PHILIPS

 ...es

ELECTRON TUBES

PART 6 JUNE 1969

Photomultiplier tubes

Devices for
Nuclear Equipment

ELECTRON TUBES

Part 6

Photomultiplier tubes

Scintillators

Photoscintillators
Radiation counter tubes
Semiconductor radiation detectors
Neutron generator tubes
Associated accessories

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts.
The three series, identified by the colours noted, are:

ELECTRON TUBES (9 parts) BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED
COMPONENTS AND MATERIALS (5 parts) GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the published data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

December 1968
Transmitting tubes (Tetrodes, Pentodes)

Part 2

February 1969
Tubes for microwave equipment

Part 3

March 1969
Special Quality tubes
Miscellaneous devices

Part 4

April 1969
Receiving tubes

Part 5

May 1969
Cathode-ray tubes
Photo tubes
Camera tubes

Part 6

June 1969
Photomultiplier tubes
Scintillators
Photoscintillators

Part 7

Photoconductive devices
Associated accessories

Voltage stabilizing and reference tubes
Counter, selector, and indicator tubes
Trigger tubes
Switching diodes

Radiation counter tubes

Semiconductor radiation detectors Neutron generator tubes

July 1969
Thyratrons
Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes

December 1968
Associated accessories
Tubes for R.F. heating (Triodes)

Part 8

T.V. Picture tubes
will be issued in August 1969

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

General section
Signal diodes
Variable capacitance diodes
Voltage regulator diodes

Part 2

General section
Germanium transistors

Part 3-4
General section
Silicon transistors
Accessories and heatsinks

Part 5

General section
Digital integrated circuits
Linear integrated circuits

September 1968
Rectifier diodes
Thy ristors
Rectifier stacks
Accessories and heatsinks
October 1968
Photo devices
Accessories and heatsinks

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Oułput Devices

September 1968

Circuit blocks:
100 kHz Series
1-Series
10-Series
20 -Series
40 -Series
Norbits (60-Series)

Circuit blocks for ferrite core memory drive
Input/output devices
Accessories for circuit blocks:
Power supplies
Mounting chassis ${ }^{1}$)
Printed-wiring boards ${ }^{2}$)

Part 2 Resistors, Capacitors

Fixed resistors
Variable resistors
Non-linear resistors
Ceramic capacitors

Part 3 Radio, Audio, Television

FM tuners
Coils and resonators
Audio and mains transformers
Loudspeakers
Electronic organ assemblies

November 1968
Polycarbonate, paper, mica, polystyrene capacitors
Electrolytic capacitors
Variable capacitors

January 1969
Television tuners
Components for black and white television Components for colour television Deflection assemblies for camera tubes

Part 4 Magnetic Materials, White Ceramics

March 1969

Ferrites for radio, audio and television
Ferroxcube potcores
Microchokes

Ferroxcube transformer cores
Piezoxide
Insulating and dielectric materials
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals,
 June 1969 Microwave Devices, Variable Transformers, Electro-mechanical Components

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters Isolators, circulators
Variable mains transformers
Electro-mechanical components

[^0]

Photomultiplier tubes

LIST OF SYMBOLS

Photocathode k
Secondary emission electrode (dynode) No.n S_{n}
Anode a
Accelerating electrode acc
Luminous cathode sensitivity N_{k}
Luminous anode sensitivity Na_{a}
Current amplification (Gain) G
Secondary emission factor of the dynodes δ
Total supply voltage V_{b}
Anode current I_{a}
Anode dark current $\mathrm{I}_{\mathrm{a}_{0}}$
Cathode current I_{k}
Efficiency η
Wavelength λ
Internal connection. Do not use. i.c.

GENERAL OPERATIONAL RECOMMENDATIONS PHOTOMULTIPLIER TUBES

1. GENERAL

1.1 A photomultiplier is a photosensitive vacuum device comprising a photoemissive cathode, a photo-electron collection system and one or more stages of current multiplication utilizing secondary emission electrodes (dynodes), plus an anode.
1.2 A photocathode consists of a light-sensitive film (the emission layer) and a supporting layer on which the emission layer is deposited.
Two types of cathode may be distinguished:
a. the opaque photocathode
b. the semi-transparent photocathode.

In the first type, the emission layer is deposited on a metal surface. In the second type the light quanta must pass through the wall of the tube and the transparent carrier layer before penetrating the photosensitive film. Although opaque photocathodes can be made more easily, semi-transparent photocathodes are most widely used, since they can be placed in the front of the tube, which has many advantages for the construction and use of the photomultipliers.
1.3 The photo-electron collection system (electron-optical input system) is that part of the photomultiplier which focuses the photo-electrons on to the first dynode, thus mainly determining the spread in the electron transit times. The quality of the input optics can be measured not only by the spread in the electron transit times, but also by the collection efficiency, i.e. the percentage of electrons emitted by the photocathode which land on the first dynode.
Because of the variation in magnitude and direction of the initial velocity of the electrons, each point on the cathode corresponds to a small image area on the dynode. In practice, it is sufficient to ensure that the first dynode is large enough to capture all electrons.
It is possible to improve the input optics by adding other electrodes, or by making an accelerating electrode separate from the first dynode, and one or more focusing electrodes separate from the cathode, but the improvement is only noticeable in very high-quality fast tubes such as the 56AVP, XP 1020 , etc.
1.4 The dynode system consists of a number of secondary-emission electrodes (dynodes). Several dynode constructions are possible. All tubes mentioned in this book have a dynode structure of the linear-focused type built up from dynodes of caesium-coated silver magnesium, excepted the windowless types which are equipped with copper-beryllium dynodes. Every electron which lands on a dynode does not produce the same number of secondary electrons: this number depends on the angle of incidence and velocity of the electron. Usually, however, it is sufficient to consider the mean secondary-emission factor δ_{p} of the $p^{\text {th }}$ dynode, which is equal to the total number of secondary electrons emitted by that dynode divided by the number of electrons falling on it. As a rule it is also permissible to assume that all dynodes have the same value of this factor, δ, so that the amplification produced by the tube is given by

$$
\mathrm{G}=\delta^{\mathrm{n}}
$$

where n is the number of dynodes.
1.4.1. Damping resistor in the dynode circuit

A 50 ohm resistor is fitted in the base of the following types of fast photomultiplier tube

- 56AVP, 56CVP, 56DVP, etc. from serial number 31000 onwards
- 58AVP, 58DVP, 58UVP, XP1040, XP1041, from serial number 5677 onwards;
- 60AVP, from serial number 144 onwards.

This resistor is part of the circuit of the final dynode; since the tube works as a current generator the insertion of the resistor does not modify the amplitude of the signal.
The reason for including the resistor is the following:
At light pulses shorter than the tube's response time the anode current showed ringing. See Fig.l.4.l.a. These oscillations were set up in the resonant circuit comprising the wiring inductance of the final dynode and the interelectrode capacitance. The resistor sufficiently damps the oscillations (Fig.1.4.1.b).

Fig.1.4.1.a

Fig.1.4.1.b
1.5 The anode is usually made of wire mesh in order to ensure a low anode capacitance, and is placed directly in front of the last dynode. Although the secondary-emission factor of the anode material is very small, it cannot be ignored completely, since the number and velocity of the electrons landing on the anode is relatively large.
Such ions as are formed in the anode space, are mainly attracted to the last dynode. Since the distance between the anode and this dynode is relatively small, the ions do not acquire enough energy to give rise to any secondary electrons.

2. INTERPRETATION OF CHARACTERISTICS

The characteristics given in the Data section are typical values which indicate the performance of an average tube under certain operating conditions; individual tubes may have characteristics that deviate from the values given in the characteristic curves. All tubes are accompanied by a test-card indicating the test conditions.
The more important characteristics for photomultipliers are discussed below.

2.1 Spectral response

The materials employed to make the photocathode are of great importance to the response. Many substances show photo-emission, but often differ greatly in their spectral sensitivity and quantum yield.
Usually the spectral response of a photosensitive device is given as a function of wavelength in per cent of the maximum response.
As to the spectral response our range of photomultipliers can be subdivided into the following categories:
2.1.1 The A-types (S11) are equipped with a semi-transparent caesiumantimony photocathode precipitated on the inner side of a polished B40-glass window; the se types are sensitive to light in the visible region, and have their maximum sensitivity in the blue region (see Fig.1).
2.1.2 The U-types (S13) having the same photocathodes as the A-types but are provided with a polished optical quartz window, which gives them a sensitivity that extends into the ultraviolet region (see Fig.2) and guarantees the absence of ${ }^{40} \mathrm{~K}$ radiation.
2.1.3 The C-types (S1). which have a semi-transparent caesium-on-silver oxide photocathode on a polished B40-glass window. The sensitivity lies mainly in the red and near-infrared region, with a maximum at about 8000 \& (see Fig. 3).
2.1.4 The T-types (S20), which have a tri-alkali semi-transparent photocathode on a polished B40-glass window. This photocathode is the most sensitive known for the region from the ultraviolet to the red end of the spectrum (see Fig.4).
2.1.5 The TU-types, which have the same photocathode as the T-types but are provided with a polished optical quartz window, giving them a sensitivity that extends into the ultraviolet region (see Fig. 5).
2.1.6 The D-types, which have a bi-alkali semi-transparent photocathode on a polished Pyrex 7740 window. This photocathode has a high quantum efficiency in the blue region and a low parasitic emission.
2.1.7 the DU-types, which have the same photocathode as the D-types but are provided with a polished optical quartz window, giving them a sensitivity extending into the ultra-violet region and guaranteing the absence of 40 K radiation.
2.1.8 The SBU (solarblind)-types, which are provided with a semi-transparent caesium-tellurium photocathode on a polished optical quartz window. These types have an ultraviolet response but are insensitive to light in the visible region (see Fig.6).

2.2 Cathode luminous sensitivity

The cathode luminous sensitivity is defined as the photocurrent emitted per lumen of incident light flux, generally expressed in $\mu \mathrm{A} / \mathrm{lm}$. For the measurement the multiplier is connected as a diode. The cathode current (corrected for dark current) I_{k} is of the order of 100 nano amperes. The voltage must be chosen so high that the tube is surely operating in the saturation range. The sensitivity is given by

$$
\mathrm{N}_{\mathrm{k}}=\mathrm{I}_{\mathrm{k}} / \Phi ;
$$

where Φ is the luminous flux in lumens of a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$.

2.3 Cathode radiant sensitivity

The cathode radiant sensitivity is defined as the photocurrent emitted per watt of incident light flux, generally expressed in mA / W at the wavelength of maximum response. For the measurement the same procedure is used as for the luminous sensitivity. The value of incident light flux is measured by a thermocouple.

2.4 Cathode quantum efficiency

The cathode quantum efficiency (η) is defined as the number of photo-electrons per incident light photon, usually expressed in per cent at a certain wavelength.
At any given wavelength it can be easily calculated from the following formula:

$$
\eta=\mathrm{N}_{\mathrm{kr}} \cdot \mathrm{y}\left(\lambda_{\mathrm{x}}\right) \cdot\left(\frac{12.4}{\lambda_{\mathrm{x}}}\right)
$$

where $\mathrm{N}_{\mathrm{kr}}=$ the cathode radiant sensitivity at max. response in mA / W.
$y\left(\lambda_{x}\right)=$ the relative spectral response in \% at λ_{x}
$\lambda_{\mathrm{x}} \quad=$ wavelength in \AA
In the case where $\lambda_{\mathrm{X}}=$ wavelength of maximum response (published value), $\lambda_{\mathrm{x}}=100$.
For other wavelengths see relative spectral response curves. Lines of constant quantum efficiency are shown in Fig. 7.

2.5 Current amplification (gain) and anode sensitivity

The current amplification (G) is the ratio of the anode signal current to the cathode signal current at stated electrode voltages.
The anode sensitivity $\left(\mathrm{N}_{\mathrm{a}}\right)$ is related to the gain (G) and the cathode sensitivity (N_{k}) by the formula

$$
\mathrm{N}_{\mathrm{a}}=\mathrm{G} \cdot \mathrm{~N}_{\mathrm{k}} .
$$

Since the gain is so high $\left(>10^{6}\right)$, it is not possible to measure both the anode and the cathode currents under the same conditions. The anode current is normally below 1 mA , so the cathode current is a few tenths of a nano amp.
Since the cathode current, dynode currents and anode current are practically proportional to the incident luminous flux, the following method can be used to get over this difficulty:
First the photomultiplier is connected as a diode, and the cathode is illuminated so strongly that it gives a cathode current of about $0.1 \mu \mathrm{~A}$. This current is measured, and then the luminous flux falling on the photocathode is reduced to a fraction $\left(1 / a_{1}\right)$ of its original value by means of, e.g., a neutral filter of known transmittance. Next the appropriate voltage is applied to the photomultiplier, and the anode current measured. The gain is then given by

$$
G=\frac{I_{\mathrm{a}}}{\mathrm{a}_{1} \cdot \mathrm{I}_{\mathrm{k}}}
$$

The attenuation factor a_{1} can also be measured, with the aid of the tube, as the ratio of the currents flowing to one dynode after and before the reduction of the luminous flux. If the gain is very high it is advisable to measure it in a number of steps: e.g., from the cathode to the $\mathrm{p}^{\text {th }}$ dynode and from the $\mathrm{p}^{\text {th }}$ dynode to the anode.

2.6 Dark current

Even when the cathode is not illuminated, a certain current flows through the anode lead. This is known as the anode dark current ($\mathrm{I}_{\mathrm{a}_{0}}$).
Anode dark current is measured at stated electrode voltages, or at electrode voltages required to provide a stated anode luminous sensitivity. Possible causes of anode dark current are electrical leakage, thermionic emission, field emission, residual gas ionization and tube fluorescence. At low operating voltages its major components are normally electrical leakage and thermionic emission. Thermionic emission can be recognized by its temperature dependence. At high values of applied voltage the other dark current components may become an appreciable part of the total dark current.

2.7 Linearity and saturation

The cathode and dynode currents should always be in the region of saturation so as to guarantee the proportionality between the current and the cathode illumination over the whole oper ating range. Fig. A shows the cathode current as a function of the voltage for a number of different luminous fluxes. The resistance of the photocathode plays an important role in determining these characteristics. Even if the transparent, conductive supporting layer is applied with great care the cathode resistance will be of the order of some hundreds of kilo-ohms. The voltage between the cathode and the first dynode must therefore be chosen higher than the voltage between successive dynodes if the current is to be saturating throughout the working range.

Fig. A The cathode current as a function of the voltage between the photocathode and the first dynode at various values of the luminous flux.

The saturation current of the dynodes, on the other hand, is always reached under normal operating conditions even at the highest permissible luminous flux, so there is no need to take any special measures about them.
The situation at the anode is once again different. The anode current causes a voltage drop across the resistance in series with the tube, so that the anode voltage decreases as the anode current increases. Moreover, care must be taken that the current is not limited by space-charge effects even at the largest permissible anode currents in order to ensure an undistorted output signal.

The electrode currents should never be so high as to be detrimental to the tube's life, or cause excessive fatigue or aging.

2.8 Time characteristics

2.8.1 The transit time of a photomultiplier tube is defined as the time interval between the arrival of a delta-function light pulse (a pulse having finite light flux and infinitesimal width) at the entrance window of the tube and the moment the output pulse at the anode terminal reaches peak amplitude.
2.8.2 The anode pulse rise time indicates the time required for the amplitude to rise from 10% to 90% of the peak amplitude. For this measurement the incident light usually illuminates the entire photocathode.
2.8.3 Transit-time difference expresses a systematic relationship between transit time and position of illumination on the photocathode. The refer ence position is mostly the centre of the photocathode.

3. OPERATING NOTES

3.1 The overall supply voltage should be well stabilized, since the gain of a photomultiplier is critically dependent on the voltage as expressed by the following relation

$$
\frac{\mathrm{dG}}{\mathrm{G}}=\mathrm{n} \frac{\mathrm{~d} \mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{b}}} .
$$

So the percentage change in gain is approximately ten times the percentage change in supply voltage. Thus, to hold the gain stable within 1%, the power supply must be stabilized to within approximately 0.1%.
When the counting rate is to be high or a continuous luminous flux is to be measured it is possible to employ a high-current source of comparatively low voltage for the last three or four stages only, and a low-current highvoltage source for the remaining stages. If it is undesirable to maintain one power supply terminal at the sum of the two voltages with respect to earth, the common terminal may be earthed.
3.2 The voltage divider of a photomultiplier tube must be so designed that it does not cause any troublesome changes in the dynode voltages when the tube starts operating. To this end the divider current I_{bl} (current flowing through the voltage divider) must be large compared to the anode current. If this condition is not fulfilled the dynode voltages, especially in the last stages, will be found to decrease exessively when the tube starts to operate. This effect is more noticeable as the dynode currents (and hence the anode current) are larger.
3.2.1 In continuous operation, a first approximation for the relative variation of the gain with a varying illumination of the cathode is:

$$
\frac{\Delta \mathrm{G}}{\mathrm{G}} \approx \frac{\mathrm{I}_{\mathrm{k}}}{\mathrm{I}_{\mathrm{b} \ell}}\left[\delta^{\mathrm{n}}-\frac{\delta^{\mathrm{n}+1}}{(\mathrm{n}+1)(\delta-1)}\right] \approx \frac{\mathrm{I}_{\mathrm{a}}}{\mathrm{Ib}_{\mathrm{b} \ell}}\left[1-\frac{\delta}{(\mathrm{n}+1)(\delta-1)}\right]
$$

So the relative change in gain is approximately proportional to the ratio of the anode current to the divider current. For example, to maintain the gain stable within 1% when measuring continuous luminous flux, the divider current should be at least 100 times the anode current.
3.2.2 In pulsed operation, as in scintillation counting, the fluctuations in gain can be restricted without the need for a high divider current by shunting each resistor in the divider chain with a capacitor. Since the first few dynodes carry a very much lower current than following ones, it is sufficient in practice to bypass the last three or four stages only.
The capacitors should be chosen according to the following relationship:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}} \approx \delta \mathrm{C}_{\mathrm{n}}-1 \\
& \mathrm{C}_{\mathrm{n}-1} \approx \delta \mathrm{C}_{\mathrm{n}}-2 \text { etc. }
\end{aligned}
$$

where $C_{n}=$ capacitor across resistor feeding last dynode
$\mathrm{C}_{\mathrm{n}-1}=$ capacitor across resistor feeding last dynode but one etc.
The exact calculation of the capacitively stabilized voltage divider is extremely tedious, because of the large number of parameters involved. However, with the aid of some approximations it can be shown that the relative variation of the gain is approximately:

$$
\frac{\Delta \mathrm{G}}{\mathrm{G}}=\frac{\tau \cdot \mathrm{I}_{\mathrm{a} \max }}{\mathrm{I}_{\mathrm{b} \ell}} \cdot \frac{\mathrm{e}^{\mathrm{t} / \tau-\mathrm{e}^{-\mathrm{t}} / \mathrm{RC} \mathrm{C}_{\mathrm{n}}}}{\tau-\mathrm{RC}_{\mathrm{n}}}
$$

where $\tau \quad=$ time constant of the scintillator
$I_{a \max }=$ peak value of the anode current
$\mathrm{RC}_{\mathrm{n}}=$ time constant of the last stage of the voltage divider.
It follows that a peak value of the anode current of 1 mA causes a relative variation of the gain of less than 1% when the time constant RC_{n} is greater than $100 \boldsymbol{\tau}$ and the current in the voltage divider is at least 1 mA . The voltage fluctuations occurring in this arrangement are small but of long duration, so that when the count rate is high the fluctuations due to successive pulses may be partially superimposed, resulting in an error which is a function of the count rate. In the example just given, the duration of each fluctuation would be approximately $470 \boldsymbol{\mathcal { T }}$ and if overlapping does not occur, the count rate could not exceed $1 / 470 \boldsymbol{T}$ p.p.s. For a time constant of $1 \mu \mathrm{~s}$ this corresponds to a rate of approximately 2200 p.p.s.
3.3 On no account should the tube be exposed to ambient light when the supply volt age is applied. A luminous flux of less than $10^{-5} \mathrm{~lm}$ is sufficient to cause the maximum permissible anode current to be exceeded. To obtain the maximum useful life from the photocathode the tube should be protected from light as far as possible even when not in use.

The dark current takes approximately 15 to 30 minutes after the application of the supply voltage to fall to a stable value. For this reason it is recommended that the equipment should be switched on half an hour before making any measurements requiring a high degree of accuracy.
The dark current may be further reduced by applying to the photocathode a jet of dry air cooled by being passed through, for example, a spiral immersed in liquid nitrogen. It is very important to ensure that no condensation occurs on the base or socket of the tube if air-cooling is adopted.

4. RUGGEDIZED PHOTOMULTIPLIERS

4.1 Tubes having a rugged construction, intended for application under severe operating conditions (e.g. geophysical and astronomical missile experiments), can be divided in two classes.

Class I : Conventional cylindrical tubes with a reinforced construction such as well fixed cathode connectors, rigid structure, flying leads, etc.
These tubes are tested according to the test conditions for space vehicles like "Véronique", "Bélier", "Centaure", "Dragon", "Rubis", etc.
Class II: Specially designed extremely rugged tubes, potted or not potted (e.g. the rectangular XP1220). The connections are made to the sides of the tubes to prevent long connections inside, thus preventing mechanical vibrations.
These tubes are tested according to the test conditions for experiments like "Diamant".
4.2 It is not possible to give exact, complete test conditions because these conditions can differ very much from one application to the other. Therefore it is necessary to state these conditions for each specific application for which the tubes are needed.

The following conditions are only given to indicate some tests done for both classes, without indicating the upper limits.
Class I : Shock 30 g , half wave sinusoidal, duration $11 \mathrm{~ms}, 3$ shocks in each of 3 orthogonal axes.
Vibration 5 to 20 g , frequency 20 to 2000 Hz , duration 30 min . in each of 3 orthogonal axes.
Class II: Shock up to 100 g , duration $11 \mathrm{~ms}, 3$ shocks in each of 3 orthogonal axes.

Vibration up to 30 g , frequency 20 to 2000 Hz duration 20 s , in each of 3 orthogonal axes.
Constant acceleration 45 g during 30 s in each of 3 orthogonal axes.

5. SPECIALLY SELECTED PHOTOMULTIPLIERS

For several applications it can be of importance to use specially selected tubes or a special version of a standard type photomultiplier.
The following selected tubes and versions exist:
Selection 01: Tubes specially selected to have a high gain.
Example: The XP1110/01, used in photoscintillator type PS1520 and selected for a gain of 10^{7}.

Selection 02: Tubes specially selected for X-ray spectrometry.
The selection is performed with the photomultiplier mounted in a scintillator probe with a thin $\mathrm{NaI}(\mathrm{Tl})$ scintillator with Be window.
The count rate as a function of high voltage is measured with an ${ }^{55} \mathrm{Fe}$ source (MnK_{α} line 5.9 keV) with a fixed discriminator bias and at a count rate in the middle of the plateau of about 2500 Hz . After the plateau curve has been determined the background noise of the tube is measured in the middle of the plateau. Selected tubes are guaranteed to have a minimum stated plateau length, a maximum stated plateau slope and a maximum stated background noise.
Available types: 53AVP/02 and XP1010 (02-selection of type 150 AVP).
Selection 03: Tubes specially selected to have a low background noise.
These tubes have a guaranteed maximum background at a stated V_{b}. Available types: 56DVP/03 and 56DUVP/03.
Selection 04: Tubes specially selected to have a good stability as a function of time and count rate.

1. Measuring conditions:

The drift of the gain is given by the drift of the channel number for the ${ }^{137} \mathrm{Cs}$ photopeak.
Each tube remains in the measuring probe for 24 hours with HT applied:

- 23 hours 20 minutes for measurement at a count rate of $1000 \mathrm{c} / \mathrm{s}$.
- 40 minutes for measurement at a count rate of $10.000 \mathrm{c} / \mathrm{s}$.

The change from $1000 \mathrm{c} / \mathrm{s}$ to $10.000 \mathrm{c} / \mathrm{s}$ is made within some seconds by moving the radioactive source towards the $\mathrm{NaI}(\mathrm{Tl})$ crystal.

To observe the drift caused by the change of count rate one measurement is made at the low count rate, just before the source is moved towards the probe and another measurement just after at the high count rate.
The measuring time is about 1.5 min .
Use is made of a 100 -channel analyzer and a stabilized HT supply with the negative terminal grounded.
The HT at the voltage divider of the multiplier is about 900 to 1000 V .
The ${ }^{137}$ Cs photopeak is positioned in the neighbourhood of channel 75 by means of the amplifier gain adjustment. The ambient temperature is stabilized within $\pm 0.5^{\circ} \mathrm{C}$. The dimensions of the $\mathrm{NaI}(\mathrm{Tl})$ scintillator are matched to the photomultiplier tube to be measured.
2. Selection requirements:
2.1 Stability as a function of time

After three hourswith HT applied and at a count rate of $1000 \mathrm{c} / \mathrm{s}$ for the photopeak; the position of this peak is observed each hour.

The mean value of the drift during 24 hours is calculated as follows:

$$
D_{T}=\frac{\sum_{i=1}^{n} \bar{P}-P_{i}}{n} \frac{100}{\bar{P}}(\%)
$$

In which: $P_{i}=i^{\text {th }}$ measurement of the series of n peaks measured at $1000 \mathrm{c} / \mathrm{s}$.

$$
\overline{\mathrm{P}}=\text { arithmetical average of the series. }
$$

2. 2 Stability as a function of count rate

After the $n^{\text {th }}$ measurement at a count rate of $1000 \mathrm{c} / \mathrm{s}$ the ${ }^{137} \mathrm{Cs}$ source is moved towards the scintillator of the probe to obtain a count rate of $10.000 \mathrm{c} / \mathrm{s}$ for the photopeak.

Four measurements are made during a period of 40 minutes. The mean value of the drift is given by:

$$
D_{\mathrm{cr}}=\frac{\sum_{1=n+1}^{\mathrm{n}+4} \mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{n}}}{4} \quad \frac{100}{\mathrm{P}_{\mathrm{n}}} \quad(\%)
$$

in which P_{n} is the last measurement at $1000 \mathrm{c} / \mathrm{s}$.
2.3 Requirements for approval

A tube is considered as being stable if both D_{T} and $\mathrm{D}_{\mathrm{cr}} \leq 1 \%$.
Available type: XP1031/04.
Selection 05: Tubes with a special construction, e.g. type 56AVP/05 having a thin convex window instead of a thicker window with plane outside as used with type 56AVP.
Selection 08: Tubes specially selected to have a good stability as a function of count rate.

1. Measuring conditions:

A ${ }^{137} \mathrm{C}$ s source is placed in front of the photomultiplier with HT applied at such a distance that the count rate is $1000 \mathrm{c} / \mathrm{s}$ for the photopeak and with a mean current of 10 nA (adjusted by means of the HT).

- First measurement during 1 minute, the abscissa corresponding to a peak A 1.
- A 4 -minute waiting period under these conditions.
- Second measurement during 1 minute, the abscissa corresponding to a peak A2.
- Fast change from $1000 \mathrm{c} / \mathrm{s}$ to $10.000 \mathrm{c} / \mathrm{s}$ in the photopeak, corresponding to a mean current of 100 nA .
- A 10 minute waiting period under these conditions.
- Third measurement during 1 minute, the abscissa corresponding to A3.
- A 4 minute waiting period under these conditions.
- Fourth measurement during 1 minute, the abscissa corresponding to A_{4}.

The anode is connected to a charge-sensitive pre-amplifier with a feed-back capacitor of 51 pF .
Under these conditions the given values of the mean current correspond with a photomultiplier gain of about 15.000 to 20.000 and a $\mathrm{HT} \leq 1000 \mathrm{~V}$.
2. Selection requirements:
2.1 Stability as a function of count rate

The mean value of the shift is given by:

$$
S_{\mathrm{cr}}=\frac{\left(\mathrm{A}_{3}+\mathrm{A}_{4}\right)-\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)}{A_{1}+\mathrm{A}_{2}} \times 100 \%
$$

2.2 Requirement for approval

$$
\mathrm{S}_{\mathrm{cr}} \leq 1 \%
$$

Available types: XP1101/08, XP1031/08, 54AVP/08, 150AVP/08 and 153AVP/08.
Selection Sp: Tubes specially selected for $\underline{\gamma \text {-spectrometry, having a guaranteed }}$ resolution.
The energy is measured with an $\mathrm{NaI}(\mathrm{Tl})$ scintillator.
The resolution is stated for ${ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV})$.
Available types: XP1001 (Sp selection of type XP1000)
XP1031 (Sp selection of type XP1030)
$54 \mathrm{AVP} / \mathrm{Sp} .56 \mathrm{AVP} / \mathrm{Sp} .150 \mathrm{AVP} / \mathrm{Sp}$ and 153AVP (Sp-selection of type 53AVP).

