerial input assemblies

Circuit blocks 90-Series
Input/output devices
Hybrid integrated circuits
Peripheral devices
February 1976
Negative temperature coefficient thermistors (NTC)
Positive temperature coefficient thermistors (PTC)
Test switches
April 1976
Ceramic capacitors
Variable capacitors
January 1977
Components for black and white
television
Components for colour television

October 1976
Ferroxcube potcores and square cores Ferroxcube transformer cores

Ferroxcube memory cores
Matrix planes and stacks
Part 6 Electric motors and accessories
April 1977
Small synchronous motors
Stepper motors
Part 7 Circuit blocks
September 1971
Circuit blocks 100 kHz -Series
Circuit blocks 1-Series
Circuit blocks 10 -Series
Part 8 Variable mains transformers
February 1977
Part 9 Piezoelectric quartz devices
March 1976
Part 10 Connectors
November 1975

General section

LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections

Heater	f
Cathode	k
Grid	g
\quad Grids are distinguished by means of an additional numeral;	
the electrode nearest to the cathode having the lowest number.	m
External conductive coating; rim-band	ℓ
Fluorescent screen	i.c.
Tube pin which must not be connected externally	n.c.

Symbols denoting voltages

Unless otherwise stated, the reference point for electrode voltages is the cathode.
Symbol for voltage, followed by a subscript
denoting the relevant electrode/element
Heater voltage
Peak-to-peak vaiue of a voltage
Peak value of a voltage
Grid 1 voltage for visual extinction of focused raster (grid drive service)
focused raster (grid drive service)
Cathode voltage for visual extinction of focused raster (cathode drive service)
Cathod
rid m
Fluorescent screen
Tube pin which must not be connected externally
i.c.

Tube pin which may be connected externally n.c.
V_{f}
$v_{p p} v_{p}$
$V_{G R}$
$V_{K R}$
Symbols denoting currents
Remark I The positive electrical current is opposite to the direction of the electron current.
Remark II The symbols quoted represent the average value of the current, unless otherwise stated.
Symbol for current followed by a subscript denoting the relevant electrode
Heater current
Symbols denoting powers
Dissipation of the fluorescent screen
W_{l}
Grid dissipation
w_{g}
Symbols denoting capacitances
See IEC Publication 100
Symbols denoting resistances and impedances
Symbol for resistance followed by a subscript for the relevant electrode pair. When oniy one subscript is given the second electrode is the cathode.

R
Symbol for impedance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.

Symbols denoting various quantities
Luminance B B
Frequency
Magnetic field strength

GENERAL OPERATIONAL RECOMMENDATIONS T.V. PICTURE TUBES

CONTENTS

1 Introduction
2 Spread in tube characteristics
3 Spread and variation in operating conditions
3.1 Spread
3.2 Variation
4 Limiting values
4.1 Rating systems
4.1.1 Absolute max. rating system
4.1.2 Design max. rating system
4.1.3 Design centre rating system
4.2 More than one rating system
5 Heater circuit
5.1. Parallel connection
5.2 Series connection
5.3 Stand-by (instant-on circuits)
6 Cathode to heater voltage
7 Intermediate electrodes
8 Electrode voltages
9 Luminescent screen
10 External conductive coating
11 Metal rimband
12 Flash-over
13 Handling
14 Mounting
15 Dimensions
16 Reference line
17 Corner cutting or neck shadowing
18 Raster centring

GENERAL OPERATIONAL RECOMMENDATIONS T.V. PICTURE TUBES

1. INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets.
Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.
If applications are considered not referred to in the data sheets of the relevant tube type extra care should be taken with circuit design to avoid that the tube is overloaded due to unfavourable operating conditions.

2. SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

3. SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.
3.1 Spread. Spread in an operating condition is a permanent deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.
3.2 Variation. Variation in an operating condition is non-permanent (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

4. LIMITING VALUES

4.1 Limiting values are in accordance with the applicable rating system as defined by I.E.C. publication 134 .
Reference may be made to one of the following 3 rating systems.
4.1.1 Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and taroughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.
4.1.2 Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data. and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment. equipment control adjustment, load variation, signal variation and environmental conditions.
4.1.3 Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data. and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications. taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply-voltage.
Note*. A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.
4.2 If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.
4.3 In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

5. HEATER CIRCUIT

Any deviation from the nominal heater voltage (in case of parallel connection) or from the nominal heater current (in case of series connection) has a detrimental effect on tube performance and life, and should therefore be kept at a minimum. Such deviations may be caused by:
a) Mains voltage fluctuations.
b) Spread in the characteristics of components such as transformers, resistors capacitors etc.
Designers of heater circuits are strongly recommended to bear this in mind when dealing with equipment to be used in areas where the actual mains voltage is likely to differ from the nominal value.

5.1 Parallel connection

The maximum deviation of the heater voltage should not exceed $\pm 15 \%$ (design maximum value).
This condition will be fulfilled when the mains voltage fluctuates by $\pm 10 \%$ and a ordinary transformer (see below) is used.

5.2 Series connection

The maximum deviation of the heater current should not exceed $\pm 8 \%$ (design maximum value).
When a small number of tubes with large differences in the heater voltage is used in series connection combined with a series resistor or a series capacitor, the maximum permitted deviation of the heater current may be exceeded. To avoid this, certain restrictions must be imposed on the composition of the heater chain; the maximum part of the supply voltage that can be eliminated, and the tolerances of the voltage dropper in series with the heaters. A number of circuits for If $=300 \mathrm{~mA}$ will be described in detail below.

$\mathrm{V}_{\mathrm{S}} \quad=$ source voltage (mains voltage or mains voltage stepped down via a transformer)
$\mathrm{V}_{\mathrm{RS}}=$ voltage drop over series resistor
$V_{\text {ftut. }}=V_{f 1}+V_{f 2}+V_{f 3} \ldots \ldots \ldots \ldots .+V_{\text {fmin. }}+\ldots \ldots \ldots \ldots V_{f n}$.
$\mathrm{V}_{\mathrm{fmin}}$. $=$ lowest individual heater voltage of all tubes in the chain
$\mathrm{R}_{\mathrm{S}} \quad=$ serios resistor

Voltage source
The following spreads have been taken into account for the source voltage:

- Mains voltage spread $\pm 10 \%$ either or not combined with the voltage spread caused by a transformer with a permanent deviation from the nominal value of $\pm 1 \%$ and with a spread of $\pm 2 \%$ (ordinary, well made transformer).

The following circuits are allowed:
5.2.1 Supply directly from a voltage source ($V_{S}=V_{\text {ftot }}$.)

- No restrictions.
5.2.2 Supply from a voltage source via a 5% series resistor $\left(V_{S}=V_{R s}+V_{f t o t}\right.$.) a. One single tube: permitted if $\frac{\mathrm{VRs}}{\mathrm{Vftot}} \leq 2$
b. Heater chain consisting of 2 or more tubes:
the marimum permitted ratio $\frac{\mathrm{VRs}}{\mathrm{V}_{\text {ftot }}}$. can be read from diagram number 1 as follows:
Determine $\frac{V \text { fmin }}{V_{\text {ftot. }}}$ of the heater chain. Draw a vertical line through the corresponding point in the diagram. Draw a horizontal line through the point of intersection of this vertical line with the line which indicates the total number of tubes in the chain. The point of intersection of this horizontal line with the vertical axis gives the maximum permitted ratio between the series resistor and the sum of the heater voltages of all tubes in the chain.
5.2.3 Supply from a voltage source via a series diode $\left(\frac{V_{S}}{V_{2}}=V_{\text {ftot }}\right)$
- No restrictions.
5.2.4 Supply from a voltage source via a series diode and a series resistor

$$
\left(\frac{V_{S}}{V_{2}^{\prime}}=V_{\text {ftot }} .+V_{R_{S}}\right)
$$

In the above formula $V_{f t o t}$, and $V_{\text {Rs }}$ are RMS values and the maximum permitted ratio $\frac{V R s}{V f \text { tot }}$. can be read from diagram number 1 (see 5.2.2).
For calculation of R_{S} divide the required $V_{R s}$ (RMS) by the nominal heater current: $\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{VR} \text { s }}{0.3}$

Remark to 5.2.3 and 5.2.4:
When series diodes are applied, the D.C. component of the resulting heater voltage should preferably be negative with respect to the cathodes of the tubes.
5.2.5 Supply from a voltage source via a series capacitor
a. One single 300 mA tube ; permitted if
$\frac{V \text { ftot. }}{V_{S}} \geq 0.50$ when 5% paper capacitors are applied.
b. $\frac{V_{\text {ftot. }}}{V_{S}} \geq 0.70$ when 10% metallized polycarbonate eapacitors are applied.
c. Heater chain consisting of 2 tubes or more; permitted if $\frac{V f t o t .}{V_{S}}$
$\frac{\text { Vftot. }}{V_{S}} \geq 0.6$ when 5% paper capacitors are applied. $\frac{\text { Vftot. }}{V_{S}} \geq 0.8$ when 10% metallized polycarbonate capacitors are applied.

5.3 Stand-by (instant - on circuits)

In order to maintain reliability during life, it is recommended to reduce the heater voltage of the tubes during stand-by operation to $\leq 75 \%$ of the nominal value.

Note
If other designs for the heater supply circuit are wanted than the configurations described above it is strongly recommended to contact the tube manufacturer.

Diagram No. 1
6. CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting value given on the data sheets of the individual tubes. The values given under "Limiting values" relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be D.C., A.C. . or a combination of both voltages. Unless otherwise stated, the maximum values quoted for the voltage between cathode and heater indicate the maximum permissible value (D.C. component). If an A.C. voltage, or an combination of D.C. and A.C. voltages. is applied the peak value may be twice the rated V_{kf}; however. unless otherwise stated, the peak value shall never exceed 315 V . The D.C. component is not allowed to exceed the published value.
Unless otherwise stated, the V_{kf} max. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.
In order to avoid excessive hum the A.C. component of the heater to cathode voltage should be as low as possible and never exceed 20 V rms (mains frequency).
7. INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a D.C. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source such as the hot line. When such a connection is required, it should be made via a series resistor of not less then $1 \mathrm{k} \Omega$.

8. ELECTRODE VOLTAGES

All electrode voltages are given with respect to cathode.
For cathode drive service the reference point is grid No. 1
8.1 Grid No. 1 cut-off voltage

Generally curves showing the limits of grid No. 1 cut-off voltage for specific values of the first accelerator voltage are included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.
The published limits are determined at an ambient illumination level of 10 lux with the aid of a focused raster. Because the brightness of a focused spot is in general greater than that of a raster, the visual cut-off voltage determined with the aid of a spot will be more negative by about 5 V .
8.2 Grid No. 2 voltage

For each individual tube the grid No. 2 voltage can be adjusted so that the beam current is cut off at a fixed value within the published range of the grid No. 1 voltage.
In the data, graphs are included giving the relationship between the grid No. 2 voltage and the grid No, 1 cut-off voltage.
8.3 Focusing electrode voltage

Individual tubes will have satisfactory focus over the entire screen at some value within the published range of the focusing voltage.
If centre-focusing is desired this range will shift in the negative direction.

9. LUMINESCENT SCREEN

To prevent permanent damage to the screen material care should be taken
a. not to operate the tube with a stationary picture at high beam currents for extended periods
b. not to operate the tube with a stationary or slowly moving spot except at ex tremely low beam currents
c. to choose the time constants of the grid No. 1 the grid No. 2 and the time bases supply line circuits such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

10. EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.
The coating is not a perfect conductor and in order to reduce radiation caused by the line time base it may be necessary to make multiple connections to the coating. See also 12 .

11. METAL RIMBAND

An appreciable capacitance exist between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shocks, a D.C. connection should be provided between the metal band and the rest of the receiver. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if acces is made to the metal band. To reduce the shock to the safe limit. it is suggested that a $2 \mathrm{M} \Omega$ resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flash-over high voltages will be induced on the metal band. It is therefore recommended that the $2 \mathrm{M} \Omega$ resistor be bypassed by a 4.7 nF capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating.
The 4.7 nF capacitor also serves to reduce the radiation from the band.

12. FLASH-OVER

Picture tubes, in common with other high voltage devices, are prone to internal flash-over. During a breakdown arcing occurs between an electrode connected to the e.h.t. capacitor and an electrode terminated in a pin on the base of the tube. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged.
During the subsequent recharging period an additional load is imposed on the e.h.t. generator.

It is of vital importance to provide protective circuits with spark gaps, particularly when semiconductor devices are employed. The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information available on request.
13. HANDLING

The precautions taken in manufacture reduce the possibility of spontaneous implosion to a minimum but any additional stress due to mishandling considerably increases the risk of implosion: such an implosion may occur immediately or may be delayed. Care should be taken not to scratch or bump any part of the bulb, particularly the screen to cone area, as this will appreciably reduce the strength of the bulb and may lead to implosion.

When a tube is not in its equipment or original packing and is placed screen downwards, it should be placed on a soft pad of suitable material free from abrasive substances. Stresses on the neck should be avoided.

If the transportation method uses the lugs it is necessary to employ at least two lugs in the lifting of the tube. The lift should be made in such a way that the applied forces are equally distributed between the lugs.

The maximum force that may be applied to one lug, at any angle, shall not exceed twice the weight of the tube.
The tube should not be subjected to accelerations higher than 30 g .
Before removing the tube from the equipment the capacitance C_{am} should be discharged via a resistor of approx. $50 \mathrm{k} \Omega$.

The manufacturers notify all concerned that they do not accept any responsibility for any damage on injury sustained in any manner in comnection with the picture tube, neither is any condition or warranty given or to be implied.

14. MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the rosition of mounting.

The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.
The weight of the socket and possible additional circuitry should not be more than 80 g . With tubes with a 7 -pin miniature base the socket may not be used for mounting components.

Tubes having all-glass bases must not be soldered direct into the wiring. It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.

In front of the face of a mono-panel T.V. picture tube a protecting screen of transparent material should be placed. The screen should be of adequate strength to withstand the effects of an implosion of the tube.
Tubes having integral protection do not require a protective screen.

15. DIMENSIONS

In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed a round dimensions taken from individual tubes.

16. REFERENCE LINE

The reference line indicated on the tube outline drawing is determined by means of a gauge.
Drawings of these gauges are given in this book.

GENERAL

T.V. PICTURE TUBES

17. CORNER CUTTING OR NECK SHADOWING

Corner cutting is caused by a direct interception of the deflected electron beam before it is reaching the screen and results in a non-scanned corner of the raster. It may be avoided by applying an appropriate deflection unit.

18. RASTER CENTRING

To centre the raster on the screen it is recommended that either a magnetic field just behind the deflection coils (viewed from the screen) be used or a direct current be passed through the deflection coils.
The centring device should provide a shift to allow for non-centrality of the spot with respect to the geometric centre of the screen, in addition the centring device should provide the shift needed to allow for non-centrality of the visible raster (i.e. to compensate for line blanking and also time base non-linearity, if any) and the earth magnetic field.
The use of a too strong centring magnetic field should be avoided; this may result in raster distortion and even corner cutting.

TYPE DESIGNATION

PRO-ELECTRON TYPE DESIGNATION CODE

Single letter, group of figures, hyphen, group of figures, letter or letter group.
The first letter indicates the prime application of the tube:
A - Television display tube for domestic application.
M - Television display tube for professional application-direct view.
First group of figures: Diameter or diagonal of the face in cm .
Second group of figures: Development or design number.
Final letter or letter group: Properties of the phosphor screen.
The first letter denotes the colour of the fluorescence, the second letter, if any, other specific differences in screen properties.
W - White screen for T -T display tubes.
X - Three-colour screen for T.V. display tubes.

SCREEN PHOSPHORS

Kelly Chiort

Colour point tolerance area for W phosphor

Colour coordinates

	x	y
red	0,630	0,340
green	0,315	0,600
blue	0,150	0,065

REFERENCE LINE GAUGES

REFERENCE LINE GAUGE C (JEDEC 126) (IEC 67-IV-3)

The millimetre dimensions are derived from the original inch dimensions.

ref	inches				millimetres				notes
	min	nom	max	min	nom	max			
A	-	5,000	-	-	127,00	-	-		
B	-	4,500	-	-	114,30	-	-		
C	-	2,000	-	-	50,80	-	-		
D	1,168	1,168	1,171	29,668	29,668	29,743	-		
E	1,241	1,242	1,243	31,522	31,547	31,572	-		
F	4,248	4,250	4,252	107,900	107,950	108,000	-		
G	-	0,279	-	-	7,09	-	2		
H	-	0,250	-	-	6,35	-	-		
L	1,165	1,170	1,175	29,60	29,72	29,84	2		
M	-	1,634	-	-	41,50	-	-		
N	-	0,920	-	-	23,37	-	1		
P	-	0,250	-	-	6,35	-	-		
R	-	$1,000 \mathrm{r}$	-	-	$25,40 \mathrm{r}$		-		
S	0,712	0,714	0,716	18,085	18,136	18,186	-		
T	-	3,214	-	-	81,64	-	-		
V	2,490	2,500	2,510	63,25	63,50	63,75	-		

1. $y=0,58 x^{2}+0,576$ inches ($0,0228 x^{2}+14,630 \mathrm{~mm}$) ' y ' values must be held to $\pm 0,002^{\prime \prime}(0,05 \mathrm{~mm})$. The Y -axis is $0,920^{\prime \prime}(23,368 \mathrm{~mm})$ below the $\mathrm{X}-\mathrm{X}^{\prime}$ reference plane.
2. $4^{\circ} \pm 30^{\prime}$ taper between planes G and L.

Reference line gauge for 110° deflection angle.

Reference line gauge for 90° deflection angle

REFERENCE LINE GAUGE E

Reference line gauge for 90° deflection angle colour tubes

Reference line gauge for 110° deflection angle

Reference line gauge for 110° deflection angle

BASES

SMALL-BUTTON NEO EIGHTAR BASE IEC67-I-31
Dimensions in mm
JEDEC B7-208

${ }^{1}$) Base-pin positions are held to tolerances such that the base will fit a flat-plate gauge having a thickness of 9,53 and eight equally spaced holes of $1,40 \pm 0,01$ diameter located on a $15,24 \pm 0,01$ diameter circle. The gauge is also provided with a centre hole to provide 0,25 diametric clearance for the lug and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, pass into and disengage from the gauge.
2) This dimension may vary within the limits shown around the periphery of any individual pin.

7 Pin Miniature base with pumping stem

Dimensions of this base are within the JEDEC E7-91 dimensions

[^1]12 PIN BASE JEDEC B12-246, IEC-67-I-47a

pin contour
detail of key

Colour TV picture tubes

110° IN-LINE GUN COLOUR TELEVISION TUBE

The tube has a three-in-line gun, a slotted shadow-mask and phosphors arranged in vertical stripes. The system of tube and deflection unit AT1085 is inherently self-converging; only minor corrections are needed to compensate for tolerances and asymmetries. The shadow-mask is optimized for minimum moiré. The tube features a quick-heating cathode, an internal magnetic shield, and a very short overall length.

QUICK REFERENCE DATA	
Deflection angle	110 deg
Face diagonal	47 cm
Overall length	34 cm
Inherently self-converging system with deflection unit AT1085	
Quick-heating cathode	with a typical tube a picture will appear within 5 s
Heating	$6,3 \mathrm{~V}, 730 \mathrm{~mA}$
Magnetic shield	internal
Envelope	reinforced suitable for push-through
Focusing	bi-potential

SCREEN

Metal-backed vertical phosphor stripes Red : Europium activated rare earth Green: Sulphide type Blue : Sulphide type

Centre-to-centre distance of identical colour phosphor stripes $0,7 \mathrm{~mm}$

Light transmission of face glass 56 \%

HEATING : indirect by a.c. (preferably mains or line frequency) or d.c.

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	730	mA

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 14 .

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid no. 1 of a gun to all other electrodes
red gun
green gun
blue gun
Cathodes of all guns (connected in parallel)
to all other electrodes
Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to all other electrodes

FOCUSING

DEFLECTION

Diagonal deflection angle
Horizontal deflection angle
Vertical deflection angle

$\mathrm{C}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4 / \mathrm{m}$	$<$	1000	pF
	$>$	600	pF
$\mathrm{C}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4 / \mathrm{m}^{\prime}$		250	pF

$\mathrm{C}_{\mathrm{g} 1 \mathrm{R}}$	7	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{G}}$	7	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{~B}}$	7	pF

C_{k}	12	pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	4	pF

$\mathrm{C}_{\mathrm{g} 3} \quad 7 \mathrm{pF}$ electrostatic (bi-potential)
magnetic

MECHANICAL DATA

Overall length	326, 3 to 339, 3
Neck diameter	36, $5_{-0,4}^{+1,6}$
Diagonal	$\leqslant \quad 473$
Width of bulb	$\leqslant 407,7$
Height	$\leqslant 317,8$
Useful screen	
diagonal	$\geqslant 438,9$
horizontal axis	$\geqslant 368,9$
vertical axis	$\geqslant 274,9$

Mounting position: any
Net mass $\quad:$ approx. 10 kg
Base $: 12$ pin base IEC 67-I-47a, type 2
Anode contact : small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield. The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts. For proper degaussing an initial m. m.f. of 200 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m. m.f. should remain in the coils ($\leq 0,2 \mathrm{~A} . \mathrm{t}$.) .
To ease the mounting of the coils, the rimband is provided with rectangular holes.