Selections of other types than mentioned above can be made available on request.

Spectral response curve type C (S1)
Fig. 3

Spectral response curve type T (S20)
Fig. 4

Spectral response curve type TU
Fig. 5

Spectral response curve type SBU
Fig. 6

Comparison of the various spectral response curves

For the typical sensitivity of each type see relevant characteristics
Fig. 7

RATING SYSTEM

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting of alpha, beta, gamma, neutron radiation and X-rays and different kinds of optical instruments.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{aligned} & 700 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{Na}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)	$\mathrm{I}_{\mathrm{a}_{\mathrm{O}}}$	av. max.	$\begin{aligned} & 0.015 \\ & 0.050 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse		up to	30	mA

[^1]
XP1000

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}{ }^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V} \mathrm{l}$)
up to 100 mA
$4.10^{-9} \mathrm{~s}$
$12.10^{-9} \mathrm{~s}$
Transit time difference between the
the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
$4 \cdot 10^{-9} \mathrm{~s}$
$40.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	\max.	1800	V
Continuous anode current	I_{a}	\max.	1	mA
Voltage between cathode and first dynode		$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$	\max. \min.	500

RECOMMENDED CIRCUITS

[^2]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

Pasele

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as gamma-ray spectrometry.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{A}(\mathrm{Sl1})$	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$
Energy resolution for $\left.{ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV})^{4}\right)$	8.5	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface
Cs-Sb
44 mm
type A (S11)

$$
4200 \pm 300 \quad \AA
$$

av. $\quad 80 \mu \mathrm{~A} / \mathrm{lm}$ min. $70 \mu \mathrm{~A} / \mathrm{lm}$ $65 \mathrm{~mA} / \mathrm{W}$

$$
10
$$

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	3 pF
C_{a}	5 pF

3 pF
5 pF

Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$) $\quad \mathrm{I}_{\mathrm{a}_{\mathrm{O}}}$
Energy resolution for $\left.{ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV}){ }^{4}\right)$
Linearity between anode pulse amplitude and input light pulse
av. $700 \mathrm{~A} / \mathrm{lm}$
min. $400 \mathrm{~A} / \mathrm{lm}$
av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
av. 8.5%
$\max .9 .0$ \%
up to 30 mA
${ }^{1}$) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
${ }^{4}$) Measured with a $1.5^{\prime \prime} \times 1^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ crystal

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
up to 100 mA
4.10^{-9}
s
12.10^{-9}
s
$4.10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
V_{b}

Voltage between cathode and first dynode

Voltage between consecutive dynodes
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{VS}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$
Voltage between anode and final dynode ${ }^{2}$)

V_{b}	max. 1800	V
I_{a}	max. 1	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\begin{array}{ll} \max . & 500 \\ \min . & 120 \end{array}$	V
$\mathrm{VS}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$	$\begin{array}{lr} \max . & 300 \\ \min . & 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$	$\begin{array}{lr} \max . & 300 \\ \min . & 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

[^3]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
\(\mathrm{k}=\) cathode
acc \(=\) accelerating electrode
```

$\mathrm{Sn}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be a practical value.
The best results in γ-ray spectrometry will be achieved with a voltage of 4 -times " V_{S} " between the cathode and the first dynode; however, the limiting values must not be exceeded. At a high tension of about 1100 V the tube will work most favourably.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

At high pulse amplitudes it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

\square

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser technics, working in the orange and green range and for photometry where a high sensitivity in the whole visible region is required.

QUICK REFERENCE DATA		
Spectral response	type T (S20)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	400	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec 14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
at $7000 \AA$

Multiplier system

Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a} /} \mathrm{S}_{10} \\
& \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$

$$
\begin{array}{ll}
3 & \mathrm{pF} \\
5 & \mathrm{pF}
\end{array}
$$

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Na_{a}
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$

av.	400	$\mathrm{~A} / \mathrm{lm}$
min.	100	$\mathrm{~A} / \mathrm{lm}$

av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
semi-transparent, head-on, flat surface

$$
\mathrm{Sb}-\mathrm{K}-\mathrm{Na}-\mathrm{Cs}
$$

44 mm
type $\mathrm{T}(\mathrm{S} 20)$
$70 \mathrm{~mA} / \mathrm{W}$
-

Anode sencitivity $\mathrm{V}_{\mathrm{b}} 1800 \mathrm{~V}$
up to 30 mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
up to 100 mA
$4.10^{-9} \mathrm{~s}$
$12 \cdot 10^{-9}$ s

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode 2)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$
$4 \cdot 10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9} \mathrm{~s}$
$\max .1800$ V
$\max .1 \mathrm{~mA}$
max. 500 V
min. 180 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

[^4]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
$S_{n}=$ dynode No.n
acc $=$ accelerating electrode
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser technics, and photometry where a high sensitivity in the whole visible and ultraviolet region is required.

QUICK REFERENCE DATA			
Spectral response	type	TU (extended S20)	
Window material	quartz		
Useful diameter of the photocathode		44	mm
Anode sensitivity (at 1800 V)	400	$\mathrm{~A} / \mathrm{lm}$	

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description

Cathode material

Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$ at 7000 凡

Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

44 mm
type T (S20)
4200 ± 300 \&
av. $\quad 150 \mu \mathrm{~A} / \mathrm{lm}$ min. $110 \mu \mathrm{~A} / \mathrm{lm}$
$70 \mathrm{~mA} / \mathrm{W}$
$12 \mathrm{~mA} / \mathrm{W}$

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider A }}$

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	N_{a}	av. min.	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	av. \max	$\begin{aligned} & 0.015 \\ & 0.050 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	30	mA

[^5]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Anode pulse width at height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}{ }^{1}$)

up to	100
mA	
$4 \cdot 10^{-9}$	s
$12 \cdot 10^{-9}$	s

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
$4 \cdot 10^{-9} \mathrm{~s}$
$40 \cdot 10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	Vb	max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max. \min.	$\begin{aligned} & 500 \\ & 180 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{Va} / \mathrm{S}_{10}$	max. \min.	300 80	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

[^6]RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
k = cathode
acc = accelerating electrode
```

$S_{n}=$ dynode No. n
$a=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.
When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical spectrometry, ultraviolet photometry and other applications which require a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type	U (S13)
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)

Multiplier system
N_{a}
semi-transparent, head-on, flat surface
Cs-Sb
44 mm

$$
\text { type } \mathrm{U}(\mathrm{~S} 13)
$$

$$
4000 \pm 300 \quad \AA
$$

$$
\text { av. } \quad 70 \mu \mathrm{~A} / \mathrm{lm}
$$

$$
\min . \quad 40 \quad \mu \mathrm{~A} / \mathrm{lm}
$$

Radiant sensitivity at $4000 \AA$

$$
60 \mathrm{~mA} / \mathrm{W}
$$

Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10} \\
& \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$

$$
\begin{gathered}
10 \\
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
\end{gathered}
$$

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
-

3 pF
5 pF
av. $700 \mathrm{~A} / \mathrm{lm}$
min. $250 \mathrm{~A} / \mathrm{lm}$
av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA

[^7]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)

up to 100	mA
4.10^{-9}	s
12.10^{-9}	s

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max	1800	V
Continuous anode current	I_{a}	max	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max min	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max \min	300 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$	max min	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

[^8]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=\mathrm{cathode}$
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as infra-red telecommunication and ranging and in optical instruments operating in the far red and near infrared region.

QUICK REFERENCE DATA	
Spectral response	type C (S1)
Useful diameter of the photocathode	44
Anode sensitivity (at 1800 V)	100
$\mathrm{~A} / \mathrm{lm}$	

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Infra-red luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $8000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface

$$
\mathrm{Ag}-\mathrm{O}-\mathrm{Cs}
$$

44 mm
type C (S1)
$8000 \pm 1000 \AA$
N_{k}
N_{k}
av. $20 \mu \mathrm{~A} / \mathrm{lm}$
$\min . \quad 15 \mu \mathrm{~A} / \mathrm{lm}$
av. $\quad 3 \mu \mathrm{~A} / \mathrm{lm}$
min. $1.4 \mu \mathrm{~A} / \mathrm{lm}$
$2 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{10}}$
Ca
3 pF
5 pF
av. $100 \mathrm{~A} / \mathrm{lm}$
$\min .20 \mathrm{~A} / \mathrm{lm}$
$\max . \quad 10 \mu \mathrm{~A}$
up to 5 mA

1) See spectral response curve in front of this section
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$
2) The infra-red lumen is the flux resulting from one lumen yielded by a tungsten ribbon lamp (colour temperature $2854^{\circ} \mathrm{K}$) going through an infra-red filter Corning CS94 No. 2540, fusion 1613 thickness 2.61
${ }^{4}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{\mathrm{l}}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	\max.	1800	V
Continuous anode current	I_{a}	\max.	30	$\mu \mathrm{A}$
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} \mathrm{S}_{\mathrm{n}+1}$	$\begin{aligned} & \max \\ & \text { min. } \end{aligned}$	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a} / \mathrm{S}} \mathrm{S}_{10}$	\max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

[^9]RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.
When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

$$
\square
$$

XP1006

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting and measurement of low luminous fluxed.

QUICK REFERENCE DATA	
Spectral response	
Useful diameter of the photocathode	44
Anode sensitivity (at 1800 V)	250

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

Data based on pre-production tubes

XP1006

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve (see page 5)
Wavelength at maximum response
Luminous sensitivity ${ }^{1}$)

Radiant sensitivity at 437 nm
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}
$$

C_{a}
3 pF
5 pF
semi-transparent, head-on, flat surface

$$
\mathrm{K}-\mathrm{Cs}-\mathrm{Sb}
$$

44 mm
type D
$400 \pm 30 \mathrm{~nm}$
av. $\quad 50 \mu \mathrm{~A} / \mathrm{lm}$
min. $30 \mu \mathrm{~A} / \mathrm{lm}$
av. $75 \mathrm{~mA} / \mathrm{W}$
min. $50 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider } \mathrm{A}}$
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{2}$)
Linearity between anode pulse amplitude and input light pulse

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{\mathrm{l}}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$)
up to 100 mA

4 ns
12 ns
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

4 ns
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ 1)
40 ns

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

V_{b}	max.	1800	V
I_{a}	max.	1	mA
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{\mathrm{l}}$	max.	500	V
	\min.	120	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max.	300	V
	min.	80	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{10}$	\max.	300	V
	\min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

1) For an infinitely short light pulse, fully illuminating the photocathode.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
$\mathrm{acc}=$ accelerating electrode
$S_{n}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

Because of the resistivity of D-type photocathodes it is recommended not to expose the tube to too high intensities of radiation. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$. The resis tivity of the photocathode increases with decreasing temperature.
To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will beback at its normal value after several hours of operation.

It ịs advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

This low noise tube is intended for use in applications such as X - and γ-ray spectrometry.

QUICK REFERENCE DATA		
Spectral response	type	$\mathrm{A}(\mathrm{S} 11)$
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$
Plateau length (Mn, K α_{α} line 5.9 keV)	70	V
Plateau slope	min.	max. 0.08
Background in middle of plateau	10	Hz

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket
Mu-metal shield
type FE1002
type 56127

GENERAL

Photocathode

Description

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

32 mm
type A (S11)
$4200 \pm 300 \AA$
av. $\quad 80 \mu \mathrm{~A} / \mathrm{lm}$ min. $70 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

TYPICAL CHARACTERISTICS
With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Na_{a}
$\mathrm{I}_{\mathrm{a}_{0}}$
av. $700 \mathrm{~A} / \mathrm{lm}$
min. $400 \mathrm{~A} / \mathrm{lm}$
av. $0.010 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA
Linearity between anode pulse amplitude and input light pulse
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS (continued)
Plateau length (Mn, K line 5.9 KeV$)^{1}$)
Plateau slope ${ }^{1}$)
Background in middle of plateau ${ }^{1}$)

Total voltage in middle of plateau
Energy resolution for $\mathrm{Cu}, \mathrm{K} \quad(8 \mathrm{KeV})$
With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ 2)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	\max.	1800	V
Continuous anode current	I_{a}	\max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynode	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{3}$)	$\mathrm{V} / \mathrm{S}_{10}$	max. min.	300 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^10]
RECOMMENDED CIRCUITS

Voltage divider type A

> | Voltage divider type B | | |
| :--- | :--- | :---: |
| $\mathrm{k}=$ cathode | $\mathrm{S}_{\mathrm{n}}=$ dynode No. n | |
| $\mathrm{acc}=$ accelerating electrode $\quad \mathrm{a}=$ anode | | |

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.
When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisible to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for scintillation counting and optical measurements under severe oper ating conditions. Its rugged construction makes it particularly suitable for application under severe operating conditions.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket
Mu-metal shield

type FE1002
type 56127

GENERAL

Photocathode
Description
semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
N_{k}
Radiant sensitivity at $4200 \AA$

$$
\mathrm{Cs}-\mathrm{Sb}
$$

32 mm
type A (S11)
4200 ± 300 A
av. $70 \mu \mathrm{~A} / \mathrm{lm}$ \min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{2}
3 pF
5 pF

[^11]${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	$\begin{array}{ll} \text { av. } & 700 \\ \min . & 100 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{Na}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{1}$) $\quad \mathrm{I}_{\mathrm{a}_{\mathrm{O}}}$	$\begin{array}{ll} \text { av. } & 0.010 \\ \max . & 0.050 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse	up to 30	mA
$\underline{\text { With voltage divider } B}$		
Linearity between anode pulse amplitude and input light pulse	up to 100	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V} 2$)	4.10^{-9}	s
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}{ }^{2}$)	8.10^{-9}	S
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$	3.10^{-9}	S
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{2}$)	36.10^{-9}	s

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{3}$)	$\mathrm{V} / \mathrm{S}_{10}$	max min.	300 80	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for scintillation counting and optical measurements under severe operating conditions. Its rugged construction makes it particularly suitable for application under severe operating conditions

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS
Base: 12-pin (Jedec B12-43)

XP1015C

ACCESSORIES

Socket
Mu-metal shield

Dimensions in mm

type FE1002
type 56127

GENERAL

Photocathode
Description
Cathode material
Minimum useful diamter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

[^12]
TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} \quad \mathrm{~N}_{\mathrm{a}} \quad$ av. $700 \mathrm{~A} / \mathrm{lm}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{1}$) $\quad \mathrm{I}_{\mathrm{a}_{\mathrm{O}}}$
min. $100 \mathrm{~A} / \mathrm{lm}$
av. $0.010 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
up to 30 mA
$\underline{\text { With voltage divider } B}$
Linearity between anode pulse amplitude and input light pulse
up to 100 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ 2)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{2}$)

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current I
V_{b}
$\max .1800$ V

Voltage between cathode and first dynode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{3}$)

V_{b}	\max.	1800	V
I_{a}	\max.	1	mA
	max.	500	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\min.	120	V
	max.	300	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	min.	80	V
	\max.	300	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{10}$	\min.	80	V

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illumunating the photocathode.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

The semiflexible leads of the tube may be soldered into the circuit; care must be taken to conduct the heat away from the glass seals. Excessive bending of the leads is to be avoided. The tube is provided with a 12 -pin base to facilitate testing. After testing, the attached base should be removed prior to installing the tube in a given system.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser technics working in the orange, yellow and green range and in photometric applications. Its rugged construction makes it particularly suitable for application under severe operating conditions.

QUICK REFERENCE DATA					
Spectral response	type	T			
(S20)					
Useful diameter of the photocathode	32	mm			
Anode sensitivity (at 1800 V)	400	$\mathrm{~A} / \mathrm{lm}$			

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket	type	FE1002
Mu-metal shield	type	56127

Data based on pre-production tubes

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 698 nm
Multiplier system
Number of stages
Dynode material
Capacitances
$\mathrm{Ca} / \mathrm{S} 10$
Ca

3 pF
5 pF
$\overline{1) \text { See spectral response curve in front of this section }}$
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of 2854 OK

TYPICAL CHARACTERISTICS

With voltage divider A

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No. n
$a=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current throuhg the voltagedivider bridge to that throuhg the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type Bgives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required (fast coincidences, "time-of-flight" measurements, Cerenkov counters).

QUICK REFERENCE DATA	
Spectral response	type A (SIl)
Useful diameter of the photocathode	42 mm
Gain (at 2500 V)	10^{8}
Anode pulse rise time	1.8
Coaxial outlet	100
Linearity	up to 300

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102) with coaxial outlet ${ }^{1}$)

1) The tube is delivered with a coaxial cable connector LEMO 3.C 100.

ACCESSORIES

Socket ${ }^{1}$)
Mu-metal shield ${ }^{2}$)

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{3}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{4}$)
Radiant sensitivity at 4200 \&
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to cathode
Grid No. 1 to all other electrodes
Grid No. 1 to grid No. 2
Anode to final dynode
Anode to all other electrodes
type FE1003
type 56130
type 56131
semi-transparent, head-on, curved surface $\mathrm{Cs}-\mathrm{Sb}$

42 mm
type A (S11)
4200 ± 300 A
av. $65 \mu \mathrm{~A} / 1 \mathrm{~m}$ $\min .45 \mu \mathrm{~A} / \mathrm{lm}$
$55 \mathrm{~mA} / \mathrm{W}$

12
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{k}} / \mathrm{g}_{1}$	25	pF
C_{1}	30	pF
$\mathrm{C}_{1} / \mathrm{g}_{2}$	17	pF
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	8	pF
C_{a}	9	pF

1) The tube is delivered with a coaxial cable connector LEMO 3.C. 100
2) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen
3) See spectral response curve in front of this section
4) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
V_{b}
Anode dark current at $G=10^{8} 1$)
av. 2500 V $\max .3000 \mathrm{~V}$ $\max .5 \mu \mathrm{~A}$ up to 100 mA
up to 300 mA $<1,8 \cdot 10^{-9}$ s $3,2 \cdot 10^{-9} \mathrm{~s}$ $0,2 \cdot 10^{-9} \mathrm{~s}$ $28.10^{-9} \mathrm{~s}$ 0.5 to 1 A

$$
\begin{array}{r}
<1,8 \cdot 10^{-9} \mathrm{~s} \\
2,7 \cdot 10^{-9} \mathrm{~s} \\
0,2 \cdot 10^{-9} \mathrm{~s} \\
28 \cdot 10^{-9} \mathrm{~s}
\end{array}
$$

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{4}$)

V_{b}	max.	3000	V
I_{a}	max.	2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	$\begin{aligned} & \max \\ & \min \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$	V
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	\max. \min.	$\begin{array}{r} 500 \\ 80 \end{array}$	V
$\mathrm{V} / \mathrm{S}_{12}$	$\begin{aligned} & \max \\ & \min . \end{aligned}$	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage-divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

Voltage divider type B 1)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode No. 1
$g_{2}=$ focusing electrode No. 2
acc $=$ accelerating electrode
g3 = shadow grid
$S_{n}=$ dynode No.n
a = anode

Voltage between k and g_{1} to be adjusted at about 1 Vs
Voltage between S_{1} and S_{2} to be adjusted at about 1.2 Vs
Voltage between g_{3} and S_{12} to be adjusted for optimum time characteristics.

1) To avoid field distortion in the electron optical input system it is advised to connect the aqaudag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2.10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:

> the photocathode k; the focusing electrode $g_{1} ;$ the focusing electrode $g_{2} ;$ the accelerating electrode acc; the deflector.

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the ninth dynode) voltage of 1750 V ensures a field strength of about $200 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode c an be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum of the potential is about $1 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

OPERATIONAL CONSIDERATIONS (continued)

B. The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 2500 V (see figures 3 and 4).
The tube is capable of producing very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. For this reason the tube is provided with an coaxial outlet, having a characteristic impedance of 100Ω. With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid (g_{3}) is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons going from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode. Figure 1 shows anode pulses produced by a 50Ω version of the tube.

Fig. 1 Photograph of anode pulses abscissa - 5 nanoseconds per major division
ordinate - 10 volts per major division
A further characteristic of g_{3} is that it can be used as a control electrode determining the amplitude of anode pulses without the necessity of adjusting the incident light or the gain of the tube, and hence the H.V. supply. Figure 2 illustrates the control characteristics of g_{3}.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. (See figures 3 and 4.)

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influences.

Fig. 3

Fig. 4

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required (fast coincidences, "time-of-flight" measurements, Cerenkov counters).

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	42
Gain (at 2500 Vm)	10^{8}
Anode pulse rise time	<1.8
Coaxial outlet	ns
Linearity	up to 300

DIMENSIONS AND CONNECTIONS
Base: 20-pin (Jedec B20-102)
with coaxial outlet

ACCESSORIES

Socket
Coaxial cable connector
Mu-metal shield ${ }^{1}$)
type FE1003
"General Radio" type 874/C8A
type 56130
type 56131

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface

Cathode material

Minimum useful diameter
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

$\underline{\text { Capacitances }}$

Grid No. 1 to cathode
Grid No. 2 to all other electrodes
Grid No. 1 to grid No. 2
Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{k}} / \mathrm{g}_{1}$	25 pF	
$\mathrm{C}_{\mathrm{g}_{1}}$	30	pF
$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{g}_{2}}$	17	pF
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	8	pF
C_{a}	9	pF

1) To avoid field distortion in the electron optical input system it is advised to
connect the aquadag shield (pin No.9) to the cathode. If the cathode is cir-
cuited to a negative high tension care should be taken to ensure a high tension
insulation between the aquadag-shield and the mu-metal screen.
2) See spectral response curve in front of this section
3) Measured with a tungsten ribbon lamp having a colour temper ature of $2854^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8} \mathrm{l}$)
Linearity between anode pulse amplitude and input light pulse
av. 2500 V $\max .3000 \mathrm{~V}$
$\max . \quad 5 \mu \mathrm{~A}$
up to 100 mA
With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents
With voltage divider B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$

Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
LIMITING VALUES (Absolute max. rating system)
Supply voltage 3)
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{4}$)
$\mathrm{V}_{\mathrm{b}} \quad \max .3000 \mathrm{~V}$
$\mathrm{I}_{\mathrm{a}} \quad \max .2 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{12}$
$\max .600 \mathrm{~V}$
min. 300 V
\max. 500 V
\min. 80 V
$\max .500 \mathrm{~V}$
min. 80 V
up to 300 mA
$<1,8 \cdot 10^{-9}$ s
$3,2 \cdot 10^{-9} \mathrm{~s}$
$0,2 \cdot 10^{-9} \mathrm{~s}$
$28 \cdot 10^{-9} \mathrm{~s}$
0.5 to 1 A
$<1,8 \cdot 10^{-9}$ s
$2,7 \cdot 10^{-9} \mathrm{~s}$
$0,2 \cdot 10^{-9} \mathrm{~s}$
$28 \cdot 10^{-9} \mathrm{~s}$

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage-divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

\longrightarrow RECOMMENDED CIRCUITS

Voltage divider type B 1)

Voltage divider type $\mathrm{B}^{\prime}{ }^{1}$)

```
k = cathode
g1 = focusing electrode No.l
g2 = focusing electrode No. }
acc = accelerating electrode
g3 = shadow grid
Sn}=\mathrm{ dynode No.n
a}=\mathrm{ anode
\(\mathrm{k}=\) cathode
\(g_{1}=\) focusing electrode No. 1
\(g_{2}=\) focusing electrode No. 2
acc \(=\) accelerating electrode
\(\mathrm{g}_{3}=\) shadow grid
\(S_{n}=\) dynode No.n
a \(=\) anode
```

Voltage between k and g_{1} to be adjusted at about $1 \mathrm{~V}_{\mathrm{S}}$
Voltage between S_{1} and S_{2} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$
Voltage between g_{3} and S_{12} to be adjusted for optimum time characteristics.

1) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:

```
the photocathode k;
the focusing electrode gl
the focusing electrode g2;
the accelerating electrode acc;
the deflector.
```

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the ninth dynode) voltage of 1750 V ensures a field strength of about $200 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

OPERATIONAL CONSIDERATIONS (continued)

B. The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 2500 V (see figures 3 and 4).
The tube is capable of producing very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. For this reason the tube is provided with an coaxial outlet, having a characteristic impedance of 50Ω. With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid $\left(g_{3}\right)$ is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons going from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode. Figure 1 shows anode pulses of the tube.

Fig. 1 Photograph of anode pulses abscissa - 5 nanoseconds per major division
ordinate - 10 volts per major division
A further characteristic of g_{3} is that it can be used as a control electrode determining the amplitude of anode pulses without the necessity of adjusting the incident light or the gain of the tube, and hence the H.V. supply. Figure 2 illustrates the control characteristics of g_{3}.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. (See figures 3 and 4.)
It is advisable to screen the tube with a mu-metal cylinder against magnetic field influences.

Fig. 3

Fig. 4

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required, combined with a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{U}(\mathrm{S} 13)$	
Useful diameter of the photocathode	42 mm	
Gain (at 2500 V)	10^{8}	
Anode pulse rise time	<1.8	ns
Coaxial outlet	50	Ω
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)
with coaxial outlet

ACCESSORIES

Socket
Coaxial cable connector
Mu-metal shields ${ }^{1}$)

"General Radio" | type | FE1003 |
| ---: | :--- |
| type | $874 / \mathrm{C} 8 \mathrm{~A}$ |
| type | 56130 |
| type | 56131 |

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4000 A
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to cathode
Grid No. 1 to all other electrodes
Grid No. 1 to grid No. 2
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, curved surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

42 mm
type U (S13)
4000 ± 300 \&
av. $65 \mu \mathrm{~A} / \mathrm{lm}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$55 \mathrm{~mA} / \mathrm{W}$

12
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{k}} / \mathrm{g}_{1}$	25 pF	
$\mathrm{C}_{\mathrm{g}_{1}}$	30	pF
$\mathrm{C}_{\mathrm{g}_{1}} / \mathrm{g}_{2}$	17	pF
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	8	pF
C_{a}	9	pF

${ }^{1}$) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should betaken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.
2) See spectral response curve in front of this section
3) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
V_{b}
Anode dark current at $G=10^{8} 1$)
Linearity between anode pulse amplitude and input light pulse
With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{\circ}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents
With voltage divider $B^{\text {' }}$
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)
LIMITING VALUES (Absolute max, rating system)
Supply voltage ${ }^{3}$)
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{4}$)

V_{b}	max. 3000	V	
I_{a}	max.	2	mA
	max.	600	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	min.	300	V
	max.	500	V
	$\mathrm{~V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$	min.	80
	V		
	max.	500	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{12}$	min.	80	V

1) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage-divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

\rightarrow RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

Voltage divider type B ${ }^{1}$)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode No. 1
$\mathrm{g}_{2}=$ focusing electrode No. 2
acc $=$ accelerating electrode
$\mathrm{g}_{3}=$ shadow grid
$S_{n}=$ dynode No.n
a = anode

Voltage between k and g_{1} to be adjusted at about $1 \mathrm{~V}_{\mathrm{S}}$
Voltage between S_{1} and S_{2} to be adjusted at about $1.2 \mathrm{~V}_{\mathrm{S}}$
Voltage between g_{3} and S_{12} to be adjusted for optimum time characteristics.

1) To avoid field distortion in the electron optical input system it is advised to connect the aquadag shield (pin No.9) to the cathode. If the cathode is circuited to a negative high tension care should be taken to ensure a high tension insulation between the aquadag-shield and the mu-metal screen.

XP1023

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of five elements:

> the photocathode k ;
> the focusing electrode $g_{1} ;$
> the focusing electrode $\mathrm{g}_{2} ;$
> the accelerating electrode acc;
> the deflector.

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the ninth dynode) voltage of 1750 V ensures a field strength of about $200 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum of the potential is about $1 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Because the first dynode cannot be placed parallel to the photocathode, the beam of primary electrons is deflected by the deflector to make it impinge at right angles to the first dynode surface. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

OPERATIONAL CONSIDERATIONS (continued

B. The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 2500 V (see figures 3 and 4).
The tube is capable of producing very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary to use a low load resistance, well matched to the associated electronic circuitry. For this reason the tube is provided with an coaxial outlet, having a characteristic impedance of 50Ω. With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous, without attenuation or distortion.
To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a shadow grid (g_{3}) is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons going from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode. Figure 1 shows anode pulses of the tube.

Fig. 1 Photograph of anode pulses abscissa - 5 nanoseconds per major division
ordinate - 10 volts per major division
A further characteristic of g_{3} is that it can be used as a control electrode determining the amplitude of anode pulses without the necessity of adjusting the incident light or the gain of the tube, and hence the H.V. supply. Figure 2 illustrates the control characteristics of g_{3}.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. (See figures 3 and 4.)

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influences.

Fig. 3

Fig. 4

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting in nuclear research together with large size crystals, plastic or liquid scintillators and in optical equipment in which a photomultiplier with a photosensitive area larger than usual is required.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{A}(\mathrm{S} 11)$	
Useful diameter of the photocathode	63.5	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield

type FE1001
type 56135

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface Cs-Sb
63.5 mm
type A (S11)
$4^{\prime} 200 \pm 300 \quad \AA$
av. $70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
5 pF
av. $250 \mathrm{~A} / \mathrm{lm}$
$\min .100 \mathrm{~A} / \mathrm{lm}$
$\max .0 .2 \mu \mathrm{~A}$
up to 50 mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)
up to 100 mA
$7.10^{-9} \mathrm{~s}$

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{\mathrm{l}}$)

$$
7 \cdot 10^{-9} \mathrm{~s}
$$

$$
60.10^{-9} \mathrm{~s}
$$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	2000	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	max.	500	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^13]
RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a seperate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as gamma-ray spectrometry and gamma scintillation cameras.

QUICK REFERENCE DATA		
Spectral response	type	A (S11)
Useful diameter of the photocathode	63.5	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$
Energy resolution for ${ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV})$	8.5	$\%$

DIMENSIONS AND CONNECTIONS
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield

type FE1001
type 56135

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity 2)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \operatorname{lm}^{3}$)
Energy resolution for $\left.{ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV}){ }^{5}\right)$
Linearity between anode pulse amplitude and input light pulse
$\underline{\text { With voltage divider } B}$
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{4}$)
Anode pulse width at halfheight at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V} 4$)

N_{a}	av. min.	$\begin{aligned} & 250 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
$\mathrm{I}_{\mathrm{a}_{0}}$	max.	0.2	$\mu \mathrm{A}$
	av.	8.5	\%
	max.	9.0	\%
	up to	50	mA

$$
\begin{array}{rl}
\text { up to } 100 & \mathrm{~mA} \\
7 \cdot 10^{-9} & \mathrm{~s} \\
15.10^{-9} & \mathrm{~s}
\end{array}
$$

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}{ }^{4}$)
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
type A (S11)
$4200 \pm 300 \AA$
av. $80 \mu \mathrm{~A} / \mathrm{lm}$
min. $70 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$

3 pF
5 pF
semi-transparent, head-on, flut surface $60 \cdot 10^{-9} \mathrm{~s}$

[^14]LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	2000	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. \min.	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	max.	500	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	max. \min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{6}$)	$\mathrm{Va} / \mathrm{S}_{10}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type B

```
k = cathode
acc \(=\) accelerating electrode
```

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} & \mathrm{C}_{1}=470 \mathrm{pF} \\
\mathrm{a}=\text { anode } & \mathrm{C}_{2}=1000 \mathrm{pF}
\end{array}
$$

1) See spectral response curve in front of this section.
2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$.
3) At an ambient temperature of $25^{\circ} \mathrm{C}$.
4) For an infinitely short light pulse, fully illuminating the photocathode.
5) Measured with a $2^{\prime \prime} \times 2^{\prime \prime} \mathrm{NaI}(\mathrm{Tl})$ crystal.

6) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be a practical value.

Each tube is accompanied by a sheet with characteristics, on which is indicated the voltage to be applied between the cathode and the first dynode. The best results in gamma-ray spectrometry will be achieved with this voltage, when the recommended voltage-divider bridge is used.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications which require a good sensitivity in the ultraviolet region, combined with a photosensitive area larger than usual.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	63.5	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield

type FE1001
type 56135
-

Dimensions in mm
$\square-$

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
semi-transparent, head-on, flat surface

Radiant sensitivity at 4000 A
N_{k}

Multiplier system

Number of stages
Dynode material
10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}

3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

$$
\begin{array}{llll}
\mathrm{N}_{\mathrm{a}} & \text { av. } & 250 & \mathrm{~A} / \mathrm{lm} \\
& \min . & 100 & \mathrm{~A} / \mathrm{lm} \\
\mathrm{I}_{\mathrm{a}_{0}} & \max . & 0.2 & \mu \mathrm{~A}
\end{array}
$$

Anode dark current at $\mathrm{N}_{\mathrm{a}}=100 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
type U (S13)
4000 ± 300 \&
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$ min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$
Cs-Sb
63.5 mm
-

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{\mathrm{l}}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)

up to 100	mA
7.10^{-9}	s
15.10^{-9}	s

Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)
$7.10^{-9} \mathrm{~s}$
$60 \cdot 10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	2000	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max min.	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	max.	500	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	$\begin{aligned} & \max . \\ & \min . \end{aligned}$	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V} / \mathrm{S}_{10}$	max min.	300 80	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

RECOMMENDED CIRCUITS

[^15]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.
With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for geophysical measurements in which the thick quartz window serves as a medium for Cerenkov radiation caused by cosmic-rays.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	63.5	mm
Window thickness (quartz)	10	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)
type FE1001
type 56135

Dimensions in mm

ACCESSORIES

Socket
Mu-metal shield

GENERAL

Photocathode

Description

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4000 A
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

Linearity between anode pulse amplitude and input light pulse
Na_{a}

semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

63.5 mm
type $\mathrm{U}(\mathrm{S} 13)$
4000 ± 300 \&
av. $\quad 60 \mu \mathrm{~A} / \mathrm{lm}$
min. $35 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$

10

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\begin{array}{lll}\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10} & 3 \mathrm{pF} \\ \mathrm{C}_{\mathrm{a}} & 5 & \mathrm{pF}\end{array}$
av. $250 \mathrm{~A} / \mathrm{lm}$
$\min .100 \mathrm{~A} / \mathrm{lm}$
$\max .0 .2 \mu \mathrm{~A}$
up to 50 mA

[^16]TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}{ }^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode
Voltage between cathode and accelerator electrode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{2}$)

RECOMMENDED CIRCUITS

Voltage divider type A

[^17]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.
With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting and measurement of low luminous fluxes.

QUICK REFERENCE DATA				
Spectral response	bialkali	type		
D				
Useful diameter of the photocathode	63.5	mm		
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$		

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56135

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve (See page 6)
Wavelength at maximum response
Luminous sensitivity ${ }^{1}$)

Radiant sensitivity at 437 nm
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider } \mathrm{A}}$

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	$\mathrm{~N}_{\mathrm{a}}$	av. min. Anode dark current at $\mathrm{Na}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{2}$)	$\mathrm{I}_{\mathrm{a}_{\mathrm{O}}}$

[^18]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse	up to	100 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)		7 ns
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)		15 ns
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}$		7 ns
Total transit time at $\mathrm{V}_{\mathrm{b}}=1400 \mathrm{~V}^{1}$)		60 ns

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	2000	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	max.	500	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$	max. min.	300 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^19]
RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B

```
k = cathode
acc = accelerating electrode a = anode
```


OPERATIONAL CONSIDERATIONS

Because of the resistivity of D-type photocathodes it is recommended not to expose the tube to too high intensities of radiation.

It is advisable to limit the cathode peakcurrent to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$.

The resistivity of the photocathode increases with decreasing temperature.
To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

A circuit of type A results in the highest gain of the tube at a given total voltage. A circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.
The accelerating electrode has a seperate external connection to allow adjustment for optimum photoelectron collection on the first dynode.
With high amplitude pulses, it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, whichwill be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

XP1040

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where a high degree of time definition is required (fast coincidences, Cerenkov counters).

QUICK REFERENCE DATA	
Spectral response	type $\mathrm{A}(\mathrm{S} 11)$
Useful diameter of the photocathode	110
Gain (at 2400 Vm)	10^{8}
Anode pulse rise time	2
Linearity	ns

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket

Mu-metal shield (for tube with metal container)
(for tube without metal container)
type FE1003
type 56133
type 56129

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface ${ }^{1}$)

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14} \\
& \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$

type A (S11)

$$
4200 \pm 300 \quad \AA
$$

$$
\text { av. } \quad 70 \mu \mathrm{~A} / \mathrm{lm}
$$

$$
\min .45 \mu \mathrm{~A} / \mathrm{lm}
$$

$60 \mathrm{~mA} / \mathrm{W}$

14

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$$
5 \mathrm{pF}
$$

7 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8} 4$)
V_{b}
av. 2400 V
$\max .3000$ V
av. $\quad 2 \mu \mathrm{~A}$ $\max . \quad 12 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
${ }^{1}$) The tube has a plane-concave window and is delivered with a metal envelope.
${ }^{2}$) See spectral response curve in front of this section
3) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$
4) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
Maximum peak currents
With voltage divider B 1
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
Transit time difference between the centre of
the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$
Transit time spread
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{2}$)	V_{b}	max.	3000	V
Continuous anode current	I_{a}	max.	2	mA
Voltage between cathode and first dynode + grid No. 2	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}+\mathrm{g}_{2}}$	\max min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between cathode and accelerator electrode	$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	1400	to 1800	V
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max.	300	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	max min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between anode and final dynode ${ }^{3}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	\max min.	500 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^20]
\rightarrow RECOMMENDED CIRCUITS

Voltage divider type B 1)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
$\mathrm{g}_{2}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $1.7 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $C_{1}=100 q / V_{S}, C_{2}=100 q / 3 V_{S}$, $C_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \quad \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $q=$ quantity of electricity transported by the anode.
${ }^{1}$) If the cathode is connected to negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the metal envelope or mu-metal shield.

XP1040

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C_{1} will be $2 \cdot 10^{-9} \mathrm{~F}$

In the case of high counting rates and large peak power outputs, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the focusing electrode g_{2}; the accelerating electrode acc.

To reduce transit-time fluctuations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 180 mm . To facilitate optical coupling to scintillators the tube is provided with a plane-concave window.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. Acathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or a subsequent dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of the electrode g_{1} to the photocathode c an be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1.7 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)
4. Collection on the first dynode is controlled by the potential of the second dynode (See recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2400 V (see fig. 1) The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1$, d representing the secondary-emission coefficient of each stage ($d \approx$ 3.5) It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .
Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 2 the anode current variation is plotted against anode-to-final dynode voltage.
It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} etc., maintaining the same progression).
It is advisable to screen the tube with a mu-metal cylinder against magneticfield influence.

Fig. 3

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where very low luminous fluxes are to be measured and where a high degree of time definition is required.

QUICK REFERENCE DATA									
Spectral response	bi-alkali type D								
Useful diameter of the photocathode	110	mm							
Gain (at 2250 V)	10^{8}								
Anode pulse rise time	2	ns							
Quantum efficiency (at 400 nm)	25	$\%$							

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

Data based on pre-production tubes.

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve
Wavelength at maximum response
semi-transparent, head-on, curved surface ${ }^{1}$)

Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 437 nm

$$
\mathrm{K}-\mathrm{Cs}-\mathrm{Sb}
$$

110 mm
$183 \pm 5 \mathrm{~mm}$
$\underline{\text { Multiplier system }}$
Number of stages
14
Dynode material

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$
Ca
5 pF
7 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $\mathrm{G}=10^{8}$	V_{b}	av. \max.	$\begin{aligned} & 2250 \\ & 3000 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Anode dark current at $\mathrm{G}=10^{83}$)	I_{a}	max.	2	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	100	mA

[^21]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode-pulse amplitude
and input light pulse
Anode rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} \mathrm{l}$)

up to	300
mA	
2	ns
3	ns

Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} \mathrm{l}$)
46 ns
Maximum peak currents
With voltage divider B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{\mathrm{l}}$) 2 ns
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} \mathrm{l}$)
Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$

Transit time spread
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
LIMITING VALUES (Absolute max. rating system)
Supply voltage 2)
Continuous anode current

V_{b}	max. 3000	V
I_{a}	max. 0.2	m
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}+\mathrm{g}_{2}}$	$\begin{array}{ll} \max . & 800 \\ \min . & 250 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	$14 \mathrm{~V}_{\text {S }}$ to 18	V_{S}
$\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{\mathrm{l}}$	max. 300	V
$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	$\begin{array}{lr} \max . & 500 \\ \min . & 80 \end{array}$	V
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{14}}$	$\begin{array}{lr} \max . & 500 \\ \min . & 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^22]RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

Voltage divider type $\mathrm{B}^{\prime}{ }^{1}$)
k = cathode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $1.7 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $C_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\text {S }}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) If the cathode is connected to negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the metal envelope or mu-metal shield.

OPERATIONAL CONSIDERATIONS

Because of the resistivity of D-type photocathodes it is recommended not to expose the tube to too high intensities of radiation. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$. The resistivity of the photocathode increases with decreasing temperature.

Toachieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that brought the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoida serious voltage drop on the dynodes. A practical value of C 1 will be $2.10^{-9} \mathrm{~F}$.
In the case of high counting rates and large peak power outputs, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the focusing electrode g_{2};
the accelerating electrode acc;
To reduce transit-time fluctuations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators the tube is delivered with a plexiglass planeconcave adaptor.
2. A high and homogeneous extraction field at the cathode reduces as much as pos sible the influence of the initial electron velocities. A cathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or eleventh dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of the electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1.7 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

4. Collection on the first dynode is controlled by the potential of the second dynode. (See recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2250 V (see fig. 1). The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by d-1, d representing the secondary-emission coefficient of each stage (d 3.5). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 2 illustrates the variation of the anode current as a function of the incident ffux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 3 the anode current variation is plotted against anode-to-final dynode voltage.

It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S 8 and S 9 , $1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} etc., maintaining the same progression).

It is advisable to screen the tube with a mu-metal cylinder against magnetic-field influence.

fig. 1

fig. 2

fig. 3

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting under limited dimensional conditions, optical measurements with narrow light beams, in-microscope light transmission measurements, and computer punch-tape or punch-card reading etc.

QUICK REFERENCE DATA		
Spectral response	type	A (S11)
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (glass)

ACCESSORIES

Socket

Mu-metal shield

type 56073
type 56134

GENERAL

Photocathode

Description semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
\longrightarrow Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

Multiplier system

Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

$$
\mathrm{Cs}-\mathrm{Sb}
$$

14 mm
type A (S11)
$4200 \pm 300 \AA$
av. $65 \mu \mathrm{~A} / \mathrm{lm}$
min. $35 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

TYPICAL CHARACTERISTICS
With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{array}{r} 250 \\ 30 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}$)	I_{a}	av. \max	$\begin{aligned} & 0.02 \\ & 0.10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse		up to	10	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} \mathrm{l}^{\mathrm{l}}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} 1$)
up to 30 mA
$3 \cdot 10^{-9} \mathrm{~s}$
$4.10^{-9} \mathrm{~s}$
$25.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
V_{b}

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{aligned}
\mathrm{k} & =\text { cathode } \\
\mathrm{acc} & =\text { accelerating electrode }
\end{aligned}
$$

$$
\begin{aligned}
S_{n} & =\text { dynode No. } n \\
a & =\text { anode }
\end{aligned}
$$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting under limited dimensional conditions, optical measurements with narrow light beams, in-microscope light transmission measurements, and computer punch-tape or punch-card reading etc.

QUICK REFERENCE DATA
Spectral response
Useful diameter of the photocathode
Anode sensitivity (at 1800 V)
---:

ACCESSORIES

Mu-metal shield
type 56134

GENERAL

Photocathode
Description
semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{10}}$
C_{a}
1.5 pF
2.5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	$\mathrm{~N}_{\mathrm{a}}$	av. min. Anode dark current at $\left.\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}\right)$		I_{o}

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2854^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)
With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}{ }^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{\mathrm{l}}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)

up to	30
mA	
3.10^{-9}	s
4.10^{-9}	s
30.10^{-9}	s

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current

V_{b}	max.	1800	V
I_{a}	max.	1	mA
	max.	300	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	min.	120	V
	max.	200	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	min.	80	V
	max.	200	V
$\mathrm{~V}_{\mathrm{a} / \mathrm{S}_{10}}$	\min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

1) For an infinitely short light pulse, fully illuminating the photocathode.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a = anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

6 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical applications, where space is very restricted and relatively high light fluxes are to be measured (10^{-5} to $10^{-3} \mathrm{~lm}$).

QUICK REFERENCE DATA	
Spectral response	type $\mathrm{A}(\mathrm{S} 11)$
Useful diameter of the photocathode	14
Anode sensitivity (at 1200 V)	0.9
A/lm	

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 9-pin miniature with pumping stem (Jedec E9-37)

ACCESSORIES

Socket type 242250290003

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

Multiplier system

Number of stages
Dynode material
Capacitances

Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{6}$	1.6	pF
Anode to all other electrode	C_{a}	1.3	pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1200 \mathrm{~V}$
N_{a}
Anode dark current at $\mathrm{N}_{\mathrm{a}}=0.3 \mathrm{~A} / \mathrm{lm}^{3}$)
$I_{a_{o}} \quad \max \cdot 0.010 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
up to 15 mA

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise tune at $\mathrm{V}_{\mathrm{b}}=1000 \mathrm{~V}^{4}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1000 \mathrm{~V}^{4}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1000 \mathrm{~V}^{4}$)

Cs-Sb
14 mm
type A (S11)
$\begin{array}{lrl}4200 \pm 300 & \AA \\ \text { av. } & 70 & \mu \mathrm{~A} / \mathrm{lm} \\ \text { min. } & 30 & \mu \mathrm{~A} / \mathrm{lm} \\ & 60 & \mathrm{~mA} / \mathrm{W}\end{array}$

6
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
1.3 pF

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	1200	V
Continuous anode current	I_{a}	\max.	0.5	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max.	200	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max. min.	$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{1}$)	$\mathrm{V}_{\mathrm{a} /} \mathrm{S}_{6}$	\max $\min .$	$\begin{array}{r} 200 \\ 50 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
k = cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode

[^23]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage, a circuit of type B gives higher currents in the last stages, but the total gain is less at the same total voltage.

At high pulse amplitudes it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube against the influence of magnetic fields by means of a mu-metal cylinder.

4 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical applications, where space is very réstricted and relatively high light fluxes are to be measured (10^{-4} to $10^{-1} \mathrm{~lm}$).

QUICK REFERENCE DATA		
Spectral response	type	A (S11)
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 900 V)	20	$\mathrm{~mA} / \mathrm{lm}$
Dark current (at 4 $\mathrm{mA} / \mathrm{lm}$)	max. 0.1	nA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 9-pin miniature with pumping stem (Jedec E9-37)

ACCESSORIES

Socket
type 242250290003

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

Multiplier system

Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

14 mm
type A (S11)
$4200 \pm 300 \quad \AA$
av. $70 \mu \mathrm{~A} / \mathrm{lm}$ min. $\quad 30 \mu \mathrm{~A} / \mathrm{lm}$ $60 \mathrm{~mA} / \mathrm{W}$

4
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

| $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{4}$ | 1.9 pF |
| :--- | :--- | :--- |
| C_{a} | 2.7 pF |

2.7 pF
av. $20 \mathrm{~mA} / 1 \mathrm{~m}$ min. $\quad 4 \mathrm{~mA} / \mathrm{lm}$ \max. 0.1 nA
$2.10^{-9} \mathrm{~s}$
$3.10^{-9} \mathrm{~s}$
$11.10^{-9} \mathrm{~s}$

[^24]LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	$\max .900$	V
Continuous anode current	I_{a}	$\max .0 .1$	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k}} / \mathrm{S}_{1}$	$\max .200$	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	$\max .200$ $\min .80$	V
Voltage between anode and final dynode $\left.{ }^{1}\right)$	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{4}$	$\max .200$ $\min .50$	V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B

```
k = cathode
acc \(=\) accelerating electrode
```

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\text { dynode No. } \mathrm{n} \\
\mathrm{a} & =\text { anode }
\end{aligned}
$$

${ }^{1}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage, a circuit of type B gives higher currents in the last stages, but the total gain is less at the same total voltage.
At high pulse amplitudes it is useful to decouple the last stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube against the influence of magnetic fields by means of a mu-metal cylinder.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting and optical measurements under limited dimensional conditions. Its revolutionary rugged construction makes it particularly suitable for geophysical and astronomical missile experiments.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1800 V)	250	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: XP1115A: 12-pin (glass)
XP1115B: 12 semi-flexible leads

ACCESSORIES

Socket
type 56073
Mu-metal shield
type 56134

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
$\mathrm{C}_{\mathrm{a}} \mathrm{S}_{10}$
C_{a}
1.9 pF
Anode to all other electrodes
$\begin{array}{llll} & & \text { av. } & 65 \\ N_{k} & \mu \mathrm{~A} / \mathrm{lm} \\ & \text { min. } & 40 & \mu \mathrm{~A} / \mathrm{lm}\end{array}$
$60 \mathrm{~mA} / \mathrm{W}$
type A (S11)
$4200 \pm 300 \AA$

1) See spectral response curve in front of this section
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{array}{r} 250 \\ 30 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{1}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	av. max.	$\begin{aligned} & 0.02 \\ & 0.10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	10	mA

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{2}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{2}$)
up to 30 mA
$3 \cdot 10^{-9} \mathrm{~s}$
$4.10^{-9} \mathrm{~s}$
$25.10^{-9} \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	$\max .1800$	V
Continuous anode current	I_{a}	\max.	0.5
		mA	
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max. \min.	300

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illuminating the photo cathode
${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=\mathrm{cathode}$
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

OPERATIONAL CONSIDERATIONS (continued)

The semi-flexible leads of the tube may be soldered into the circuit; care must be taken to conduct the heat away from the glass seals. Excessive bending of the leads is to be avoided.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as infra-red telecommunication and ranging, under limited dimensional conditions. Its rugged construction makes it particularly suitable for industrial equipment.

QUICK REFERENCE DATA				
Spectral response	type	C (S1)		
Useful diameter of the photocathode	14	mm		
Anode sensitivity (at 1800 V)	100	$\mathrm{~A} / \mathrm{lm}$		

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (glass)

ACCESSORIES

Socket type 56073

Mu-metal shield
type 56134

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $8000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

	av.	100	$\mathrm{~A} / \mathrm{lm}$
N_{a}	min.	20	$\mathrm{~A} / \mathrm{lm}$
	max.	10	$\mu \mathrm{~A}$

Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude
and input light pulse
Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude
and input light pulse
With voltage divider B
Linearity between anode pulse amplitude and input light pulse

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	1.5 pF	
C_{a}	2.5	pF

type C (S1)
$8000 \pm 1000 \AA$
av. $25 \mu \mathrm{~A} / \mathrm{lm}$
$\min . \quad 15 \mu \mathrm{~A} / \mathrm{lm}$
$2 \mathrm{~mA} / \mathrm{W}$
2.5 pF

$$
\mathrm{Ag}-\mathrm{O}-\mathrm{Cs}
$$

14 mm

$$
10
$$

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$\mathrm{I}_{\mathrm{a}}{ }_{0}$ up to $\quad 10 \mathrm{~mA}$

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} 4$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} 4$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} 4$)
up to $\quad 30 \mathrm{~mA}$
$3 \cdot 10^{-9} \mathrm{~s}$
$4.10^{-9} \mathrm{~s}$
$25.10^{-9} \mathrm{~s}$

[^25]LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current I_{a}
Voltage between cathode and first dynode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{1}$)
V_{b}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$
max. 1800 V
\max. $\quad 30 \mu \mathrm{~A}$
$\max .300 \mathrm{~V}$ min. 120 V
$\max .200 \mathrm{~V}$ min. 80 V
max. 200 V min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
$a=$ anode

[^26]
OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

9 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser-technics working in the orange, yellow and green range, under limited dimensional conditions. Its rugged construction makes it particularly suitable for industrial equipment.

QUICK REFERENCE DATA		
Spectral response	type	$\mathrm{T}(\mathrm{S} 20)$
Useful diameter of the photocathode	14	mm
Anode sensitivity (at 1800 V)	100	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (glass)

type 56073
type 56134
Mu-metal shield

ACCESSORIES

Socket

GENERAL
Photocathode
Description
semi-transparent, head-on, flat surface

Cathode material
Minimum useful diameter
Spectral response curve 1)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
1.5 pF
2.5 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
N_{a}
Anode dark current at $\mathrm{Na}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}$)
$\mathrm{I}_{\mathrm{a}}{ }_{0}$
av. $100 \mathrm{~A} / \mathrm{lm}$ $\min .30 \mathrm{~A} / \mathrm{lm}$
av. $0.01 \mu \mathrm{~A}$ $\max .0 .10 \mu \mathrm{~A}$
$\rightarrow \quad$ With voltage divider B
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{4}$)
$3 \cdot 10^{-9} \mathrm{~s}$
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{4}$)
$4 \cdot 10^{-9} \mathrm{~s}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{4}$)
$20.10^{-9} \mathrm{~s}$

[^27]
LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{1}$)

V_{b}	max. 1800	V	
I_{a}	max.	1	mA
	max.	300	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\min.	120	V
	max.	200	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	min.	80	V
	max.	200	V
$\mathrm{~V}_{\mathrm{a} / \mathrm{S}_{9}}$	\min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$$
\begin{aligned}
& S_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
& \mathrm{a}=\text { anode }
\end{aligned}
$$

[^28]

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

XP1117

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in optical applications which require a good sensitivity in the ultraviolet region, under limited dimensional conditions.

QUICK REFERENCE DATA	
Spectral response	type U (S13)
Useful diameter of the photocathode	14 mm
Anode sensitivity (at 1800 V)	250 A/lm
DIMENSIONS AND CONNECTIONS	Dimensions in mm
Base: 12-pin (glass)	

ACCESSORIES

Socket
Mu-metal shield
incident radiation

type 56073
type 56134

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4000 \AA$

Multiplier system

Number of stages

Dynode material

Capacitances

Anode to final dynode

Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{a} /} / \mathrm{S}_{10} \\
& \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$

N_{a}	av. min.	$\begin{array}{r} 250 \\ 30 \end{array}$	A/lm A/lm
I_{a}	av.	0.02	$\mu \mathrm{A}$
a_{0}	max.	0.10	$\mu \mathrm{A}$

semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

type U (S13)
$4000 \pm 300 \AA$
av. $\quad 70 \quad \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

$$
10
$$

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$$
1.5 \mathrm{pF}
$$

$$
2.5 \mathrm{pF}
$$

up to 10 mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{\mathrm{l}}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)

LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{10}}$
up to 30 mA
$3.10^{-9} \mathrm{~s}$
4.10^{-9}
25.10^{-9} s
$\max .1800 \mathrm{~V}$
max. 1 mA
max. 300 V
min. 120 V
max. 200 V
min. 80 V
$\max .200 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

[^29]RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1500 \AA$) and soft X-ray counting ($\lambda>2 \AA$).

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 800 \&)	10	$\%$
Useful area of the Ni photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current (at 4000 V)	10^{-10}	A
Pressure during operation	10^{-5} to 10^{-6}	mmHg
Potted voltage divider		

GENERAL

Photocathode

Description

Cathode material

Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at $800 \AA$
Multiplier system
Number of stages
opaque, head-on, venetian blind structure

Dynode material
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$
Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$
C_{a}
7 pF
9.5 pF

Base connections

"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider

Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$	G	av. $5 \cdot 10^{7}$
Anode dark current at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$	$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	av. $10^{-4} \mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)	V_{b}
Continuous anode current	I_{a}
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$
Voltage between anode and final dynode	$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{17}}$
Pressure during operation ${ }^{2}$)	

$$
\begin{array}{lrl}
\max . & 5000 & \mathrm{~V} \\
\max . & 1 & \mu \mathrm{~A} \\
\max . & 500 & \mathrm{~V} \\
\max . & 300 & \mathrm{~V} \\
\min . & 80 & \mathrm{~V} \\
\max . & 300 & \mathrm{~V} \\
\min . & 80 & \mathrm{~V} \\
\max . & 10^{-5} & \mathrm{mmHg}
\end{array}
$$

RECOMMENDED CIRCUIT

potted resistor chain type 56120

[^30]
OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to that in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1400 \mathrm{R}$) detection of ions ($>10 \mathrm{keV}$) and electrons (0.1 to 10 keV).