NOTES TO OUTLINE DRAWINGS (see pages 4,5 , and 6)

1) This ridge can be used as an orientation for the deflection unit.
2) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
3) To clean this area, wipe only with a soft lintless cloth.
4) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
5) Minimum space to be reserved for mounting lug.
6) The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $401 \mathrm{~mm} \times 311 \mathrm{~mm}$.
7) Co-ordinates for radius $\mathrm{R}=15,2 \mathrm{~mm}: \mathrm{x}=166,2 \mathrm{~mm}, \mathrm{y}=118,8 \mathrm{~mm}$.
${ }^{8}$) Distance from point z to any hardware.
${ }^{9}$) Maximum dimensions in plane of lugs.
10)Centring ring for the deflection unit.
${ }^{11}$)The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. The bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
12)Minimum distance between glass and rimband in plane of centre line of the apertures.

Notes see page 3 .

Notes see page 3 .

MECHANICAL DATA (continued)
Dimensions in mm

Notes see page 3 .

TYPICAL OPERATING CONDITIONS cathode drive, voltages with respect to g 1
Final accelerator voltage
Grid no. 3 (focusing electrode) voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g}} \mathrm{g}, \mathrm{g} 4$	25	kV
$\mathrm{V}_{\mathrm{g} 3}$	4, 0 to 4,8	kV
$\mathrm{V}_{\mathrm{g} 2}$	465 to 705	V 1)
V_{k}	110 to 165	V ${ }_{\text {2) }}$
L	100	$\underset{\text { (nit) }}{\mathrm{cd} / \mathrm{m}^{2}}$

EQUIPMENT DESIGN VALUES (each gun if applicable), voltages with respect to gl
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$

Grid no. 3 (focusing electrode) voltage

Grid no. 2 voltage

Cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube

Grid no. 3 (focusing electrode) current
Grid no. 2 current
Grid no. 1 current at $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 3} 16$ to $19,2 \%$ of final accelerator voltage
$\mathrm{V}_{\mathrm{g} 2}$ see cut-off design chart page 13
V_{k} see cut-off design chart page 13
$\Delta V_{k} \quad$ lowest value is min. 75% of highest value
$\begin{array}{lll}\mathrm{I}_{\mathrm{g} 3} & -5 \text { to }+5 & \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{g} 2} & -5 \text { to }+5 & \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{g} 1} & -5 \text { to }+5 & \mu \mathrm{~A}\end{array}$

1) This range of $V_{g 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
2) This range of V_{k} has to be used when in circuit design fixed values for $V_{g 2}$ of the three guns are used.
3) Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

EQUIPMENT DESIGN VALUES (continued)

To produce white of the following white "D"				
CIE co-ordinates :	x	0,265	0,281	0,313
	y	0,290	0,311	0,329
Percentage of total anode current supplied by each gun (typical)				
red gun		26, 4	30,6	41,2
green gun		34, 3	35, 4	32, 2
blue gun		39, 3	34, 0	26, 6
Ratio of anode current red gun to green gun	>	0,60	0,65	0,95
	av.	0,75	0,85	1,30
	$<$	1,00	1,15	1,70
Ratio of anode currents red gun to blue gun	$>$	0,50	0,65	1,15
	av.	0,65	0,90	1,55
	$<$	0,90	1,20	2, 05

LIMITING VALUES (each gun if applicable), voltages with respect to gl (Design maximum rating system unless otherwise specified)

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	max. min.	$\begin{array}{r} 27,5 \\ 20 \end{array}$	$\begin{aligned} & \left.\left.\left.\mathrm{kV}{ }^{1}\right)^{2}\right)^{3}\right) \\ & \left.\left.\mathrm{kV}{ }^{1}\right)^{4}\right) \end{aligned}$
Long term average current for three guns	I_{a}	max.	1000	$\mu \mathrm{A}{ }^{5}$)
Grid no. 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	6	kV
Grid no. 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1000	V
Cathode voltage, positive positive, operating cut-off negative negative peak	$\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{~V}_{\mathrm{k}} \\ -\mathrm{V}_{\mathrm{k}} \\ -\mathrm{V}_{\mathrm{kp}} \end{gathered}$	max. max. max. \max.	$\begin{array}{r} 400 \\ 200 \\ 0 \\ 2 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive positive peak negative negative peak	$\begin{gathered} \mathrm{V}_{\mathrm{kf}} \\ \mathrm{~V}_{\mathrm{kfp}} \\ -\mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kfp}} \end{gathered}$	max. max. max. max.	$\begin{aligned} & 250 \\ & 300 \\ & 135 \\ & 180 \end{aligned}$	$\left.\begin{array}{ll} \mathrm{V} & 6 \\ \mathrm{~V} & 1 \\ \mathrm{~V} & \\ \mathrm{~V} & 1 \end{array}\right)$

[^2]Continued on page 9 .

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. Additional information available on request.

During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}(35 \mathrm{~g})$ in any direction

CONTOUR GAUGE

3) During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs the luminance and resolution.
5) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 385 V to 250 V is permissible.

BEAM CORRECTIONS

When the tube is used with the deflection unit AT1085 the following corrections should be applied:
Maximum required horizontal displacement of the electron beams with respect to the phosphor stripes by the purifying magnet of the multi-pole unit AT1081 ${ }^{1}$) $45 \mu \mathrm{~m}$
Static convergence deviations must be corrected by a static multi-pole
unit AT 1081 providing adjustable four-pole and six-pole fields
centred around the tube axis
Maximum requred compensation for static convergence
4-pole device: red-to-blue (in any direction)
$4,5 \mathrm{~mm}$
6 -pole device: red and blue to green (in any direction)
$2,3 \mathrm{~mm}$
North-South raster shape correction circuitry is not required.

To obtain a symmetrical shape for the horizontal lines at the upper part and the lower part of the screen, the unit AT 1081 comprises an additional dipole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum $\pm 3,5 \mathrm{~mm}$

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction
With respect to dynamic convergence the display system, consisting of picture tube A47-500X and deflection unit AT 1085, is inherently self-converging. However, a small fixcd correction of $2.6 \mathrm{~mm}^{2}$) is required on the horizontal axis anc also small corrections should be made to compensate for tolerances and asymmetries in the tube and deflection unit combination.
For this purpose two types of dynamic four-pole fields can be used.
One is generated by additional windings on the yoke ring, of the deflection unit, and energized by adjustable currents synchronized with scanning.
The other type is generated by adjustable balancing currents through the deflection coils.
Compensation to be provided by these corrections:
-horizontal red-to-blue distance at the enas of the horizontal axis in opposite directions (line symmetry) ${ }^{3}$) $0 \pm 1,5 \mathrm{~mm}$
-horizontal red-to-blue distance at the ends of the vertical axis in opposite directions (field symmetry) ${ }^{4}$) $0 \pm 1,5 \mathrm{~mm}$

- vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance)

5) $0 \pm 1,0 \mathrm{~mm}$
-vertical red-to-blue distance at the ends of the horizontal axis in equal directions (line balance parabola)
6) $0 \pm 0,5 \mathrm{~mm}$
-vertical red-to-blue distance at the top of the vertical axis (field balance top)
7) $0 \pm 1,0 \mathrm{~mm}$
-vertical red-to-blue distance at the bottom of the vertical axis (field balance bottom)
8) $0 \pm 1,0 \mathrm{~mm}$

Notes see page 11.

Notes

1) Purity adjustment in vertical direction is not required.
${ }^{2}$) This correction is made by feeding a fixed parabolic current of line frequency through the additional four-pole windings on the deflection unit.
2) This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
${ }^{4}$) This correction is made by feeding a sawtooth current of field frequency through the additional four-pole windings on the deflection unit.
${ }^{5}$) This correction is made by unbalancing the line deflection coil halves.
3) This correction is made by feeding a parabolic current of line frequency through the line deflection coil halves.
4) This correction is made by unbalancing the fieid deflection coil halves during the first half of the field scan.
${ }^{8}$) This correction is made by unbalancing the field deflection coil halves during the second ha'f of the field scan.

Application information available on request.

MAXIMUM CONE CONTOUR DRAWING

Dimensions in mm

7Z69295.2

Distance from centre (max. values)															
Sec. tion	Nom. distance from section 1	0°	10°	20°	25°	30°	35°	38°	40°	45°	50°	60°	70°	80°	90°
1	0	201.0	203.7	212.2	218.8	226,2	232,8	231,6	227.6	212,5	198,4	177,8	164,9	157,9	155.7
2	5	200,1	202,7	210,9	217,1	224,3	229,2	227,7	224,0	210,2	196,7	176.5	163.9	157.0	154,8
3	10	198,7	201.3	209.0	214,7	220,9	224,3	222,5	219,2	206,9	194,2	174,8	162.5	155,7	153,6
4	15	197.0	199.3	206.4	211.4	216,3	218,1	216,0	213,2	202,6	191,1	172,6	160,8	154,2	152,1
5	20	194.6	196.8	203,0	207,1	210.4	210.8	208,6	206,1	197,2	187,1	170,0	158,6	152,3	150,2
6	25	191.7	193.6	198,7	201,5	203,3	202.4	200,1	197,9	190,6	182,1	166,8	156,1	150,0	148,1
7	30	187.9	189,5	193.1	194,5	194,7	192.9	190.6	188,7	182,7	175,9	162,8	153,1	147,4	145,5
8	35	183.2	184,2	185,8	185,8	184,7	182.2	180,1	178,4	173.6	168,2	157.7	149,4	144,3	142.6
9	40	176.8	177.1	176.4	175.1	173.0	170.2	168.2	166.7	162,9	158,9	151,1	144,7	140,5	139.1
10	45	167.8	166.9	164.0	161.8	159.2	156.4	154.6	153,4	150,4	147,5	142,3	138,2	135,5	134,5
11	50	153.9	151,7	147.5	145,0	142,6	140.1	138,8	137.8	135,7	133,8	131,0	128,9	128,0	128,0
12	55	130,7	128,5	125,3	123,6	122,0	120,5	119,7	119,2	118,1	117,2	116.0	115,7	116,2	116.9
13	59.5	100.0	100.0	100.0	100.0	100,0	100.0	100.0	100,0	100,0	100,0	100,0	100,0	100.0	100,0

Cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Cut-off design chart (grid drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

Typical cathode drive characteristics

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$	$\mathrm{a}=$ spot cut-off $=75 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g} 3}$	adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot	$\mathrm{b}=$ spot cut-off $=100 \mathrm{~V}$
cut-off for desired fixed V_{k}	$\mathrm{c}=$ spot cut-off $=150 \mathrm{~V}$
$\mathrm{~d}=$ spot cut-off $=200 \mathrm{~V}$	

zero bias point

Typical grid drive characteristics

| $\mathrm{V}_{\mathrm{a}, \mathrm{g}} 5, \mathrm{~g} 4=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$ | | $\mathrm{a}=$ spot cut-off $=-75 \mathrm{~V}$ |
| ---: | :--- | ---: | :--- |
| $\mathrm{~V}_{\mathrm{g}} 3$ | adjusted for focus | $\mathrm{b}=$ spot cut-off $=-100 \mathrm{~V}$ |
| $\mathrm{~V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot | $\mathrm{c}=$ spot cut-off $=-150 \mathrm{~V}$ | |
| cut-off for desired fixed V_{gl} | $\mathrm{d}=$ spot cut-off $=-200 \mathrm{~V}$ | |

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$. Scanned area $368,9 \mathrm{~mm} \times$ $274,9 \mathrm{~mm}$.

110° IN-LINE GUN COLOUR TELEVISION TUBE

The tube has a three-in-line gun, a slotted shadow-mask, and phosphors arranged in vertical stripes. The system of tube and deflection unit AT1085 is inherently selfconverging; only minor corrections are needed to compensate for tolerances and asymmetries. The shadow-mask is optimized for minimum moiré. The tube features a quick-heating cathode, an internal magnetic shield, and a very short overall length.

QUICK REFERENCE DATA	
Deflection angle	110 deg
Face diagonal	51 cm
Overall length	35 cm
Inherently self-converging system with deflection unit AT1085	
Quick-heating cathode	with a typical tube a picture will appear within 5 s
Heating	$6,3 \mathrm{~V}, 730 \mathrm{~mA}$
Magnetic shield	internal
Envelope	reinforced, suitable for push-through
Focusing	bi-potential

SCREEN

$$
\begin{array}{ll}
\text { Metal-backed vertical phosphor stripes Red : Europium activated rare earth } \\
& \begin{array}{l}
\text { Green : Sulphide type } \\
\text { Blue : Sulphide type }
\end{array} \\
& \\
\begin{array}{l}
\text { Centre-to-centre distance of identical } \\
\text { colour phosphor stripes }
\end{array} & 0,8 \mathrm{~mm}
\end{array}
$$

Light transmission of face glass $\quad 52 \quad \%$

HEATING: indirect by a.c. (preferably mains or line frequency) or d.c.

Heater voltage	V_{f}	6,3
Heater current	I_{f}	730
mA		

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$.
For heating time as a function of source impedance see graph page 14 .

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid no. 1 of a gun to all other electrodes
red gun
green gun
blue gun
Cathodes of all guns (connected in parallel)
to all other electrodes
Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to
all other electrodes

FOCUSING

DEFLECTION

Diagonal deflection angle
Horizontal deflection angle
Vertical deflection angle

	$<$	1400	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4 / \mathrm{m}}$	$>$	900	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4 / \mathrm{m}^{\prime}}$		250	pF

$\mathrm{C}_{\mathrm{g} 1 \mathrm{R}}$	7	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{G}}$	7	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{~B}}$	7	pF

$\mathrm{C}_{\mathrm{k}} \quad 12 \mathrm{pF}$
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}} \quad 4 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3} \quad 7 \mathrm{pF}$
electrostatic (bi-potential)
magnetic

MECHANICAL DATA

Mounting position : any
Net mass $\quad:$ approx. 12 kg
Base $: 12$ pin base IEC 67-I-47a, type 2
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield.
The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts. For proper degaussing an initial m.m.f. of 250 ampere-turns is required in each of the coils. This m. m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils ($<0,25$ A.t.). To ease the mounting of the coils, the rimband is provided with rectangular holes.

NOTES TO OUTLINE DRAWINGS (see pages 4, 5, and 6)

1) This ridge can be used as an orientation for the deflection unit.
2) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
3) To clean this area, wipe only with a soft lintless cloth.
4) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
5) Minimum space to be reserved for mounting lug.
6) The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
7) Co-ordinates for radius $\mathrm{R}=13,1 \mathrm{~mm}: \mathrm{x}=184,58 \mathrm{~mm}, \mathrm{y}=131,93 \mathrm{~mm}$.
8) Distance from point z to any hardware.
9) Maximum dimensions in plane of lugs.
${ }^{10}$)Centring ring for deflection unit.
${ }^{11}$) The socket for this base should not be rigidly mounted: it should have flexible leads and be allowed to move freely. The bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
${ }^{12}$)Minimum distance between glass and rimband in plane of centre line of apertures.

$\overline{\text { Notes see page } 3 .}$

bulb dimensions at mould match line
$\overline{\text { Notes see page } 3 .}$

April 1977

MECHANICAL DATA (continued)

$\overline{\text { Notes see page } 3 .}$

TYPICAL OPERATING CONDITIONS cathode drive, voltages with respect to g 1
Final accelerator voltage
Grid no. 3 (focusing electrode) voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	25	kV
V 3	4,0 to 4,8	kV

Grid no. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Cathode voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=555 \mathrm{~V}$
Luminance at the centre of the screen ${ }^{3}$)

$\mathrm{V}_{\mathrm{g} 2}$	465 to 705	V	1)
V_{k}	110 to 165	V	2^{2}
L	100	$\mathrm{cd} / \mathrm{m}^{2}$ (nit)	

EQUIPMENT DESIGN VALUES (each gun if applicable), voltages with respect to g1 Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$

Grid no. 3 (focusing electrode) voltage
Grid no. 2 voltage

Cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube

Grid no. 3 (focusing electrode) current
Grid no. 2 current
Grid no. 1 current at $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$

$\mathrm{V}_{\mathrm{g} 3} \quad$| 16 to $19,2 \%$ of final |
| :--- |
| accelerator voltage |

$\mathrm{V}_{\mathrm{g} 2} \quad \begin{gathered}\text { See cut-off design chart } \\ \text { page } 13\end{gathered}$
$V_{k} \quad$ See cut-off design chart page 13
$\mathrm{V}_{\mathrm{g} 3} \quad 16$ to $19,2 \%$ of final
$\Delta \mathrm{V}_{\mathrm{k}} \quad$ lowest value is min. 75% of highest value
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \quad \mu \mathrm{~A}$

1) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
2) This range of V_{k} has to be used when in circuit design fixed values for $V_{g 2}$ of the three guns are used.
3) Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

EQUIPMENT DESIGN VALUES (continued)
To produce white of the following CIE co-ordinates :

Percentage of total anode current
supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents
red gun to green gun

Ratio of anode currents
red gun to blue gun

		white"D"	
x	0,265	0,281	0,313
y	0,290	0,311	0,329
	26,4	30,6	41,2
	34,3	35,4	32,2
	39,3	34,0	26,6
$>$	0,60	0,65	0,95
av.	0,75	0,85	1,30
$<$	1,00	1,15	1,70
$>$	0,50	0,65	1,15
av.	0,65	0,90	1,55
$<$	0,90	1,20	2,05

LIMITING VALUES (each gun if applicable), voltages with respect to gl
(Design maximum rating system unless otherwise specified)

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}, \mathrm{g}} 4$	\max. min.	$\begin{array}{r} 27,5 \\ 20 \end{array}$	$\begin{aligned} & \left.\left.\left.k V^{1}\right)^{2}\right)^{3}\right) \\ & \left.\left.k V^{1}\right)^{4}\right) \end{aligned}$
Long term average current for three guns	I_{a}	max.	1000	$\mu \mathrm{A} 5)$
Grid no. 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	6	kV
Grid no. 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1000	V
Cathode voltage, positive	V_{k}	max.	400	V
positive, operating cut-off	V_{k}	max.	200	V
negative	$-\mathrm{V}_{\mathrm{k}}$	max.	0	V
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2	V
Cathode to heater voltage, positive	V_{kf}	max.	250	V 6)
positive peak	$\mathrm{V}_{\mathrm{kfp}}$	max.	300	V 1)
negative	$-\mathrm{V}_{\mathrm{kf}}$	max	135	V
negative peak	$-\mathrm{V}_{\mathrm{kfp}}$	max.	180	V 1)

1) Absolute max. rating system.
2) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.

Continued on page 9 .

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using sparks gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. Additional information available on request.

During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}(35 \mathrm{~g})$ in any direction.

CONTOUR GAUGE

[^3]
BEAM CORRECTIONS

When the tube is used with the deflection unit AT1085 the following corrections should be applied:
Maximum required horizontal displacement of the electron beams with respect to the phosphor stripes by the purifying magnet of the multipole unit AT1081 ${ }^{1}$) $45 \mu \mathrm{~m}$
Static convergence deviations must be corrected by a static multi-pole unit AT 1081 providing adjustable four-pole and six-pole fields centred around the tube axis Maximum required compensation for static convergence

4-pole device: red to blue (in any direction)
5 mm
6 -pole device: red and blue to green (in any direction) $2,5 \mathrm{~mm}$
North-South raster shape correction circuitry is not required.
To obtain a symmetrical shape for the horizontal lines at the upper part and the lower part of the screen, the unit AT 1081 comprises an additional dipole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum
$\pm 4 \mathrm{~mm}$
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction

4,5 mm
With respect to dyuamic convergence the display system, consisting of picture tube A51-500X and deflection unit AT 1085. is inherently self-converging. However, a small fixed correction of $1.3 \mathrm{~mm}^{2}$) is required on the horizontal axis and also small corrections should be made to compensate for tolerances and asymmetries in the tube and deflection unit combination (using a recommended circuit).
For this purpose two types of dynamic magnetic four-pole fields can be used.
One is generated by additional windings on the yoke ring of the deflection unit. and energized by adjustable currents synchronized with scanning.
The other type is generated by adjustable balancing currents through the deflection coils.
Compensation to be provided by these corrections:
-horizontal red-to-blue distance at the ends of the horizontal axis in opposite directions (line symmetry) 3) $0 \pm 1,5 \mathrm{~mm}$
-horizontal red-to-blue distance at the ends of the vertical axis in opposite directions (field symmetry)
4) $0 \pm 1,5 \mathrm{~mm}$
-vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance)
5) $\quad 0 \pm 1, \mathrm{C} \mathrm{mm}$
-vertical red-to-blue distance at the ends of the horizontal axis in equal directions (line balance parabola)
6) $0 \pm 0,5 \mathrm{~mm}$
-vertical red-to-dlue distance at tho top of the vertical axis (field balance top)
7) $0 \pm 1.0 \mathrm{~mm}$
-vertical red-to-blue distance at the bottom of the vertical axis (field balance bottom)
8) $0 \pm 1.0 \mathrm{~mm}$

Notes see page 11.