QUICK REFERENCE DATA		
Quantum efficiency for UV -photons (at 680 \&)	20	$\%$
Useful area of the Cu Be O photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current (at 4000 V)	10^{-10}	A
Pressure during operation	10^{-5} to 10^{-6}	mmHg
Potted voltage divider		

GENERAL

Photocathode
Description opaque, head-on, venetian blind structure
Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at 680 \&
Multiplier system
Number of stages
Dynode material
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$

Capacitances

Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$	7	pF
anode to all other electrodes	C_{a}	9.5	pF

DIMENSIONS AND CONNECTIONS

Base connections

High voltage connector
Signal connector
"LEMO" type III C40 H.T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider
Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$
Anode dark current at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$

$$
\begin{array}{llll}
\mathrm{G} & \text { av. } & 5 \cdot 10^{7} & \\
\mathrm{I}_{\mathrm{a}_{0}} & \text { av. } & 10^{-4} & \mu \mathrm{~A}
\end{array}
$$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{17}}$

Pressure during operation ${ }^{2}$)
max. 5000 V
$\max . \quad 1 \mu \mathrm{~A}$
max. 500 V
max. 300 V
min. 80 V
max. 300 V
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

[^31]
OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to that in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.
In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region $(\lambda<1500 \AA)$ and detection of soft X-rays $(\lambda>2 \AA)$.

QUICK REFERENCE DATA

Quantum efficiency for UV-photons (at 800 凡) 10%
Useful area of the Ni photocathode
$22 \times 22 \mathrm{~mm}^{2}$
Gain (at 4000 V)
5.10^{7}
Dark current (at 4000 V)
$10^{-10} \mathrm{~A}$
Pressure during operation $10^{-5}-10^{-6} \mathrm{mmHg}$
Potted voltage divider

GENERAL

Photocathode

Description
Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at $800 \AA$
Multiplier system
Number of stages
17
Dynode material $\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$
7 pF
C_{a}
9.5 pF

High voltage connector
Signal connector

TYPICAL CHARACTERISTICS

With potted voltage divider

Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$	G	av. $5 \cdot 10^{7}$
Anode dark current at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$	$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	av. $10^{-4} \mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
Pressure during operation ${ }^{2}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{17}$
max. 5000 V
$\max . \quad 1 \mu \mathrm{~A}$
max. 500 V
$\max .300 \mathrm{~V}$
min. 80 V
max. 300 V
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

${ }^{1}$) When the tube is to be used at 5000 V preferably the cathode should be grounded.
2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to that in the 56AVP-family.
The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1400 \AA$) detection of ions ($>10 \mathrm{keV}$) and electrons (0.1 to 10 keV).

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 680 凡)	20	$\%$
Useful area of the Cu Be O photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current (at 4000 V)	10^{-10}	A
Pressure during operation.	10^{-5} to 10^{-6}	mmHg
Potted voltage divider		

GENERAL

Photocathode

Description
Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at $680 \AA$

Multiplier system

Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
opaque, head-on, venetian blind structure

$$
\mathrm{Cu}-\mathrm{Be}-\mathrm{O}
$$

$$
22 \times 22 \mathrm{~mm}^{2}
$$

$$
680 \pm 100 \text { 凡 }
$$

$$
20 \%
$$

$$
17
$$

$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{17}$	7	pF
C_{a}	9.5	pF

Bose connections

"LEMO" type III C40 H. T. 10
"LEMO" type OC50

TYPICAL CHARACTERISTICS

With potted voltage divider

Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$	G	av. $5 \cdot 10^{7}$	
Anode dark current at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$	$\mathrm{I}_{\mathrm{a}_{0}}$	av.	10^{-4}

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
Pressure during oper ation ${ }^{2}$)

V_{b}	max.	5000	V
I_{a}	\max.	1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}$	\max.	500	V
	max.	300	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	min.	80	V
	max.	300	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{17}$	\min.	80	V

$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

1) When the tube is to be used at 5000 V preferable the cathode should be grounded.
${ }^{2}$) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to that in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to va'ues over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a glass envelope which is sealed to a metal flange to facilitate mounting to a vacuum system (vacuum seal with O-ring). The glass envelope is protected by a nickel plated iron mantle, which contains a complete potted voltage divider. The external connections are made via two coaxial connectors. Because of the O-ring the tube may not be heated for outgassing.
The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum.

A counter-flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultraviolet region ($\lambda<1500 \AA$) and soft X-ray detection ($\lambda>2 \AA$) under ultra high vacuum conditions.

QUICK REFERENCE DATA		
Quantum efficiency for UV-photons (at 800 §)	10	$\%$
Useful area of the Ni photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current (at 4000 V)	10^{-10}	A
Pressure during operation	10^{-5} to 10^{-10}	mmHg
Potted voltage divider		

GENERAL

Photocathode
Description
opaque, head-on, venetian blind structure
Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at 800 A

$$
\mathrm{Ni}
$$

Multiplier system
Number of stages
Dynode material
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$

$\underline{\text { Capacitances }}$

Anode to final dynode
7 pF
Anode to all other electrodes
9.5 pF

TYPICAL CHARACTERISTICS

With potted voltage divider
Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$
Anode dark current at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$

$$
\begin{array}{llll}
\mathrm{G} & \text { av. } & 5.10^{7} & \\
\mathrm{I}_{\mathrm{a}_{0}} & \text { av. } & 10^{-4} & \mu \mathrm{~A}
\end{array}
$$

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dyn
Voltage between consecutive dynodes

Voltage between anode and final dynode
V_{b}
Ia
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{17}$
Pressure during operation 2)
$\max .5000 \mathrm{~V}$
$\max . \quad 1 \mu \mathrm{~A}$
max. 500 V
max. 300 V
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

${ }^{1}$) When the tube is to be used at about 5000 V preferable the cathode should be grounded, to avoid gas emission from the focusing electrodes of the input.
2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to that in the 56AVP-family.
The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $!\mu \mathrm{A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a stainless steel envelope and a heavy flange to facilitate mounting to a vacuum system (gold foil vacuum seal). The envelope contains also a complete potted voltage divider. The external connections are made via two coaxial connectors.

The tube may be heated to $300^{\circ} \mathrm{C}$ for several hours to obtain an ultra high vacuum ($10^{-10} \mathrm{mmHg}$), but this must be done with care. The temperature of the glass bottom with the pins must be kept always at about the same level as the one of the stainless steel flange by which it is carried. The potted resistor. chain must be taken apart.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum. A counter flange with cock is delivered with the tube.

WINDOWLESS PHOTOMULTIPLIER

The tube is intended for use in applications such as spectroscopy in the far ultr aviolet region ($\lambda<1400 \mathrm{~A}$), detection of ions ($>10 \mathrm{keV}$) and electrons (0.1 to 10 keV), under ultra high vacuum conditions.

QUICK REFERENCE DATA		
Quantum efficiency for UV -photons (at 680 \&)	20	$\%$
Useful area of the Cu Be O photocathode	22×22	$\mathrm{~mm}^{2}$
Gain (at 4000 V)	5.10^{7}	
Dark current (at 4000 V)	10^{-10}	A
Pressure during operation	$10^{-5}-10^{-10}$	mmHg
Potted voltage divider		

GENERAL

Photocathode

Description opaque, head-on, venetian blind structure

Cathode material
Minimum useful area
Wavelength at maximum response (see fig.1)
Quantum efficiency for UV-photons at 680 \&
Multiplier system
Number of stages
17
Dynode material
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{17}}$
7 pF
Ca
9.5 pF
$\mathrm{Cu}-\mathrm{Be}-\mathrm{O}$ $22 \times 22 \mathrm{~mm}^{2}$ 680 ± 100 \& 20 \%

DIMENSIONS AND CONNECTIONS

TYPICAL CHARACTERISTICS

With potted voltage divider
Gain at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$
Anode dark current at $\mathrm{V}_{\mathrm{b}}=4000 \mathrm{~V}$

G
av. 5.10^{7}
$I_{a_{0}}$
av. $10^{-4} \mu \mathrm{~A}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes

Voltage between anode and final dynode
Pressure during operation ${ }^{2}$)
max. 5000 V
$\max . \quad 1 \mu \mathrm{~A}$
$\max .500 \mathrm{~V}$
$\max .300 \mathrm{~V}$
min. 80 V
max. 300 V
min. 80 V
$\max \cdot 10^{-5} \mathrm{mmHg}$

RECOMMENDED CIRCUIT

${ }^{1}$) When the tube is to be used at about 5000 V preferable the cathode should be grounded, to avoid gas emission from the focusing electrodes of the input.
${ }^{2}$) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.

OPERATIONAL CONSIDERATIONS

A good collection on the first dynode of the electrons originating from the cathode is obtained with the aid of an electrostatic focusing system equivalent to that in the 56AVP-family.

The tube may be used both in counting circuits and integrating current circuits. In the latter case the cathode emission should be at least $10^{3} \mathrm{el} / \mathrm{sec}$ (approx. $10^{-17} \mathrm{~A}$) while the anode current may never mount to values over $1 \mu \mathrm{~A}$. If the cathode emission is lower than $10^{3} \mathrm{el} / \mathrm{sec}$ it is practically necessary to operate the tube in a pulse circuit.

The tube has a stainless steel envelope and a heavy flange to facilitate mounting to a vacuum system (gold foil vacuum seal). The envelope contains also a complete potted voltage divider. The external connections are made via two coaxial connectors.

The tube may be heated to $300^{\circ} \mathrm{C}$ for several hours to obtain an ultra high vacuum $\left(10^{-10} \mathrm{mmHg}\right)$, but this must be done with care. The temperature of the glass bottom with the pins must be kept always at about the same level as the one of the stainless steel flange by which it is carried. The potted resistor chain must be taken apart.

The high-vacuum pumps must be provided with a liquid nitrogen trap to avoid oil deposits on the dynodes.

In principle the electrodes are resistant to exposure to dry air but for longer periods in stock it is advised to keep the tube under primary vacuum. A counter flange with cock is delivered with the tube.

6 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in plasma physics where high light flashes must be measured and other applications where a high degree of time definition and linearity is required.

	QUICK REFERENCE DATA		
Spectral response	type	S 4	
Useful window area	150	$\mathrm{~mm}^{2}$	
Gain (at 3750 V)	10^{4}		
Anode pulse rise time	1.7	ns	
Linearity	up to 2	A	
Peak current	4	A	

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

top view

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful window area
Spectral response curve See page 4
Wavelength at maximum response
Luminous sensitivity ${ }^{1}$)
Radiant sensitivity at 4200 §
Multiplier system
Number of stages
Dynode material

TYPICAL CHARACTERISTICS

With recommended voltage divider

Supply voltage for $\mathrm{G}=10^{4}$	V_{b}	av. \max.	$\begin{aligned} & 3750 \\ & 5000 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Anode dark current at $\mathrm{G}=10^{4} 2$)	$\mathrm{I}_{\mathrm{a}_{0}}$	av. max.	$\begin{array}{r} 0.03 \\ 1 \end{array}$	$\mu \mathrm{A}$
Linearity (within 5\%) between anode pulse amplitude and input light pulse		up to	2	A
Supply voltage for a linearity of 2 A	V_{b}	av. max.	$\begin{aligned} & 6000 \\ & 6500 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

[^32]
7 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in plasma physics where high light flashes must be measured and other applications where a high degree of time definition and linearity is required.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	42	mm
Gain (at 3500 V)	10^{4}	
Anode pulse rise time	1.9	ns
Linearity	up to 1	A
Peak current	3	A

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56130

GENERAL

Photocathode
Description semi-transparent, low resistivity, head-on, curved surface
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 \&
Multiplier system
Number of stages
Dynode material

TYPICAL CHARACTERISTICS

With recommended voltage divider
Supply voltage for $G=10^{4}$
Anode dark current at $\mathrm{G}=10^{4} 3$)
Linearity (within 5\%) between anode pulse amplitude and input light pulse

Supply voltage for a linearity of 1 A

$$
\mathrm{Cs}-\mathrm{Sb}
$$

42 mm
$72 \pm 2 \mathrm{~mm}$
type A (S11)
$4200 \pm 300 \quad \AA$
av. $\quad 55 \mu \mathrm{~A} / \mathrm{lm}$
min. $25 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$

$$
7
$$

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

6 STAGE PHOTOMULTIPLIER TUBE

Photomultiplier tube intended for measuring very short light pulses having a very high luminous flux.

QUICK REFERENCE DATA			
Spectral response	type S4		
Useful area of the photocathode	280	$\mathrm{~mm}^{2}$	
Gain (at 3500 V)	10^{4}		
Anode pulse rise time	$<$	1	ns
Coaxial outlet	50	Ω	
Linearity	up to	5	A

DIMENSIONS AND CONNECTIONS
Dimensions in mm

ACCESSORIES

Coaxial cable connector
Socket (see drawing above)
"General Radio" type 874/ C8A delivered with the tube

GENERAL

Photocathode

Description
Cathode material
Minimum useful area
Spectral response curve
Wavelength at maximum response
Luminous sensitivity
measured with a tungsten ribbon lamp
having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
Radiant sensitivity at 4000 \&
Multiplier system
Number of stages
Dynode material
opaque, lateral
Cs-Sb $280 \mathrm{~mm}^{2}$
type S4
$4000 \pm 500 \AA$
av. $\quad 45 \mu \mathrm{~A} / \mathrm{lm}$
\max.
$25 \mu \mathrm{~A} / \mathrm{lm}$ $40 \mathrm{~mA} / \mathrm{W}$

$$
\begin{array}{r}
6 \\
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
\end{array}
$$

Capacitances

Anode to final dynode

Anode to all other electrodes

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{6}$	without coaxial con- nector with coaxial connector	10	pF
C_{a}		12	pF
		11	pF

Linearity (within 5\%) between anode pulse amplitude and input light pulse

Supply voltage for a linearity of 5 A
up to
5 A
V_{b}

av.	6500	V
max.	7000	V

$<\quad 1.10^{-9} \mathrm{~s}^{1}$)
$<\quad 2 \cdot 10^{-9} \mathrm{~s}^{1}$)
$10.10^{-9} \mathrm{~s}^{1}$)

[^33]
XP1143

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode
Voltage between consecutive dynodes
Voltage between anode and final dynode

V_{b}	max.	7500	V
I_{a}	max.	2	mA
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	max.	1000	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max.	2000	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{6}$	max.	2750	V

RECOMMENDED CIRCUIT

Voltage divider
$\mathrm{C}_{1}=2.2 \mathrm{nF}, 7.5 \mathrm{kV}$ $\mathrm{C}_{2}=2.2 \mathrm{nF}, \quad 7 \mathrm{kV}$ $\mathrm{C}_{3}=2.2 \mathrm{nF}, \quad 6 \mathrm{kV}$ $\mathrm{C}_{4}=30 \mathrm{nF}, \quad 4 \mathrm{kV}$ $\mathrm{C}_{5}=50 \mathrm{nF}, \quad 3 \mathrm{kV}$ $R_{L}=50 \Omega$

Ceramic capacitors (low inductance)

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as X -ray spectrometry and scintillation counting, in small medical probes or in portable equipment or any optical or nuclear application in which a small diameter is required.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	20	mm
Anode sensitivity (at 1800 V$)$	200	$\mathrm{~A} / 1 \mathrm{~m}$
Energy resolution for $137 \mathrm{Cs}(0.661 \mathrm{MeV})$	11	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm -
Base: 13-pin (glass)

ACCESSORIES

Socket
Mu-metal shield
type B8 70067
type 56136
type 56138

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{l}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$

Multiplier system

$$
\begin{aligned}
& \text { Number of stages } \\
& \text { Dynode material }
\end{aligned} \quad \mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$\mathrm{Cs}-\mathrm{Sb}$
20 mm
type A (S11)
$4200 \pm 300 \quad \AA$
av. $65 \mu \mathrm{~A} / \mathrm{lm}$
min. $35 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$
semi-transparent, head-on, flat surface

Cs-Sb		
20	mm	
type A $(\mathrm{S} 11)$		
4200 ± 300	\AA	
av.	65	$\mu \mathrm{~A} / \mathrm{lm}$
min.	35	$\mu \mathrm{~A} / \mathrm{lm}$
	50	$\mathrm{~mA} / \mathrm{W}$

\rightarrow Capacitances

Anode to all other electrodes

Anode to final dynode

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
1.3 pF

3 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} \quad \mathrm{~N}_{\mathrm{a}}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=30 \mathrm{~A} / 1 \mathrm{~m}^{3}$)

av.	200	$\mathrm{~A} / 1 \mathrm{~m}$
min.	30	$\mathrm{~A} / 1 \mathrm{~m}$
av.	5	nA
\max.	100	nA

Linearity between anode pulse amplitude and input light pulse
Energy resolution for ${ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV})$

up to	5	mA
	11	$\%$

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{4}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V} 4$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{4}$)

up to 10	mA
5.10^{-9}	s
$8,5.10^{-9}$	s
29.10^{-9}	s

[^34]LIMITING VALUES (Absolute max. rating system)

Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{1}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$
$\max .1800 \mathrm{~V}$
\max. 0.5 mA
$\max .400 \mathrm{~V}$ min. 120 V
max. 200 V
min. 80 V
\max. 200 V min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}=$ anode
${ }^{1}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of approx. 100 pF , to avoid a serious voltage drop between these stages during a pulse.
With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver higher anode currents at the cost of the total gain.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against magnetic field influence.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in very fast light-pulse detection, life time of excited states, fast coincidence measurements, Cerenkov measurements etc.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	42	mm
Gain (at 4000 V)	10^{7}	
Anode pulse rise time	<1	ns
Coaxial outlet	50	Ω
Linearity	min. up to	75

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Data based on pre-production tubes.

ACCESSORIES

Socket type 56040

Coaxial cable connector
General Radio type 874/C8A

GENERAL

Photocathode

Description

Cathode material

Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{1}$)
Wave length at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 A
Multiplier system
Number of stages
Dynode material
semi-transparent, head-on, curved surface
Cs-Sb
42 mm
72 mm
type A (S11)
4200 ± 300 凡
av. $45 \mu \mathrm{~A} / \mathrm{lm}$ min. $25 \mu \mathrm{~A} / \mathrm{lm}$
$45 \mathrm{~mA} / \mathrm{W}$

10

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

Capacitances
Anode to grid No. 4
Anode to all other electrodes

$$
\begin{array}{lrl}
\mathrm{C}_{\mathrm{ag}_{4}} & 4 & \mathrm{pF} \\
\mathrm{C}_{\mathrm{a}} & 6 & \mathrm{pF} \\
& & \\
\mathrm{C} & 400 & \mathrm{pF}
\end{array}
$$

TYPICAL CHARACTERISTICS

With recommended voltage divider

Supply voltage for $G=10^{7}$
Anode dark current at $G=10^{73}$)
Linearity within 5% between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=5000 \mathrm{~V}^{4}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=5000 \mathrm{~V}^{4}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=5000 \mathrm{~V} 4$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=5000 \mathrm{~V}{ }^{4}$)

$$
\begin{array}{llrl}
& \text { av. } & 4000 & \mathrm{~V} \\
\mathrm{Vb} & \max . & 5000 & \mathrm{~V} \\
\mathrm{I}_{\mathrm{a}_{\mathrm{o}}} & \max . & 1 & \mu \mathrm{~A}
\end{array}
$$

$$
\min . \quad u p \text { to } 75 \mathrm{~mA}
$$

$$
\max . \quad 1 \times 10^{-9} \mathrm{~s}
$$

$$
1.5 \times 10^{-9} \mathrm{~s}
$$

$$
\max .0 .2 \times 10^{-9} \mathrm{~s}
$$

$$
20 \times 10^{-9} \mathrm{~s}
$$

[^35]LIMITING VALUES (Absolute max. rating system)

Supply voltage
Voltage between cathode and first dynode
Voltage between grid No. 2 and grid No. 3
Voltage between consecutive dynodes
Voltage between anode and grid No. 4

V_{b}	$\max .5000$	V
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}$	$\max . \quad 900$	V
$\mathrm{~V}_{\mathrm{g}_{2}} / \mathrm{g}_{3}$	$\max . \quad 1750$	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	$\max . \quad 900$	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{g}_{4}$	$\max . \quad 1500$	V

RECOMMENDED CIRCUIT

Voltage divider

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltage divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .
The voltage divider A is designed to give optimum linearity, time characteristics and dark current at a gain of 10^{7}.
Each tube is accompanied by a certificate stating the divider to be used.
The disc shape of the dynode connections decreases their inductance and makes proper decoupling of the stages possible. This system results in a very rigid construction of the tube and considerably decreases the ion and light feed-back.
The accelerator electrode g_{3} is connected to S 6 or S 7 inside the socket.
The decoupling capacitor C between g_{4} and the anode outlet is mounted inside the tube.

\square

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use under severe shock and vibration conditions. Its very rugged construction makes it particularly suitable for geophysical and astronomical missile experiments.

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	approx. 14 mm
Gain (at approx. 3000 V)	10^{7}

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Data based on pre-production tubes.

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve 1)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
semi-transparent, head-on, flat surface
Cs-Sb

Radiant sensitivity at $4200 \AA$
N_{k}
14 mm
type A (S11)
4200 ± 300 \&
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $\quad 35 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$
Multiplier system

Number of stages
Dynode material
10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for G $=10^{7}$	V_{b}	max.	3000	V
Anode dark current at $\mathrm{G}=10^{7} 3$)	$\mathrm{I}_{\mathrm{a}_{0}}$	max.	1	$\mu \mathrm{A}$
With voltage divider B				
Linearity between anode pulse amplitude and input light pulse		up to	30	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2400 \mathrm{~V}^{4}$)			10^{-9}	s
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2400 \mathrm{~V}^{4}$)			10^{-9}	s
Total transit time at $\mathrm{V}_{\mathrm{b}}=2400 \mathrm{~V} 4$)			10^{-9}	S

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .3000 \mathrm{~V}$

[^36]
RECOMMENDED CIRCUITS

Voltage divider A

Voltage divider B

OPERATIONAL CONSIDERATIONS

To prevent damage to the glass envelope and heating of the electrodes the connections should not be soldered to the contacts. The use of conductive epoxy cement is recommended.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting of α, $\beta, \gamma, \mathrm{n}$ radiation and X rays, in flying-spot apparatus and different kinds of optical instruments.

QUICK REFERENCE DATA		
Spectral response	type $\mathrm{A}(\mathrm{S} 11)$	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	400	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minium useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
N_{a}
semi-transparent, head-on, flat surface Cs-Sb

44 mm
type A (S11)
$4200 \pm 300 \quad \AA$
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

11

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11} & 3 & \mathrm{pF} \\
\mathrm{C}_{\mathrm{a}} & 5 & \mathrm{pF}
\end{array}
$$

$$
\mathrm{Na}_{\mathrm{a}}
$$

$$
\mathrm{I}_{\mathrm{a}_{0}}
$$

av.	400	$\mathrm{~A} / \mathrm{lm}$
min.	250	$\mathrm{~A} / \mathrm{lm}$
av.	0.015	$\mu \mathrm{~A}$
\max.	0.050	$\mu \mathrm{~A}$

up to 30 mA

[^37]
TYPICAL CHARACTERISTICS (continued)

$\underline{\text { With voltage divider B }}$

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ l)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)

LIMITING VALUES (Absolute max. rating system)
Supply voltage
V_{b}
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{11}$
up to 100 mA
$5.10^{-9} \mathrm{~s}$
$14.10^{-9} \mathrm{~s}$
$4.10^{-9} \mathrm{~s}$
$45 \cdot 10^{-9} \mathrm{~s}$
$\max 1800 \mathrm{~V}$
$\max . \quad 1 \mathrm{~mA}$
$\max .500 \mathrm{~V}$
min. 120 V
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}^{\mathrm{n}}=$ anode
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\text { acc }=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time char acteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for optical spectrometry, ultraviolet photometry and other applications which require a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V)	400	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

Dimensions in mm
type FE1001
type 56128

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4000 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11}$
Ca
3 pF
5 pF
,

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
N_{a}
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
semi-transparent, head-on, flat surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

44 mm
type U (S13)
4000 ± 300 \&
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
$\min .40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

11

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

av. $400 \mathrm{~A} / \mathrm{lm}$
min . $250 \mathrm{~A} / \mathrm{lm}$
av. $0.015 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA

[^38]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$ 1)
LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	max. \min.	300 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{11}}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \mathrm{acc}=\text { accelerating electrode }
\end{aligned}
$$

$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{aligned}
& \mathrm{k}=\text { cathode } \\
& \text { acc }=\text { accelerating electrode }
\end{aligned}
$$

$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA to 1 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of mangetic fields.

II STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting with large crystals, or applications in which light must be gathered from a diffusely reflecting surface (e.g. flying-spot techniques in colour printing) or from a distant source.

QUICK REFERENCE DATA	
Spectral response	type $\mathrm{A}(\mathrm{Sll})$
Useful diameter of the photocathode	111
mm	
Anode sensitivity (at 1800 V)	500
$\mathrm{~A} / \mathrm{lm}$	

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

Dimensions in mm

ACCESSORIES

Socket
type FE1001
Mu-metal shield
type 56129

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4200 \&
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface
Cs-Sb

111 mm
type A (S11)
4200 ± 300 \&
av. $\quad 60 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11}$
Ca
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

Anode dark current at $\mathrm{N}_{\mathrm{a}}=250 \mathrm{~A} / \mathrm{lm}^{3}$)

	av. 500 $\mathrm{~A} / 1 \mathrm{~m}$ $\mathrm{~N}_{\mathrm{a}}$ min. 100 $\mathrm{~A} / 1 \mathrm{~m}$		
	av.	0.2	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	max.	0.5	$\mu \mathrm{~A}$

Linearity between anode pulse amplitude and input light pulse

[^39]TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V} 1$)
 max. 2000 V $\max . \quad 1 \mathrm{~mA}$ $\max .500 \mathrm{~V}$ min. 120 V $\begin{array}{llrl} & \max . & 300 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1} & \min . & 80 & \mathrm{~V}\end{array}$
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{11}$
$\max .300 \mathrm{~V}$ min. 80 V

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No. n
a = anode

1) For an infinitely short light pulse, fully illuminating the photocathode.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode $\quad \mathrm{S}_{\mathrm{n}}=$ dynode No. n
acc $=$ accelerating electrode
$a=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 1 mA will be sufficient.

With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver a higher anode current output with better time characteristics.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of 100 pF and 200 pF (the highest value at the last stage).
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.
It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications which require a good sensitivity in the ultra-violet region, combined with a photosensitive area larger than usual.

QUICK REFERENCE DATA		
Spectral response	type	$\mathrm{U}(\mathrm{S} 13)$
Useful diameter of the photocathode	111	mm
Anode sensitivity (at 1800 V)	500	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (B14-38)

ACCESSORIES

Socket
Mu-metal shield

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wave length at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4000 \&
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider A }}$
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

Anode dark current at $\mathrm{N}_{\mathrm{a}}=250 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
type FE1001
type 56129
semi-transparent, head-on, flat surface
Cs-Sb

111 mm
type U (S13)
4000 ± 300 凡
av. $\quad 60 \mu \mathrm{~A} / \mathrm{lm}$
\min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$50 \mathrm{~mA} / \mathrm{W}$

11

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

3 pF
5 pF
$\mathrm{C}_{\mathrm{a} / \mathrm{S}_{11}}$
Ca
N_{a}
I_{a}
av. $\quad 0.2 \mu \mathrm{~A}$
\max. $0.5 \mu \mathrm{~A}$
up to 30 mA

[^40]TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)

LIMITING VALUES

Supply voltage
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

V_{b}	\max.	2000	V
I_{a}	\max.	1	mA
	max.	500	V
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}$	\min.	120	V
	max.	300	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	\min.	80	V
	max.	300	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{11}$	\min.	$80^{\circ} . \mathrm{V}$	

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
$\mathrm{acc}=$ accelerating electrode
$S_{n}=$ dynode No.n
$a=$ anode

1) For an infinitely short light pulse, fully illuminating the photocathode.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\mathrm{k}=$ cathode $\quad \mathrm{S}_{\mathrm{n}}=$ dynode No.n
acc = accelerating electrode $\quad \mathrm{a}=$ anode

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 1 mA will be sufficient.

With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver a higher anode current output with better time characteristics.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of 100 pF and 200 pF (the highest value at the last stage).