Notes

${ }^{1}$) Purity adjustment in vertical direction is not required.
2) This correction is made by fecding a fixed parabolic current of line frequency through the additional four-pole windings on the deflection unit.
3) This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
4) This correction is made by feeding a sawtooth current of field frequency through the additional wincings on the deflection unit.
5) This correction is made by unbalancing the line deflection coil halves
6) This correction is made by feeding a parabolic current of line frequency thiough the line deflection coil halves.
7) This correction is made by unbalancing the field deflection coil halves during the first half of the field scan.
8) This correction is made by unbalancing the field deflection coil halves during the second half of the field scan.

Application information available on request.

MAXIMUM CONE CONTOUR DRAWING

Dimensions in mm

Distance from centre (max. values)												
Sec- tion	Nom. distance from section 1	0°	10°	20°	30°	diag.	40°	50°	60°	70°	80°	90°
1	0	222	225	236	254	258	252	217	193	178	172	170
2	20	216	217	226	240	244	238	205	185	172	165	163
3	40	195	195	200	204	205	198	180	166	156	150	148
4	60	162	158	154	148	144	141	134	128	123	121	121
5	74	98	98	98	98	98	98	98	98	98	98	98

Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Spot cut-off design chart (grid drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Cathode heating time to obtain a certain percentage of the cathode current at equilibrium condition.

Typical cathode drive characteristics

$\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$	a	$=$ spot cut-off	$=75 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g} 3}$	adjusted for focus	b	$=$ spot cut-off

Typical grid drive characteristics

V a, $\mathrm{g} 5, \mathrm{~g} 4=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for desired fixed V_{g} l
$\mathrm{a}=$ spot cut-off $=-75 \mathrm{~V}$
$\mathrm{b}=$ spot cut-off $=-100 \mathrm{~V}$
$c=$ spot cut-off $=-150 \mathrm{~V}$
$\mathrm{d}=$ spot cut-off $=-200 \mathrm{~V}$
... zero bias point

Luminance at the centre of the screen as a function of $I_{\text {total }}$. Scanned area $404,4 \mathrm{~mm} \mathrm{x}$ $303,3 \mathrm{~mm}$.

Available for equipment maintenance. No longer recommended for equipment production.

90° COLOUR TELEVISION TUBE

QUICK REFERENCE DATA

Temperature compensated shadow-mask
Shadow-mask optimized for 625 -line system
High white luminance at unity current ratio

Face diagonal	56	cm
Deflection angle	90	deg
Neck diameter	36,5	mm
Envelope	reinforced;	
	suitable for	
push-through		
Convergence	magnetic	
Heating, parallel or series supply	$6,3 \mathrm{~V}, 900 \mathrm{~mA}$	
Light transmission of face glass	54,5	$\%$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid 3 (focusing electrode) voitage
Grid 2 voltage for a spot cut-off at $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$

$V_{a, g 5, g 4}$		25 kV		
$V_{\mathrm{g} 3}$	4,2	to	5 kV	
$\mathrm{V}_{\mathrm{g} 2}$	210	to	495	V
$V_{\mathrm{g} 1}$	-70	to	-140	V

MECHANICAL DATA

Overall length		$472,2 \pm 9,5$
Neck length		$\leqslant 168,7$
Diagonal		$\leqslant 566,2$
Horizontal axis	of bulb	$\leqslant 486,3$
Vertical axis		$\leqslant 381,8$
Useful screen		
diagonal		$\geqslant 533$
horizontal axis		$\geqslant 447$
vertical axis		$\geqslant 337$

Base : 12-pin base IEC 67-1-47a, JEDEC B12-246
Anode contact: IEC67-111-2, J1-21

110° COLOUR TELEVISION TUBE

Obsolete type.
Replacement type A56-140X.
A circuit modification may be necessary to compensate for the 170 mA lower heater current of the A56-410X.

3

110° COLOUR TELEVISION PICTURE TUBE

Three-gun temperature compensated shadow-mask rectangulai colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed threecolour phosphor dot screen and internal magnetic shield. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. The design is such that minimum occurrence of the moire effect is ensured. The tube has a reinforced envelope and therefore no separate safety screen is necessary. The tube features a quick heating cathode; typically, a legible picture will appear within approx. 5 s .

SCREEN

Metal-backed phosphor dots
Phosphor type

Dot arrangement
Spacing between centres of adjacent dot trios
Light transmission of face glass

Red : Europium activated rare earth
Green: Sulphide type
Blue : Sulphide type
Triangular

0,81	mm
34,5	

HEATING: indirect by a.c. or d.c. ; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	730	$\mathrm{~mA}^{1}$)

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 12 below.

CAPACITANCES

Final accelerator to external conductive coating	$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 4 / \mathrm{m} \text { max. }}^{\text {min. }}$	$\begin{aligned} & 1800 \\ & 1300 \end{aligned}$	pF pF
Final accelerator to rimband	$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 4 / \mathrm{m}^{\prime}}$	400	pF
Grid no. 1 of any gun to all other electrodes	$\mathrm{C}_{\mathrm{g} 1}$	7	pF
Cathodes of all guns (connected in parallel) to all other electrodes	C_{k}	15	pF
Cathode of any gun to all other electrodes	$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5	pF
Grid no. 3 (focusing electrode) to all other electrodes	$\mathrm{C}_{\mathrm{g} 3}$	7	pF

FOCUSING	electrostatic
(bi-potential)	
DEFLECTION	magnetic

Diagonal deflection angle	110	deg
Horizontal deflection angle	97	deg
Vertical deflection angle	77	deg

CONVERGENCE magnetic

[^4]
MECHANICAL DATA

Overall length
Neck diameter
Diagonal
$\left.\begin{array}{l}\text { Horizontal axis } \\ \text { Vertical axis }\end{array}\right\}$ of bulb
Useful screen
diagonal
horizontal axis
vertical axis

387,3	to	400,3
	36,5	mm
mm		
max.	566,2	mm
\max.	486,3	mm
\max.	381,8	mm
min.	533	mm
min.	447	mm
min.	337	mm

Mounting position : any
Net weight : approx. $14,5 \mathrm{~kg}$
Base : 12 pin base IEC 67-I -47a, type 2
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield. The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering left and right cone parts. For proper degaussing an initial m.m.f. of 450 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate cir cuitry. After decreasing to $10 \mathrm{~A} . t$. or less, sudden switch off is permi-sible. In the steady state, no significant m.m.f. should remain in the coils ($<0,5$ A.t.).
To ease the mounting of the coils, the rimband is provided with rectangular holes.
NOTES TO OUTLINE DRAWING (see pages 4, 5, and 6)

1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone.
2) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
3) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
4) To clean this area, wipe only with a soft lintless cloth.
5) The displacement of any lug with respect to the plane through the three other lugs is $\max .2 \mathrm{~mm}$.
6) Minimum space to be reserved for mounting lug.
7) The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $476,5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
8) Cobrdinates for radius $R=15,95 \mathrm{~mm}$: $x=203,95 \mathrm{~mm}, y=145,52 \mathrm{~mm}$.
9) Distance from point z to any hardware.
10) Maximum dimensions in plane of lugs.

[^5]
MECHANICAL DATA

Notes see page 3

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid no.3(focusing electrode voltage)
Grid no. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$		25	kV	
$\mathrm{V}_{\mathrm{g} 3}$	4,2	to	5	kV
$\mathrm{V}_{\mathrm{g} 2}$	212	to	495	$\mathrm{~V}^{1}$)
$\mathrm{V}_{\mathrm{g} 1}$	-70	to	-140	$\mathrm{~V}^{2}$)
L	See page 11			

Grid no. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$
Luminance at the centre of the screen
EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$.

Grid no. 3 (focusing electrode) voltage

Grid no. 2 voltage
Grid no. 1 voltage for visual extinction of focused spot (cut-off voltage)

Difference in cut-off soltages between guns in any tube

Grid no. 3 (focusing electrode) current
Grid no. 2 current
Grid no. 1 current at $\mathrm{V}_{\mathrm{g} 1}=-150 \mathrm{~V}$

To produce white of the following CIE co-ordinates

Percentage of total anode current supplied by each gun (typical)

Ratio of anode current red gun to green gun

Ratio of anode currents red gun to blue gun
supplied by each gun (typical)
$\mathrm{Vg}_{\mathrm{g} 3} \quad 16,8$ to 20% of final accelerator voltage
$\mathrm{V}_{\mathrm{g} 2} \quad$ See cut-off design chart page 12
$\mathrm{Vgl}_{\mathrm{g}} \quad$ See cut-off design chart page 12
$\Delta V_{g l} \quad$ lowest value is min .
65% of highest value red gun
green gun
blue gun

$I_{g 3}$	-5	to	+5	$\mu \mathrm{~A}$
$I_{g 2}$	-5	to	+5	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 1}$	-5	to	+5	$\mu \mathrm{~A}$

[^6]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the centre of the screen in any direction max. 11 mm

Correction that must be supplied by purifying magnet to compensate for mis-register in any direction max. $100 \quad \mu \mathrm{~m}$

Lateral distance between blue spot and the converged red and green spots
max. 4,5 mm (in both directions)

Radial convergence displacement excluding effects of dynamic convergence (each gun) ${ }^{5}$)
max. 7 mm
(in both directions)

1) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
2) This range of $V_{g} 1$ has to be used when in circuit design fixed values for V_{g} 2 of the three guns are used.
${ }^{3}$) To produce black/white pictures a bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
3) This point is a compromise between white point D and the white point $x=0,265$, $y=0,290$ given in order to enable good rendition of colour and black and white pictures with one white point.
4) Dynamic convergence to be effected by currents of approximately parabolic waveshape through the convergence coils synchronized with scanning.
5) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point. (Point D).

LIMITING VALUES (Each gun if applicable)

(Design centre rating system unless otherwise specified)

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g}, \mathrm{g}} 4$	\max. min.	$\begin{array}{r} 27,5 \\ 20 \end{array}$	$\begin{aligned} & \left.\left.k V 1)^{2}\right)^{3}\right) \\ & \left.\left.k V{ }^{1}\right)^{4}\right) \end{aligned}$
Average current for three guns	I_{a}	max.	1000	$\mu \mathrm{A}{ }^{5}$)
Grid no. 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	6000	V
Grid no. 2 voltage, peak, including video signal voltage	$\mathrm{V}_{\mathrm{g} 2 \mathrm{p}}$	max.	1000	V
Grid no. 1 voltage, negative negative, operating cut-off positive positive peak	$\begin{gathered} -\mathrm{V}_{\mathrm{gl}} \\ -\mathrm{V}_{\mathrm{gl}} \\ \mathrm{~V}_{\mathrm{gl}} \\ \mathrm{~V}_{\mathrm{gl}} \end{gathered}$	max. max. max. max.	400 200 0 2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive positive peak negative negative peak	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & \mathrm{~V}_{\mathrm{kf}} \\ & -\mathrm{V}_{\mathrm{kf}} \\ & -\mathrm{V}_{\mathrm{kf} f_{\mathrm{p}}} \end{aligned}$	\max. max. max. max.	250 300 135 180	$\begin{aligned} & \left.V^{6}\right) \\ & V \\ & V \\ & V \\ & V \end{aligned}$

1) Absolute max. rating system.
${ }^{2}$) The X -ray dose rate remains below the acceptable value of $0,5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value, During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs luminance and resolution and may have a detrimental effect on colour purity.
2) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \quad \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} propotional with time from 385 V to 250 V is permissible.

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. Additional information is given in Application Information 258, available on request.
During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

REFERENCE LINE GAUGE

Gauge F. See chapter "Reference line gauges" in front of this book.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.

Scanned area $447 \mathrm{~mm} \times 337 \mathrm{~mm}$

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition

7260076

110° IN-LINE GUN COLOUR TELEVISION TUBE

The tube has a three-in-line gun, a slotted shadow.mask, and phosphors arranged in vertical stripes. The system of tube and deflection unit AT1083/01 is inherently selfconverging; only minor corrections are needed to compensate for tolerances and asymmetries. The shadow-mask is optimized for minimum moire. The tube features a quick-heating cathode, an internal magnetic shield, and a very short overall length.

	QUICK REFERENCE DATA	
Deflection angle	110	deg
Face diagonal	56	cm
Overall length	37	cm
Inherently self-converging system with deflection unit AT'1083/01		
Quick-heating cathode	with a typical tube	
	a picture will appear within 5 s	
Heating	$6,3 \mathrm{~V}, 730 \mathrm{~mA}$	
Magnetic shield	internal	
Envelope	reinforced, suitable	
forusing	for push-through	
Foi-potential		

SCREEN

Metal-backed vertical phosphor stripes Red : Europium activated rare earth
Green: Sulphide type
Blue : Sulphide type
Centre-to-centre distance of identical
colour phosphor stripes
$0,8 \quad \mathrm{~mm}$
Light transmission of face glass

HEATING: indirect by a.c. (preferably mains or line frequency) or d.c.

Heater voltage	V_{f}	6,3
Heater current	I_{f}	730

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 14 .

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal rimband
Grid no. 1 of a gun to all other electrodes red gun green gun blue gun

Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to all other electrodes

FOCUSING

DEFLECTION

	$<$	1800	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g}, \mathrm{g}}, \mathrm{g} 4 / \mathrm{m}$	$>$	1300	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g}, \mathrm{g}, \mathrm{g} 4 / \mathrm{m}^{\prime}}$		250	pF

$\mathrm{C}_{\mathrm{g} 1 \mathrm{R}}$	7	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{G}}$	7	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{~B}}$	7	pF

C_{k}	12	pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	4	pF
$\mathrm{C}_{\mathrm{g} 3}$		
	7	pF

electrostatic (bi potential)

magnetic

Diagonal deflection angle	110	deg
Horizontal deflection angle	97	deg
Vertical deflection angle	77	deg

MECHANICAL DATA

Overall length	367,3 to	380, 3	mm
Neck diameter	36,5	$\begin{aligned} & +1,6 \\ & -0,4 \end{aligned}$	mm mm
Diagonal	\leq	566, 2	mm
Width $\}$ of bulb	\leq	486,3	mm
Height	\leq	381,8	mm
Useful screen			
diagonal	\geq	530,6	mm
horizontal axis	\geq	444, 2	mm
vertical axis	\geq	334, 2	mm

Mounting position : any
Net mass $\quad:$ approx. $14,5 \mathrm{~kg}$
Base
: 12 pin base IEC $67-\mathrm{I}-47 \mathrm{a}$, type 2
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield.
The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussingsystem, consisting of two coils covering top and bottom cone parts. For proper degaussing an initial m.m.f. of 250 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils ($<0,25 \mathrm{~A} . t$.). To ease the mounting of the coils, the rimband is provided with rectangular holes.

NOTES TO OUTLINE DRAWINGS (see pages 4; 5, and 6)

1) This ridge can be used as an orientation for the deflection unit.
2) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
3) To clean this area wipe only with a soft lintless cloth.
4) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
5) Minimum space to be reserved for mounting lug.
6) The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $476,5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
${ }^{7}$) Co-ordinates for radius $\mathrm{R}=14,8 \mathrm{~mm}: \mathrm{x}=203,9 \mathrm{~mm}, \mathrm{y}=145,5 \mathrm{~mm}$.
7) Distance from point z to any hardware.
${ }^{9}$) Maximum dimensions in plane of lugs.
8) Centring ring for deflection unit.
9) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
10) Minimum distance between glass and rimband in plane of centre line of the apertures.

MECHANICAL DATA (continued)
Dimensions in mm

Notes see page 3.

bulb dimensions at mould match line.

Notes see page 3.

February 1977

MECHANICALDATA (continued)

Notes see page 3 .

TYPICAL OPERATING CONDITIONS cathode drive, voltages with respect to g 1 .

Final accelerator voltage
Grid no. 3 (focusing electrode) voltage
Grid no. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$

Cathode voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=555 \mathrm{~V}$
Luminance at the centre of the screen ${ }^{3}$)

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	25	kV
$\mathrm{V}_{\mathrm{g} 3}$	4,0 to 4,8	kV

$\mathrm{V}_{\mathrm{g} 2}$	465 to 705	V	1)
V_{k}	110 to 165	V	2)
L	100	$\mathrm{cd} / \mathrm{m}^{2}$ (nit)	

EQUIPMENT DESIGN VALUES (each gun if applicable), voltages with respect to gl
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$

Grid no. 3 (focusing electrode) voltage

Grid no. 2 voltage

Cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube

Grid no. 3 (focusing electrode) current
Grid no. 2 current
Grid no. 1 current at $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 3} \quad 16$ to $19,2 \%$ of final accelerator voltage
$\mathrm{V}_{\mathrm{g} 2}$ see cut-off design chart page 13
$\mathrm{V}_{\mathrm{k}} \quad$ see cut-off design chart page 13
$\Delta V_{k} \quad$ lowest value is min. 75% of highest value

$\mathrm{I}_{\mathrm{g} 3}$	-5 to +5	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	-5 to +5	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 1}$	-5 to +5	$\mu \mathrm{~A}$

[^7]EQUIPMENT DESIGN VALUES (continued)

LIMITING VALUES (each gun if applicable), voltages with respect to g 1
(Design maximum rating system unless otherwise specified)

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	\max. \min.	$\begin{array}{r} 27,5 \\ 20 \end{array}$	$\begin{aligned} & \left.\left.\mathrm{kV} \quad 1)^{2}\right)^{3}\right) \\ & \mathrm{kV} \text { 1) } \end{aligned}$
Long term average current for three guns	I_{a}	max.	1000	$\mu \mathrm{A}{ }^{5}$)
Grid no. 3 (focusing electrode) voltage	Vg3	max.	6	kV
Grid no. 2 voltage	Vg2	\max.	1000	V
Cathode voltage, positive positive, operating cut-off negative negative peak	$\begin{aligned} & \mathrm{V}_{\mathrm{k}} \\ & \mathrm{~V}_{\mathrm{k}} \\ &- \mathrm{V}_{\mathrm{k}} \\ &- \mathrm{V}_{\mathrm{kp}} \end{aligned}$	\max. \max. \max. max.	$\begin{array}{r} 400 \\ 200 \\ 0 \\ 2 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
Cathode to heater voltage, positive positive peak negative negative peak	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & \mathrm{~V}_{\mathrm{kfp}} \\ &- \mathrm{V}_{\mathrm{kf}} \\ &- \mathrm{V}_{\mathrm{kfp}} \end{aligned}$	\max. max. max. \max.	$\begin{aligned} & 250 \\ & 300 \\ & 135 \\ & 180 \end{aligned}$	$\begin{array}{ll} \mathrm{V} & 6 \\ \mathrm{~V} & 1 \\ \mathrm{~V} & \\ \mathrm{~V} & 1) \end{array}$

[^8]Continued on page 9 .

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur.
These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. Additional information available on request.
During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}(35 \mathrm{~g})$ in any direction.

CONTOUR GAUGE

3) Durine adiustment on the production line this value is likely to he surpassed considerably. It is therefore strongily recommenete. to first nake the necersary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs the luminance and resolution.
5) $\quad 1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
6) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 385 V to 250 V is permissible.

BEAM CORRECTIONS

When the tube is used with the deflection unit AT1083/01 the following corrections should be applied:
Maximum required horizontal displacement of the electron beams with
respect to the phosphor stripes by the purifying magnet of the multi-
pole unit AT $1081 \quad 1$) $\quad 45 \mu \mathrm{~m}$
Static convergence deviations must be corrected by a static multi-pole unit AT 1081 providing adjustable four-pole and six-pole fields centred around the tube axis
Maximum required compensation for static convergence
4-pole device: red-to-blue (in any direction) $\quad 5,5 \mathrm{~mm}$
6-pole devicc: red and blue to green (in any direction) 2.8 mm

North-South raster shape correction circuitry is not required.