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required (fast coincidences, life of unstable particles, Cerenkov counters).

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	42	mm
Gain (at 2200 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)
These connections are valid for serial number 24310 and higher.

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4200 \&
semi-transparent, head-on, curved surface

Multiplier system

Number of stages
Dynode material

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$\underline{\text { Capacitances }}$
Grid No. 1 to accelerator electrode
Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{g}_{1} / \text { acc }, S_{1}}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$
C_{a}

14

$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

42 mm
max. 69 mm

A (S11)
,
Cs-Sb
N_{k}

$$
10 \text { No }
$$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
Anode dark current at $G=10^{8}$ 1)
Linearity between anode pulse amplitude and input light pulse

With voltage divider B

Linearity between anode pulse amplitude
Vb av. 2200 V $\max .2500 \mathrm{~V}$
av. $0.5 \mu \mathrm{~A}$
\max. $5.0 \mu \mathrm{~A}$
up to 100 mA
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Maximum peak currents
With voltage divider B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)

$$
2.10^{-9} \mathrm{~s}
$$

$\max .0,8 \cdot 10^{-9} \mathrm{~s}$ $43 \cdot 10^{-9} \mathrm{~s}$ 0.5 to 1 A

LIMITING VALUES (Absolute max. rating system)
Supply voltage 3)

V_{b}	\max.	2500	V
I_{a}	\max.	2	mA
	max.	800	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\min.	250	V
$\mathrm{~V}_{\mathrm{k}} / \mathrm{g}_{1}$	\max.	100	V
$\mathrm{~V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	\max.	500	V
	\min.	80	V
	\max.	500	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{14}$	\min.	80	V

up to 300 mA
$2.10^{-9} \mathrm{~s}$
$3,5 \cdot 10^{-9} \mathrm{~s}$

Continuous anode current
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{4}$)
$3.10^{-9} \mathrm{~s}$
$39.10^{-9} \mathrm{~s}$
\qquad

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

\rightarrow RECOMMENDED CIRCUITS

$\mathrm{k}=$ cathode
$\mathrm{g}_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.1); voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitance $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moder ate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high countingrates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc;

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 1 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude,

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Anode current variation with the adjustment of g_{1}
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2200 V (see Fig. 2).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact such short pulses are needed for time measurements only, so not for spectrography purposes. If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1$, d representing the secondary-emission coefficient of each stage ($d \approx 3.5$). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final-dynode voltage.
It should be noted that for equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9} 1.5 \mathrm{~V}_{\mathrm{S}}$ between S 9 and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 2

Fig. 3

Fig. 4

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in spectrometry where very low luminous fluxes are to be measured (single photon counting) and for detecting of soft β-radiation (${ }^{14} \mathrm{C}$ and ${ }^{3} \mathrm{H}$ counting). Its fast time characteristics make the tube especially useful for fast coincidence measurements, thus reducing the background noise considerably.

QUICK REFERENCE DATA		
Spectral response	type	A (S11)
Useful diameter of the photocathode	42	mm
Gain (at 2150 V)	10^{8}	
Anode pulse rise time	2	ns
Efficiency for single photons (1600 V)	min.	\%
Background noise (1600 V)	350	counts/s
DIMENSIONS AND CONNECTIONS	Dimen	sions in mm
Base: 20-pin (Jedec B20-102)		

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
semi-transparent, head-on, curved surface Cs-Sb

Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$
C_{a}
. 14
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

25 pF
7 pF
9.5 pF
${ }^{1}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
2) See spectral response curve in front of this section
3) Measured with a tungsten ribbon lamp having a colour temper ature of $2854^{\circ} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A
Supply voltage for $G=10^{8}$

With voltage divider B
Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$
$3,5 \cdot 10^{-9} \mathrm{~s}$
$\max , 0,8 \cdot 10^{-9} \mathrm{~s}$
$43 \cdot 10^{-9} \mathrm{~s}$
0.5 to 1 A
$2 \cdot 10^{-9} \mathrm{~s}$
$3.10^{-9} \mathrm{~s}$
$39.10^{-9} \mathrm{~s}$
LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{4}$)

V_{b}	max.	2500	V
I_{a}	max.	0.2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max. \min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	V
$\mathrm{V}_{\mathrm{k}} / \mathrm{g}_{1}$	max.	100	V
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	max.	500 80	V
$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	max min.	$\begin{array}{r} 500 \\ 80 \end{array}$	V

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 5.10^{8} whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a = anode

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required, combined with a good sensitivity in the near-ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type A/05 (extended	S11)
Useful diameter of the photocathode	42	mm
Window thickness	0.5	mm
Gain (at 2200 V)	10^{8}	
Anode rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4400 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances

Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, curved surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

GENERAL
Photocathode
Description
42 mm
$\max .69 \mathrm{~mm}$
type A/05 (extended S11)
4400 ± 300 \&
av. $65 \mu \mathrm{~A} / \mathrm{lm}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$55 \mathrm{~mA} / \mathrm{W}$

Grid No. 1 to accelerator electrode

$\mathrm{C}_{\mathrm{g}_{1} / \text { acc }, \mathrm{S}_{1}}$	25 pF	
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
C_{a}	9.5	pF

[^41]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for G $=10^{8}$	V_{b}	av. max.	$\begin{aligned} & 2200 \\ & 2500 \end{aligned}$	V
Anode dark current at $\mathrm{G}=10^{8} \mathrm{l}$)	Ia_{o}	av. \max.	$\begin{aligned} & 0.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse		up to	100	mA

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$

Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Maximum peak currents
$\max \cdot 0,8 \cdot 10^{-9} \mathrm{~s}$
$43 \cdot 10^{-9} \mathrm{~s}$
0.5 to 1 A

With voltage divider B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
$2 \cdot 10^{-9} \mathrm{~s}$
$3 \cdot 10^{-9} \mathrm{~s}$
$39.10^{-9} \mathrm{~s}$
LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{3}$)	V_{b}	max.	2500	V
Continuous anode current	I_{a}	max.	2	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max. \min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} \mathrm{S}_{\mathrm{n}+1}$	\max $\min .$	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{4}$)	$\mathrm{V} / \mathrm{S}_{14}$	max. min.	500 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

[^42]
RECOMMENDED CIRCUITS

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a = anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.1); voltage between S_{1} and S_{2} to be adjusted at aboụt $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$; $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.
The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements

$$
\text { the photocathode } \mathrm{k} \text {; }
$$

the focusing electrode g_{1};
the accelerating electrode acc;
To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator;
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 1 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude,

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Anode current variation with the adjustment of g_{1}
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2200 V (see Fig. 2)

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact such short pulses are needed for time measurements only, so not for spectrography purposes. If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1, d$ representing the secondary-emission coefficient of each stage ($\mathrm{d} \approx 3.5$). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.
Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .
Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final-dynode voltage.
It should be noted that for equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9} 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 3

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in such applications as infra-red telecommunication and ranging, and in optical experiments in which a fast response is required.

QUICK REFERENCE DATA		
Spectral response	type	C (S1)
Useful diameter of the photocathode	42	mm
Anode sensitivity (at 2750 V)	100	$\mathrm{~A} / \mathrm{lm}$
Anode pulse rise time	2	ns

DIMENSIONS AND CONNECTIONS
Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response

$$
\text { Luminous sensitivity }{ }^{3} \text {) }
$$

Radiant sensitivity at $8000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode	$\mathrm{C}_{\mathrm{g}_{1}} / \mathrm{acc}, \mathrm{S}_{1}$	25	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	7	pF
Anode to all other electrodes	C_{a}	9.5	pF

TYPICAL CHARACTERISTICS

$\underline{\text { With voltage divider } \mathrm{A}}$
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=2750 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{1}$)
With voltage divider B
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time difference between the centre of the
photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
With voltage divider B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Anode pulse width at half heigth at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)
LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current

Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{~V}_{\mathrm{k} / \mathrm{g}_{1}}$

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{3}$)

$$
\begin{array}{llrl}
\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}} & \text { max. } & \text { min. } & 800 \\
& & \mathrm{~V} \\
& \text { max. } & 500 & \mathrm{~V} \\
\mathrm{~V}_{\mathrm{a} / \mathrm{S}_{10}} & \text { min. } & 80 & \mathrm{~V}
\end{array}
$$

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse,fully illuminating the photocathode.
${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A^{1})

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.1); voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k;
the focusing electrode g_{1};
the accelerating electrode acc;

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator,
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 1. The optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude,

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Anode current variation with the adjustment of g_{1}
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).
B. The multiplier system consists of 10 stages, providing a total current amplification of 10^{7} at about 3000 V .

When high frequency signals are to be detected the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω).

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 2

56DUVP

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in spectrometry where very low luminous fluxes are to be measured (single photon counting) and for liquid scintillation counting of ${ }^{14} \mathrm{C}$ and ${ }^{3} \mathrm{H}$. The polished optical quartz window gives it a sensitivity that extends into the ultra-violet region and guarantees a very low background because of the absence of ${ }^{40} \mathrm{~K}$ radiation.

QUICK REFERENCE DATA		
Spectral response	bialkali type DU	
Useful diameter of the photocathode	42	mm
Gain (at 2100 V)	10^{8}	
Anode pulse rise time	2	ns
Quantum efficiency (at 4000 \AA)	25	$\%$
Efficiency for single photons (at 2100 V)	>15	$\%$
Collection efficiency	80	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket

Mu -metal shields ${ }^{1}$)
type FE1003
type 56130
56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve (see page 10)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4370 \AA$
Quantum efficiency at $4000 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, curved surface

$$
\mathrm{K}-\mathrm{Cs}-\mathrm{Sb}
$$

42 mm
69 mm
type DU
$4000 \pm 300 \AA$
$\mathrm{N}_{\mathrm{k}} \quad \min . \quad 45 \mu \mathrm{~A} / \mathrm{lm}$
η_{q}
av. 25%

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for G = 10^{8}	Vb	av. max.	$\begin{aligned} & 2100 \\ & 2500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Anode dark current at $\mathrm{G}=10^{8} 1$)	$\mathrm{I}_{\mathrm{a}_{0}}$	av. \max.	0.2 1	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	100	mA
Efficiency for single photons at $4240 \AA^{3}$)	$\eta_{\text {s.p. }}$	>	15	\%
Supply voltage for $\eta_{\text {s.p. }}=15 \%$	V_{b}	av.	2100	V
Background noise at $\left.\mathrm{V}_{\mathrm{b}}=2100 \mathrm{~V}^{1}\right)^{3}$)	B	av. max.	$\begin{array}{r} 600 \\ 3000 \end{array}$	counts/s counts/s

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
up to 300 mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
$\max \cdot 0,8 \cdot 10^{-9} \mathrm{~s}$

Maximum peak currents
$43.10^{-9} \mathrm{~s}$
0.5 to 1.0 A

With voltage divider B^{\prime}

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time spread
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
2. $10^{-9} \mathrm{~s}$
$3.10^{-9} \mathrm{~s}$
$0,5 \cdot 10^{-9} \mathrm{~s}$
$39.10^{-9} \mathrm{~s}$
${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{3}$) Measured with a threshold at the anode of the photomultiplier of $4.25 \times 10^{-13} \mathrm{C}$.
Anode coupling capacitor $=10 \mathrm{nF}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$.

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)	V_{b}	\max.	2500	V
Continuous anode current	I_{a}	max.	0.2	m
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}}^{1}$	max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}} / \mathrm{S}_{\mathrm{n}+1}$	max min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	max. min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{3}$)

For notes see page 5

RECOMMENDED CIRCUITS (continued)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a = anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$,
$C_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, C_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.
${ }^{1}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 5.10^{8} whichever is lowest.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
3) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

Because of the resistivity of DU-type photocathodes it is recommended not to expose the tube to top high intensities of radiation. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$. The resistivity of the photocathode increases with decreasing temperature.
To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc.
To reduce transit-time fluctuations, geometrical time spread, amplitude fluctuation or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. the potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig.l; the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

Fig. 1 Anode current variation with the adjustment of g_{1}.

OPERATIONAL CONSIDERATIONS

B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2100 V (see fig.4).
The tube is capable of producting very strong peak currents (up to 1A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a lowload resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

Fig. 2 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is linear then up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In Fig. 3 the anode current variation is plotted against anode-to-final-dynode voltage.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

OPERATIONAL CONSIDERATIONS (continued)

C. The single photon efficiency is measured with the tube circuited in voltage divider A and with a monochromatic light flux ($\lambda=424 \mathrm{~nm}$) small enough to ensure that the interactions of the photons with the photocathode result in single photoelectron pulses. The supply voltage is adjusted to obtain again of abt. 10^{8}.
The threshold at the anode of the tube is $4.25 \times 10^{-13} \mathrm{C}$. The effect of the background noise of the photomultiplier can be minimized by making use of two tubes operating in coincidence. For this purpose particularly well matched pairs of photomultipliers are available with type number 56DUVP/A. The high voltages for these two tubes are equal within $\pm 15 \mathrm{~V}$ at identical values of the single photon efficiency. Moreover they have a low value of $B_{1} \times B_{2}\left(B_{1}\right.$ and B_{2} being the value of the background noise of each tube).

Fig. 2

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in spectrometry where very low luminous fluxes are to be measured (single photon counting) and for liquid scintillation counting of ${ }^{14} \mathrm{C}$ and ${ }^{3} \mathrm{H}$. It has a very high single photon efficiency and a low background noise. The polished optical quartz window gives it a sensitivity that extends into the ultraviolet region and guarantees a very low background because of the absence of 40 K radiation.

QUICK REFERENCE DATA		
Spectral response	bialkali type DU	
Useful diameter of the photocathode	42	mm
Gain (at 2100 V)	10^{8}	
Anode pulse rise time	2	ns
Quantum efficiency (at 400 nm)	25	$\%$
Efficiency for single photons (at 2100 V)	>20	$\%$
Background noise (at 2100 V)	<1000	counts/s
Collection efficiency	80	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 20-pin (Jedec B20-102)

Data based on pre-production tubes.

ACCESSORIES

Socket
Mu-metal shields ${ }^{l}$)
type FE1003
type 56130
56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve (see page 10)
Wavelength at maximum response
Luminous sensitivity 2)
Radiant sensitivity at 437 mm
Quantum efficiency at 400 nm
semi-transparent, head-on, curved surface

K-Cs-Sb
42 mm
69 mm
type DU
$400 \pm 30 \mathrm{~nm}$
N_{k}
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$75 \mathrm{~mA} / \mathrm{W}$
av. 25%

Multiplier system

Number of stages
14
Dynode material

Capacitances

Grid No. 1 to accelerator electrode
Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{\mathrm{g}} / \mathrm{acc}, \mathrm{S}_{1}$	25 pF
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7 pF
C_{a}	9.5 pF

[^43]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for G $=10^{8}$	V_{b}	av. max.	$\begin{aligned} & 2100 \\ & 2500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Anode dark current at $\mathrm{G}=10^{8} 1$)	I_{a}	av. max.	$\begin{array}{r} 0.2 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse		up to	100	mA
Efficiency for single photons at $424 \mathrm{~nm}{ }^{3}$)	$\eta_{\text {s. p }}$.	min.	20	\%
Supply voltage for $\eta_{\text {s.p. }}=20 \%$	V_{b}	av.	2100	V
Background noise at $\left.\mathrm{V}_{\mathrm{b}}=2100 \mathrm{~V}^{1}\right)^{3}$)	B	max.	1000	counts/s
$\underline{\text { With voltage divider B }}$				
Linearity between anode pulse amplitude and input light pulse		up to	300	mA
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)			2	ns
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500$			3.5	ns
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$		max.	0.8	ns
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$			43	ns
Maximum peak currents			0.5 to 1.0	A
With voltage divider B^{\prime}				
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)			2	ns
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500$			3	ns
Transit time spread			0.5	ns
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)			39	ns

[^44]LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{1}$)
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{Sl}}$
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$
$\mathrm{V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} /} \mathrm{S}_{14}$
$\max .2500$ V
$\max .0 .2 \mathrm{~mA}$
$\max .800 \mathrm{~V}$
min. 250 V
max. 100 V
$\max .300 \mathrm{~V}$
$\min .80 \mathrm{~V}$
$\max .500 \mathrm{~V}$
min. 80 V

RECOMMENDED CIRCUITS

$\overline{\text { For notes see page } 5}$

RECOMMENDED CIRCUITS (continued)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No. n
a = anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$,
$\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.
${ }^{1}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 5.10^{8} whichever is lowest.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
${ }^{3}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

Because of the resistivity of DU-type photocathodes it is recommended not to expose the tube to top high intensities of radiation. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100{ }^{\circ} \mathrm{C}$. The resistivity of the photocathode increases with decreasing temperature.

To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of large peak power output, and to avoid a high-tension supply for large power, it is possible to supply the first stages with a high-tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc.
To reduce transit-time fluctuations, geometrical time spread, amplitude fluctuation or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. the potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 1; the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

Fig. 1 Anode current variation with the adjustment of g_{1}.

OPERATIONAL CONSIDERATIONS (continued)

B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2100 V (see fig.4).
The tube is capable of producting very strong peak currents (up to 1 A). Actually the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a lowload resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

Fig. 2 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is linear then up to 300 mA .
Care should be taken that the anode voltage is adjusted to its optimum value. In Fig. 3 the anode current variation is plotted against anode-to-final-dynode voltage.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

OPERATIONAL CONSIDERATIONS (continued)

C. The single photon efficiency is measured with the tube circuited in voltage divider A and with a monochromatic light flux ($\lambda=424 \mathrm{~nm}$) small enough to ensure that the interactions of the photons with the photocathode result in single photoelectron pulses. The supply voltage is adjusted to obtain again of abt. 10^{8}.
The threshold at the anode of the tube is $4.25 \times 10^{-13} \mathrm{C}$. The effect of the background noise of the photomultiplier can be minimized by making use of two tubes operating in coincidence. For this purpose particularly well matched pairs of photomultipliers are available with type number 56DUVP/03/A. The high voltages for these two tubes are equal within $\pm 15 \mathrm{~V}$ at identical values of the single photon efficiency. Moreover they have a low value of $B_{1} \times B_{2}\left(B_{1}\right.$ and B_{2} being the value of the background noise of each tube).

Fig. 2

56DVP

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in spectrometry and other applications where very low luminous fluxes are to be measured (single photon counting) and for detection of soft β-radiation.
If features a high quantum efficiency and a very good collection efficiency. Its fast time characteristics make the tube especially useful for fast coincidence measurements, thus reducing the background noise considerably.

QUICK REFERENCE DATA		
Spectral response		
Useful diameter of the photocathode	42	mm
Gain (at 2100 V)	10^{8}	
Anode pulse rise time	2	ns
Quantum efficiency (at 400 nm)	25	$\%$
Efficiency for single photons (at 2100 V)	>15	$\%$
Collection efficiency	80	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: $20-\mathrm{pin}$ (JEDEC B20-102)

ENVELOPE

Material: Glass with low activity (Pyrex 7740)

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
semi-transparent, head-on, curved surface

Radius of curvature
Spectral response curve (see page 10)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 437 nm
Quantum efficiency at 400 nm
Multiplier system
Number of stages
14
Dynode material
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

Capacitances

Grid No. 1 to accelerator electrode
Anode to final dynode
Anode to all other electrodes

| $C_{g_{1} / \text { acc }, ~}$ | |
| :--- | ---: | :--- |
| $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$ | 25 pF |
| C_{a} | 7 pF |
| | 9.5 pF |

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$. Because of the resistivity of D-type photocathodes the value of the cathode sensitivity is only an approximation (See also the "operational considerations").

TYPICAL CHARACTERISTICS

With voltage divider A

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{3}$) Measured with a threshold at the anode of the photomultiplier of $4.25 \times 10^{-13} \mathrm{C}$. Anode coupling capacitor $=10 \mathrm{nF}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$.

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)	V_{b}	max.	2500	V
Continuous anode current	I_{a}	max.	0.2	m
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max \min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V} / \mathrm{g}_{1}$	max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{14}$	\max. \min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A^{3})

$\overline{\text { For notes see page } 5}$

RECOMMENDED CIRCUITS (continued)
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$,
$\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 5.10^{8} whichever is lowest.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
3) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

Because of the resistivity of D-type photocathodes it is recommended not to expose the tube to too high intensities of radition. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$. The resistivily of the photocathode increases with decreasing temperature.

To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

The last stages must be decoupled by means of capacitances to avoid a serious volt age drop on the dynodes. A practical value for C_{1} could be $2.10^{-9} \mathrm{~F}$. In the case of large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc,
To reduce transit-time fluctuations, geometrical time spread, amplitude fluctuation or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. the potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig.1; the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

Fig. 1 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2100 V (see fig.4).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a lowload resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

Fig. 2 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is linear then up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In Fig. 3 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

OPERATIONAL CONSIDERATIONS (continued)

C. The single photon efficiency is measured with the tube circuited in voltage divider A and with a monochromatic light flux ($\lambda=424 \mathrm{~nm}$) small enough to ensure that the interactions of the photons with the photocathode result in single photoelectron pulses. The supply voltage is adjusted to obtain again of abt. 10^{8}.
The threshold at the anode of the tube is $4.25 \times 10^{-13} \mathrm{C}$. The effect of the background noise of the photomultiplier can be minimized by making use of two tubes operating in coincidence. For this purpose particularly well matched pairs of photomultipliers are available with type number 56DVP/A. The high voltages for these two tubes are equal within $\pm 15 \mathrm{~V}$ at identical values of the single photon efficiency. Moreover they have a low value of $B_{1} \times B_{2}\left(B_{1}\right.$ and B_{2} being the value of the background noise of each tube).

Fig. 2

56DVP

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in spectrometry where very low luminous fluxes are to be measured (single photon counting) and for liquid scintillation counting of ${ }^{14} \mathrm{C}$ and 3^{3}. It has a very high single photon efficiency and a low background noise. Its fast time characteristics make the tube especially useful for fast coincidence measurements, thus reducing the background noise considerably.

QUICK REFERENCE DATA		
Spectral response	bialkali type D	
Useful diameter of the photocathode	42	mm
Gain (at 2100 V)	10^{8}	
Anode pulse rise time	2	ns
Quantum efficiency (at 400 nm)	25	$\%$
Efficiency for single photons (at 2100 V)	min. 20	$\%$
Background noise (at 2100 V)	max. 1000	counts/s
Collection efficiency	80	$\%$

DIMENSIONS AND CONNECTIONS

Base: 20-pin (JEDEC B20-102)

ENVELOPE

Material: Glass with low activity (Pyrex 7740)

ACCESSORIES

Socket

Mu -metal shields ${ }^{1}$)
type FE1003
type 56130
56131

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve (see page 10)
Wavelength at maximum response
Luminous sensitivity 2)
Radiant sensitivity at 437 nm
Quantum efficiency at 400 nm
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode
Anode to final dynode
Anode to all other electrodes

| C $_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$ | 25 pF |
| :--- | ---: | :--- |
| $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$ | 7 pF |
| C_{a} | 9.5 pF |

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$. Because of the resistivity of D-type photocathodes the value of the cathode sensitivity is only an approximation (See also the "operational considerations").

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for G = 10^{8}	V_{b}	av. max.	$\begin{aligned} & 2100 \\ & 2500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Anode dark current at $\mathrm{G}=10^{81}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	av. \max.	$\begin{array}{r} 0.2 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse		up to	100	mA
Efficiency for single photons at $424 \mathrm{~nm}{ }^{3}$)	η s.p.	min.	20	\%
Supply voltage for $\eta_{\mathrm{s} \text {. }}$ p.	V_{b}	av.	2100	V
Background noise at $\left.\mathrm{V}_{\mathrm{b}}=2100 \mathrm{~V}^{\mathrm{l}}\right)^{3}$)	B	max.	1000	counts/s

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
up to 300 mA
2 ns

Transit time difference between the centre of the photocathode and 18 mm out of the centre
at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents
With voltage divider. B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time spread
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
\max.
0.8 ns
3.5 ns

43 ns 0.5 to 1.0 A
${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{3}$) Measured with a threshold at the anode of the photomultiplier of $4.25 \times 10^{-13} \mathrm{C}$. Anode coupling capacitor $=10 \mathrm{nF}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$.

LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{1}$)	V_{b}	max.	2500	V
Continuous anode current	$\mathrm{I}_{\text {a }}$	max.	0.2	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between grid No. 1 and cathode	$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	max.	100	V
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode 2)	$\mathrm{V} / \mathrm{S}_{14}$	\max. min.	500 80	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type B ${ }^{3}$)

[^45]

RECOMMENDED CIRCUITS

k = cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No. n
a = anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$,
$\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 5.10^{8} whichever is lowest.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
2) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

Because of the resistivity of D-type photocathodes it is recommended not to expose the tube to too high intensities of radiation. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$. The resistivity of the photocathode increases with decreasing temperature.

To achieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

The last stages msut be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2.10^{-9} \mathrm{~F}$. In the case of large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k;
the focusing electrode g_{1};
the accelerating electrode acc.
To reduce transit-time fluctuations, geometrical time spread, amplitude fluctuation or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. the potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig.1; the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output amplitude.
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).

Fig. 1 Anode current variation with the adjustment of g_{1}

OPERATIONAL CONSIDERATIONS (continued)

B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2100 V (see fig. 4).
The tube is capable of producing very strong peak currents (up to l A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a lowload resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.
Fig. 2 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is linear then up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In Fig. 3 the anode current variation is plotted against anode-to-final-dynode voltage.
It should be noted that at equal high tensions tha gain of the tube is smaller for voltage divider type B than for one according to type A.
It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

OPERATIONAL CONSIDERATIONS

C. The single photon efficiency is measured with the tube circuited in voltage divider A and with a monochromatic light flux $(\lambda=424 \mathrm{~nm})$ small enough to ensure that the interactions of the photons with the photocathode result in single photoelectron pulses. The supply voltage is adjusted to obtain again of abt. 10^{8}.

The threshold at the anode of the tube is $4.25 \times 10^{-13} \mathrm{C}$. The effect of the background noise of the photomultiplier can be minimized by making use of two tubes operating in coincidence. For this purpose particularly well matched pairs of photomultipliers are available with type number 56DVP/03/A. The high voltages for these two tubes are equal within $\pm 15 \mathrm{~V}$ at identical values of the single photon efficiency. Moreover they have a low value of $B_{1} \times B_{2}\left(B_{1}\right.$ and B_{2} being the value of the background noise of each tube).

Fig. 2

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as telecommunication and ranging and in optical experiments where a high-sensitivity in the whole visible and ultraviolet region is required combined with a high degree of time definition.

QUICK REFERENCE DATA		
Spectral response	type TU (extended S20)	
Window material	quartz	
Useful diameter of the photocathode	42	mm
Gain (at 2500 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: $20-$ pin (JEDEC B20-102)

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4200 \& at $7000 \AA$
semi-transparent, head-on, curved surface $\mathrm{Sb}-\mathrm{K}-\mathrm{Na}-\mathrm{Cs}$

42 mm \max. 69 mm
type TU (extended S20)
$4200 \pm 300 \AA$
av. $115 \mu \mathrm{~A} / \mathrm{lm}$ min. $90 \mu \mathrm{~A} / \mathrm{lm}$
$65 \mathrm{~mA} / \mathrm{W}$
$12 \mathrm{~mA} / \mathrm{W}$
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode	$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$	25	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
Anode to all other electrodes	C_{a}	9.5	pF

[^46]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$

$$
\mathrm{V}_{\mathrm{b}}
$$

Anode dark current at $G=10^{8} \mathrm{l}$)
Linearity between anode pulse amplitude and input light pulse
av. 2500 V $\max .2750 \mathrm{~V}$
$\max . \quad 5 \mu \mathrm{~A}$
up to 100 mA

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Transit time difference between the centre of the photocathode and 18 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Maximum peak currents

With voltage divider B^{+}

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{4}$)

V_{b}	max.	2750	V
I_{a}	max.	2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{g}}^{1}$	max.	100	V
$\mathrm{V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$	max. min.	500 80	V
$\mathrm{V} / \mathrm{S}_{14}$	max.	500 80	V

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A 1)

k = cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.1); voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$; $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc;

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 1 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Anode current variation with the adjustment of g_{1}
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2500 V (see Fig. 2).

The tube is capable of producing very strong peak currents (up to l A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final-dynode voltage.
It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 2

Fig. 3

Fig. 4

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in laser-technics working in the orange, yellow and green range.

QUICK REFERENCE DATA		
Spectral response	type T (S20)	
Useful diameter of the photocathode	42	mm
Gain (at 2500 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102) Dimensions in mm

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at $4200 \AA$
at $7000 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Grid No. 1 to accelerator electrode	$\mathrm{C}_{\mathrm{g}_{1} / \mathrm{acc}, \mathrm{S}_{1}}$	25	pF
Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
Anode to all other electrodes	C_{a}	9.5	pF

[^47]
TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $\mathrm{G}=10^{8}$	V_{b}	av. max	$\begin{aligned} & 2500 \\ & 2750 \end{aligned}$	\checkmark
Anode dark current at $\mathrm{G}=10^{81}$)	Ia_{o}	max	5.0	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up	100	

With voltage divider B
Linearity between anode pulse amplitude and input light pulse up to 300 mA $2 \cdot 10^{-9} \mathrm{~s}$
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)

Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
$3,5 \cdot 10^{-9} \mathrm{~s}$
$\max .0,8 \cdot 10^{-9} \mathrm{~s}$
$43 \cdot 10^{-9} \mathrm{~s}$
0.5 to 1 A
$2 \cdot 10^{-9} \mathrm{~s}$
$3 \cdot 10^{-9} \mathrm{~s}$
$39 \cdot 10^{-9} \mathrm{~s}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
LIMITING VALUES (Absolute max. rating system)
Supply voltage 3)
Continuous anode current
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{4}$)

V_{b}	max.	2750	V
I_{a}	max.	2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	\max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V} / \mathrm{g}_{1}$	max.	100	V
$\mathrm{V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$	max. \min.	500 80	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}} \mathrm{S}_{14}$	$\begin{aligned} & \max . \\ & \text { min. } \end{aligned}$	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \mathrm{v} \end{aligned}$

1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

\rightarrow RECOMMENDED CIRCUITS

$k=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$ (see fig.1); voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$,
$\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an aver age voltage of high output.
A. The electron optical input system consists of three elements:
the photocathode k ;
the focusing electrode g_{1};
the accelerating electrode acc;

To reduce transit-time fluctuations, geometrical time spread, pulse amplitude spread or dark current, this system has the following advantages:

1. the photocathode is curved, though the outer window surface is flat, thus facilitating optical coupling to a scintillator.
2. a high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerator (internally connected to the first dynode) voltage of 350 V ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
a. the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); for this adjustment, see Fig. 1 the optimum value of the potential is about $0.15 \mathrm{~V}_{\mathrm{S}}$;
b. the slightest transit-time fluctuations (the most homogeneous extraction field);
c. the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

Fig. 1 Anode current variation with the adjustment of g_{1}
4. Collection on the first dynode is controlled by the potential of the second dynode (see recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2500 V (see Fig. 6).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

OPERATIONAL CONSIDERATIONS (continued)
Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 4 the anode current variation is plotted against anode-to-final-dynode voltage.

It should be noted that at equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A. In practice, therefore, it will be preferable to use the type A distribution, or a distribution between A and B (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} and so on, maintaining the same progression.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

Fig. 2

Fig. 3

Fig. 4

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear physics where a high degree of time definition or a high time resolution is required, combined with a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	42	mm
Gain (at 2200 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shields ${ }^{1}$)
type FE1003
type 56130
type 56131

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
N_{k}
Radiant sensitivity at 4000 A
Multiplier system
Number of stages
Dynode material
Capacitances
Grid No. 1 to accelerator electrode
Anode to final dynode
Anode to all other electrodes

$\mathrm{C}_{1} / \mathrm{acc}, \mathrm{S}_{1}$	25 pF	
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$	7	pF
C_{a}	9.5 pF	

1) To avoid electric field distortion in the electron optical system the aquadag
shield (pin No. 18) must be connected to a voltage near to the cathode voltage.
If the cathode is connected to the negative H.T., precautions should be taken
to ensure a high-tension insulation between the aquadag shield and the mu-
metal shield.
2) See spectral response curve in front of this section.
3) Measured with a tungsten ribbon lamp having a colour temperature of $2854 \mathrm{o}^{\mathrm{O}} \mathrm{K}$

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $\mathrm{G}=10^{8}$	V_{b}	av. max	$\begin{aligned} & 2200 \\ & 2500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Anode dark current at $G=108^{\text {l }}$)	Ia_{0}	av. \max	$\begin{aligned} & 0.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Linearity between anode pulse amplitude and input light pulse		up to	100	mA

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V} 2$)

up to300 mA 2.10^{-9} s $3,5.10^{-9}$ s	
$\max .0,8.10^{-9}$	s
43.10^{-9}	s
0.5 to 1	A

Maximum peak current
0.5 to 1 A

With voltage divider B^{\prime}

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}{ }^{2}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$ 2)
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{2}$)

$$
\begin{array}{r}
2 \cdot 10^{-9} \mathrm{~s} \\
3 \cdot 10^{-9} \mathrm{~s} \\
39 \cdot 10^{-9} \mathrm{~s}
\end{array}
$$

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{3}$)
Continuous anode current
Voltage between cathode and first dynode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes

Voltage between anode and final dynode 4)

V_{b}	max.	2500	V
I_{a}	max.	2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}}{ }_{1}$	max. min.	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{g}} \mathrm{l}$	\max.	100	V
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max. min.	500 80	V
$\mathrm{V}_{\mathrm{a} / \mathrm{S}} \mathrm{S}_{14}$	\max \min.	$\begin{array}{r} 500 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

2) For an infinitely short light pulse, fully illuminating the photocathode.
3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
4) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $0.15 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$;
decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}$, $\mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $\mathrm{q}=$ quantity of electricity transported by the anode.

1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

II STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as total body radiation measurements, uranium prospecting with very large scintillators, Cerenkov light measurements in large transparent objects.

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	$200 \quad \mathrm{~mm}$
Anode sensitivity (at 1800 V)	250

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket

Mu-metal shield

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4200 \&
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

	av.	250	$\mathrm{~A} / \mathrm{lm}$
N_{a}	\min.	60	$\mathrm{~A} / \mathrm{lm}$
$\mathrm{I}_{\mathrm{a}_{\mathrm{o}}}$	$\operatorname{max.}$	1	$\mu \mathrm{~A}$

Linearity between anode pulse amplitude and input light pulse
up to 30 mA

[^48]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2500 \mathrm{~V}^{1}$)
LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current
Voltage between cathode and first dynode
V_{b}
I_{a}
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$
$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$
$\mathrm{V}_{\mathrm{a} / \mathrm{S}_{11}}$
up to 100 mA
$6 \cdot 10^{-9} \mathrm{~s}$
$20 \cdot 10^{-9} \mathrm{~s}$
$4 \cdot 10^{-9} \mathrm{~s}$
$75.10^{-9} \mathrm{~s}$
max. 2500 V
\max. 1 mA
$\max .1000 \mathrm{~V}$
min. 200 V
Voltage between cathode and accelerator electrode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)
$\max .1000 \mathrm{~V}$
$\max .300 \mathrm{~V}$
min. 80 V
$\max .300 \mathrm{~V}$
min. 80 V
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
$\mathrm{a}=$ anode

57AVP

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 1 mA will be sufficient.

With the voltage divider type A the tube gives the highest gain, while with the voltage divider type B the tube can deliver a higher anode current output with better time characteristics.

The accelerating electrode has a separate external connection to allow adjustment for optimum photoelectron collection on the first dynode. This adjustment is very important to obtain a good time response.

In pulse techniques, such as scintillation counting, it is advisable to decouple the last two or three stages by means of capacitors of 100 pF and 200 pF (the highest value at the last stage).

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where a high degree of time definition is required (fast coincidences, Cerenkov counters).

QUICK REFERENCE DATA	
Spectral response	type A (S11)
Useful diameter of the photocathode	110
	mm
Gain (at 2400 V)	10^{8}
Anode pulse rise time	2
Linearity	ns

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base: 20-pin (Jedec B20-102)

GENERAL

Photocathode
Description semi-transparent, head-on, curved surface ${ }^{1}$)
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
N_{k}
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$
C_{a}
5 pF
7 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Supply voltage for $G=10^{8}$
Anode dark current at $\mathrm{G}=10^{84}$)

$$
\begin{array}{llll}
\mathrm{V}_{\mathrm{b}} & \text { av. } 2400 & \mathrm{~V} \\
\max . & 3000 & \mathrm{~V}
\end{array}
$$

av. $2 \mu \mathrm{~A}$
$\max . \quad 12 \mu \mathrm{~A}$
Linearity between anode pulse amplitude and input light pulse
up to 100 mA

[^49]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ l)
Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
Maximum peak currents

With voltage divider B^{\prime}

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} \mathrm{l}^{\mathrm{l}}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{1}$)
Transit time difference between the centre of the
photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$

Transit time spread

Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} \mathrm{l}$)
LIMITING VALUES (Absolute max. rating system)

Supply voltage ${ }^{2}$)
Continuous anode current
Voltage between cathode and first dynode + grid No. 2
Voltage between cathode and accelerator electrode

Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{3}$)

V_{b}	max.	3000	V
I_{a}	max.	2	mA
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}+\mathrm{g}_{2}}$	$\begin{aligned} & \max \\ & \min \end{aligned}$	$\begin{aligned} & 800 \\ & 250 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	1400 to	1800	V
$\mathrm{V} / \mathrm{g}_{1}$	\max.	300	V
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	\max. \min.	500 80	V
$\mathrm{V} / \mathrm{S}_{14}$	\max \min.	500 80	V

[^50]
RECOMMENDED CIRCUITS

Voltage divider type B 1)

Voltage divider type B 1)
$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $1.7 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with q = quantity of electricity transported by the anode.

1) If the cathode is connected to negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the metal envelope or mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C_{1} will be $2 \cdot 10^{-9} \mathrm{~F}$.

In the case of high counting rates and large peak power outputs, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the focusing electrode g_{2};
the accelerating electrode acc;

To reduce transit-time fluctutations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators the tube is delivered with a plexiglass planeconcave adaptor.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. Acathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or a subsequent dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of the electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1.7 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

4. Collection on the first dynode is controlled by the potential of the second dynode (see Recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2400 V (see fig.1). The tube is capable of producing very strong peak currents (up to 1 A) Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1$, d representing the secondary-emission coefficient of each stage ($d \approx$ 3.5). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 2 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 3 the anode current variation is plotted against anode-to-final dynode voltage.

It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S}_{9}, 1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} etc., maintaining the same progression).
It is advisable to screen the tube with a mu-metal cylinder against magneticfield influence.

Fig. 1

Fig. 2

Fig. 3

58DVP

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where very low luminous fluxes are to be measured and where a high degree of time definition is required.

QUICK REFERENCE DATA		
Spectral response	bi-alkali type D	
Useful diameter of the photocathode	110	mm
Gain (at 2250 V)	10^{8}	
Anode pulse rise time	2	ns
Quantum efficiency (at 400 nm)	25	$\%$

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shield (for tube with metal container) (for tube without metal container)
type FE1003
type 56133
type 56129

Data based on pre-production tubes

GENERAL

Photocathode

Description

Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 437 nm
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS
With voltage divider A
Supply voltage for $G=10^{8}$
Anode dark current at $\mathrm{G}=10^{83}$)
Linearity between anode pulse amplitude and input light pulse
semi-transparent, head-on, curved surface 1)

$$
\mathrm{K}-\mathrm{Cs}-\mathrm{Sb}
$$

110 mm
$183 \pm 5 \mathrm{~mm}$
See page type D
$400 \pm 30 \mathrm{~nm}$
$\mathrm{N}_{\mathrm{k}} \quad \min . \quad 45 \mu \mathrm{~A} / \mathrm{lm}$
$75 \mathrm{~mA} / \mathrm{W}$ 14

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

| $\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$ | 5 pF |
| :--- | :--- | :--- |
| C_{a} | 7 pF |

$\mathrm{V}_{\mathrm{b}} \quad$ av. 2250 V $\max .3000 \mathrm{~V}$
$\mathrm{I}_{\mathrm{a}} \quad \max . \quad 2 \mu \mathrm{~A}$
up to 100 mA

[^51]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse

Anode rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} \mathrm{l}$)
up to 300 mA
2 ns
3 ns
Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
Maximum peak currents
With voltage divider B^{\prime}
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{\mathrm{l}}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$

Transit time spread
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$ 1)
LIMITING VALUES (Absolute max. rating system)
Supply voltage 2)
Continuous anode current
Voltage between cathode and first dynode $+\operatorname{grid} \mathrm{No} .2$
Voltage between cathode and accelerator electrode

Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{3}$)

V_{b}	max. 3000	V
I_{a}	max. 0.2	m
$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}+\mathrm{g}_{2}$	$\begin{array}{ll} \max . & 800 \\ \min . & 250 \end{array}$	V
$\mathrm{V}_{\mathrm{k} / \mathrm{acc}}$	$14 \mathrm{~V}_{\mathrm{S}}$ to 18	$\mathrm{V}_{\text {S }}$
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}}$	\max. 300	V
$\mathrm{V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	$\begin{array}{lr} \max . & 500 \\ \min . & 80 \end{array}$	V
$\mathrm{V}_{\mathrm{a} / \mathrm{S}} \mathrm{S}_{14}$	$\begin{array}{lr} \max . & 500 \\ \min . & 80 \end{array}$	V

1) For an infinitely short light pulse, fully illuminating the photocathode.
2) Or the voltage at which the tibe circuited in the voltage divider A has a gain of about 5×10^{8}, whichever is lowest.
3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A ${ }^{1}$)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$S_{n}=$ dynode No. n
a $=$ anode
voltage between k and g_{1} to be adjusted at about $1.7 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $\mathrm{C}_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with $q=$ quantity of electricity transported by the anode.

1) If the cathode is connected to negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the metal envelope or mu-metal shield.

OPERATIONAL CONSIDERATIONS

Because of the resistivity of D-type photocathodes it is recommended not to expose the tube to too high intensities of radiation. It is advisable to limit the cathode peak current to a value of 10 nA at room temperature and 0.1 nA at $-100^{\circ} \mathrm{C}$. The resistivity of the photocathode increases with decreasing temperature.

Toachieve a stability of about 1% the ratio of the current through the voltage-divider bridge to that brought the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C 1 will be $2 \cdot 10^{-9} \mathrm{~F}$.

In the case of high counting rates and large peak power outputs, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of four elements:

> the photocathode k ;
> the focusing electrode g_{1};
> the focusing electrode g_{2};
> the accelerating electrode acc;

To reduce transit-time fluctuations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators the tube is delivered with a plexiglass planeconcave adaptor.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. A cathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or eleventh dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of the electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1.7 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

58DVP

OPERATIONAL CONSIDERATIONS (continued)

4. Collection on the first dynode is controlled by the potential of the second dynode. (See recommended circuits).
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2250 V (see fig.1). The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by d-1, d representing the secondary-emission coefficient of each stage (d 3.5). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 2 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 3 the anode current variation is plotted against anode-to-final dynode voltage.

It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and S_{9}, $1.5 \mathrm{~V}_{\mathrm{S}}$ between S_{9} and S_{10} etc., maintaining the same progression).
It is advisable to screen the tube with a mu-metal cylinder against magnetic-field influence.

fig. 1

fig. 2

fig. 3

14 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in nuclear-physics applications where a high degree of time definition is required, combined with a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	110	mm
Gain (at 2400 V)	10^{8}	
Anode pulse rise time	2	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

Base: 20-pin (Jedec B20-102)

ACCESSORIES

Socket
Mu-metal shield ${ }^{1}$)
Quartz adaptor
type FE1003
type 56133
type 56137

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{2}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 4000 \&

Multiplier system

Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS

With voltage divider A
Supply voltage for $G=10^{8}$
Anode dark current at $\mathrm{G}=10^{8} 4$)
Linearity between anode pulse amplitude and input light pulse
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{14}$
C_{a}
5 pF
7 pF
semi-transparent, head-on, curved surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

110 mm
type U (S13)
4000 ± 300 \&
av. $70 \quad \mu \mathrm{~A} / \mathrm{lm}$
min. $45 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

14

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

V_{b}	av. max	$\begin{aligned} & 2400 \\ & 3000 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{I}_{\mathrm{a}_{0}}$	av. \max	$\begin{array}{r} 2 \\ 12 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	up to	100	mA

[^52]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{5}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V} 5$)
Transit time difference between the centre of the photocathode and 45 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=2800 \mathrm{~V}^{5}$)
up to 300 mA
$2 \cdot 10^{-9} \mathrm{~s}$
$3 \cdot 10^{-9} \mathrm{~s}$
10^{-9}
46.10^{-9}
s
0.5 to
$2 \cdot 10^{-9} \mathrm{~s}$
$3.10^{-9} \mathrm{~s}$
$10^{-9} \mathrm{~s}$
$10^{-9} \mathrm{~s}$
$43.10^{-9} \mathrm{~s}$
LIMITING VALUES (Absolute max. rating system)
Supply voltage 6)
Continuous anode current

V_{b}	\max.	3000	V
I_{a}	\max.	2	mA
	max.	800	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}+\mathrm{g}_{2}}$	min.	250	V

Voltage between cathode and accelerator electrode
Voltage between grid No. 1 and cathode
Voltage between consecutive dynodes
Voltage between anode and final dynode 7)

Vk/acc 1400 to 1800 V
$\mathrm{V}_{\mathrm{k} / \mathrm{g}_{1}} \max .300 \mathrm{~V}$
$\max .500$ V
min. 80 V
$\max .500 \mathrm{~V}$
min. 80 V

1) To avoid electric-field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to the cathode. If the cathode is connected to the negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.
2) See spectral response curve in front of this section.
3) Measured with a tungsten ribbon lamp having a colour temperature of 2854 OK .
4) At an ambient temperature of $25^{\circ} \mathrm{C}$.
5) For an infinitely short light pulse, fully illuminating the photocathode.
6) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
7) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS

Voltage divider type A 1)

$\mathrm{k}=$ cathode
$g_{1}=$ focusing electrode
$g_{2}=$ focusing electrode
acc $=$ accelerating electrode
$S_{\mathrm{n}}=$ dynode No.n
a $=$ anode

Abstract

voltage between k and g_{1} to be adjusted at about $1.7 \mathrm{~V}_{\mathrm{S}}$; voltage between S_{1} and S_{2} to be adjusted at about $0.8 \mathrm{~V}_{\mathrm{S}}$; decoupling capacitances $\mathrm{C}_{1}=100 \mathrm{q} / \mathrm{V}_{\mathrm{S}}, \mathrm{C}_{2}=100 \mathrm{q} / 3 \mathrm{~V}_{\mathrm{S}}$, $C_{3}=100 \mathrm{q} / 9 \mathrm{~V}_{\mathrm{S}}, \mathrm{C}_{4}=100 \mathrm{q} / 27 \mathrm{~V}_{\mathrm{S}}$ etc. with q = quantity of electricity transported by the anode.

1) To avoid electric-field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to the cathode. If the cathode is connected to the negative HT, precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mu-metal shield.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of about 3 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value of C_{1} will be $2 \cdot 10^{-9} \mathrm{~F}$.
In the case of high counting rates and large peak power outputs, and to avoid a high-tension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
A. The electron optical input system consists of four elements:
the photocathode k ;
the focusing electrode g_{1};
the focusing electrode g_{2};
the accelerating electrode acc;

To reduce transit-time fluctuations and geometrical time spread, this system has the following advantages.

1. The photocathode is curved, with a curvature radius of 183 mm . To facilitate optical coupling to scintillators, a quartz adaptor can be delivered with the tube.
2. A high and homogeneous extraction field at the cathode reduces as much as possible the influence of the initial electron velocities. Acathode-to-accelerating voltage of about 1500 V (to be connected to the tenth or a subsequent dynode) ensures a field strength of about $40 \mathrm{~V} / \mathrm{cm}$. This field is homogenized at the cathode surface by the focusing electrode g_{1}.
3. The potential of the electrode g_{1} to the photocathode can be adjusted in order to obtain one of the following characteristics:
(a) the most satisfactory collection (i.e. for a given luminous flux the largest obtainable anode signal); the optimum value of the potential is about $1.7 \mathrm{~V}_{\mathrm{S}}$;
(b) the slightest transit-time fluctuations (the most homogeneous extraction field);
(c) the most satisfactory uniformity of collection giving the most constant output pulse amplitude.

OPERATIONAL CONSIDERATIONS (continued)

4. Collection on the first dynode is controlled by the potential of the second dynode.
B. The multiplier system consists of 14 stages, providing a total current amplification of 10^{8} at about 2400 V (see fig. 1). The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.
It should be noted that in a number of applications it is not necessary for the current to be proportional to the incident luminous flux. As a matter of fact, such pulses are needed for time measurements only, so not for spectrography purposes.
If at the same time it is required, however, to determine the energy of the incident radiation, it is possible to select from one of the dynodes a signal proportional to the incident flux. In fact, when ascending the dynodes progressively, starting from the anode, the current is divided at each stage by $d-1$, d representing the secondary-emission coefficient of each stage ($d \approx$ 3.5). It is therefore possible to locate a dynode, the current of which is lower than, or equal to, the saturation limit of the dynodes.

Fig. 3 illustrates the variation of the anode current as a function of the incident flux, the voltage divider being of type B. The anode current is then linear up to 300 mA .

Care should be taken that the anode voltage is adjusted to its optimum value. In fig. 2 the anode current variation is plotted against anode-to-final dynode voltage.
It should be noted that for equal high tensions the gain of the tube is smaller for voltage divider type B than for one according to type A.
In practice, therefore, it will be preferable to use the A type distribution, or a distribution between A and B, (e.g. starting with $1.2 \mathrm{~V}_{\mathrm{S}}$ between S_{8} and $\mathrm{S} 9,1.5 \mathrm{~V}_{\mathrm{S}}$ between S 9 and S_{10} etc., maintaining the same progression).
It is advisable to screen the tube with a mu-metal cylinder against magneticfield influence.

58UVP

12 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in large solid or liquid scintillator detectors, when a high time resolution is required.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	200	mm
Gain (at 3000 V)	10^{8}	
Anode pulse rise time	2.5	ns
Linearity	up to 300	mA

DIMENSIONS AND CONNECTIONS

ACCESSORIES

Socket
Mu-metal shield
type FE1003
type 56132

GENERAL

Photocathode
Description
Cathode material
Minimum useful diameter
Radius of curvature
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances

Anode to final dynode	$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{12}$	7 pF	
Anode to all other electrodes	Ca_{a}	8	pF

semi-transparent, head-on, curved surface

$$
\mathrm{Cs}-\mathrm{Sb}
$$

200 mm
186 mm
type A (S11)
$4200 \pm 300 \AA$
av. $\quad 50 \mu \mathrm{~A} / \mathrm{lm}$
min. $35 \mu \mathrm{~A} / \mathrm{lm}$
$45 \mathrm{~mA} / \mathrm{W}$

12
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

8 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Linearity between anode pulse amplitude and input light pulse
up to 100 mA
Anode dark current at $\mathrm{G}=10^{8} 3$)
Supply voltage for $G=10^{8}$
I_{a}
V_{b}
$\max . \quad 50 \mu \mathrm{~A}$
av. 3000 V
$\max .3500$ V

1) See spectral response curve in front of this section
${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude
and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
up to 300 mA
$2 \cdot 1 \cdot 10^{-9} \mathrm{~s}$
$3 \cdot 5 \cdot 10^{-9} \mathrm{~s}$
Transit time difference between the
centre of the photocathode and 80 mm out of the centre at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}$.
Total transit time at $\mathrm{V}_{\mathrm{b}}=3000 \mathrm{~V}^{1}$)
Maximum peak current

LIMITING VALUES (Absolute max. rating system)
Supply voltage ${ }^{2}$)
V_{b}
Continuous anode current
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{3}$)

V_{b}	$\max .3000$	V	
I_{a}	\max.	2	mA
	\max.	1000	V
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}$	\min.	350	V
	max.	500	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	min.	80	V
	max.	500	V
$\mathrm{~V}_{\mathrm{a} / \mathrm{S}_{12}}$	\min.	80	V

${ }^{1}$) For an infinitely short light pulse, fully illuminating the photo cathode
${ }^{2}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of 10^{9}, whichever is lowest.
3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked

RECOMMENDED CIRCUITS

Voltage divider type A

Voltage divider type B
The accelerator to be adjusted for maximum gain
The grid to be adjusted for fastest response
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
a $=$ anode

60AVP

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.
For moderate intensities of radiation a bridge current of about 5 mA will be sufficient.

The last stages must be decoupled by means of capacitances to avoid a serious voltage drop on the dynodes. A practical value for C_{1} could be $2 \cdot 10^{-9} \mathrm{~F}$. In the case of high counting rates and large peak power output, and to avoid a hightension supply of large power, it is possible to supply the first stages with a high tension of small output and the end stages with an average voltage of high output.
The multiplier system consists of 12 stages, providing a total current amplification of 10^{8} at about 3000 V (see Fig.1).

The tube is capable of producing very strong peak currents (up to 1 A). Actually, the time constant at the output of the multiplier must be very small. Therefore it is necessary, taking into account the parasitic capacitances, to use a low-load resistance. It is advisable to use a resistance-matched coaxial cable (e.g. 75 or 100Ω). With this load the tube easily delivers pulses of tens of volts, so that an amplifier is rendered superfluous.

To avoid the effects, which are responsible for rounding of the leading edge and the "jagged" trailing edges, a grid (g) is placed parallel to the anode with its wires aligned with those of the anode.
Thus electrons going from the next-to-last dynode (S11) to the last dynode (S12) are prevented to impinge directly upon the anode.
At the same time induction and oscillations in the anode grid are minimized. The potential of this electrode is to be adjusted at an optimum close to that of the last dynode.
It should be noted that at equal high tension the gain of the tube is smaller for voltage divider type B than for one according to type A.

It is advisable to screen the tube with a mu-metal cylinder against magneticfield influences.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as scintillation counting, flying spot scanners, different kinds of optical and industrial instruments.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

Socket
type FE1002
type 56127

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at $4200 \AA$
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface
Cs-Sb
32 mm
type A (S11)
4200 ± 300 A
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$

10
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$	3	pF
C_{a}	5	pF

C_{a}
5 pF

TYPICAL CHARACTERISTICS
With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
N_{a}

Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
$\mathrm{I}_{\mathrm{a}_{0}}$
Linearity between anode pulse amplitude and input light pulse
av. $700 \mathrm{~A} / \mathrm{lm}$
min. 250 A/lm
av. $0.010 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA

[^53]TYPICAL CHARACTERISTICS (continued)
With voltage divider B
Linearity between anode amplitude and input light pulse

up to 100	mA
$3 \cdot 5 \cdot 10^{-9}$	s
$6 \cdot 5 \cdot 10^{-9}$	s
$3 \cdot 10^{-9}$	s
$33 \cdot 10^{-9}$	s

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	\max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynodes	$\mathrm{V}_{\mathrm{S}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}}$	\max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V}_{\mathrm{a}} / \mathrm{S}_{10}$	max. min.	$\begin{array}{r} 300 \\ 80 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$S_{n}=$ dynode No.n
$\mathrm{a}=$ anode
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\text { acc }=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.
When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as infra-red telecommunication and ranging, and in optical instruments operating in-the far red and near infrared region (astronomical measurements, spectrometry, optical pyrometry, infra-red radiation intensity control instruments).