To obtain a symmetrical shape for the horizontal lines at the upper pait and the lower pari of the screen. the unit AT 1081 comprises an additional dipole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction

With respect to dymamic convergence the display system. consisting of picture tube
A56-500X and deflection unit AT $1083 / \mathrm{Cl}$, is inherently self-converging. However. small corrections, should be made to compensate for tolerances and asymmetries in the tube and deflection unit combination.
For this purpose two types of dynamic magnetic four-pole fields can be used.
One is gencrated by additional windings on the yoke ring of the deflection unit, and energized by adjustable currents synchronized with scanning.
The other type is gencrated by adjustable balancing currents through the deflection coils.
Compensation to be provided sy these corrections:

- horizontal red-to-blue distance at the ends of the horizontal axis in opposite directions (line symmetry) $\quad 2$) $\pm 1.5 \mathrm{~mm}$
- borizontal red-to-blue distance at the ends of the vertical axis in opposite directions (field symmetry) \quad 3) $0 \pm 1,5 \mathrm{~mm}$
- vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance) $0 \pm 1,0 \mathrm{~mm}$
- veritical red-to-blue distance at the ends of the horizontal axis in equal directions (line balance parabola)

5) $\quad 0 \pm 0.6 \mathrm{~mm}$

- vertical red-to-blue distance at the top of the vertical axis (field balance top)

6) $0 \pm 1.2 \mathrm{~mm}$

- vertical red-to-blue distance at the bottom of the vertical axis (ficld balance bottom)
$0 \pm 1,2 \mathrm{~mm}$

[^9]
Notes

${ }^{1}$) Purity adjustment in vertical direction is not required.
2) This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
3) This correction is made by feeding a sawtooth current of field frequency through the additional four-pole windings on the deflection unit.
4) This correction is made by unbalancing the line deflection coil halves.
5) This correction is made by feeding a parabolic current of line frequency through the line deflection coil halves.
6) This correction is made by unbalancing the field deflection coil halves during the first half of the field scan.
7) This correction is made by unbalancing the field deflection coil halves during the second half of the field scan.

Application information available on request.

Dimensions in mm

Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Spot cut-off design chart (grid drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

Typical cathode drive characteristics

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$	$\mathrm{a}=$ spot cut-off $=75 \mathrm{~V}$		
$\mathrm{~V}_{\mathrm{g} 3}$	adjusted for focus	b	$=$ spot cut-off $=100 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot	$\mathrm{c}=\operatorname{spot}$ cut-off $=150 \mathrm{~V}$		
cut-off for desired fixed V_{k}	$\mathrm{d}=$ spot cut-off $=200 \mathrm{~V}$		

7260077.1

Typical grid drive characteristics

| $\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$ | $\mathrm{a}=$ spot cut-off $=-75 \mathrm{~V}$ | |
| ---: | :--- | ---: | :--- |
| $\mathrm{~V}_{\mathrm{g} 3}$ | adjusted for focus | $\mathrm{b}=$ spot cut-off $=-100 \mathrm{~V}$ |
| $\mathrm{~V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot | $\mathrm{c}=$ spot cut-off $=-150 \mathrm{~V}$ | |
| cut-off for desired fixed $\mathrm{V}_{\mathrm{g} 1}$ | $\mathrm{~d}=$ spot cut-off $=-200 \mathrm{~V}$ | |

--- zero bias point

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$. Scanned area 444, 2 mm x $334,2 \mathrm{~mm}$.

Available for equipment maintenance. No longer recommended for equipment production.

90° COLOUR TELEVISION TUBE

QUICK REFERENCE DATA

Temperature compensated shadow-mask		
Shadow-mask optimized for 625 -line system		
High white luminance at unity current ratio		
Face diagonal	66	cm
Deflection angle	90	deg
Neck diameter	36,5	mm
Envelope	reinforced;	
	suitable for	
	push-through	
Convergence	magnetic	
Heating, parallel or series supply	$6,3 \mathrm{~V}, 900$	mA
Light transmission of face glass	52,5	$\%$

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid 3 (focusing electrode)voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$

$V_{a, g 5, g 4}$		25	kV	
$\mathrm{V}_{\mathrm{g} 3}$	4,2	to	5	kV
$\mathrm{V}_{\mathrm{g} 2}$	210	to	495	V
$\mathrm{~V}_{\mathrm{g} 1}$	-70	to -140	V	

MECHANICAL DATA

Overall length

$521,8 \pm 6,5$	mm	
$\leqslant 168,7$	mm	
	$\leqslant 657,6$	mm
	$\leqslant 556,4$	mm
	$\leqslant 435,3$	mm
	$\geqslant 617,8$	mm
	$\geqslant 518$	mm
	$\geqslant 390$	mm

Base : 12-pin base IEC 67-1-47a, JEDEC B12-246
Anode contact: Small cavity contact IEC 67-1II-2, J1-21

110° COLOUR TELEVISION TUBE

Obsolete type.
Replacement type A66-410X.
A circuit modification may be necessary to compensate for the 170 mA lower heater current of the A66-410X.

110° COLOUR TELEVISION PICTURE TUBE

Three-gun temperature-compensated shadow-mask rectangular colour television tube with electrostatic focus, magnetic deflection and convergence, metal-backed threecolour phosphor dot screen and internal magnetic shield. A high white luminance is obtained at near unity current ratio. Being temperature compensated, the shadow-mask makes for optimum field purity and good uniformity during warm-up. The design is such that minimum occurence of the moire effect is ensured. The tube has a reinforced envelope and therefore no separate safety screen is necessary. Typically, a legible picture will appear within 5 s .

QUICK REFERENCE DATA		
TEMPERATURE-COMPENSATED SHADOW-MASK		
DESIGNED FOR MINIMUM MOIRE EFFECT		
High White luminance at unity current ratio		
Face diagonal	66	cm
Deflection angle	110	deg
Neck diameter	36,5	mm
Envelope	reinforced .	
Magnetic shield	internal	
Focusing	bi-potential	
Deflection	magnetic	
Convergence	magnetic	
Heating	$6,3 \mathrm{~V}, 730 \mathrm{~mA}$	
Light transmission of face glass	52, 5	\%
Quick heating cathode	with a typical tube a legible picture will appear after within 5 s	

SCREEN

Metal-backed phosphor dots

Phosphor type

Dot arrangement
Spacing between centres of adjacent dot trios
Light transmission at centre of face glass

Red: Europium activated rare earth
Green: Sulphide type
Blue: Sulphide type
Triangular
$0,81 \mathrm{~mm}$
52,5 \%

HEATING : indirect by a.c. or d.c. ; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	730	$\left.\mathrm{~mA}^{1}\right)$

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 13 below.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid no. 1 of any gun to all other electrodes
Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to all other electrodes

FOCUSING electrostatic (bi-potential)
DEFLECTION

$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{4} / \mathrm{m}$	max. 2100 min. 1600	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 4} / \mathrm{m}^{\prime}$	500	pF
$\mathrm{C}_{\mathrm{g} 1}$	7	pF
C_{k}		15
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	pF	
	5	pF
$\mathrm{C}_{\mathrm{g} 3}$		
	7	pF

Diagonal deflection angle	110	0
Horizontal deflection angle	97	0
Vertical deflection angle	77	0

CONVERGENCE magnetic

[^10]
MECHANICAL DATA

Overall length
Neck diameter
Diagonal
Horizontal axis
of bulb
Vertical axis
Useful screen
diagonal
horizontal axis
vertical axis

Mounting position: any
Net weight : approx. 20 kg
Base : 12 pin base JEDEC B12-246
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield.
The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering left and right cone parts. For proper degaussing an initial m.m.f. of 500 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. After decreasing to 10 A.t. or less, sudden switch off is permissible. In the steady state, no significant m.m.f. should remain in the coils (0.5 A.t.).
To ease the mounting of the coils, the rimband is provided with rectangular holes.

NOTES TO OUTLINE DRAWING (see pages 4, 5, and 6)

${ }^{1)}$ Reference line, determined by the plane of the upper edge of the flange of the reference line gauge, when the gauge is resting on the cone.
${ }^{2}$) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
${ }^{3}$) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
${ }^{4}$) To clean this area, wipe only with a soft lintless clotch.
${ }^{5}$) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
${ }^{6}$) Minimum space to be reserved for mounting lug.
${ }^{7}$) The position of the mounting screw in the cabinet must be within a circle of 9.5 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $549 \mathrm{~mm} \times 422 \mathrm{~mm}$.
${ }^{8}$) Cob̈rdinates for radius $\mathrm{R}=18,2 \mathrm{~mm}: \mathrm{x}=236,6 \mathrm{~mm}, \mathrm{y}=168,9 \mathrm{~mm}$.
${ }^{9}$) Distance from point z to any hardware.
${ }^{10}$) Maximum dimensions in plane of lugs.
${ }^{11}$) Dimension a $=30,0 \mathrm{~mm}$ on diagonal, $28,4 \mathrm{~mm}$ on major axis, $18,8 \mathrm{~mm}$ on minor axis.

[^11]

Notes see page 3

g0.

Notes see page 3

Distance from centre																
Sec tion	Distance from section 13	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10^{0}	20°	25°	30°	$32^{\circ} 30^{\prime}$	$\begin{array}{l\|} \hline 35^{\circ} \\ \text { Diagon. } \end{array}$	$37^{\circ} 30 \cdot$	40°	45°	50°	60°	70°	80°	$\begin{gathered} 90^{\circ} \\ \text { Short } \end{gathered}$
1	119,5 nom.	99, 41	99,18	98, 70	98,46	98,26	98, 18	98,11	98,07	98,05	98.05	98, 13	98. 51	99.08	99,65	99.93
2	109.5 "	142, 11	139.07	133,90	131.47	129.35	128, 43	127,45	126,89	126, 28	125,38	124,90	125,19	126,92	129,46	131.09
3	99,5 ${ }^{\text {c }}$	171, 81	168, 10	161, 35	157.99	154,92	153,52	151,98	151,06	149,99	148, 22	146,91	145.65	145.96	147, 25	148, 22
4	89.5 "	193.96	191. 76	185,57	182, 25	178.92	177.30	175, 41	174,22	172, 78	170.12	167.81	164. 25	162.10	161.14	160.96
5	74.5	213, 30	211.91	207. 82	204.94	201.66	199,92	197, 75	196,31	194,48	190,86	187,37	181.15	176,39	173, 40	172.38
6	69.5	230, 11	229, 83	227.80	225.69	222, 75	220,99	218, 64	216.97	214, 76	210.09	205.28	196. 20	188.93	184. 26	182.04
7	59.5 "	243, 54	244.45	245.30	244. 63	242.68	241, 15	238, 79	236, 97	234, 39	228,50	222.08	209.60	199.67	193. 44	191.31
8	49.5 "	253, 95	255.93	260,00	265, 38	261,16	260, 19	258, 10	256.19	253. 23	245.82	23.3.40	221.05	208.54	200, 97	198.44
9	39, 5	262, 25	265,05	272,04	275, 72	277,94	277, 99	276,37	274, 36	270,89	261,35	250,54	230, 35	215, 70	207, 15	204. 34
10	$29.5 \quad "$	268, 76	272,13	281,47	287, 4.3	292,66	294. 27	293, 44	291, 30	287,13	274,58	261,11	237,50	221,30	212, 11	209,13
11	$19.5 \quad "$	273, 39°	277, 11	288, 19	296.17	304.82	308. 65	309.17	307,00	301,85	285.09	268, 75	242. 46	225, 3.3	215, 81	212, 75
12	$9.5 \quad \text { " }$	276, 43	280, 34	292, 47	301,96	313,84	320, 37	323.09	321. 27	314,80	292.49	273.50	245.58	228.11	218,52	215.46
13	0	279,00	282,96	295,36	305, 23	318.01	325, 40	329,00	327, 49	320.66	296, 49	276.73	248. 34	230.73	221.08	218.00

TYPICAL OPERATING CONDITIONS

Final accelerator voltage

Va, g5, g4		25	kV	
$\mathrm{V}_{\mathrm{g} 3}$	4,2 to	kV		
$\mathrm{V}_{\mathrm{g} 2}$	212 to	495	V	${ }^{1}$
V_{gI}	-70 to See pa	$\begin{gathered} 140 \\ 12 \\ \hline \end{gathered}$	V	${ }^{2}$

Grid No. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid No. 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$
Luminance at the centre of the screen
EQUIPMENT DESIGN VALUES (each gun if applicable)
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$.
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage

$\mathrm{V}_{\mathrm{g} 3}$	16,8 to 20% of final accelerator voltage		
$\mathrm{V}_{\mathrm{g} 2}$	See cut-off design chart page 13		
$\mathrm{V}_{\mathrm{g} 1}$	See cut-off design chart page 13		
$\Delta \mathrm{V}_{\mathrm{g} 1}$	lowest value is min. 65% of highest value		
$\mathrm{I}_{\mathrm{g} 3}$	-5 to +5 μA -5 to +5 μA -5 to +5 μA 4 4 6		
$\mathrm{I}_{\mathrm{g} 2}$			
$\mathrm{I}_{\mathrm{g}}^{\mathrm{g} 2}$			
g1			
x	0,265	0,281	0,313
y	0,290	0,311	0,329
	25, 8	30,2	41,0
	33,5	34,5	31,3
	40, 7	35, 3	27,7
min.	0,55	0,65	0,95
av.	0,75	0,90	1,30
max.	1,10	1,25	1,80
min.	0,50	0,65	1,15
av.	0,65	0, 85	1,50
max.	0,85	1, 15	2,00

Difference in cut-off voltages between guns in any tube

[^12]
EQUIPMENT DESIGN VALUES (continued)

Required centring, measured at the
centre of the screen in any direction
$\max . \quad 12 \mathrm{~mm}$

Correction that must be supplied by purifying
magnet to compensate for mis-register in any direction
$\max \quad 100 \quad \mu \mathrm{~m}$
Lateral distance between blue spot and the
converged red and green spots
max. 5 mm
(in both directions)
Radial convergence diaplacement excluding effects of dynamic convergence (each gun) ${ }^{5}$)
max. \& mm (in both directions)

[^13]
LIMITING VALUES (Each gun if applicable)

(Design centre rating system unless otherwise specified)

Final accelerator values
Average current for three guns
Grid No. 3 (focusing electrode) voltage
Grid No. 2 voltage, peak, including video signal voltage

Grid No. 1 voltage,
negative,
negative, operating cut-off
positive
positive peak
Cathode to heater voltage,
positive
positive peak
negative
negative peak

$\max .250 V^{6}$)
max. 300 V
$\max .135 \mathrm{~V}$
$\max .180 \mathrm{~V}$

1) Absolute max. rating system.
${ }^{2}$) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mr} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
${ }^{3}$) For optimal operating conditions the final accelerator voltage has to be stabilized. Therefore its absolute maximum value can be approached in actual operation and for this reason this value is given instead of the design centre value. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs brightness and resolution and may have a detrimental effect on colour purity.
2) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
3) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 385 V to 250 V is permissible.

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
Additional information is given in Application Information 258, available on request.
During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

REFERENCE LINE GAUGE (gauge F)
Gauge F. See chapter "Reference line gauges" in front of this book.

Luminance at the centre of the screen as a function of Itotal.

Scanned area $518 \mathrm{~mm} \times 390 \mathrm{~mm}$

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition

$$
=
$$

110° IN-LINE GUN COLOUR TELEVISION TUBE

The tube has a three-in-line gun, a slotted shadow mask, and phosphors arranged in vertical stripes. The system of tube and deflection unit AT 1080 is inherently self-converging; only minor corrections are needed to compensate for tolerances and asymmetries. The shadow-mask is optimized for minimum moire. The tube features a quick-heating cathode, an internal magnetic shield, and a very short overall length.

	QUICK REFERENCE DATA		
Deflection angle	110	deg	
Face diagonal	66	cm	
Overall length	41	cm	
Inherently self-converging system with deflection unit AT1080			
Quick-heating cathode	with a typical tube a picture will appear within 5 s		
Heating	$6,3 \mathrm{~V}$,		
Magnetic shield	internal reinforced	mA	
Envelope	suitable for push-through bi-potential		

SCREEN

Metal-backed vertical phosphor stripes Red : Europium activated rare earth Green: Sulphide type Blue : Sulphide type

Centre-to-centre distance of identical
colour phosphor stripes
0.8 mm

Light transmission of face glass

HEATING: indirect by a.c. (preferably mains or line frequency) or d.c.

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	730	mA

For maximum cathode life it is recommended that the heater supply be regulated at $6,3 \mathrm{~V}$. For heating time as a function of source impedance see graph page 14 .

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal rimband
Grid no. 1 of a gun to all other electrodes red gun
green gun blue gun

Cathodes of all guns (connected in parallel) to all other electrodes

Cathode of any gun to all other electrodes
Grid no. 3 (focusing electrode) to all other electrodes

$\mathrm{C}_{\mathrm{a}, \mathrm{g}} 5, \mathrm{~g} 4 / \mathrm{m}$	$<$	2000	pF
	>	1500	pF
		300	pF
$\mathrm{C}_{\mathrm{g} 1 \mathrm{R}}$		7	pF
CglG		7	pF
Cg1B		7	pF

$\mathrm{C}_{\mathrm{k}} \quad 12 \mathrm{pF}$
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}} \quad 4 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g}} 3$
7 pF
FOCUSING
electrostatic (bi-potential)

DEFLECTION

magnetic
Diagonal deflection angle
Horizontal deflection angle
Vertical deflection angle
77 deg

MECHANICAL DATA

Overall length	405.1 to 418.1 mm
Neck diameter	$36,5_{-0,4}^{+1,6} \mathrm{~mm}$
Diagonal	$\leq 664,5 \mathrm{~mm}$
\rightarrow Width $\}$ of bulb	$\leq 564 \mathrm{~mm}$
Height	$\leq 442,5 \mathrm{~mm}$
Useful screen	
diagonal	$\geq 617,8 \mathrm{~mm}$
horizontal axis	$\geq 518 \mathrm{~mm}$
vertical axis	$\geq 390 \mathrm{~mm}$

Mounting position: any
Net mass : approx. 20 kg
Base $: 12$ pin base IEC67-I-47a, type 2
Anode contact : Small cavity contact J1-21, IEC 67-III-2
Magnetic shielding, degaussing: The tube is provided with an internal magnetic shield. The internal magnetic shield and the shadow-mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts. For proper degaussing an initial m. m.f. of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. shouldremain in the coils ($\leq 0,3 \mathrm{~A} . \mathrm{t}$.). To ease the mounting of the coils, the rimband is provided with rectangular holes.

NOTES TO OUTLINE DRAWINGS (see pages 4,5 , and 6)

1) This ridge can be used as an orientation for the deflection unit.
2) Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
${ }^{3}$) To clean this area, wipe only with a soft lintless cloth.
3) The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
4) Minimum space to be reserved for mounting lug.
5) The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i. e. the corners of a rectangle of 549 mm x 422 mm .
${ }^{7}$) Co-ordinates for radius $\mathrm{R}=18,2 \mathrm{~mm}: \mathrm{x}=236,6 \mathrm{~mm}, \mathrm{y}=168,9 \mathrm{~mm}$.
${ }^{8}$) Distance from point z to any hardware.
${ }^{9}$) Maximum dimensions in plane of lugs.
6) Centring ring for the deflection unit.
7) The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
8) Minimum distance between glass and rimband in plane of the apertures.

MECHANICAL DATA (continued)

$\overline{\text { Notes see page } 3 .}$

$\overline{\text { Notes see page } 3 .}$

Notes see page 3 .

TYPICAL OPERATING CONDITIONS cathode drive, voltages with respect to g 1 .
Final accelerator voltage

$V_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	25	kV
$\mathrm{V}_{\mathrm{g} 3}$	4,0 to 4,8	kV

Grid no. 3 (focusing electrode) voltage
Vg3
4,0 to $4,8 \mathrm{kV}$
Grid no. 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Cathode voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=555 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 2}$

465 to 705	V	1
110 to 165	V	2)
100	$\mathrm{cd} / \mathrm{m}^{2}$ (nit)	

EQUIPMENT DESIGN VALUES (each gun if applicable), voltages with respect to g 1
Valid for final accelerator voltages between 20 kV and $27,5 \mathrm{kV}$

Grid no. 3 (focusing electrode) voltage

Grid no. 2 voltage

Cathode voltage for visual extinction of focused spot

Difference in cut-off voltage between guns in any tube

Grid no. 3 (focusing electrode) current
Grid no. 2 current
Grid no. 1 current at $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$

Vg3 16 to $19,2 \%$ of final accelerator voltage
$\mathrm{V}_{\mathrm{g} 2}$ see cut-off design chart page 13
$\mathrm{V}_{\mathrm{k}} \quad$ see cut-off design chart page 13
$\Delta V_{\mathrm{k}} \quad \begin{aligned} & \text { lowest value is min. } \\ & 75 \% \text { of highest value }\end{aligned}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

1) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
2) This range of V_{k} has to be used when in circuit design fixed values for $V_{g 2}$ of the three guns are used.
3) Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

EQUIPMENT DESIGN VALUES (continued)

To produce white of the following					
CIE co-ordinates:	y	0,290	0,311	0,329	
Percentage of total anode current supplied by each gun (typical)					
red gun			26, 4	30,6	41, 2
green gun			34, 3	35, 4	32, 2
blue gun			39,3	34,0	26,6
Ratio of anode currents red gun to green gun		min.	0,60	0,65	0,95
	av.	0,75	0,85	1,30	
	max.	1,00	1,15	1,70	
Ratio of anode currents red gun to blue gun	min.	0,50	0,65	1,15	
	av.	0,65	0,90	1, 55	
	max.	0,90	1,20	2,05	

LIMITING VALUES (each gun if applicable), voltages with respect to gl
(design maximum rating system unless otherwise specified)

Final accelerator voltage	Va, g5, g4	max. min.	$\begin{array}{r} 27,5 \\ 20 \end{array}$	$\begin{aligned} & \left.\left.\left.k V^{1}\right)^{2}\right)^{3}\right) \\ & \left.\left.k V^{1}\right)^{4}\right) \end{aligned}$
Long term average current for three guns	I_{a}	max.	1000	$\mu \mathrm{A}{ }^{5}$)
Grid no. 3 (focusing electrode) voltage	V g^{3}	max.	6	kV
Grid no. 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1000	V
Cathode voltage, positive positive, operating cut-off negative negative peak	$\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{~V}_{\mathrm{k}} \\ -\mathrm{V}_{\mathrm{k}} \\ -\mathrm{V}_{\mathrm{kp}} \end{gathered}$	max. max. max. max.	400 200 0 2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive positive peak negative negative peak	$\begin{gathered} \mathrm{V}_{\mathrm{kf}} \\ \mathrm{~V}_{\mathrm{kfp}} \\ -\mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kfp}} \end{gathered}$	max. max. max. max.	$\begin{aligned} & 250 \\ & 300 \\ & 135 \\ & 180 \end{aligned}$	$\left.\begin{array}{ll} \mathrm{V} & 6 \\ \mathrm{~V} & 1 \\ \mathrm{~V} & \\ \mathrm{~V} & 1 \end{array}\right)$

1) Absolute max. rating system.
${ }^{2}$) The X -ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$ measured with ionization chamber when the tube is used within its limiting values.

Continued on page 9.

REMARKS

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flash-overs may occur. These may destroy the cathode(s) of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. Additional information available on request.

During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}(35 \mathrm{~g})$ in any direction.

CONTOUR GAUGE

${ }^{3}$) During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
${ }^{4}$) Operation of the tube at lower voltages impairs the luminance and resolution.
5) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
${ }^{6}$) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 385 V to 250 V is permissible.

BEAM CORRECTIONS

When the tube is used with the deflection unit AT 1080 the following corrections should be applied:
Maximum required horizontal displacement of the electron beams with
respect to the phosphor stripes by the purifying magnet of the multipole unit AT $1081^{\text {l }}$)
Static convergence deviations must be corrected by a static multi-pole
unit AT 1081 providing adjustable four-pole and six-pole fields centred
around the tube axis
Maximum required compensation for static convergence
4 -pole device: red to blue (in any direction) 6 mm
6-pole device: red and blue to green (in any direction) 3 mm

North-South raster shape correction circuitry is not required.

To obtain symmetrical shape for the horizontal lines at the upper part and the lower part of the screen, the unit AT 1081 comprises an additional dipole correction magnet giving a displacement of the beam in the centre of the screen in vertical direction of maximum

$$
\pm 5,5 \mathrm{~mm}
$$

Maximum centring error in any direction after colour-purity, static convergence, and horizontal centre line correction

With respect to dynamic convergence the display system, consisting of picture tube A66-500X and deflection unit AT 1080, is inherently self-converging. However, a small systematic correction is required on the vertical axis and also small corrections should be made to compensate for tolerances and asymmet-ies in the tube and deflection unit combination (using a recommended circuit).
For this purpose two types of dynamic magnetic four-pole fields can be used. One is generated by additional windings on the yoke ring of the deflection unit, and energizec by acjustable currents synchronized with scanning. The other type is generated by adjustable balancing currents through the deflection coils.
Compensation to be provided by these corrections:

- horizontal red-to-blue distance at the ends of the horizontal axis in opposite directions (line symmetry)

2) $0 \pm 2 \mathrm{~mm}$

- horizontal red-to-blue distance at the top of the vertica! axis (field symmetry top)

3) $3,5 \pm 1,5 \mathrm{~mm}$

- horizontal red-to-blue distance at the bottom of the vertical axis (field symmetry bottom)

3) $3,5 \pm 1,5 \mathrm{~mm}$
-vertical red-to-blue distance at the ends of the horizontal axis in opposite directions (line balance)
$0 \pm 1,5 \mathrm{~mm}$
-vertical red to blue distance at the ends of the horizontal axis in equal directions (line balance parabola)

- vertica: red-to-blue distance at the top of the vertical axis (field balance top)
-vertical red-to-blue distance at the bottom of the vertical axis (field balance bottom)

[^14]
Notes

1) Purity adjustment in vertical direction is not required.
2) This correction is made by feeding a sawtooth current of line frequency through the additional four-pole windings on the deflection unit.
3) This correction is made by feeding a rectified sawtooth current of field frequency through the additional four-pole windings on the deflection unit.
4) This correction is made by unbalancing the line deflection coil halves.
5) This correction is made by feeding a parabolic current of line frequency through the line dealection coil halves.
6) This correction is made by unbalancing the field deflection coil halves during the first half of the field scan.
7) This correction is made by unbalancing the field deflection coil halves during the second half of the field scan.

Application information available on request.

MAXIMUM CONE CONTOUR DRAWING

A66-500X

Section	Distance from centre (max. values)															
	Nominal distance from section 1	0°	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	diag.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
1	0	279,0	283,0	295, 4	305, 2	318,0	325, 4	329, 0	327.5	320, 7	296,5	276, 7	248,3	230, 7	221,1	218,0
2	9,5	276, 4	280, 3	292, 5	302, 0	313,8	320, 4	323, 1	321, 3	314, 8	292,5	273, 5	245, 6	228,1	218,5	215,5
3	19,5	273, 4	277. 1	288, 2	296, 2	304,8	308, 7	309, 2	307.0	301,9	285, 1	268,8	242,5	225,3	215,8	212,8
4	29,5	268, 8	272, 1	281,5	287, 4	292, 7	294, 3	293, 4	291, 3	287,1	274,6	261, 1	237,5	221, 3	212,1	209, 1
5	39,5	262, 3	265, 1	272,0	275,7	277,9	278,0	276, 4	274,4	270,9	261, 4	250,5	230, 4	215, 7	207, 2	204, 3
6	49,5	254,0	255.9	260,0	261,4	261,2	260, 2	258, 1	256, 2	253,2	245, 8	237, 4	221,1	208,5	201,0	198,4
7	59.5	243, 5	244, 5	245, 3	244, 6	242, 7	241, 2	238, 8	237,0	234,4	228,5	222, 1	209,6	199, 7	193,4	191,3
8	69,5	230, 1	229.8	227, 8	225, 7	222, 8	221,0	218,6	217,0	214, 8	210, 1	205, 3	196,2	188,9	184,3	184, 6
9	79,5	213, 3	211,9	207.8	204,9	201, 7	199,9	197, 7	196,3	194,5	190,9	187, 4	181, 2	176,4	173,4	172, 4
10	89.5	194,0	191,4	185.6	182,3	178,9	177, 3	175,4	174.2	172,8	170, 1	167,8	164,3	162,1	161,1	161,0
11	99.5	172,8	168,1	161,4	158,0	154,9	153,5	152,0	151,1	150,0	148,2	146, 9	145, 7	146, 0	147, 3	148,2
12	109,5	142, 1	139, 1	133,9	131,5	129,4	128, 4	127, 5	126.9	126,3	125, 4	124,9	125, 2	126,9	129,5	131,1
13	119.5	110,0	110,0	110.0	110,0	110,0	110, 0	110,0	110,0	110,0	110,0	110, 0	110,0	110,0	110,0	110,0

Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

Spot cut-off design chart (grid drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}}, \mathrm{g} 5, \mathrm{~g} 4=20$ to $27,5 \mathrm{kV}$

A66-500X

Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.

Typical cathode drive characteristics
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for desired fixed V_{k}
$\mathrm{a}=$ spot cut-off $=75 \mathrm{~V}$
$\mathrm{b}=$ spot cut-off $=100 \mathrm{~V}$
$c=$ spot cut-off $=150 \mathrm{~V}$
$\mathrm{d}=$ spot cut-off $=200 \mathrm{~V}$

Typical grid drive characteristics
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}=20 \mathrm{kV}$ to $27,5 \mathrm{kV}$
Vg3 adjusted for focus
Vg2 (each gun) adjusted to provide spot cut-off for desired fixed $\mathrm{V}_{\mathrm{g}} 1$ zero bias point
$\mathrm{a}=$ spot cut-off $=-75 \mathrm{~V}$
$\mathrm{b}=$ spot cut-off $=-100 \mathrm{~V}$
$c=$ spot cut-off $=-150 \mathrm{~V}$
$\mathrm{d}=$ spot cut-off $=-200 \mathrm{~V}$

Luminance in the centre of the screen as a function of $\mathrm{I}_{\text {total }}$. Scanned area 518 mm x 390 mm .

Black and white
TV picture tubes

tV PICTURE TUBE

24 cm (9 in), 90°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode-heating time.

QUICK REFERENCE DATA			
Face diagonal		24	cm (9 in)
Deflection angle		90	deg
Overall length	\max.	227	mm
Neck diameter		20	mm
Heating		140	mA
Grid no. 2 voltage		130	V
Final accelerator voltage		10	kV
Quick-heating cathode	with a legibl within	al tu ure	a 11 appear

SCREEN

Metal-backed phosphor
Luminescence white
Light transmission of face glass
Useful diagonal

	53	$\%$
min.	228,6	mm
min.	198,4	mm
min.	149,2	mm

Useful height

HEATING

Indirect by a.c. or d. c. ; parallel supply
Heater voltage
Heater current
Limits (Absolute max. rating system) of r.m.s. heater voltage
$\left.\begin{array}{rrrr} & \begin{array}{l}\mathrm{V}_{\mathrm{f}} \\ \mathrm{I}_{\mathrm{f}} \\ \\ \mathrm{V}_{\mathrm{f}} \\ \text { max. } \\ \text { min. }\end{array} & 1140 & \mathrm{~mA} \\ & 12,7 & \mathrm{~V} & 1\end{array}\right)$

For heating time as a function of source impedance see page 10 .

[^15]
MECHANICAL DATA

Dimensions in mm

Notes see page 4.

Mounting position : any
Net mass : approx. $1,8 \mathrm{~kg}$
Base :JEDEC E7-91
The socket for this basc should not be mounted rigidly, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (Gauge D).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.
The external concuctive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge D.
4. This area must be kept clean.
5. Recessed cavity contact IEC 67-III-2.
6. The rimband must be earthed.

MAXIMUM CONE CONTOUR DRAWING
Dimensions in mm

Sec- tion	Nom. distance from section 1	Distance from centre (max. values)										
		0°	10°	20°	30°	diag.	40°	50°	600	70°	80°	90°
10	87, 5	20,5	20,5	20, 5	20, 5	20, 5	20,5	20,5	20.5	20, 5	20, 5	20,5
9	77,5	30, 5	30,5	30, 5	30.5	30, 5	30,5	30,5	30,5	30, 5	30, 5	30,5
8	67,5	40, 5	40, 5	40, 5	40,5	40,5	40, 5	40, 5	40,5	40, 5	40, 5	40,5
7	57,5	52,8	52,9	53, 1	53, 5	53, 6	53, 4	53, 0	52, 5	52, 1	51,9	52, 0
6	47,5	64,8	65, 2	66, 4	67.8	67,9	67, 7	66, 2	64,0	62, 4	61,5	61, 2
5	37, 5	75, 5	76, 2	78, 1	80, 8	81, 2	80, 7	77, 4	73, 2	70,3	68,6	68,1
4	27,5	85, 0	86,0	88,8	93,6	93,6	92, 7	86,6	80, 4	76,3	73, 9	73, 2
3	17,5	93, 6	94, 7	98, 1	104, 1	105, 3	103, 7	93, 7	85, 8	80,6	77, 7	76,9
2	7,5	101, 3	102, 7	106,9	114,4	116,3	113,8	99, 7	89, 9	83, 6	80,3	79, 3
1	0	104, 7	106, 2	110,3	117,9	120,0	117, 2	102,0	91, 4	84, 8	81, 2	80, 3

CAPACITANCES

Final accelerator to external conductive coating

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, g 5 / \mathrm{m}}$	<750	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g}} 3, g 5 / \mathrm{m}^{\prime}$		100
pFF		
C_{k}	3	pF
C_{gl}	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 90°
Horizontal deflection angle 82°
Vertical deflection angle 67°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line : 55 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5$	10	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 130	$\mathrm{~V}^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$	130	V

$\mathrm{V}_{\mathrm{KR}} \quad 30$ to 50 V

[^16]LIMITING VALUES (Design max. rating system)

Final accelerator voltage
Grid no. 4 voltage
positive
negative
Grid no. 2 voltage

		max.	14
kV			
a, k	1)		
	\min.	8	kV

Cathode to grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode-to-heater voltage
$V_{a, g 3, g 5}$
min.

$V_{g 4}$	\max	500	V
$-\mathrm{V}_{\mathrm{g} 4}$	\max.	200	V
$\mathrm{~V}_{\mathrm{g} 2}$	\max.	200	V

$V_{k} / g 1$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{glp}}$	\max.	400	V
2	2		
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g} 1$	\max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1 \mathrm{p}}$	\max.	2	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current

positive	$I_{g 4}$	\max.	25	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$
rid no.2 current				
positive	$\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$
negative	$-\mathrm{l}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{gl}}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^17]

Final accelerator current as a function of cathode voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

7267894

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

$31 \mathrm{~cm}(12 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA			
Face diagonal		31	cm (12 in
Deflection angle		110°	
Overall length	\max.	233	mm
Neck diameter		20	mm
Heating	11 V ,	140	mA
Grid no. 2 voltage		250	V
Final accelerator voltage	12	15	kV
Quick heating cathode	with a t picture	$\begin{aligned} & \text { ical t } \\ & 11 \mathrm{ap} \end{aligned}$	a legible ar within

SCREEN

Metal-backed phosphor
Luminescence
Light transmission of face glass
Useful diagonal
white

Useful width

\approx	50	$\%$
\geq	295	mm
\geq	257	mm
\geq	195	mm

HEATING

Indirect by a. c. or d.c. ; parallel supply
Heater voltage
Heater current

V_{f}	11	V
I_{f}	140	mA

Limits (Absolute max. rating system) of $\begin{array}{lllrll}\text { r.m.s. heater voltage, measuredin any } 20 \mathrm{~ms} & \mathrm{~V}_{\mathrm{f}} & \max . & 12,7 & \mathrm{~V} & \text { *) } \\ & \mathrm{min} . & 9,3 & \mathrm{~V} & \end{array}$
For heating time as a function of source impedance see page 11.
*) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

MECHANICAL DATA

Notes see page 4.

Mounting position : any
Net mass : approx. $2,8 \mathrm{~kg}$.
Base : JEDEC E7-91
The socket for the base should not be rigidly mounted, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone. (Gauge G).
2. The configuration of the external conductive coating may be different but contains the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC 67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of $267,5 \mathrm{~mm} \times 204,4 \mathrm{~mm}$.
8. The metal band must be earthed.

Electrical contact between the metal band and the mounting lugs is guaranteed.
9. Distance from reference point Z to any hardware.

$\begin{aligned} & \mathrm{Sec}- \\ & \text { tion } \end{aligned}$	Nom. distance from section 1	Distance from centre (max. values)														
		0^{0}	10°	20^{n}	25°	38	$32^{\circ} 30^{\prime}$	diag.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
1.3	59.6	72, 2	72,0	71, 7	71. 4	71, 2	71.1	71,0	71.0	70.9	70, 8	70.7	70.6	70.7	70. 8	70.8
12	55	85, 9	85.6	84, 9	84, 4	84,0	83,8	83.5	83,3	83, 1	82.7	82, 4	81.9	81,6	81.5	81.5
11	51	99.5	99.4	98,9	98.5	97.9	97.5	97.1	96.8	96.3	95.4	9.4	92, 4	90, 7	89.5	89,1
111	45	112.3	112.4	112,2	111, 7	110,9	110.4	109, 7	109, 1	108, 3	106,6	104, 7	100, 0	97, 7	95, 5	94.7
9	40	121.3	121, 3	122,8	122, 4	122.4	121,9	121,2	120.5	119.5	117, 1	114,3	108.6	103, 8	100.8	99, -
ε	35	127.9	128.9	131.2	132,1	140.8	132,3	131.7	130,9	129.7	126,5	122,7	114,9	108.8	105,0	103,7
7	30	132,6	134.0	137.4	139.3	147,2	141.2	140.9	140.2	138,8	134, 6	129,5	114.7	112,5	108, 2	106, \%
6	2.	136.0	137.5	141, 7	144. 4	151,6	148.3	148, 5	147,9	146, 5	140,9	134, 3	122,9	115,0	110,5	109, 0
5	211	138, 4	140, 0	144,5	147, 8	154. 6	153.2	153,7	153,2	151, 7	144,8	137, 1	124, 7	116,5	111,8	110,3
4	15	140.3	141.9	146,6	150.2	156.5	156.6	157.4	156,9	155, 1	147.1	138,5	125, 4	117,0	112.3	
3	10	141.6	143.2	148,0	151, 8	154.6	158.7	159,5	159.0	157,1	148,5	139.4	126,0	117,6	112,9	111.4
2	5	142, 4	143,9	148,8	152, 6	157.4	139,5	160.7	160.2	158,2	149.4	140,1	126,6	118.1	113, 4	111,9
1	0	142,8	144, 4	149.3	153.1	157.9	160.2	161,1	160.6	158, 7	149.9	140.6	127.1	118, 5	113, 8	112,3

CAPACITANCES

Final accelerator to external conductive coating
\(\left.$$
\begin{array}{lr}\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}} & \begin{array}{r}<900 \mathrm{pF} \\
>\end{array}
$$

\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}} \& 150 \mathrm{pF}\end{array}\right]\)| C_{k} | 3 pF |
| :--- | ---: |
| $\mathrm{C}_{\mathrm{g} 1}$ | 7 pF |

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle	110°
Horizontal deflection angle	99°
Vertical deflection angle	80°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line : 47 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Grid no. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12 to 15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 350	$\mathrm{~V}^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$	250	V

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12 to 15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 350	$\mathrm{~V}{ }^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$	250	V

[^18]
A31-410W

LIMITING VALUES (Design max. rating system)

Final accelerator voltage
Grid No. 4 voltage positive
negative
Grid No. 2 voltage
Grid No. 2 to grid No. 1 voltage
Cathode to grid No. 1 voltage positive
positive peak
negative
negative peak
Cathode-to-heater voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	\max. min.	$\begin{array}{r} 17 \\ 9 \end{array}$	$\begin{aligned} & \left.\mathrm{kV}{ }^{*}\right) \\ & \mathrm{kV} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 4}$	max.	500	V
$-\mathrm{V}_{\mathrm{g} 4}$	max.	50	V
$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 350 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 2} / \mathrm{g} 1$	max.	450	V
$\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	max.	200	V
$\mathrm{V}_{\mathrm{k} / \mathrm{glp}}$	max.	400	$\mathrm{V}^{* *}$)
$-\mathrm{V}_{\mathrm{k} / \mathrm{gl}}$	max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} \mathrm{lp}}$	max.	2	V
$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V

CIRCUIT DESIGN VALUES

Grid No. 4 current
positive
negative

$\mathrm{I}_{\mathrm{g} 4}$	max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid No. 1 circuit resistance
Grid No. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^19]**) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

Final accelerator voltage as a function of cathode voltage

Final accelerator voltage as a function of grid no. 1 voltage

$$
\frac{\Delta \mathrm{V}_{\mathrm{KR}}}{\Delta \mathrm{~V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5}}=0,3 \times 10^{-3}
$$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

A31-410W

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

31 cm (12 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA	
Face diagonal	31 cm (12 in)
Deflection angle	110°
Overall length	max. 233 mm
Neck diameter	20 mm
Heating	$11 \mathrm{~V}, 140 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	12 to 15 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal-backed phosphor
Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height

white		
\approx	50	$\%$
\geq	295	mm
\geq	257	mm
\geq	195	mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	11	V
I_{f}	140	mA

Limits (Absolute max. rating system) of r.m.s. heater voltage

$$
\begin{array}{llrl}
\mathrm{V}_{\mathrm{f}} & \begin{array}{l}
\text { max. } \\
\text { min. }
\end{array} & 12,7 & \mathrm{~V} \text { *) } \\
\mathrm{V} & \mathrm{~V}
\end{array}
$$

For heating time as a function of source impedance see page 10 .