QUICK REFERENCE DATA		
Spectral response curve	type C (S1)	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	100	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

ACCESSORIES

type FE1002
type 56127
Socket
Mu -metal shield

GENERAL

Photocathode

Description
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelenght at maximum response
Luminous sensitivity ${ }^{2}$)
Infra-red luminous sensitivity ${ }^{3}$)
Radiant sensitivity at 8000 \&
Multiplier system
Number of stages
Dynode material

Capacitances

Anode to final dynode
Anode to all other electrodes
semi-transparent, head-on, flat surface

$$
\mathrm{Ag}-\mathrm{O}-\mathrm{Cs}
$$

32 mm
type C (S1)

$$
8000 \pm 1000 \quad \AA
$$

$$
\text { av. } \quad 25 \quad \mu \mathrm{~A} / \mathrm{lm}
$$

$$
\min . \quad 15 \mu \mathrm{~A} / \mathrm{lm}
$$

$$
\text { av. } \quad 3 \mu \mathrm{~A} / \mathrm{lm}
$$

$$
\min . \quad 1.4 \mu \mathrm{~A} / \mathrm{lm}
$$

$2.5 \mathrm{~mA} / \mathrm{W}$

10

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10}$
C_{a}
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A

Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$	Na_{a}	av. min.	$\begin{array}{r} 100 \\ 20 \end{array}$	$\begin{aligned} & \mathrm{A} / \mathrm{lm} \\ & \mathrm{~A} / \mathrm{lm} \end{aligned}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=20 \mathrm{~A} / \mathrm{lm}^{4}$)	$\mathrm{I}_{\mathrm{a}_{0}}$	max.	10	$\mu \mathrm{A}$
Linearity between anode pulse amplitude and input light pulse		up to	5	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
3) The infra-red lumen is the flux resulting from one lumen yielded by a tungsten ribbon lamp (colour temperature $2854^{\circ} \mathrm{K}$) going through an infra-red filter Corning CS94 No. 2540, fusion 1613 thickness 2.61
4) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode pulse amplitude and input light pulse
Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)
Anode pulse width at half heigth at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)

up to $\quad 10$	mA
$3,5 \cdot 10^{-9}$	s
$6,5 \cdot 10^{-9}$	s
3.10^{-9}	s
$33 \cdot 10^{-9}$	s

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current I_{a}
Voltage between cathode and first dynode

Voltage between consecutive dynodes

Voltage between anode and final dynode ${ }^{2}$)

V_{b}	\max.	1800	V
I_{a}	\max.	30	$\mu \mathrm{~A}$
	max.	500	V
$\mathrm{~V}_{\mathrm{k} / \mathrm{S}_{1}}$	\min.	120	V
	max.	300	V
$\mathrm{~V}_{\mathrm{S}_{\mathrm{n}}} / \mathrm{S}_{\mathrm{n}+1}$	min.	80	V
	max.	300	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{10}$	\min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
$S_{n}=$ dynode No.n
acc $=$ accelerating electrode
a = anode

[^54]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B

$$
\begin{array}{ll}
\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\
\mathrm{acc}=\text { accelerating electrode } & \mathrm{a}=\text { anode }
\end{array}
$$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.
When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

10 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for optical spectrometry, ultraviolet photometry and other applications which require a good sensitivity in the ultraviolet region.

QUICK REFERENCE DATA		
Spectral response	type U (S13)	
Useful diameter of the photocathode	32	mm
Anode sensitivity (at 1800 V)	700	$\mathrm{~A} / \mathrm{lm}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B 12-43)

ACCESSORIES

Socket
Mu-metal shield

type FE1002
type 56127

GENERAL

Photocathode

Descirption
Cathode material
Minimum useful diameter
Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
Radiant sensitivity at 4000 \&
Multiplier system
Number of stages
Dynode material
Capacitances
Anode to final dynode
Anode to all other electrodes

TYPICAL CHARACTERISTICS
With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $\mathrm{N}_{\mathrm{a}}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Linearity between anode pulse amplitude and input light pulse
N_{a}
semi-transparent, head-on, flat surface
Cs-Sb
32 mm
type U (S13)
$4000 \pm 300 \quad \AA$
av. $\quad 70 \mu \mathrm{~A} / \mathrm{lm}$
min. $40 \mu \mathrm{~A} / \mathrm{lm}$
$60 \mathrm{~mA} / \mathrm{W}$
$\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}$

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{10} & 3 & \mathrm{pF} \\
\mathrm{C}_{\mathrm{a}} & 5 & \mathrm{pF}
\end{array}
$$

$\begin{array}{lll}\text { av. } & 700 & \mathrm{~A} / \mathrm{lm} \\ \text { min. } & 250 & \mathrm{~A} / \mathrm{lm}\end{array}$
av. $0.010 \mu \mathrm{~A}$
$\max .0 .050 \mu \mathrm{~A}$
up to 30 mA

[^55]
TYPICAL CHARACTERISTICS (continued)

With voltage divider B
Linearity between anode amplitude and input light pulse

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{\mathrm{l}}$)
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}^{1}$)

$$
\begin{array}{ll}
\text { up to } \quad 100 & \mathrm{~mA} \\
3.5 \cdot 10^{-9} & \mathrm{~s} \\
6,5 \cdot 10^{-9} & \mathrm{~s}
\end{array}
$$

$$
3 \cdot 10^{-9} \mathrm{~s}
$$

$$
33.10^{-9} \mathrm{~s}
$$

LIMITING VALUES (Absolute max. rating system)

Supply voltage	V_{b}	max.	1800	V
Continuous anode current	I_{a}	max.	1	mA
Voltage between cathode and first dynode	$\mathrm{V}_{\mathrm{k} / \mathrm{S}_{1}}$	max. min.	$\begin{aligned} & 500 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between consecutive dynode	$\mathrm{V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$	max. \min.	300 80	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between anode and final dynode ${ }^{2}$)	$\mathrm{V} / \mathrm{S}_{10}$	max. min.	300 80	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

RECOMMENDED CIRCUITS

Voltage divider type A
$\mathrm{k}=$ cathode
acc $=$ accelerating electrode
$\mathrm{S}_{\mathrm{n}}=$ dynode No.n
a $=$ anode
${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

RECOMMENDED CIRCUITS (continued)

Voltage divider type B
$\begin{array}{ll}\mathrm{k}=\text { cathode } & \mathrm{S}_{\mathrm{n}}=\text { dynode No. } \mathrm{n} \\ \mathrm{acc}=\text { accelerating electrode } & \mathrm{a}=\text { anode }\end{array}$

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltagedivider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be sufficient.

Different kinds of voltage dividers are possible. A circuit of type A results in the highest gain of the tube at a given total voltage; a circuit of type B gives a higher current output with better time characteristics, but the total gain is less at the same total voltage.

When pulses with high amplitudes are taken from the anode, it is useful to decouple the last stages as indicated in the circuit by means of capacitors of a few hundred pF , to avoid a voltage drop between these stages.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

\qquad

11 STAGE PHOTOMULTIPLIER TUBE

The tube is intended for use in applications such as gamma-ray spectrometry.

QUICK REFERENCE DATA		
Spectral response	type A (S11)	
Useful diameter of the photocathode	44	mm
Anode sensitivity (at 1800 V$)$	400	$\mathrm{~A} / \mathrm{lm}$
Energy resolution for ${ }^{137} \mathrm{Cs}(0,661 \mathrm{MeV})$	8.5	$\%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

ACCESSORIES

Socket
Mu-metal shield
type FE1001
type 56128

GENERAL

Photocathode
Description
Cathode material
semi-transparent, head-on, flat surface

Minimum useful diameter

$$
\mathrm{Cs}-\mathrm{Sb}
$$

Spectral response curve ${ }^{1}$)
Wavelength at maximum response
Luminous sensitivity ${ }^{2}$)
N_{k}
Radiant sensitivity at 4200 §
Multiplier system
Number of stages
11
Dynode material

$$
\mathrm{Ag}-\mathrm{Mg}-\mathrm{O}-\mathrm{Cs}
$$

Capacitances

Anode to final dynode
Anode to all other electrodes
$\mathrm{C}_{\mathrm{a}} / \mathrm{S}_{11}$
Ca
3 pF
5 pF

TYPICAL CHARACTERISTICS

With voltage divider A
Anode sensitivity at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Anode dark current at $N_{a}=60 \mathrm{~A} / \mathrm{lm}^{3}$)
Energy resolution for $\left.{ }^{137} \mathrm{Cs}(0.661 \mathrm{MeV})^{4}\right)$
Linearity between anode pulse amplitude and input light pulse

av.	400	$\mathrm{~A} / \mathrm{lm}$
min.	250	$\mathrm{~A} / \mathrm{lm}$
av.	0.015	$\mu \mathrm{~A}$
max.	0.050	$\mu \mathrm{~A}$
av.	8.5	$\%$
\max.	9.0	$\%$
up to	30	mA

1) See spectral response curve in front of this section
2) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$
3) At an ambient temperature of $25^{\circ} \mathrm{C}$
${ }^{4}$) Measured with a 1.5 in $x 1$ in $\mathrm{NaI}(\mathrm{II})$ crystal

TYPICAL CHARACTERISTICS (continued)

With voltage divider B

Linearity between anode pulse amplitude and input light pulse up to 100 mA

Anode pulse rise time at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}^{\mathrm{l}}$)
$5.10^{-9} \mathrm{~s}$
Anode pulse width at half height at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}{ }^{1}$)
Transit time difference between the centre of the photocathode and the edge at $\mathrm{V}_{\mathrm{b}}=1500 \mathrm{~V}$
Total transit time at $\mathrm{V}_{\mathrm{b}} 1500 \mathrm{~V}{ }^{1}$)
LIMITING VALUES (Absolute max. rating system)
Supply voltage
Continuous anode current

Voltage between cathode and first dynode

Voltage between consecutive dynodes
Voltage between anode and final dynode ${ }^{2}$)

V_{b}	max.	1800	V
I_{a}	max.	1	mA
$\mathrm{~V}_{\mathrm{k}} / \mathrm{S}_{1}$	max.	500	V
	min.	200	V
$\mathrm{~V}_{\mathrm{n}} / \mathrm{S}_{\mathrm{n}+1}$	max.	300	V
	min.	80	V
$\mathrm{~V}_{\mathrm{a}} / \mathrm{S}_{11}$	max.	300	V
	min.	80	V

RECOMMENDED CIRCUITS

Voltage divider type A

$$
\begin{array}{rlrl}
\mathrm{C} 1=220 & \mathrm{pF} & \mathrm{C} 2=470 & \mathrm{pF}
\end{array} \quad \mathrm{C} 3=11
$$

[^56]
RECOMMENDED CIRCUITS (continued)

Voltage divider type B

```
k = cathode
    Sn}=\mathrm{ dynode No.n
acc = accelerating electrode
    a = anode
```


OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1% the ratio of the current through the voltage divider bridge to that through the heaviest loaded stage of the tube should be approx. 100 .

For moderate intensities of radiation a bridge current of approx. 0.5 mA will be a practical value.

The best results in γ-ray spectrometry will be achieved with a voltage of 4 times "Vs" between the cathode and the first dynode; however, the limiting values must not be exceeded. At a hightension of about 1200 V the tube will work most favourably.

When the tube has been exposed to full daylight just before mounting, it will probably show an increased dark current, which will be back at its normal value after hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.

Scintillators

SAM

ZnS-SCINTILLATOR FOR
 α AND $\alpha+\beta$ RADIATION DETECTION

SAM scintillator comprise an acrylate disc, covered at one side with a thin aluminized scintillationfoil.
Zinc sulphide activated with silver is used as scintillating material.
The scintillator surface may be touched. Only high pressures or abrasive products can damage the film locally.
The SAF type consists of the same scintillating layer deposited on cellulose acetate-foil instead of acrylate.

CHARACTERISTICS

Time constant of fluorescence ${ }^{1}$)
Wavelenght of maximum emission

0.1 to 1	$\mu \mathrm{~s}$
4500	\AA
40	${ }^{\circ} \mathrm{C}$
47.5	$\%$
60	$\%$

(measured with a thin ${ }^{241}$ Am source $5.45-5.48 \mathrm{MeV}, \phi 9 \mathrm{~mm}$, distance 7 mm
from the scintillator)
Mass per unit area of the ZnS layer
$12 \mathrm{mg} / \mathrm{cm}^{2}$
Mass per unit area of the metal-coating 500 to $600 \mu \mathrm{~g} / \mathrm{cm}^{2}$

SCINTILLATORS FOR ALPHA-BÊTA DETECTION

Type SPABM consisting of a metallized film of ZnS deposited on a thin foil of SPF (thickness $\geq 0.2 \mathrm{~mm}$) can be delivered with or without acrylate support.

UNMETALLIZED SCINTILLATORS

Types SA and SPAB (unmetallized SAM and SPABM) can be ordered.

SPECIAL SCINTILLATORS

All types can be made resistant to a salty atmosphere for at least 100 hours on request.

1) With a good approximation the decay of fluorescence can be calculated with:
$\frac{\mathrm{I}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{O}}}=\frac{1}{(1+\mathrm{At})^{2}}$
where $A=3$ to 4.10^{6}
$\mathrm{t}=$ time in s

Standard dimensions:
Discs:

Type	Diameter (mm)	Thickness (mm)	Matching photomultiplier
SAM40	40	3	150 AVP
SAM50	50	3	XP1000
SAM70	70	3	XP1030
SAM125	125	3	54 AVP

Sheet:

| SAM223/127 | lenght $\quad 223 \mathrm{~mm}$

 width $: 127 \mathrm{~mm}$
 thickness : $\quad 3 \mathrm{~mm}$ |
| :--- | :--- | :--- |

Foil:

SAF $4400 / 70$	lenght $: 4400 \mathrm{~mm}$ width $: 70 \mathrm{~mm}$ thickness $: 0.23 \mathrm{~mm}$

Quality control points with a thick U source and equivalent values for a thin Pu source

Na I (TI) CRYSTAL SCINTILLATOR FOR
 f AND X-RAYS DETECTION AND SPECTROMETRY

SIS scintillators consist of Thallium activated sodium iodide crystals. The crystals are mounted in aluminium with glass windows.

CHARACTERISTICS

Time constant of fluorescence

$$
0,25 \cdot 10^{-6} \mathrm{~s}
$$

Time constant of phosphorescence
Wavelength of maximum emission $2,5.10^{-3} \mathrm{~s}$

Density 4250

Refractive index 3.67

Maximum temperature gradient 1.77 10
${ }^{0} \mathrm{C} \mathrm{min}^{-1}$

SCINTILLATORS FOR GAMMA -SPECTROMETRY

The types with dimensions up till 44×50 can be realized with a resolution of $\leq 9 \%$ for the peak of a ${ }^{137} \mathrm{C}$ s gamma ray source.
For bigger dimensions and well-type crystals: $<10 \%$.
The typenumber of this spectrometry quality is followed by SP.

SCINTILLATORS FOR X-RAY DETECTION AND COUNTING

Thin SIS mounts can be ordered (thickness of the crystal $\leq 5 \mathrm{~mm}$) with a Be window (thickness 0.20 mm).

SPECIAL SCINTILLATORS

Anticoincidence mounts can be made on request.
(SIS crystal with or without mounting in a SPF scintillator).

Standard dimensions of the crystal:

Type	$\begin{gathered} \text { Diameter A } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { Thickness B } \\ & (\mathrm{mm}) \end{aligned}$	Matching photomultiplier
SIS 12×12	12	12	XP1110/XP1115
SIS 19x19	19	19	$\left\{\begin{array}{l} \text { XP1110/XP1115 } \\ \text { XP1180/150AVP } \end{array}\right.$
SIS 25×25	25	25	150AVP
SIS 32×25	32	25	150AVP
SIS 38×25	38	25	$\left\{\begin{array}{l} \text { XP1000/XP1001 } \\ 150 \mathrm{AVP} / \mathrm{XP} 1010 \end{array}\right.$
SIS 44x 50	44	50	$\left\{\begin{array}{l} \text { XP1000/XP1001 } \\ \text { 150AVP } \end{array}\right.$
SIS 50×50	50	50	XP1030/X.P1031
SIS 63×63	63	63	XP1030/XP1031
\$IS 75×75	75	75	$\left\{\begin{array}{l} \text { XP1030/XP1031 } \\ 54 A V P \end{array}\right.$
SIS 100x75	100	75	54AVP
SIS 100×100	100	100	54AVP
Well-type: SIS $44 \times 50 \mathrm{P}$	44	50	Dimensions of the well: diameter 17 mm depth $\quad 39 \mathrm{~mm}$

Other dimensions on request.

Dimensions of the mounted crystal:

Type	dimensions (mm)					
	C	D	E	F	G	H
SIS 12×12	20.2	16.8	16.2	5.5	1.2	0.5
SIS 19×19	26.2	23.8	22.2	5.5	1.2	0.5
SIS 25×25	33.2	29.8	29.2	5.5	1.2	0.5
SIS 32x25	40.2	31.0	36.2	5.5	1.8	0.5
SIS 38×25	43.7	31.0	42.2	6.5	2.0	0.5
SIS 44×50	52.2	54.8	48.2	6.5	2.5	0.5
SIS 50x 50	58.2	54.8	54.2	6.5	2.5	1.0
SIS 63x63	71.2	67.8	67.2	6.5	3.0	1.0
SIS 75×75	83.2	79.8	79.2	6.5	3.0	1.0
SIS 100×75	dimensions and shape according to customers specifications				5.0	1.0
SIS 100x 100					5.0	1.0
SIS 125x50						
SIS125×75						

All other dimensions: see type SIS 44
$\underline{\text { Scintillators for } \mathrm{X} \text {-ray detection and counting }}$
Standard dimensions of the crystal:

type	diameter (mm)	thickness (mm)
SIS 19×3	19	3
SIS 32×2	32	2
SIS 44×2	44	2

Thickness of the Be window is 0.2 mm

SIS 19x3

SIS $32 x 2$

SIS 44 x 2

Absorption of γ radiation in the crystal

SPF

FLUORESCENT PLASTIC SCINTILLATOR FOR α, β, γ, FAST NEUTRONS AND COSMIC RAYS DETECTION

SPF scintillators are composed of polystyrene with p-terphenyl and 1-1'4-4' tetraphenylbutadiene.
The p-terphenyl is the fluorescent agent, while the TPB corrects its emission spectrum in order to adapt it to the spectral sensitivity of the photomultiplier.
They are delivered with an adhesive papercover to protect the surface against damage. Before use this paper can be easily removed.

CHARACTERISTICS

Time constant of fluorescence $3,5 \cdot 10^{-9} \mathrm{~S}$
Time constant of phosphorescence 0
Wavelength of maximum emission 4400 R
Density 1.05
Refractive index 1.594
Softening point $85{ }^{\circ} \mathrm{C}$
Ambient temperature $\max .60{ }^{\circ} \mathrm{C}$
Light output \% Anthracene 55-65 \%
Coëfficient of linear expansion 6.10-5-8.10-5
Ratio no. of H -atoms to no. of C -atoms 0.998
SCINTILLATORS FOR BETA DETECTION
Type SPFM (aluminized SPF)
The light-tight metalcover has a mass per unit area of $600-800 \mu \mathrm{~g} / \mathrm{cm}^{2}$.
SCINTILLATORS FOR ALPHA DETECTION
SPF foil with or without support, made of acrylate or glass.

SPECIA L SCINTILLATORS

- Compositions for increased temperatures (maximum $150^{\circ} \mathrm{C}$) -type SPF HT
- To obtain an improved efficiency the scintillators can be ordered with a metal or titanium dioxide reflective coating.

SPECIAL FORMS

All forms can be prepared to customers specifications.

Standard dimensions:
Disc and cylinders:

Type	Diameter (mm)	Standardized thicknesses (x) (mm)	Matching photomultiplier
SPF 25/x	25	$0.2-0.5-1-1.5-3-20-100$	XP1180
SPF 40/x	40	$0.2-1.5-3-50-100-200$	150 AVP/XP1010
SPF 50/x	50	$0.2-0.5-1-1.5-3-$ $20-40-100-200$	56 AVP SPF 7P1000/XP1020/XP1021
SPF $125 / \mathrm{x}$	70	$0.2-1-1.5-3$ $0.2-0.5-1-1.5-2-3-5-$ $20-80-100-200$	XP1030

Sheets and blocks:

Type	Length (mm)	Width (mm)	Standardized thicknesses (x) (mm)
SPF $350 / 350 / \mathrm{x}$	350	350	$1-2-3-4-5-10$
SPF $500 / 500 / \mathrm{x}$	500	500	$10-15$
SPF $800 / 500 / \mathrm{x}$	800	500	$10-15-20-30$
SPF $1500 / 1000 / \mathrm{x}$	1500	1000	$10-15$

Foil: thickness between 5 and $100 \mu \mathrm{~m}$.
Scintillators of one piece can be made up till 100 kg .
Bigger blocks (up till 1000 kg) can be manufactured by welding more pieces together.

Range of partieles in dependence of energy

PLASTIC HORNYAK SCINTILLATOR FOR FAST NEUTRONS MEASUREMENT IN NUCLEAR REACTORS

SPH scintillators are composed of a styrene monomer polymerized with zinc sulphide. The action of neutrons causes the styrene to produce recoil protons which ionize the zinc sulphide, thus producing scintillations.

CHARACTERISTICS

Time constant of fluorescence ${ }^{1}$)

0.1 to 1	$\mu \mathrm{~s}$
4500	\AA
$80-85$	${ }^{\circ} \mathrm{C}$
1.5	$\%$
≈ 1.0	

SENSITIVITY TO GAMMA RAYS AND SLOW NEUTRONS

Because this sensitivity is low the luminous pulses produced by these two types of radiation have a very much smaller amplitude. It is therefore possible to eliminate them almost completely by choosing the threshold of the discriminator which follows the photomultiplier at such a high level that only the pulses from fast neutrons are counted.

Available dimensions:

Discs with a diameter between 25 mm and 125 mm are available according to customers specifications.
${ }^{1}$) With a good approximation the decay of fluorescence can be calculated with:
$\frac{\mathrm{I}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{O}}}=\frac{1}{(1+\mathrm{At})^{2}}$
where $A=3$ to 4.10^{6}
$\mathrm{t}=$ time in s

Response curve with a Ra-Be source

Photoscintillators

32 mm PHOTOSCINTILLATOR

Photoscintillator intended for X-ray spectrometry.

	QUICK REFERENCE DATA
Photomultiplier tube	XP 1010
Scintillator	Na I(Tl) $32 \times 2 \mathrm{~mm}$
Voltage divider	with Be window 0.2 mm
not incorporated	

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12-pin (Jedec B12-43)

Envelope
Material: stainless steel

ACCESSORIES

Socket FE1002

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1010 see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

Na I (Tl) crystal with Be window
type SIS 32×2
diameter 32 mm
thickness (crystal)
2 mm
thickness (window)
0.2 mm

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800 \mathrm{~V}$

32 mm PHOTOSCINTILLATOR

Photoscintillator intended for X-ray spectrometry.

QUICK REFERENCE DATA	
Photomultiplier tube	XP1010
Scintillator	$\mathrm{NaI}(\mathrm{Tl}) \quad 32 \times 2 \mathrm{~mm}$ with Be window 0.2 mm
Voltage divider	incorporated

DIMENSIONS AND CONNECTIONS
Envelope
Material: stainless steel

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1010 see Handbook section "Photomultiplier tubes". A mu-metal shield is incorporated.

SCINTILLATOR

NaI (Tl) crystal with Be window	type SIS 32×2
diameter	32 mm
thickness (crystal)	2 mm
thickness (window)	0.2 mm

VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800 \mathrm{~V}$

32 mm PHOTOSCINTILLATOR

Watertight photoscintillator intended for X-ray spectrometry.

QUICK REFERENCE DATA	
Photomultiplier tube	XP1010
Scintillator	$\mathrm{NaI}(\mathrm{T} 1) \quad 32 \times 2 \mathrm{~mm}$ with Be window 0.2 mm
Voltage divider	incorporated

DIMENSIONS AND CONNECTIONS
Dimensions in mm

Envelope

Material: stainless steel

PS1012

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1010 see Handbook section "Photomultiplier tubes". A mu-metal shield is incorporated.

SCINTILLATOR

NaI (T1) crystal with Be window

```
diameter
32 mm
thickness (crystal)
    2 mm
    thickness (window)
    0.2 mm
```


VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
V_{b} max. 1800 V

PS1013

32 mm PHOTOSCINTILLATOR

Photoscintillator intended for use in medical applications (X-ray).

QUICK REFERENCE DATA	
Photomultiplier tube	XP1010
Scintillator	NaI (Tl) $32 \times 6 \mathrm{~mm}$ with Al window 0.2 mm
Voltage divider	incorporated

DIMENSIONS AND CONNECTIONS

Envelope
Material: stainless steel
Connectors
Coaxial flexible leads (50Ω)

\square

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1010 see Handbook section "Photomultiplier tubes" A mu-metal shield is incorporated.

SCINTILLATOR

NaI (Tl) crystal with Al window

```
diameter
    32 mm
    thickness (crystal)
    thickness (window)
    0.2 mm
```


VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800 \mathrm{~V}$

32 mm PHOTOSCINTILLATOR

Photoscintillator with possibility to mount a collimator and intended for use in medical applications (X-ray).

	QUICK REFERENCE DATA		
Photomultiplier tube	XP1010		
Scintillator	NaI (Tl) 32×6	mm	
		with Al window 0.2	mm
Voltage divider	incorporated		

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Envelope
Material: stainless steel

Connections

Coaxial flexible leads (50Ω)

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1010 see Handbook section "Photomultiplier tubes". A mu-metal shield is incorporated.

SCINTILLATOR

$\mathrm{NaI}(\mathrm{Tl})$ crystal with Al window

```
diameter
    32 mm
    thickness (crystal)
    thickness (window)
    0.2 mm
```


VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .1800 \mathrm{~V}$

32 mm PHOTOSCINTILLATOR

Probe with accomodation for interchangeable NaI (Tl) scintillators intended for medical applications.

	QUICK REFERENCE DATA
Photo multiplier tube	
Scintillator	
Voltage divider	not incorporated
incorporated	

DIMENSIONS AND CONNECTIONS

Envelope
Material: stainless steel
Connections
Coaxial flexible leads (50 Ω)

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1010 see Handbook section "Photomultiplier tubes". A mu-metal shield is incorporated.

SCINTILLATOR

The NaI (Tl) scintillator must be ordered separately.
The maximum diameter is 25 mm , the thickness depends on the application.
The scintillators are delivered in an adapted mount which can be screwed into the probe.

VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800$

14 mm PHOTOSCINTILLATOR

Basic miniature probe with accommodation for alpha, beta, gamma and fast neutron scintillators.

	QUICK REFERENCE DATA
Photomultiplier tube	XP1110/01
Scintillator	not incorporated
Voltage divider	incorporated

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Envelope
Material: stainless steel

Connections

Coaxial flexible leads (50Ω)

ACCESSORIES

Scintillators and mounting cap should be ordered separately.

PHOTOMULTIPLIER TUBE

For data of the photomultiplier XP1110/01 see under type XP1110 Handbook section "Photomultiplier tubes".
Type XP1110/01 = type XP1110 but selected for a gain of 10^{7}.
A mu-metal shield is incorporated.

VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .1800 \mathrm{~V}$

OPERATIONAL CONSIDERATIONS

For multi-channel detection to analyze high-energy particles the signal at S10 can be used for commanding an auxiliary circuit (gate, logic circuit etc.).

14mm PHOTOSCINTILLATOR

Basic miniature probe for photometric applications.
\(\left.$$
\begin{array}{l}\hline \\
\hline \text { QUICK REFERENCE DATA } \\
\hline \text { Photomultiplier tube } \\
\text { Scintillator } \\
\text { Voltage divider }\end{array}
$$ \begin{array}{c}not incorporated

incorporated\end{array}\right]\)| DIMENSIONS AND CONNECTIONS | Dimensions in mm |
| :--- | :--- |
| Envelope | |
| Material: stainless steel | |

Connections
Coaxial flexible leads (50Ω)

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1110 see Handbook section "Photomultiplier tubes". A mu-metal shield is incorporated.

VOLTAGE DIVIDER

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800$
V

44 mm PHOTOSCINTILLATOR

Watertight photoscintillator intended for gamma detection and counting in liquids. A pre-amplifier is incorporated.

	QUICK REFERENCE DATA
Photomultiplier tube	53 AVP
Scintillator	NaI(Tl) $44 \times 50 \mathrm{~mm}$
	with stainless steel window 0.5 mm
Voltage divider	incorporated
Pre-amplifier	incorporated

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Envelope
Material: stainless steel

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube 53AVP see Handbook section "Photomultiplier tubes". A mu-metal shield is incorporated.

SCINTILLATOR

$\mathrm{NaI}(\mathrm{Tl})$ crystal with stainless steel window diameter thickness (crystal) thickness (window) gamma threshold

LIMITING VALUES (Absolute max. rating system)
Supply voltage

OPERATIONAL CONSIDERATIONS

The photoscintillator is ready for use after applying a stabilized D.C. voltage to the HT connection and a D.C. voltage of -24 V to the pre-amplifier connection.
The photoscintillator is measured with a $5 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs}$ source placed along the axis of the scintillator, at a distance of 15 cm .

The threshold of the detection circuit at the output of the pre-amplifier has an average value of 40 mV .
The average plateau length for a count rate of approx. 500 counts/s is 300 V .
The background at the middle of the plateau, measured with a shield of 50 mm Pb , is 50 counts/s.
The average voltage at the middle of the plateau is 1500 V .