[^20]
MECHANICAL DATA

Dimensions in mm

Mounting position : any
Net mass : approx. $2,8 \mathrm{~kg}$
Base : JEDEC E7-91
The socket for this base should not be mounted rigidly, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (Gauge G).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC 67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm diameter drawn around the true geometrical positions, i.e. at the corners of a rectangle of 267, $5 \mathrm{~mm} \times 204,4 \mathrm{~mm}$.
8. Electrical contact between the metal band and the mounting lugs is guaranteed.
9. Distance from reference point Z to any hardware.

$\begin{aligned} & \text { Sec- } \\ & \text { tion } \end{aligned}$	Nom. distance from section 1	Distance from centre (max. values)														
		0°	10°	20°	25°	38^{+}	$32^{\circ} 30^{*}$	diag.	$37^{\circ} 30^{\text { }}$	40°	45°	50°	60°	70°	60°	90°
1.3	59.6	72. 2	72, 0	71,7	71,4	71, 2	71, 1	71,0	71,0	70,9	70, 8	70, 7	70,6	70, 7	70, 8	-0, 8
12	55	85, 9	85,6	84.9	84.4	84,0	83, 8	83.5	83,3	83, 1	82.7	82,4	81,9	81,6	81.5	81.5
11	50	99.5	99.4	98.9	98.5	97,9	97, 5	97,1	96.8	96,3	95, 4	94, 4	92, 4	90,7	89.5	89, 1
10	45	112.3	112.4	112, 2	111,7	110,9	110, 4	109.7	109, 1	108,3	106,6	104, 7	100.0	97, 7	95,5	94,7
9	40	121.3	121,3	122.8	122.9	122.4	121,9	121, 2	120,5	119.5	117, 1	114,3	108.6	103,8	100,8	99.7
8	35	127,9	128.9	131.2	132.1	140.8	132,3	131, 7	130,9	129,7	126,5	122,7	114,9	108,8	105,0	103,7
7	30	132,6	134,0	137.4	139.3	147, 2	141, 2	140,9	140, 2	138,8	134,6	129,5	119.7	112,5	108, 2	106,8
6	25	136.0	137,5	141,7	144,4	151,6	148,3	148,5	147,9	146,5	140,9	134.3	122,9	115,0	110.5	109,0
5	20	138.4	140, 0	144,5	147.8	154,6	153,2	153,7	153,2	151,7	144,8	137,1	124.7	116,5	111,8	110,3
4	15	140.3	141,9	$1+6,6$	150, 2	156,5	156,6	157,4	156.9	155, 1	147,1	138,5	125, 4	117,0	112,3	110,8
3	10	141,6	143,2	148,0	151.8	154,6	158,7	159.5	159.0	157.1	148,5	139.4	126.0	117,6	112,9	111,4
2	5	142,4	143,9	148.8	152,6	157, 4	159.5	160, 7	160,2	158,2	149,4	140,1	126.6	118, 1	113, 4	111,9
1	0	142,8	144, 4	149.3	153.1	157,9	160.2	161,1	160.6	158,7	149.9	140.6	127.1	118.5	113,8	112,3

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}>900$	pF	
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}}$	150	pF
C_{k}	3	pF
C_{gl}	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 99°
Vertical deflection angle 80°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line: 47 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12	to	15
$\mathrm{~V}_{\mathrm{g} 4}$	0	to	130
VV^{*}	$\mathrm{~V}^{*}$)		
$\mathrm{V}_{\mathrm{g} 2}$	130	V	

$\mathrm{V}_{\mathrm{KR}} \quad 30$ to 50 V

[^21]LIMITING VALUES (Design max. rating system)

Final accelerator voltage
Grid no. 4 voltage
positive
negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode-to-heater voltage

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5} \begin{array}{lrl}
\max . & 17 & \mathrm{kV} \\
\text { min. } & 9 & \mathrm{kV}
\end{array}
$$

$\mathrm{V}_{\mathrm{g} 4}$	\max.	500	V
$-\mathrm{V}_{\mathrm{g} 4}$	\max.	200	V
$\mathrm{~V}_{\mathrm{g} 2}$	\max.	200	V

$V_{k / g l}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{g} l_{\mathrm{p}}}$	\max.	400	$\left.\mathrm{~V}^{* *}\right)$
$-\mathrm{V}_{\mathrm{k} / \mathrm{gl}}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{gl}} l_{\mathrm{p}}$	\max.	2	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current

positive	$I_{g 4}$	\max.	25	$\mu \mathrm{~A}$
negative	$-I_{g 4}$	\max.	25	$\mu \mathrm{~A}$

Grid no. 2 current
positive
negative

$\mathrm{I}_{\mathrm{g} 2}$	max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater Impedance between cathode and heater Grid no. 1 circuit resistance

Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz}) \max$.	0,1	$\mathrm{M} \Omega$	
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz}) \max$.	0,5	$\mathrm{M} \Omega$	

*) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
**) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

Final accelerator current as a function of cathode voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

tV PICTURE TUBE

34 cm (14 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy. A special feature of this tube is its short cathode heating time.
The tube is designed for "push through" application and is provided with four metal lugs for mounting into a cabinet.

	QUICK REFERENCE DATA		
Face diagonal			
Deflection angle			
Overall length	max.	110°	
Neck diameter	247	mm	
Heating		20	mm
Grid no. 2 voltage		1140	mA
Final accelerator voltage		12 to 15	kV
Quick heating cathode	with a typical tube a legible		
	picture will appear within 5 s.		

SCREEN

Metal-backed phosphor
Luminance
Light transmission of face glass
white
Useful diagonal

\approx	48	$\%$
\geq	322,3	mm
\geq	270,2	mm
\geq	210,7	mm

Useful height

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms

V_{f}		11	V
I_{f}		140	mA
$\mathrm{~V}_{\mathrm{f}}$	max. min.	12,7	V
	9,3	V	

For heating time as a function of source impedance see page 10 .

[^22]MECHANICAL DATA
Dimensions in mm

Notes see page 4.

Mounting position : any

Netmass	: approx. $3,2 \mathrm{~kg}$
$\underline{\text { Base }}$	$:$ JEDEC E7-91

The socket for this base should not be mounted rigidly it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (gauge G).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC67-III-2.
6. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
7. The mounting screws in the cabinet must be situated inside a circle of 7 mm drawn around the true geometrical positions i.e. at the corners of a rectangle of $290 \mathrm{~mm} x$ 226 mm .
8. Electrical contact between the metal band and mounting lugs is guaranteed.
9. Distance from reference point Z to any hardware.

Sec- tion	Nom. distiance from Hection 1	Distance from centre (max, values)														
		0^{0}	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	35°	$37^{\circ}{ }^{\prime}$	40^{0}	45°	50°	60°	70°	80°	90°
1	0	150,6	152,7	159,3	164, 4	170, 4	173,4	175, 7	176,5	174, 8	165,3	154,6	1.38,6	128,6	123,2	121, 4
2	6,3	150,6	152, 7	159, 3	164,4	170, 4	173, 4	175,7	176,5	174,8	165,3	154,6	138,6	128,6	123,2	121,4
3	16, 3	148, 1	150,2	156,6	161,6	167,6	170,6	173,0	173, 9	172,6	163, 7	153,2	137,3	127,4	121,9	120,2
4	26,3	$1+1,6$	14:3,5	149,3	153,6	158, 3	160,3	161,8	162,2	161,3	155,5	147, 2	1.32, 8	123,5	118, 3	116,7
5	36, 3	1.33,5	135,2	139,9	142,9	145,7	146,7	147, 3	147,3	146, 4	142,8	137,4	126,1	117,7	113,0	111,5
6	46, 3	124,0	125,3	128,5	$1.30,1$	131,2	131,4	131,4	131,1	130,3	127,9	124,6	116,9	110,3	106,2	104,9
7	56, 3	112,2	113,0	114, 1	114,3	114.2	114.0	113,6	113,2	112.5	110,0	109. 1	104, 7	100, 7	97,8	96, 7
8	66,3	95.8	95,6	95,6	94,6	93,9	93, 6	93,2	92,9	92, 4	91,5	90,6	88, 9	87, 4	86,3	85.9
9	71, 3	84, 5	84, 1	$8.3,3$	82,8	82, 2	81,9	81,7	81, 4	81,1	80,6	80,1	79, 3	78,8	78,5	78,5
10	76,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	$69,0$.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band

$\mathrm{C}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}$	$\begin{aligned} & <900 \\ & >450 \end{aligned}$	pF pF
	200	pF
C_{k}	3	pF
C_{gl}	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 110°
Horizontal deflection angle 102°
Vertical deflection angle 82°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line: 47 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1 .
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
$\mathrm{V}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5$
12 to 15
kV
$\begin{array}{crc}\mathrm{V}_{\mathrm{g} 4} & 0 \text { to } 130 & \left.\mathrm{~V}^{*}\right) \\ \mathrm{V}_{\mathrm{g} 2} & 130 & \mathrm{~V}\end{array}$
Cathode voltage for visual extinction of focused raster
$V_{\mathrm{KR}} \quad 30$ to $50 \quad \mathrm{~V}$

[^23]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, \mathrm{g}} \mathrm{g}, \mathrm{g} 5=0$
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5} \begin{array}{lrl}\max . & 17 & \left.\mathrm{kV}^{*}\right) \\ \min . & 9 & \mathrm{kV}\end{array}$
Grid no. 4 voltage,
positive
negative
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{g} 4}$	$\max .500$	V
$-\mathrm{V}_{\mathrm{g} 4}$	$\max .200$	V
$\mathrm{~V}_{\mathrm{g} 2}$	$\max .200$	V

Cathode to grid no. 1 voltage,
positive
positive peak
negative
negative peak
Cathode-to-heater voltage

$\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	$\max .200$	V	
$\mathrm{~V}_{\mathrm{k} / \mathrm{glp}}$	$\max .400$	$\left.\mathrm{~V}^{* *}\right)$	
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1 \mathrm{p}}$	\max.	2	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	$\max .200$	V	

CIRCUIT DESIGN VALUES

Grid no. 4 current
positive negative

$\mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$

Grid no. 2 current
positive
negative

$I_{g 2}$	\max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance
$\mathrm{R}_{\mathrm{k} / \mathrm{f}} \quad \max .1 \quad \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{f} / \mathrm{k}}(50 \mathrm{~Hz}) \max .0,1 \quad \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1} \max .1,5 \mathrm{M} \Omega$
$Z_{\mathrm{g}}(50 \mathrm{~Hz}) \max .0,5 \quad \mathrm{M} \Omega$

[^24]**) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

Final accelerator current as a function of cathode voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

$44 \mathrm{~cm}(17 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black-and-white TV.

	QUICK REFERENCE DATA
Face diagonal	44 cm
Deflection angle	110°
Overall length	$284,5 \mathrm{~mm}$
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Grid no. 2 voltage	400 V
Final accelerator voltage	20 kV

SCREEN

Metal-backed phosphor
Luminescence
white

Light transmission of face glass
$\approx \quad 48 \%$
$\geq \quad 413 \mathrm{~mm}$
$\geq \quad 346 \mathrm{~mm}$
$\geq \quad 270 \mathrm{~mm}$

Useful diagonal
Useful width
$\geq 270 \mathrm{~mm}$
Useful height
$\because \quad$ -

heating

Indirect by a.c. or d.c.; series or parallel supply
Heater current
Heater voltage

I_{f}	300 mA
$\mathrm{~V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$	

If the tube is connected in a series heater chain the surge heater voltage must not exceed an r.m.s. value of $9,5 \mathrm{~V}$ when the supply is switched on.

MECHANICAL DATA

Dimensions in mm

Notes see page 5.

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-I-31a
Net mass : approx. 6 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

Notes see page 5

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC-67-III-2.
2. The metalrim-bandmust be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. Spherical face-plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C ($18,13 \mathrm{~mm}$).
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of $363,5 \mathrm{~mm} \times 288,5 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING
Dimensions in mm

Distance from centre (max. values)														
$\begin{aligned} & \text { Sec - } \\ & \text { tion } \end{aligned}$	Nom, distance from point " Z "	$\begin{aligned} & 0^{\circ} \\ & \text { Lorig } \end{aligned}$	10°	20°	30°	$33^{\circ} 30$	$36^{\circ} 30^{\circ}$ Diagoaal	40°	44°	50°	60°	70°	80°	90° Short
1	128,0	60,0	60,0	60, 0	60,0	60, 0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0
2	117,3	95,9	95.2	93,0	92,3	92, 1	92, 1	92, 3	92,6	93, 1	93, 8	94,6	94,9	95, 1
3	107,3	118,1	117,8	118,3	118,3	118,6	119,2	117, 8	117,7	117,2	115,5	113,3	111,2	109,8
4	97, 3	125,0	136,1	138,3	129, 9	141,0	141, 6	141,1	138,5	135,4	130,5	125,6	121,8	120,8
5	87, 3	149.5	151,1	155,1	159,1	161,3	162,0	161,5	157,5	151,0	142,0	135, 8	130,8	129,5
6	77, 3	162,5	164,0	!68,8	176,0	179,0	179,5	178,0	173,5	163,4	150, 8	143,3	1.38, 3	136, 4
7	67,3	172, 5	174,4	180, 1	190,0	194, 1	196, 3	194,9	186, 8	174,5	159,1	149,3	143,9	141, 7
8	57, 3	179, 7	183, 1	189,3	201,1	207, 4	210,9	206, 1	196,0	182, 8	165,5	154,0	147,9	145,6

CAPACITANCES

Final accelerator to external
conductive coating

	$<$	1300	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$>$	700	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}}$		200	pF
C_{k}	5	pF	
$\mathrm{C}_{\mathrm{g} 1}$		7	pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal deflection angle 110°
Horizontal deflection angle 100°
Vertical deflection angle 83°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe).

Maximum distance between centre of field of this magnet and reference line : 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Grid no. 1 voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 400	V
$\left.\mathrm{l}_{)}\right)$		
$\mathrm{V}_{\mathrm{g} 2}$	400	V
$\mathrm{~V}_{\mathrm{GR}}$	-40 to -77	V

$\underline{\text { Cathode drive service }}$
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 400	V
$\left.\mathrm{l}_{\text {1 }}\right)$		
$\mathrm{V}_{\mathrm{g} 2}$	400	V
$\mathrm{~V}_{\mathrm{KR}}$	36 to 66	V

[^25]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0$
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$
max. 23 kV *)

Grid no. 4 voltage,
positive
negative
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{g} 4}$	\max.	1000	V
$-\mathrm{V}_{\mathrm{g} 4}$	\max.	500	V
$\mathrm{~V}_{\mathrm{g} 2}$	\max.	700	$\left.\mathrm{~V}^{* * *}\right)$
$\mathrm{V}_{\mathrm{g} 2 / \mathrm{g} 1}$	\min.	350	V
	max.	850	V

Grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode to heater voltage,
positive
positive peak
negative

$V_{g l}$	\max.	0	V
$\mathrm{~V}_{\mathrm{glp}}$	\max.	2	V
$-\mathrm{V}_{\mathrm{g} 1}$	\max.	200	V
$-\mathrm{V}_{\mathrm{glp}}$	\max.	400	$\left.\mathrm{~V}^{* * *}\right)$

$\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max	250	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{fp}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	450	$\left.\mathrm{~V}^{* * * *}\right)$

positive during equipment warm-up period not exceeding 15 s
$\left.\nabla_{\mathrm{k} / \mathrm{f}} \quad \max .450 \quad \mathrm{~V}^{* * *}\right)$

[^26]
CIRCUIT DESIGN VALUES

Grid no. 4 current,

positive	$\mathrm{I}_{\mathrm{g} 4}$	$<$	25	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{\mathrm{g} 4}$	$<$	25	$\mu \mathrm{~A}$
rid no.2 current,				
positive	$\mathrm{I}_{\mathrm{g} 2}$	$<$	5	$\mu \mathrm{~A}$
negative	$-\mathrm{I}_{\mathrm{g} 2}$	$<$	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

72094069

Final accelerator current as a function of grid no. 1 voltage

Final accelerator current as a function of cathode voltage

$$
\frac{\Delta \mathrm{V}_{\mathrm{GR}}}{\Delta \mathrm{~V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5}}=0,15 \times 10^{-3}
$$

Limits of grid No. 1 cut-off voltage as a function of grid no. 2 voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

TV PICTURE TUBE

44 cm (17 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. The 20 mm neck diameter ensures a low deflection energy.
A special feature of this tube is its short cathode heating time.
The tube is designed for "push through" application and is provided with four metal lugs for mounting into a cabinet.

QUICK REFERENCE DATA	
Face diagonal	44 cm (17 in)
Deflection angle	110°
Overall length	\max. 288 mm
Neck diameter	20 mm
Heating	$11 \mathrm{~V}, 140 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	12 to 15 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal-backed phosphor
Luminescence
Light transmission of face glass
white
Useful diagonal
Useful width
Useful height

\approx	48	$\%$
\geq	413	mm
\geq	346	mm
\geq	270	mm

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current

V_{f}	11	V
I_{f}	140	mA

Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms

	max.	12,7	V	$*)$
\min.	9,3	V		

For heating time as a function of source impedance see page 10 .

[^27]

Notes see page 5 .

Mounting position: any
Net mass : approx. 6 kg
Base : JEDEC E7-91
The socket for the base should not be mounted rigidly, it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWING

1. The reference line is determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone (gauge G).
2. The configuration of the external conductive coating may be different, but covers the contact area shown in the drawing.
The external conductive coating must be earthed.
3. End of guaranteed contour. The maximum neck and cone contour is given by the reference line gauge G.
4. This area must be kept clean.
5. Recessed cavity contact IEC-67-III 2 .
6. Minimum space to be reserved for mounting lug.
7. The mounting screws in the cabinet must be situated inside a circle of $7,5 \mathrm{~mm}$ drawn around the true geometrical positions i.e. at the corners of a rectangle of $363,5 \mathrm{~mm}$ x $288,5 \mathrm{~mm}$.
8. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
9. The metal rim-band must be earthed. The hole of 3 mm dia in each lug is provided for this purpose. Electrical contact between the metal band and mounting lugs is guaranteed.
10. Max. curvatures of the outside rim-band are: nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

Sec- tion	Nom. distance from section 1	Distance from centre (max values)														
		0°	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	diag.	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
10	90	73,8	73,6	73, 1	72,9	72.6	72,5	72, 3	72, 2	72, 1	71,9	71, 8	71,7	71, 7	71,8	71,9
9	80	104,7	103,9	102, 1	101,0	99,9	99,4	98,6	98, 4	98,0	97, 2	96,5	95,6	95, 2	95, 2	95,3
8	70	123,9	124,0	123.8	123,5	123,0	122,6	122,0	121,8	121, 2	120, 1	118,7	116,0	113,5	111,7	111,1
7	60	140, 4	141,3	143,3	144, 1	144,5	144,5	144,0	143,8	143,2	141,2	138,6	132,7	127,3	123,8	122,5
6	50	154, 8	156,3	160,3	162,5	164,3	164,9	164, 7	164,5	163, 7	160,5	156,0	146,1	138, 1	133, 2	131,5
5	40	166,9	168,9	174, 5	178, 1	181,6	183,1	183, 4	183, 2	182,1	177, 2	170, 2	156,6	146,6	140,8	138,9
4	30	176,8	179,1	185,9	190,9	196,3	198,9	200,0	199,8	198, 4	191,2	181,2	164,4	153,0	146, 7	144,6
3	20	184, 1	186,6	194,4	200, 4	208,0	212,0	214,6	214,3	212,6	202,0	189,0	169,6	157, 4	150,8	148,6
2	10	188,6	191, 2	199,3	205,6	213,9	218,4	221,3	221,2	219, 2	207, 2	193,1	172,9	160,4	153,6	151, 4
1	0	190,0	192.6	200, 7	207,1	215,3	219,9	222, 7	222,5	220, 5	208, 6	194,4	174,1	161,5	154, 7	152, 5

CAPACITANCES

Final accelerator to external conductive coating	$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$\begin{array}{r} <1300 \\ >700 \end{array}$	pF pF
Final accelerator to metal rimband	$C_{a}, \mathrm{~g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}$	200	pF
Cathode to all	C_{k}	3	pF
Grid no. 1 to all	CgI	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle 1100
Horizontal deflection angle 980
Vertical deflection angle 790

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of filed of this magnet and reference line : 47 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	12 to 15	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 130	V *)
$\mathrm{V}_{\mathrm{g} 2}$	130	V

$\mathrm{V}_{\mathrm{KR}} \quad 30$ to 50 V

[^28]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0$
$V_{a}, \mathrm{~g} 3, \mathrm{~g} 5$
$\max \quad 17 \mathrm{kV}$ *)
\min.
9 kV
Grid no. 4 voltage

Positive	$\mathrm{V}_{\mathrm{g} 4}$	\max.	500	V
Negative	$-\mathrm{V}_{\mathrm{g} 4}$	\max.	200	V
rid no.2 voltage	$\mathrm{V}_{\mathrm{g} 2 / \mathrm{k}}$	\max.	200	V

Cathode to grid no. 1 voltage, positive positive peak
negative
negative peak
Cathode-to-heater voltage

$\mathrm{V}_{\mathrm{k} / \mathrm{gl}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{g} 1 \mathrm{p}}$	\max.	400	$\left.\mathrm{~V}^{* *}\right)$
$-\mathrm{V}_{\mathrm{k} / \mathrm{gl}}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{glp}}$	\max.	2	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current
positive
negative
Grid no. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{f} / \mathrm{k}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{gl}}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^29]

Final accelerator current as a function of cathode voltage.

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

44 cm (17 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA	
Face diagonal	44 cm
Deflection angle	110°
Overall length	max. 291 mm
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 240 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	20 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal-backed phosphor
Luminescence white

Light transmission of face glass
Useful diagonal
Useful width
Useful height

white	
\approx	48%
\geq	413 mm
\geq	346 mm
\geq	270 mm

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms

V_{f}	$6,3 \mathrm{~V}$	
I_{f}		240 mA
	max.	$\left.7,3 \mathrm{~V}^{*}\right)$
V_{f}	min.	$5,3 \mathrm{~V}$

For heating time as a function of source impedance see page 11 .

[^30]
$\overline{\text { Notes see page } 5}$

MECHANICAL DATA (continued)

[^31]

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC 67-I-31a
Net mass : approx. 6 kg
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWING

1. Small cavity contact IEC 67-III-2.
2. The metal rim-band must be earthed. The hole of 3 mm dia in each lug is provided for this purpose.
3. Spherical face-plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge $\mathrm{C}(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing. The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions i.e. at the corners of a rectangle of $363,5 \mathrm{~mm} \times 288,5 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

$\begin{aligned} & \text { Sec- } \\ & \text { tion } \end{aligned}$	Nom. distance from point " Z "	$\begin{aligned} & 0^{0} \\ & \text { Long } \end{aligned}$	10°	20°	30°	$33^{\circ} 30$ '	$\begin{gathered} 36^{\circ} 30^{\prime} \\ \text { Diagonal } \end{gathered}$	40°	44°	50°	60°	70°	80°	$\begin{aligned} & 90^{\circ} \\ & \text { Short } \end{aligned}$
1	128,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60,0	60, 0	60,0	60,0	60, 0
2	117,3	95,9	95, 2	93, 0	92, 3	92, 1	92, 1	92, 3	92,6	93, 1	93, 8	94,6	94,9	95,1
3	107,3	118,1	117,8	118,3	118,3	118,6	119,2	117,8	117,7	117,2	115,5	113,3	111,2	109,8
4	97, 3	135,0	136,1	138,3	139,9	141,0	141,6	141,1	138,5	135, 4	130,5	125,6	121,8	120,8
5	87, 3	149,5	151,1	155,1	159,1	161,3	162,0	161,5	157,5	151,0	142,0	135,8	130,8	129,5
6	77, 3	162,5	164,0	168,8	176,0	179,0	179,5	178,0	173,5	163,4	150,8	143,3	138,3	136, 4
7	67,3	172,5	174,4	180,1	190,0	194,1	196,3	194,9	186,8	174,5	159, 1	149,3	143,9	141,7
8	57, 3	179,7	183,1	189,3	201,1	207, 4	210,9	206, 1	196,0	182,8	165,5	154,0	147,9	145,6

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all
Grid no. 1 to all

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$<$	1300	pF
$\mathrm{C}_{\mathrm{a}, \mathrm{g}} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}$		700	pF
C_{k}	200	pF	
C_{gl}	3	pF	
		7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle $\quad 110^{\circ}$
Horizontal deflection angle 100°
Vertical deflection angle 833°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line : 57 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to	130

Cathode voltage for visual extinction
of focused raster
$V_{\mathrm{KR}} \quad 42$ to 62 V

[^32]LIMITING VALUES (Design max. rating system)
\rightarrow Final accelerator voltage at $\mathrm{I}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}=0$
$V_{a, g 3, g 5}$

\max.	23	$\mathrm{kV} *)$
\min.	12	kV

Grid no. 4 voltage,
positive
negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage,

positive	$\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	\max.	200	V
positive peak	$\mathrm{V}_{\mathrm{k} / \mathrm{gl} 1 \mathrm{p}}$	\max.	400	$\mathrm{~V} * * *)$
negative	$-\mathrm{V}_{\mathrm{k} / \mathrm{gl}}$	\max.	0	V
negative peak	$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1_{\mathrm{p}}}$	\max.	2	V
athode-to-heater voltage	V_{kf}	\max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current,
positive
negative

$\mathrm{I}_{\mathrm{g} 4}$	max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 4}$	max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
R_{gl}	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{gl}}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^33]

Final accelerator current as a function of cathode voltage Cathode drive $\quad \mathrm{V}, \mathrm{g}_{3}, \mathrm{~g}_{5}=20 \mathrm{kV}$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

TV PICTURE TUBE

50 cm (20 in), 110°, rectangular direct vision picture tube with integral protection for black-and-white TV.

	QUICK REFERENCE DATA
Face diagonal	$50 \mathrm{~cm} \mathrm{(20} \mathrm{in)}$
Deflection angle	110°
Overall length	$312,5 \mathrm{~mm}$
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Grid no. 2 voltage	400 V
Final accelerator voltage	20 kV

SCREEN

Metal-backed phosphor
Luminescence white

Light transmission of face glass	\approx	45	$\%$
Usefui diagonal	\geq	473	mm
Useful width	\geq	394	mm
Useful height	\geq	308	mm

HEATING

Indirect by a.c. or d.c.; series or parallel supply
Heater current
Heater voltage

I_{f}	300	mA
$\mathrm{~V}_{\mathrm{f}}$	6,3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed an r.m.s. value of $9,5 \mathrm{~V}$ when the supply is switched on.

Notes see page 5

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC67-1-31a
Net mass : approx. $8,5 \mathrm{~kg}$

The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

[^34]
NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC67-III-2 .
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face-plate.
4. End of guaranteed contour. The maximum neck-and-cone contour is given by the reference line gauge $\mathrm{C}(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position i.e. at the corners of a rectangle of $414 \mathrm{~mm} \times 331 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is $\max .2 \mathrm{~mm}$.
10. Max. curvatures of the outside rim-band are: nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

Distance from centre (max. values)															
$\begin{aligned} & \mathrm{Sec}- \\ & \text { tion } \end{aligned}$	Nom distance from point " Z "	$\begin{gathered} 0^{\circ} \\ \text { Long } \end{gathered}$	10°	20°	25°	30°	32030^{\prime}	$\begin{gathered} 36^{\circ} 30^{\prime} \\ \text { Diagonal } \end{gathered}$	40°	450	50°	60°	70°	80°	90° Short
1	157,2	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0
2	147, 2	109, 2	107, 8	107, 1	106, 4	106, 0	105,9	105,5	105, 0	104, 5	103,9	102,8	102,6	102,8	103, 4
3	137, 2	136,7	134.5	133,7	133,0	132,3	131,8	130,7	129,3	127, 5	125, 3	121,9	120,7	120,2	120,2
4	127,2	157,2	156,5	155,7	154,8	153,8	153,0	151,5	150.0	147, 5	144, 7	138, 7	134,9	133, 4	132,5
5	117,2	174,2	174,0	174,4	174,3	173,4	172,8	171,0	169, 3	165, 7	160,8	152,0	146, 5	143,7	142,3
6	107,2	185,8	186, 3	188,4	190,0	191,2	191,2	189,5	186,7	181,7	174,7	163,2	156,0	151,7	150, 4
7	97,2	194,5	195, 7	202,2	203, 8	206,9	207,3	206,4	203,5	196,4	187, 4	173,0	163,5	158,6	156,9
8	87, 2	201,7	203, 8	210,2	215,4	220,6	222,1	222,2	218,8	210,5	198,8	181,2	170,3	164, 7	162, 7
9	77, 2	208,2	210,6	218,5	224, 8	231,4	234,8	236, 5	233.5	222,2	208, 5	188, 5	176,6	169,9	167, 9
10	67,2	213,1	215,9	225,2	231,9	239,8	244,3	248,5	244, 8	230, 3	216,0	194,7	181,6	174,5	172,0
11	57,2	215,6	219,0	228,2	235, 4	244,5	249,6	253, 7	250, 2	235, 7	220,5	198,6	184,8	177, 2	174, 7
12	49,3	217,0	219,8	229, 3	236,6	246,0	251,2	254, 5	251,7	237,2	222,0	199,6	185, 6	177, 8	175, 7

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band
Cathode to all
Grid no. 1 to all

$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g} 5 / \mathrm{m}$	<1500	pF
>1000	pF	\longleftarrow
$\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{g5} / \mathrm{m}^{\prime}$	250	pF
C_{k}	5	pF
C_{1}	7	pF

FOCUSING electrostatic
DEFLECTION magnetic
Diagonal 110°
Horizontal deflection angle 98°
Vertical deflection angle 81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe).
Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	0 to 400	$\left.\mathrm{~V}^{*}\right)$
Grid no.2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	400	V
Grid no. 1 voltage for visual extinction of focused raster		V_{GR}	-40 to -77

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g}_{3}, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g}_{4}}$	0 to 400	$\mathrm{~V}^{*}$)
$\mathrm{V}_{\mathrm{g} 2}$	400	V

$\mathrm{V}_{\mathrm{KR}} \quad 36$ to 66 V

[^35]
LIMITING VALUES (Design max. rating system)

Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5}=0$
Grid no. 4 voltage
positive
negative
Grid no. 2 voltage
Grid no. 2 to grid no. 1 voltage
Grid no. 1 voltage,
positive
positive peak
negative
negative peak
Cathode-tomeater voltage.
positive
positive peak
negative
positive during equipment warm-up period not exceeding 15 s
$\begin{array}{llll} & & \text { max. } & 23 \\ \mathrm{kV}^{*}, \mathrm{~g} 3, \mathrm{~g} 5 & \begin{array}{l}\text { min. } \\ \mathrm{min} .\end{array} & 12 & \mathrm{kV}\end{array}$
$\mathrm{V}_{4} \quad \max . \quad 1000 \mathrm{~V}$
$-\mathrm{V}_{4} \quad \max \quad 500 \quad \mathrm{~V}$
$\left.\mathrm{V} \quad \max \quad 700 \mathrm{~V}^{* * *}\right)$
min. 350 V
$\mathrm{V}_{\mathrm{g} 2} / \mathrm{g} 1$ max. 850 V

V_{g}	max.	0	V
$\mathrm{~V}_{1} \mathrm{p}_{\mathrm{p}}$	max.	2	V
$-\mathrm{V}_{1}$	\max.	200	V
$-\mathrm{V}_{1 \mathrm{p}}$	\max.	400	$\left.\mathrm{~V}^{* *}\right)$

$V_{k / f}$	max.	250	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}_{\mathrm{p}}}$	\max.	300	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{f}}$	\max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{f}}$	\max.	450	$\left.\mathrm{~V}^{* * * *}\right)$

*) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
${ }^{* *}$) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
***) At $\mathrm{V}_{\mathrm{g} 1 / \mathrm{k}}=0 \mathrm{~V}$.
****) Between 15 s and 45 s after switching on a decrease in k / f voltage from 450 V to 250 V , linearly proportional with time, is permissible.

CIRCUIT DESIGN VALUES

Grid no. 4 current
positive
negative
Grid no. 2 current positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

I_{4}	max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{4}$	\max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g}}$	max.	5	$\mu \mathrm{~A}$

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

Final accelerator current as a function of grid no. 1 voltage

Final accelerator current as a function of cathode voltage

Limits of grid no. 1 cut-off voltage as a function of grid no. 2 voltage

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

TV PICTURE TUBE

50 cm (20 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA	
Face diagonal	50 cm
Deflection angle	110°
Overall length	max. 319 mm
Neck diameter	$28,6 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 240 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	20 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal-backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height
white $\approx \quad 45 \%$ $\geq \quad 473 \mathrm{~mm}$
$\geq \quad 394 \mathrm{~mm}$
$\geq \quad 308 \mathrm{~mm}$

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current

V_{f}	$6,3 \mathrm{~V}$
I_{f}	240 mA

Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms
$V_{f} \quad \max$.
7,3 V *)
$\min \quad 5,3 \mathrm{~V}$
For heating time as a function of source impedance see page 11 .
*) This limit also applies during equipment warming-up. Use of the tube in a series
heater chain it not allowed.

Mounting position : any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC 67-1-3la
Net mass : approx. $8,5 \mathrm{~kg}$
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC 67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lugare provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum neck-and-cone contour is given by the reference line gauge $C(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position i.e. at the corners of a rectangle of $414 \mathrm{~mm} \times 331 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. Max. curvatures of the outside rim-band are: nominal bulb radius +4 mm .
11. Distance from reference point Z to any hardware.

MAXIMUM CONE CONTOUR DRAWING

Distance from centre (max. values)															
Sec- tion	Nom distance from point " Z "	$\begin{gathered} 0^{0} \\ \text { Long } \end{gathered}$	10°	20°	25°	30°	$32030 \cdot$	$\begin{gathered} 36^{\circ} 30^{\prime} \\ \text { Diagonal } \end{gathered}$	40°	45°	50°	600	70°	800	900 Short
1	157,2	69,0	69,0	69,0	69,0	69,0	69,0	09,0	69,0	69,0	69,0	69,0	69,0	69,0	69,0
2	147,2	109,2	107, 8	107, 1	106, 4	106,0	105,9	105, 5	105, 0	104,5	103,9	102, 8	102, 6	102, 8	103,4
3	137,2	136, 7	134, 5	133,7	133, 0	132, 3	131,8	130, 7	129,3	127,5	125, 3	121,9	120, 7	120,2	120,2
4	127,2	157,2	156,5	155,7	154,8	153, 8	153,0	151,5	150,0	147, 5	144,7	138,7	134,9	133,4	132,5
5	117,2	174,2	174,0	174, 4	174,3	173, 4	172,8	171,0	169, 3	165,7	160,8	152,0	146,5	143, 7	142,3
6	107,2	185, 8	186, 3	188,4	190,0	191,2	191, 2	189,5	186,7	181,7	174, 7	163,2	156,0	151,7	150, 4
7	97,2	194,5	195.7	202,2	203, 8	206,9	207, 3	206,4	203, 5	196,4	187, 4	173,0	163,5	158,6	156,9
8	87,2	201,7	203, 8	210,2	215, 4	220,6	222, 1	222,2	218,8	210, 5	198,8	181,2	170, 3	164, 7	162, 7
9	77, 2	208,2	210,6	218,5	224.8	231, 4	234,8	236,5	233,5	222,2	208,5	188, 5	176,6	169,9	167,9
10	67,2	213,1	215,9	225,2	231,9	239, 8	244,3	248,5	244, 8	230, 3	216,0	194,7	181, 6	174, 5	172,0
11	57,2	215,6	219,0	228,2	235,4	244,5	249,6	253, 7	250, 2	235, 7	220,5	198,6	184, 8	177, 2	174, 7
12	49,3	217,0	219,8	229,3	236,6	246,0	251,2	254, 5	251,7	237, 2	222,0	199,6	185, 6	177, 8	175,7

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band
Cathode to all
Grid no. 1 to all

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$>1500 \mathrm{pF}$	$>$
$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}}$		1000 pF
C_{k}	250 pF	
C_{g}	3 pF	
		7 pF

FOCUSING electrostatic

DEFLECTION magnetic

Diagonal 110°

Horizontal deflection angle 98°
Vertical deflection angle 81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20	kV
$\mathrm{V}_{\mathrm{g} 4}$	0 to 130	$\left.\mathrm{~V}^{*}\right)$
$\mathrm{V}_{\mathrm{g} 2}$	130	V

Cathode voltage for visual
extinction of focused raster
$\mathrm{V}_{\mathrm{KR}} \quad 42$ to 62 V

[^36]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0$
Grid no. 4 voltage
positive
negative
Grid no. 2 voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	max. \min.	23 12	$\begin{aligned} & \left.\mathrm{kV}{ }^{*}\right) \\ & \mathrm{kV} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 4}$	max.	1000	V
$-\mathrm{V}_{\mathrm{g} 4}$	max.	500	V
$\mathrm{V}_{\mathrm{g} 2}$	\max. min.	200 80	$\begin{aligned} & \left.V^{* *}\right) \\ & V \end{aligned}$

Cathode to grid no. 1 voltage positive
positive peak
negative
negative peak
Cathode-to-heater voltage

$\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	max.	200	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{g} l \mathrm{p}}$	\max.	400	$\left.\mathrm{~V}^{* * *}\right)$
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	\max.	0	V
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} l \mathrm{p}}$	\max.	2	V
$\mathrm{~V}_{\mathrm{kf}}$	\max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current, positive
negative

Ig 4	max.	25	$\mu \mathrm{~A}$
-Ig 4	\max.	25	$\mu \mathrm{~A}$
Ig 2	max.	5	$\mu \mathrm{~A}$
-Ig 2	max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	\max.	1,0	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

[^37]

Final accelerator current as a function of cathode voltage
Cathode drive

$$
\mathrm{V}_{\mathrm{a}, \mathrm{~g}, \mathrm{~g} 5}=20 \mathrm{kV}
$$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.

A61-120W

TV PICTURE TUBE

$61 \mathrm{~cm}(24 \mathrm{in}), 110^{\circ}$, rectangular direct vision picture tube with integral protection for black and white TV.

	QUICK REFERENCE DATA	
Face diagonal	61	$\mathrm{~cm} \mathrm{(24} \mathrm{in)}$
Deflection angle	110°	
Overall length	\max.	370
Neck diameter	28,6	mm
Heating	$6,3 \mathrm{~V}, 300$	mA
Grid no. 2 voltage	400	V
Final accelerator voltage	20	kV

SCREEN

Metal-backed phosphor

Luminescence	white		
Light transmission of face glass	\approx	42%	
Useful diagonal	\geq	577,5	mm
Useful width	\geq	481	mm
Useful height	\geq	375	mm

HEATING

Indirect by a.c. or d.c.; series or parallel supply

Heater current	If	300	mA
Heater voltage	V_{f}	6,3	V

If the tube is connected in a series heater chain the surge heater voltage must not exceed an r.m.s. value of $9,5 \mathrm{~V}$ when the supply is switched on.

MECHANICAL DATA

Notes see page 5.

Mounting position: any
Base
: neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-I-31a
Net mass : approx. $13,5 \mathrm{~kg}$
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm ,
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IE C-67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge $\mathrm{C}(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position; i.e. at the corners of a rectangle of $496 \times 392 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. The max. outer contour of the tube with the rim-band is determined by adding 5 mm to the nominal bulb dimensions.
11. Distance from reference point Z to any hardware.

$\begin{aligned} & \mathrm{Sec} \\ & \text { tion } \end{aligned}$	Nom. distance from section 1	Distance from centre (max, vaiues)														
		0°	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	diag.	37030	40°	45°	50°	60°	70°	80°	90°
1	130	72,9	724	71,6	71. 1	70,7	70.5	74.3	70, 3	70.2	70,1	70.0	70,2	70.8	71,5	71,8
2	120	104,4	102,6	99,4	97, 8	96,5	96,0	95,2	95,1	94.7	94, 2	94,0	94,5	96,0	98, 0	99, 3
3	110	134,3	131,5	126,5	124, 2	122,1	121,2	119,9	119,6	119,0	118,0	117,4	117,4	118,7	120, 7	122,0
4	100	160,4	157,1	151, 1	148, 1	145,3	144, 1	142,2	141,8	140,8	139, 1	137,9	136,7	136,9	137,9	138,7
5	90	178.7	176,9	172,9	170, 1	167,5	166,1	164,0	163,5	162,3	159,9	157, 8	154, 3	151,9	150,7	150,3
6	80	193, 's	193,0	191,4	189,9	187,8	186,6	184,4	183, 4	182, 4	179,2	175,9	169,6	164, 4	161,0	159.8
7	70	205,7	206,5	207,6	207, 5	206, 4	205,5	203,4	202,8	201, 1	196,9	192,2	182,7	174,8	169,7	168,0
8	60	216,8	212,5	222, 1	223,5	223,8	223, 4	221,5	220,9	218,9	213,6	207, 2	194,3	183,9	177,6	175,4
9	50	226,9	229,3	235,0	238,1	240,0	240,3	238.9	238, 2	235,9	229,0	220, 7	204, 4	192,1	184, 7	182,3
10	40	236,0	238,7	246,3	250,9	254,9	256, 1	255,4	254, 7	252, 4	243, 2	232.7	213,3	199,3	191,2	188,6
11	30	243,7	246,8	255,9	262,0	268,1	270,6	271.0	270,3	267,4	256,0	243, 1	220,8	205, 7	197, 1	194,3
12	20	250,0	253, 4	263,5	270,9	279,3	283,5	285,5	284,8	281,6	267, 2	251,8	227, 2	211, 1	202, 2	199, 4
13	10	255,0	258, 5	269,3	277, 7	288,1	293,9	298,0	297,6	294, 1	276,2	258, 5	232, 1	215,6	206,5	203,6
14	0	258,5	262,0	273,1	281,9	293, 2	300,0	305, 4	305, 1	301, 5	281,6	262, 7	235, 6	218,8	209,6	206,6

CAPACITANCES

Final accelerator to external

conductive coating

Final accelerator to metal band
Cathode to all
Grid no. 1 to all
FOCUSING electrostatic
DEFLECTION magnetic
Diagonal deflection angle $\quad 110^{\circ}$
Horizontal deflection angle 98°
Vertical deflection angle 81°

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tupe axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}(0$ to 10 Oe$)$. Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Grid drive service

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Grid no. 1 voltage for visual exinction
of focused raster
Cathode drive service
Voltages are specified with respect to grid no. 1
Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	20 kV
$\mathrm{V}_{\mathrm{g} 4}$.0 to$\left.400 \mathrm{~V}^{*}\right)$ $\mathrm{V}_{\mathrm{g} 2}$
$\mathrm{~V}_{\mathrm{GR}}$	-400 V
	-40 to -77 V

$\mathrm{V}_{\mathrm{GR}} \quad-40$ to -77 V

$\mathrm{C}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}}$	$<2500 \mathrm{pF}$
$>1500 \mathrm{pF}$	
$\mathrm{Ca}, \mathrm{g} 3, \mathrm{~g} 5 / \mathrm{m}^{\prime}$	350 pF
C_{k}	pF $\mathrm{C}_{\mathrm{g} 1}$
	7 pF

LIMITING VALUES (Design max. rating system)
Final accelerator voltage at Ia, g3, g5 $=0$
Grid no. 4 voltage,
positive
negative

Grid no. 2 voltage
Grid no. 2 to grid no. 1 voltage
Grid no. 1 voltage

positive	Vgl	\max.	0
V			
positive peak	Vglp	\max.	2
negative	-Vgl	\max.	200
negative peak	-Vglp	max.	400
nem.			

Cathode-to-heater voltage,
positive
positive peak
negative
positive during equipment warm-up
period not exceeding 15 s

Va,g3, g5	\max. min.	$\begin{aligned} & 23 \\ & 12 \end{aligned}$	$\begin{aligned} & \left.\mathrm{kV}^{*}\right) \\ & \mathrm{kV} \end{aligned}$
Vg4	max.	1000	V
-Vg4	max.	500	V
Vg2	\max. min.	$\begin{aligned} & 700 \\ & 350 \end{aligned}$	$\begin{aligned} & \left.V^{* * *}\right) \\ & V \end{aligned}$
Vg2/g1	max.	850	V

Grid 1 .
positive
positive peak
negative
negative peak

Vk / f	\max.	250	V
$\mathrm{Vk} / \mathrm{fp}$	\max.	300	V
$-\mathrm{Vk} / \mathrm{f}$	\max.	200	V
Vk / f	max.	450	$\left.\mathrm{~V}^{* * * *}\right)$

[^38]
CIRCUIT DESIGN VALUES

Grid no. 4 current,
positive
negative
Grid no. 2 current
positive
negative

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\operatorname{Ig} 4$	\max.	25	$\mu \mathrm{~A}$
$-\operatorname{Ig} 4$	\max.	25	$\mu \mathrm{~A}$

Ig2	\max.	5	$\mu \mathrm{~A}$
-Ig2	\max.	5	$\mu \mathrm{~A}$

Rk / f	\max.	1	$\mathrm{M} \Omega$
$\mathrm{Zk} / \mathrm{f}(50 \mathrm{~Hz})$	\max.	0,1	$\mathrm{M} \Omega$
Rg 1	\max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Zgl}(50 \mathrm{~Hz})$	\max.	0,5	$\mathrm{M} \Omega$

Final accelerator current as a function of grid no. 1 voltage.

Final accelerator current as a function of cathode voltage.

7209405

$$
\frac{\Delta \mathrm{V}_{\mathrm{GR}}}{\Delta \mathrm{~V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5}}=0,15 \times 10^{-3}
$$

Limits of grid no. 1 cut-off voltage as a function of grid no. 2 voltage.

$$
\frac{\Delta \mathrm{V}_{\mathrm{KR}}}{\Delta \mathrm{~V}_{\mathrm{a}, \mathrm{~g} 3, \mathrm{~g} 5}}=0,15 \times 10^{-3}
$$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.
44.4

TV PICTURE TUBE

61 cm (24 in), 110°, rectangular direct vision picture tube with integral protection for black and white TV. A special feature of this tube is its short cathode heating time.

QUICK REFERENCE DATA	
Face diagonal	61 cm
Deflection angle	110°
Overall length	max. 370 mm
Neck diameter	28,6 mm
Heating	$6,3 \mathrm{~V}, 240 \mathrm{~mA}$
Grid no. 2 voltage	130 V
Final accelerator voltage	20 kV
Quick heating cathode	with a typical tube a legible picture will appear within 5 s .

SCREEN

Metal-backed phosphor
Luminescence white

Light transmission of face glass
Useful diagonal
Useful width
Useful height

HEATING

Indirect by a.c. or d.c.
Heater voltage
Heater current
Limits (Absolute max. rating system) of r.m.s. heater voltage measured in any 20 ms
I_{f}
$\begin{array}{ll} & \left.\begin{array}{l}\text { max. } \\ \mathrm{V}_{\mathrm{f}} \\ \min .\end{array} \quad 7,3 \mathrm{~V}^{*}\right) \\ 5,3 \mathrm{~V}\end{array}$

For heating time as a function of source impedance see page 11 .

[^39]

For notes see page 5

Mounting position: any
Base : neo eightar 7 pin JEDEC B7-208, B8H, IEC-67-I-31a
Net mass : approx. $13,5 \mathrm{~kg}$
The bottom circumference of the base wafer will fall within a circle concentric with the tube axis and having a diameter of 40 mm .
The socket for the base should not be rigidly mounted: it should have flexible leads and be allowed to move freely.

NOTES TO OUTLINE DRAWINGS

1. Small cavity contact IEC 67-III-2.
2. The metal rim-band must be earthed. The holes of 3 mm dia in each lug are provided for this purpose.
3. Spherical face plate.
4. End of guaranteed contour. The maximum contour from reference line towards screen is given by the reference line gauge C $(18,13 \mathrm{~mm})$.
5. The configuration of the external conductive coating may be different but contains the contact area as shown in the drawing.
The external conductive coating must be earthed.
6. This area must be kept clean.
7. Minimum space to be reserved for mounting lug.
8. The mounting screws in the cabinet must be situated inside a circle of 8 mm diameter drawn around the true geometrical position; i.e. at the corners of a rectangle of $496 \times 392 \mathrm{~mm}$.
9. The displacement of any lug with respect to the plane through the other three lugs is max. 2 mm .
10. The max. outer contour of the tube with the rim-band is determined by adding 5 mm to the nominal bulb dimensions.
11. Distance from reference point Z to any hardware.

$\begin{aligned} & \mathrm{Sec}- \\ & \text { tion } \end{aligned}$	Nom. distance from section 1	Distance from centre (max. values)														
		0°	10°	20°	25°	30°	$32^{\circ} 30$	diag.	$37^{\circ} 30 \cdot$	40°	45°	50°	60°	70°	80°	90°
1	130	72,9	72,4	71,6	71, 1	70, 7	70,5	70, 3	70, 3	70, 2	70,1	70,0	70,2	70,8	71,5	71,8
2	120	104, 4	102,6	99, 4	97, 8	96, 5	96,0	95, 2	95, 1	94, 7	94, 2	94,0	94,5	96,0	98,0	99, 3
3	110	134,3	131, 5	126, 5	124, 2	122, 1	121, 2	119,9	119.6	119,0	118,0	117,4	117, 4	118,7	120, 7	122,0
4	100	160, 4	157, 1	151, 1	148, 1	145, 3	144, 1	142,2	141,8	140, 8	139, 1	137,9	136,7	136,9	137,9	138,7
5	90	178, 7	176, 9	172,9	170, 1	167,5	166, 1	164,0	163, 5	162, 3	159,9	157,8	154,3	151,9	150, 7	150,3
6	80	193, 3	193,0	191,4	189,9	187, 8	186, 6	184, 4	183,4	182, 4	179, 2	175,9	169,6	164, 4	161.0	159,8
7	70	205, 7	206, 5	207. 6	207, 5	206, 4	205, 5	203, 4	202, 8	201,1	196,9	192,2	182, 7	174,8	169, 7	168,0
8	60	216, 8	212,5	222,1	223, 5	223, 8	223, 4	221, 5	220,9	218, 9	213, 6	207, 2	194, 3	183,9	177, 6	175,4
9	50	226,9	229, 3	235,0	238, 1	240,0	240, 3	238,9	238,2	235,9	229, 0	220, 7	204, 4	192, 1	184, 7	182,3
10	40	236, 0	238, 7	246,3	250,9	254, 9	256, 1	255, 4	254, 7	252, 4	243, 2	232, 7	213, 3	199, 3	191, 2	188,6
11	30	243, 7	246, 8	255,9	262,0	268, 1	270, 6	271,0	270,3	267, 4	256,0	243,1	220, 8	205, 7	197. 1	194,3
12	20	250,0	253, 4	263, 5	270,9	279, 3	283, 5	285, 5	284, 8	281, 6	267, 2	251,8	227, 2	211, 1	202, 2	199,4
13	10	255, 0	258, 5	269, 3	277, 7	288, 1	293,9	298,0	297, 6	294, 1	276, 2	258,5	232, 1	215,6	206, 5	203,6
14	0	258,5	262,0	273,1	281,9	293, 2	300, 0	305, 4	305, 1	301, 5	281,6	262, 7	235, 6	218,8	209,6	206,6

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all
Grid no. 1 to all

| $\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g} 5 / \mathrm{m}$ | $<2500 \mathrm{pF}$ |
| :--- | ---: | ---: |
| | $>1500 \mathrm{pF}$ |
| $\mathrm{C}_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g}_{5} / \mathrm{m}^{\prime}$ | 350 pF |
| C_{k} | 3 pF |
| C_{g} | 7 pF |

FOCUSING electrostatic
DEFLECTION magnetic

$$
\begin{array}{lr}
\text { Diagonal deflection angle } & 110^{\circ} \\
\text { Horizontal deflection angle } & 98^{\circ} \\
\text { Vertical deflection angle } & 81^{\circ}
\end{array}
$$

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Maximum distance between centre of field of this magnet and reference line: 57 mm .

TYPICAL OPERATING CONDITIONS

Cathode drive service
Voltages are specified with respect to grid no. 1

Final accelerator voltage
Focusing electrode voltage
Grid no. 2 voltage
Cathode voltage for visual extinction of focused raster

$V_{\mathrm{a}}, \mathrm{g}_{3}, \mathrm{~g} 5$	20	kV
V_{g}	0 to 130	$\mathrm{~V}^{1}$)
$\mathrm{V}_{\mathrm{g} 2}$	130	V
$\mathrm{~V}_{\mathrm{KR}}$	42 to 62 V	

[^40]LIMITING VALUES (Design max. rating system)
Final accelerator voltage at $\mathrm{I}_{\mathrm{a}}, \mathrm{g} 3, \mathrm{~g} 5=0$
Grid no. 4 voltage, positive
negative
Grid no. 2 voltage
Cathode to grid no. 1 voltage
positive
positive peak
negative
negative peak
Cathode-to-heater voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}$	max. \min.	$\begin{aligned} & 23 \\ & 12 \end{aligned}$	$\begin{aligned} & \left.\mathrm{kV}{ }^{*}\right) \\ & \mathrm{kV} \end{aligned}$
$\mathrm{V}_{\mathrm{g}} 4$	max.	1000	V
$-\mathrm{V}_{\mathrm{g} 4}$	max.	500	V
$\mathrm{V}_{\mathrm{g} 2}$	max. \min.	$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & \left.\mathrm{V}^{* *}\right) \\ & \mathrm{V} \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{gl}}$	max.	200	V
$\mathrm{V}_{\mathrm{k} / \mathrm{gl}}^{\mathrm{p}}$	max.	400	V***)
$-\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}$	max.	0	V
$-\mathrm{V}_{\mathrm{k}} / \mathrm{g} 1_{\mathrm{p}}$	max.	2	V
V_{kf}	max.	200	V

CIRCUIT DESIGN VALUES

Grid no. 4 current positive
negative
Grid no. 2 current
positive
negative

$I_{g 4}$	max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 4}$	\max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater
Impedance between cathode and heater
Grid no. 1 circuit resistance
Grid no. 1 circuit impedance

$\mathrm{R}_{\mathrm{k} / \mathrm{f}}$	max.	1	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{k} / \mathrm{f}}(50 \mathrm{~Hz})$	max.	0,1	$\mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1}$	max.	1,5	$\mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g} 1}(50 \mathrm{~Hz})$	max.	0,5	$\mathrm{M} \Omega$

[^41]

Final accelerator current as a function of cathode voltage.
Cathode drive
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 3, \mathrm{~g} 5}=20 \mathrm{kV}$

Limits of cathode cut-off voltage as a function of grid no. 2 voltage.

Cathode heating time to attain a certain percentage of the cathode current at equilibrium condition.
.

Index

INDEX OF TYPE NUMBERS

type number	section
A24-510W	BW
A31-410W	BW
A31-510W	BW
A34-510W	BW
A44-120W	BW
A44-510W	BW
A44-520W	BW
A47-500X	C
A50-120W	BW
A50-520W	BW
A51-500X	C
A56-120X	C
A56-140X	C
A56-410X	C
A56-500X	C
A61-120W	BW
A61-520W	BW
A66-120X	C
A66-140X	C
A66-410X	C
A66-500X	C

$\mathrm{BW}=$ Black and white TV picture tubes
$C=$ Colour TV picture tubes

General section

Colour TV picture tubes
Black and white TV picture tubes

Index

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 421261.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805 , Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KøBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, TeI. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD, Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.P.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa BIdg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 793333.
New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 150590.
Peru: CADESA, Jr. Ilo, No. 216, Apartado 10132, LIMA, Tel. 277317.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 683121.
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12 , TeI. 538811.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 9780.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZÜRICH, Tel. 01/44 2211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. $5513101-5$.
Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200. (Passive devices) MEPCO /ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguayi LUZILECTRON S.A1, Rondeau 1567, piso 5, MONTEVIDED, Tel, 94321 ,
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 360511.

[^0]: This information is furnished for guidance, and with no guarancee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice: it is not to be reproduced in any way, in whole or in part without the written consent of the puhlisher.

[^1]: ${ }^{1}$) Base-pin and pumping stem positions are held to tolerances such that entire length of pins and stem will without undue forcepassinto and disengage from a flat-plate gauge having a thickness of $6,35 \mathrm{~mm}$ and eight holes with diameters of $1,27 \pm 0,013 \mathrm{~mm}$ so located on a $9,525 \pm 0,013 \mathrm{~mm}$ diameter circle that the distance along the chord between any two adjacent hole centres is $3,645 \pm 0,013 \mathrm{~mm}$ and a centre hole of $5,97+$ $0,025 \mathrm{~mm}$ being chamfered at the top over $1,52 \mathrm{~mm}$ with an angle of 45 degrees.
 ${ }^{2}$) This dimension around the periphery of any individual pin may vary within the limits shown.

[^2]: ${ }^{1}$) Absolute maximum rating system.
 2) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.

[^3]: ${ }^{3}$) During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
 4) Operation of the tube at lower voltages impairs the luminance and resolution.
 5) $1500 \mu \mathrm{~A}$ permitted provided a current limiting circuit is used.
 6) During an equipment warm-up period not exceeding $15 \mathrm{~s} \mathrm{~V}_{\mathrm{kf}}$ is allowed to rise to 385 V . Between 15 s and 45 s after switching on a decrease in V_{kf} proportional with time from 385 V to 250 V is permissible.

[^4]: ${ }^{1}$) If the heater is supplied from a mains transformer designed for tube type A56-140X, the source impedance should not exceed $0,6 \Omega$ to ensure that the heater voltage of the A56-410X is not exceeded.

 If the heater is supplied from a line time base designed for tube type A56-140X, the series impedance, if any, should match the lower heater current of the quick-heating tube.

[^5]: Notes see page 3

[^6]: Notes see page 8

[^7]: ${ }^{1}$) This range of $V_{g 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
 ${ }^{2}$) This range of V_{k} has to be used when in circuit design fixed values for $V_{g 2}$ of the three guns are used.
 3) Tube settings adjusted to produce white $\mathrm{D}(\mathrm{x}=0,313, \mathrm{y}=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

[^8]: ${ }^{1}$) Absolute max. rating system.
 2) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.

[^9]: Notes spe page 11.

[^10]: ${ }^{1}$) If the heater is fed from a mains transformer designed for tube type A66-140X, the source impedance should not exceed $0,6 \Omega$ to ensure that the heater voltage of the A66-410X is not exceeded.

 If the heater is fed from a line time base designed for tube type $166-140 X$, the series impedance, if any, should match the lower heater current of the quick-heating tube.

[^11]: Notes see page 3

[^12]: Notes see page 9.

[^13]: ${ }^{1}$) This range of $\mathrm{V}_{\mathrm{g} 2}$ has to be used when in circuit design fixed values for cut-off of the three guns are used.
 ${ }^{2}$) This range of $V_{g 1}$ has to be used when in circuit design fixed values for $V_{g 2}$ of the three guns are used.
 ${ }^{3}$) To produce black/white pictures a bluish white point would be preferable. This white point corresponds virtually with the white point of current black/white picture tubes.
 4) This point is a compromise between white point D and the white point $x=0.265$ $y=0.290$, given in order to enable good rendition of colour and black and white pictures with one white point.
 ${ }^{5}$) Dynamic convergence to be effected by currents of approximately parabolic waveshape through the convergence coils synchronized with scanning.
 6) To produce colour pictures with the best possible quality, this white point should be used when the transmission system is based on this point. (Point D).

[^14]: Notes see page 11 .

[^15]: 1) Measured during any 20 ms .
[^16]: ${ }^{1}$) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps; 0 V and 130 V).
 The optimum focusing voltage of individual tubes may be between -100 V and +200 V .

[^17]: 1) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 ${ }^{2}$) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.
[^18]: 1) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.
[^19]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.

[^20]: *) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

[^21]: *) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and $+130 \mathrm{~V}(\mathrm{e} . \mathrm{g}$. two taps; 0 V and 130 V$)$.
 The optimum focusing voltage of individual tubes may be between -100 V and +200 V .

[^22]: *) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

[^23]: *) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 V and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .

[^24]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.

[^25]: ${ }^{\text {I }}$) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.

[^26]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 **) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
 ***) At $\mathrm{V}_{\mathrm{g} 1 / \mathrm{k}}=0 \mathrm{~V}$.
 ****) Between 15 s and 45 s after switching on a decrease in k / f voltage from 450 V to 250 V , linearly proportional with time, is permissible.

[^27]: *) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

[^28]: *) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 V and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .

[^29]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 **) Maximum pulse duration 22% of a cycle but max. $1,5 \mathrm{~ms}$.

[^30]: *) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

[^31]: Notes see page 5

[^32]: ${ }^{1}$) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .

[^33]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 **) $\mathrm{At} \mathrm{V}_{\mathrm{k} / \mathrm{g} 1}=0 \mathrm{~V}$.
 ${ }^{* * *}$) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.

[^34]: Notes see page 5

[^35]: *) Individual tubes will have optimum focus within this range. In general an acceptable picture will be obtained with a fixed focus voltage.

[^36]: *) Because of the flat focus characteristic it is sufficient to choose a focusing voltage between 0 and +130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may be between -100 V and +200 V .

[^37]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 **) At $V_{g 1 / k}=0 \mathrm{~V}$.
 ***) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.

[^38]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 ${ }^{* *}$) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.
 ***) At Vg1/k $=0 \mathrm{~V}$.
 ****) Between 15 s and 45 s after switching on a decrease in k / f voltage from 450 V to 250 V , linearly proportional with time, is permissible.

[^39]: ${ }^{*}$) This limit also applies during equipment warming-up. Use of the tube in a series heater chain is not allowed.

[^40]: ${ }^{1}$) Because of the flat focus characteristic it is suffient to choose a focusing voltage between 0 and 130 V (e.g. two taps, 0 V and 130 V).
 The optimum focus voltage of individual tubes may between -100 V and +200 V .

[^41]: *) The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values, according to IEC 65.
 **) At $\mathrm{V}_{\mathrm{k} / \mathrm{g} 1}=0 \mathrm{~V}$.
 ***) Maximum pulse duration 22% of a cycle but maximum $1,5 \mathrm{~ms}$.