REMARKS

If the photoscintillator is used with a multi-channel analyzer having a negative D. C. input carrier signal, it is necessary to connect the following circuit between the signal output terminal of the PS1531 and the input terminal of the analyzer to prevent damage to the electrolytic capacitor in the output stage of the pre-amplifier of the PS1531.

44 mm PHOTOSCINTILLATOR

Photoscintillator intended for X-ray spectrometry.

	QUICK REFERENCE DATA
Photomultiplier tube	
Scintillator	$53 \mathrm{AVP} / 02$
Voltage divider	NaI(Tl) $44 \times 2 \mathrm{~mm}$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

Envelope
Material: stainless steel

ACCESSORIES

Socket
FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier 53AVP/02 see under type 53AVP Handbook section "Photomultiplier tubes"
Type 53AVP/02 is a specially selected 53AVP for X-ray spectrometry use. A mu-metal shield is incorporated.

SCINTILLATOR

| NaI(Tl) crystal with Be window | type SIS 44×2 |
| :--- | ---: | :--- |
| diameter | 44 mm |
| thickness (crystal) | 2 mm |
| thickness (window) | 0.2 mm |

LIMITING VALUES (Absolute max. rating system)
Supply voltage
V_{b} max. 1800 V

$130 \times 202 \mathrm{~mm}$ PHOTOSCINTILLATOR

Photoscintillator intended for alpha and beta-counting. It is insensitive to light.

	QUICK REFERENCE DATA
Photomultiplier tube	
Scintillator	SPABM 139 x 209
Voltage divider	incorporated

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Envelope
Material: Al

Photomultiplier tube

For data of the photomultiplier tube 54AVP see Data Handbook, section "Photomultiplier tubes".
A Mumetal shield is incorporated.
Scintillator
Aluminized film of ZnS deposited on a foil
of fluorescent plastic SPF scintillator
type SPABM 139×209
$\begin{array}{ll}\text { effective width } & 130 \mathrm{~mm} \\ \text { effective length } & 202 \mathrm{~mm}\end{array}$
Light guide
The scintillator is coupled to the photomultiplier by means of an acrylate light guide.
Voltage divider

OPERATIONAL CONSIDERATIONS

1. Anode load

As no anode load resistor is mounted in this photoscintillator the user is free to use one which is adapted to the related circuitry.
The time constant of the anode load must be so chosen that the maximum count rate to be expected can be handled.
2. Protecting grid

It is advisable to protect the thin light-tight window against mechanical damage by fitting a grid over it. To obtain a good efficiency the transparency of this grid must be at least 80%.
A Mylar foil can be used for further protection.

OPERATIONAL CONSIDERATIONS (continued)

3. Supply voltage

The supply voltage must be between 1600 and 1950 V .
4. Alpha-efficiency

With a thin ${ }^{239} \mathrm{Pu}$ source and a Mylar foil having a thickness of $3.6 \mu \mathrm{~m}$ the alphaefficiency will be at least 13%; without protection this will be approximately 17\%. ${ }^{1}$)
5. Beta-efficiency

With a thin low-activity ${ }^{204} \mathrm{Tl}$ source having an area of $160 \mathrm{~cm}^{2}$ the beta-efficiency will be at least 5% (without protecting grid 6.25%). ${ }^{1}$)
6. Background

At an ambient activity less than $20 \mu \mathrm{R} / \mathrm{h}$ the alpha background of the photoscintillator is ≤ 0.1 count $/ \mathrm{s}$.

[^57]

130×202 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-counting.
It is insensitive to light.

	QUICK REFERENCE DATA
Photomultiplier tube	54 AVP
Scintillator	SPF 139 x 209
Voltage divider	incorporated

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Envelope
Material: A1

Photomultiplier tube
For data of the photomultiplier tube 54AVP see Data Handbook, section "Photomultiplier tubes"
A Mumetal shield is incorporated.

Scintillator

Fluorescent plastic scintillator

effective width	130 mm	
effective length	202 mm	
effective thickness	80	mm

In front of the scintillator an aluminium foil is mounted to make the photoscintillator insensitive to light.
Thickness of this Al window is 0.4 mm .

Voltage divider

OPERATIONAL CONSIDERATIONS

1. Anode load

As no anode load resistor is mounted in this photoscintillator the user is free to use one which is adapted to the related circuitry.
The time constant of the anode load must be so chosen that the maximum count rate to be expected can be handled.
2. Protecting grid

It is advisable to protect the thin light-tight window against mechanical damage by fitting a grid over it. To obtain a good efficiency the transparency of this grid must be at least 80%.
A Mylar foil can be used for further protection.
3. Supply voltage

The supply voltage must be between 1600 and 1950 V .

UNIVERSAL PHOTOSCINTILLATOR BASE ASSEMBLY

The S5600 base assembly is essentially a probe-like mechanical system with provisions for mounting a photomultiplief tube, a voltage divider, a limiter and either a scintillator or a light guide.
The necessary wiring is already present as well as printed wiring boards carrying the limiter and voltage dividers.
The photomultiplier tube, scintillator, light guide or fastening clip must beordered separately.

QUICK REFERENCE DATA			
H.T. supply of the photomultiplier tube (negative polarity)	\max.	2500	V
H.T. supply current	\max.	1.20	$\mathrm{mA} / \mathrm{kV}$
Limiter supply voltage (positive polarity)		24	V
Limiter supply current		35	mA

TYPE DESIGNATION

S5600/01: Complete assembly with:

- mu-metal and soft-iron shields,
- socket for photomultiplier tube,
- decoupling capacitors for photomultiplier tube,
- 2 printed circuit boards carrying the voltage divider,
- 1 printed circuit board carrying the limiter,
- fastening rings for light guide or scintillator

Without photomultiplier tube, scintillator, light guide or fastening clip. This assembly is intended for use with a photomultiplier tube type 56 AVP, 56 DVP, 56DUVP, 56TUVP, 56TVP or 56 UVP.
S5600/02: As S5600/01 but for use with a photomultiplier tube type 56 CVP.
S5600/03: As 5600/01 but for use with a photomultiplier tube type 58AVP, 58DVP, 58UVP, XP1040 or XP1041

DIMENSIONS

S5600/01	overall length	max.	465
S5600/02	diameter	\max.	92
	net weight		4.5
S5600/03	overall length	max.	693
	diameter	\max.	172
	net weight		15

PHOTOMULTIPLIER TUBE

The photomultiplier tube must be ordered separately.
For tube data see Handbook section "Photomultiplier tubes".

SCINTILLATOR

The plastic scintillator must be ordered separately. The required dimensions should be stated when ordering this scintillator.
For scintillator data see Handbook section "Scintillators" type SPF.

LIGHT GUIDE

The light guide to be ordered separately has a maximum diameter of 40 mm for types S5600/01 and S5600/02 or 100 mm for type S5600/03. The required dimensions should be stated when ordering this light guide.

ACCESSORIES

The following accessories can be ordered separately:
M/5600/01: As S5600/01 but without the printed wiring boards carrying voltage divider and limiter.

M/5600/02: As $\mathrm{S} 5600 / 02$ but without the printed wiring boards carrying voltage divider and limiter.

M/5600/03: As S5600/03 but without the printed wiring boards carrying voltage divider and limiter.

M/ 5600/AR: As M/ 5600/01 but without anti-magnetic shields and without fastening rings for light guide or scintillator.

ACCESSORIES (continued)
PS A 100 : Fastening clip for types S5600/01 and S5600/02
PS A 101 : Voltage divider for S5600/02 (2 circuits)
PS A 102 : Two printed circuit boards without components for mounting a voltage divider at choice.
PS A 103 : Voltage divider for S5600/01 and S5600/03 (2 circuits)
PS A 104 : Limiter with transistors type 2N700A (obsolete)
PS A 104/0: Limiter with transistors BS X 29
PS A 105 : Opaque cap for types S5600/01 and S5600/02
PS A 106 : Fastening rings for light guide or scintillator for types S5600/01 and S5600/02
PS A 116 : Fastening ring for light guide or scintillator for type S5600/03
PS A 107 : Soft-iron shield for types S5600/01 and S5600/02
PS A 117 : Soft-iron shield for type S5600/03
PS A 108 : Foam-plastic ring for types S5600/01 and S5600/02
PS A 118 : Foam-plastic ring for type S5600/03
PS A 109 : Passive printed circuit board to replace limiter PS A 104 in case of direct connection to the anode
TA 60/09 : Mu-metal shield for types S5600/01 and S5600/02 $\phi 148-L=335=$ Mu-metal shield for type S5600/03

See also pages 4 and 5 .

CONNECTIONS

Matching connectors

- HT : LEMO F III C40 HT10

Dynodes S11 to S14
: LEMO F II M4 x 1.3
+24 V : LEMO F I M2 x 1.3
Signal, Test, Pulse calibration: LEMO F I C 100

OPERATIONAL CONSIDERATIONS

The H.T. supply of the probe must have a negative polarity. The absolute maximum value of the H.T. is 2500 V but, depending on the type of photomultiplier tube used, it must not exceed the value giving a gain of 10^{9}.
The H.T. supply current is max. $1.20 \mathrm{~mA} / \mathrm{kV} \pm 10 \%$.
The supply voltage of the limiter must have a positive polarity ($\mathrm{V}_{\mathrm{S}}=$ interstage voltage). This voltage is $24 \mathrm{~V} \pm 1 \mathrm{~V}$ at a current of about 35 mA .

Characteristics of the limiter, measured with set-up as below
The amplitude of the output signal $\mathrm{V}_{\mathrm{op}}=1.6 \mathrm{~V}$, across 100Ω. The rise time (τ_{r}) from 0.1 to $0.9 \mathrm{~V}_{\mathrm{S}}$ is max. 2 ns .
Ambient temperature max. $40^{\circ} \mathrm{C}$.

Characteristics of S5600 equipped with a photomultiplier tube type 56AVP or 56DVP
Measuring set-up

Light pulse rise time $\tau_{r}=\max .0 .6 \mathrm{~ns}$
Width at half height max. 0.9 ns
H. T. for a gain $G=10^{8}$: See photomultiplier tube data

Output pulse: $\tau_{r}=4 \mathrm{~ns}$
S5600
GENERAL CIRCUIT

S5600

LIMITER PS A 104

Circuit

Printed circuit board

S5600

LIMITER PS A 104/0

Circuit

$\underline{\text { Printed circuit board }}$

VOLTAGE DIVIDER PS A 101

Printed circuit board 1

Circuit 1

$\underline{\text { Printed circuit board } 2}$
Circuit 2

VOLTAGE DIVIDER PS A 103

Printed circuit board 1

Circuit 1

Circuit 2

PRINTED CIRCUIT BOARD CB31

Used in all types S5600

WIRING DIAGRAM PHOTOMULTIPLIER SOCKET

GENERAL WIRING DIAGRAM

44 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA	
Photomultiplier tube	153AVP
Scintillator	$\mathrm{NaI}(\mathrm{T} 1) 44 \times 50 \mathrm{~mm}$ with Al window 0.5 mm
Voltage divider	not incorporated
Resolution (${ }^{377} \mathrm{Cs}$: $661 . \mathrm{keV}$)	$\leq 9 \%$

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base: 14-pin (Jedec B14-38)

Envelope
material: Al

ACCESSORIES

Socket
FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube 153AVP see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

| NaI(Tl) crystal with Al window | type SIS $44 \times 50 \mathrm{~mm}$ |
| :--- | ---: | ---: |
| diameter | 44 mm |
| thickness (crystal) | 50 mm |
| thickness (window) | 0.5 mm |
| gamma threshold | $\approx 50 \mathrm{keV}$ |

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .1800 \mathrm{~V}$

44 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA			
Photomultiplier tube			
Scintillator	well type $\mathrm{NaI}(\mathrm{Tl})$	$44 \times 50 \mathrm{AVP}$	
Voltage divider	not incorporated		
Resolution $(137 \mathrm{Cs}: 661 \mathrm{keV})$		≤ 10	$\%$

DIMENSIONS AND CONNECTIONS Dimensions in mm
Base: 14-pin (Jedec B14-38)

Envelope
Material: Al

ACCESSORIES

Socket FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube 153AVP see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

Well-type NaI(Tl) crystal with Al window	
Crystal	
diameter	
thickness	type SIS $44 \times 50 \mathrm{P}$
Well	44 mm
\quad useful diameter	50 mm
useful depth	16.7 mm
Window thickness gamma threshold	39.3 mm

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800 \mathrm{~V}$

XP1052

44 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA				
Photomultiplier tube	XPlo01			
Scintillator	NaI (Tl) 44×50	mm		
	with Al window 0.5	mm		
Voltage divider	not incorporated			
Resolution ($137 \mathrm{Cs}: 661 \mathrm{keV})$	≤ 8	$\%$		
Peak/valley ratio $\left({ }^{60} \mathrm{Co}\right)$	≥ 8			

DIMENSIONS AND CONNECTIONS Dimensions in mm
Base: 14-pin (Jedec B14-38)

Envelope
Material: Al

ACCESSORIES

Socket
FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1001 see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

Na I (Tl) crystal with Al window	type $\operatorname{SIS} 44 \times 50$	mm
diameter	44	mm
thickness (crystal)	50	mm
thickness (window)	0.5	mm
gamma threshold	≈ 50	keV

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .1800 \mathrm{~V}$

44mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA			
Photomultiplier tube			
Scintillator	XP1001		
Voltage divider	not type Na I (T1) 44×50	mm	
Resolution $(137 \mathrm{Cs}: 661 \mathrm{keV})$	norporated		

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base: 14-p (Jedec B14-38)

Envelope
Material: A1

ACCESSORIES

Socket
FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1001 see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

Well-type NaI (Tl) crystal with Al window	type SIS $44 \times 50 \mathrm{P}$
Crystal	
diameter	44 mm
thickness	50 mm
Well	
useful diameter	16.7 mm
useful depth	39.3 mm
Window	
thickness	0.5 mm
gamma threshold	$\approx 50 \mathrm{keV}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \quad \max .1800 \mathrm{~V}$

75 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA	
Photomultiplier tube	XP1031
Scintillator	$\mathrm{NaI}(\mathrm{T} 1) \quad 75 \times 63 \mathrm{~mm}$ with Al window 0.5 mm
Voltage divider	not incorporated
Resolution (${ }^{137} \mathrm{Cs}$: 661 keV)	$\leq 9 \%$

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 14-pin (Jedec B14-38)

Envelope
Material: Al

ACCESSORIES

Socket
FE1001

XP1190

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1031 see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

| NaI(Tl) crystal with Al window | type SIS 75×63 |
| :--- | ---: | :--- |
| diameter | 75 mm |
| thickness (crystal) | 63 mm |
| thickness (window) | 0.5 mm |
| gamma threshold | $\approx 50 \mathrm{keV}$ |

LIMITING VALUES (Absolute max. rating system)
Supply voltage
Vb max. 2000 V

75 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA				
Photomultiplier tube	XP1031			
Scintillator	Na I (T1) 75×75	mm		
	with Al window 0.5	mm		
Voltage divider	not incorporated			
Resolution ($\left.{ }^{137} \mathrm{Cs}: 661 \mathrm{keV}\right)$	≤ 8.5	$\%$		
Peak/valley ratio $(60 \mathrm{Co})$	≥ 8			

DIMENSIONS AND CONNECTIONS
Dimensions in mm
Base: 14-pin (Jedec B14-38)

Envelope
Material: Al

ACCESSORIES

Socket
FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1031 see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

Na I (Tl) crystal with Al window	type SIS 75×75
diameter	75 mm
thickness (crystal)	75 mm
thickness (window)	0.5 mm
gamma threshold	$\approx 50 \mathrm{keV}$

LIMITING VALUES (Absolute max. rating system)

Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .2000 \mathrm{~V}$

75 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA			
Photomultiplier tube			
Scintillator	XP1031		
Voltage divider	well type NaI (Tl) 75×75	mm	
Resolution $\left({ }^{137} \mathrm{Cs}: 661 \mathrm{keV}\right)$		≤ 11	$\%$

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

Envelope
Material: Al

ACCESSORIES

Socket
FE1001

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1031 see Handbook section "Photomultiplier tubes".
A mu-metal shield is incorporated.

SCINTILLATOR

| Well-type NaI (Tl) crystal with Al window | |
| :--- | ---: | :--- |
| Crystal
 diameter
 thickness | type SIS $75 \times 75 \mathrm{P}$ |
| Well | 75 mm |
| \quad useful diameter | 75 mm |
| useful depth | 16.7 mm |
| Window
 thickness
 gamma threshold | 52 mm |

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .2000 \mathrm{~V}$

75 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA				
Photomultiplier tube				
Scintillator	XP1031			
	NaI (Tl) 75×50	mm		
Voltage divider	with Al window 0.5	mm		
Resolution $\left({ }^{137} \mathrm{Cs}: 661 \mathrm{keV}\right)$	not incorporated			

DIMENSIONS AND CONNECTIONS

Base: 14-pin (Jedec B14-38)

Envelope
Material: Al

ACCESSORIES

Socket:

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube XP1031 see Handbook section "Photomultiplier tubes'
A mu-metal shield is incorporated.

SCINTILLATOR

NaI (Tl) crystal with Al window	type SIS 75×50
diameter	75 mm
thickness (crystal)	50 mm
thickness (window)	0.5 mm
gamma threshold	$\approx 50 \mathrm{keV}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .2000 \mathrm{~V}$

38 mm PHOTOSCINTILLATOR

Photoscintillator intended for gamma-ray spectrometry.

QUICK REFERENCE DATA				
Photomultiplier tube	selected 150 AVP			
Scintillator	NaI (Tl) 38×25	mm		
	with Al window 0.5	mm		
Voltage divider	not incorporated			
Resolution (${ }^{137} \mathrm{Cs}: 661 \mathrm{keV}$)	≤ 9	$\%$		

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base: 12 -pin (Jedec B12-43)

ACCESSORIES

Socket
FE 1002

PHOTOMULTIPLIER TUBE

For data of the photomultiplier tube 150AVP see Handbook section "Photomultiplier tubes".
The 150AVP used is selected to meet the requirement for resolution of 9%. A mu-metal shield is incorporated.

SCINTILLATOR

$\mathrm{NaI}(\mathrm{Tl})$ crystal with Al window	type SIS 38×25
diameter	38 mm
thickness (crystal)	25 mm
thickness (window)	0.5 mm
gamma threshold	$\approx 50 \mathrm{keV}$

LIMITING VALUES (Absolute max. rating system)
Supply voltage
$\mathrm{V}_{\mathrm{b}} \max .1800 \mathrm{~V}$

Radiation counter tubes

RADIATION COUNTER TUBES LIST OF SYMBOLS

Anode supply voltage V_{b}
Voltage at the beginning of the plateau V_{b}
Voltage at the end of the plateau $\mathrm{V}_{\mathrm{b}_{2}}$
Plateau length $\left(=\mathrm{V}_{\mathrm{b}_{2}}-\mathrm{V}_{\mathrm{b}_{1}}\right)$
Starting voltageV_{pl}
Count rate (= counts/unit of time) N$\mathrm{V}_{\mathrm{ign}}$
Count rate at $\mathrm{V}_{\mathrm{b}_{1}}$ N_{1}
Count rate at $\mathrm{V}_{\mathrm{b}_{2}}$
Background N_{O}
Plateau slope $\left(=\frac{\mathrm{N}_{2}-\mathrm{N}_{1}}{\frac{1}{2}\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)} \times \frac{1}{\mathrm{~V}_{\mathrm{pl}}} \times 100 \%\right)$ S_{pl}
Dead time τ
Capacitance (anode to cathode) $\mathrm{C}_{\text {ak }}$
Ambient temper ature t_{amb}
Gas multiplication factor A

GENERAL OPERATIONAL RECOMMENDATIONS RADIATION COUNTER TUBES

1. GENERAL

1.1 A radiation counter tube is a gas-filled device which reacts to individual ionizing events, thus enabling them to be counted.
1.2 A radiation counter tube basically consists of an electrode at a positive potential (anode), surrounded by a metal cylinder at a negative potential (cathode). The cathode forms part of the envelope or is enclosed in a glass envelope. Quanta or particles may enter the counter tube either through a foil (the window) or through the cylinder wall itself.
1.3 Typical quanta or particles are:
alpha rays, beta rays, X- or gamma rays, thermal neutrons.
1.4 The gas filling normally consists of a mixture of rare gases and aquenching agent (self-quenched counter tube).
1.5 Quenching is the process of terminating a pulse of ionization current in a counter tube.
1.5.1 For tubes provided with a quenching agent the voltage drop across the load resistor, normally used, is sufficient for terminating the discharge.

2. CAPACITANCE

The capacitance of a counter tube is the capacitance between anode and cathode, the connections being completely shielded.

3. OPERATING CHARACTERISTICS

3.1 Starting voltage. This is the minimum anode supply voltage applied to a radiation counter tube at which pulses of 1 V amplitude appear across the tube.
3.2 Operating voltage. This is the anode supply voltage at which the radiation coun-
ter tube should be used.
If this is not quoted the middle of the minimum plateau (i.e. $\frac{\mathrm{V}_{\mathrm{b}_{1}}+\mathrm{V}_{\mathrm{b}_{2}}}{2}$) should be regarded as the recommended operating voltage.
3.3 Plateau. The range of anode supply voltage values for which the count rate varies relatively little under constant conditions of irradiation. Unless otherwise stated, the plateau is measured at a count rate of approximately 100 counts $/ \mathrm{s}$.
3.4 Plateau slope. The percentage change in count rate for a given change (usually $\overline{\mathrm{V}}$) in anode supply voltage.
3.5 Background. The count rate of a counter tube in the absence of the radiation which the tube is meant to measure.
3.6 Dead time. This is the time interval after the initiation of a voltage pulse during which (assuming no interference by an external circuit) a subsequent ionizing event does not produce a discharge.
Unless otherwise stated the dead time curve is given at a count rate of 100 counts/s.
4. MEASURING CIRCUITS
4.1 Measuring circuit A

Note: The value of R_{1} should not be lower than the value specified by the manufacturer and mounted close to the anode connector.
4.2 Measuring circuit B

Notes:

1. The input resistance and the input capacitance of the measuring equipment are incorporated in R_{2} and C_{2}, respectively.
2. R_{1} should be as specified by the manufacturer and mounted close to the anode connector.
3. When applying a rectangular pulse at " 1 " with the tube inserted but short-circuited, capacitor C_{2} should be adjusted so that the pulse at " 3 " is undistorted. Under these conditions $\mathrm{R}_{1}\left(\mathrm{C}_{1}+\right.$ stray capacitance $)=\mathrm{R}_{2} \mathrm{C}_{2}$.
4. The measuring equipment consists of a cathode follower with a pulse shaper, a limiting amplifier and a scaler.

Unless otherwise stated the measurements of a certain type are carried out in the measuring circuit given in the data sheet and with a ${ }^{60}$ Co source, at
$\mathrm{V}_{\mathrm{b}}=\frac{\mathrm{V}_{\mathrm{b}_{1}}+\mathrm{V}_{\mathrm{b}_{2}}}{2}$ and at $\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

5. OPERATIONAL NOTES

5.1 Pulse amplitude. The pulse amplitude of the radiation counter tubes may be estimated generally at $\mathrm{P} \geqq \mathrm{b}\left(\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{i} g \mathrm{n}}\right)$. In this formula V_{b} is the anode supply voltage and Vign the starting voltage of the tube. The factor b originates from the tap on the anode resistor, as indicated in the recommended measuring circuit. The influence of the connected capacitive load is thus minimized.
5.2 Scaler. The resolving time of the scaler should be smaller than the minimum dead time of the counter tube. For normal use and at moderate count rates an input sensitivity of approximately 0.5 V will be sufficient. At very high count rates the mean level of the anode voltage of the counter tube will drop appreciably below V_{b}, and the pulse amplitude will decrease accordingly so that the smallest pulses will be lost at the input of the scaler. In this case it is possible to increase the sensitivity of the measuring equipment by means of a pulse amplifier combined with pulse shaper.
5.3 Pulse shaper and amplifier. The circuit should have a resolving time shorter than the minimum dead time of the counter tube. The pulse amplitude should not be influenced by the pulse shaper. Pulse amplification should be sufficiently high and the rise time of the amplifier should be considerably smaller than the rise time of the pulse from the counter tube.
5.4 Load. Normally the tubes should be operated with an anode resistor having a value as indicated in the data sheets, or a higher value. Decreasing the resistance of the anode resistor not only decreases the dead time, but also the plateau length. In general a decrease of the resistance below the indicated minimum value causes the tube to oscillate.
The anode resistor should be connected directly to the anode connector of the tube, thus preventing parasitic capacitances of leads from considerably increasing the capacitive load on the tube. An increase in the capacitive load has the tendency of increasing the pulse amplitude, the pulse duration, the dead
time and the plateau slope, whereas the plateau length will be shortened appreciably. Shunt capacitances of 20 pF or more may destroy the tube.
5.5 Count rate. After every pulse the counter tube is temporarily insensitive during a period called the dead time. Consequently, the pulses that occur during this period are not counted. At a count rate of N counts/s the tube will be insensitive during $100 \mathrm{NT} \%$ of the time, so that approximately $100 \mathrm{NT} \%$ of the counts will be lost. If the counting losses may not be greater than 1%, N should be less than $1 / 100 \tau$ counts $/ \mathrm{s}$. The maximum count rate is approximately $1 / \tau$. For continuous stable operation, however, it is recommended to operate at a lower count rate than this maximum value.

6. LIMITING VALUES

6.1 The limiting values of radiation counter tubes are given in the absolute maximum rating system.

Absolute maximum rating system (in accordance with I.E.C. publication 134)
Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute-maximum values for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.
6.2 Ambient temperature. The ambient temperature is the temperature of the surroundings of the tube.

7. MOUNTING

7.1 Unless otherwise stated, any mounting position is permissible.
7.2 Low-capacitance mounting of the tube is required (shortest possible connection between anode connector and load resistor; low capacitance between anode and cathode leads.
7.3 No attempt should be made to solder directly to the stainless steel cathode, as this will destroy the tube.

8. STORAGE AND HANDLING

8.1 The tube should not be stored at ambient temperatures outside the limits given under the heading "Limiting values" on the data sheets.
8.2 In order to prevent leakage between anode and cathode the tube should be dry and well cleaned.
8.3 At a low ambient temperature care should be taken to avoid condensing of water vapour on the connectors.
8.4 Some types of radiation counter tubes have thin windows and/or thin cathode walls. In order to prevent damage, these tubes should be handled and mounted with utmost care. The mica-window types are provided with a cap to protect the window when they are not in operation.
9. OUTSIDE PRESSURE
9.1 In tubes provided with a window the gas pressure outside the tube should be neither lower than 25 cm Hg nor higher than the atmospheric pressure (unless otherwise stated) and variations in pressure should be gradual.
9.2 Care should be taken not to expose tubes having very thin envelopes to pressures substantially higher than atmospheric.

10. OUTLINE DIMENSIONS

The outline dimensions are given in mm .

Beta-ray absorption in window or wall

ZP1080

BETA AND GAMMA RADIATION COUNTER TUBE

Glass wall halogen quenched β and γ radiation dip-counter tube with a DIN base.

QUICK REFERENCE DATA		
Glass wall thickness	30	$\mathrm{mg} / \mathrm{cm}^{2}$
Operating voltage	450 to 600	V
Anode resistor, mounted in the base	3.9	$\mathrm{M} \Omega$

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

Base matched to socket DIN 44421

GLASS WALL

Thickness	$30 \mathrm{mg} / \mathrm{cm}^{2}$
Effective length	70 mm

FILLING

CAPACITANCES

Anode to cathode
C_{ak}
1.5 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of Fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=525 \mathrm{~V} \quad \mathrm{~N}_{\mathrm{O}}$
Dead time at $\mathrm{V}_{\mathrm{b}}=525 \mathrm{~V}$
Sensitivity ($10 \mu \mathrm{Ci} /$ litre $\mathrm{H}_{2} \mathrm{O}$)

$\mathrm{V}_{\text {ign }}$	max. 360 V
$\mathrm{~V}_{\mathrm{b}}$	arbitrary within
V_{pl}	450 to $600 \quad \mathrm{~V}$
$\mathrm{~S}_{\mathrm{pl}}$	max. $0.15 \quad \% / \mathrm{V}$

$\mathrm{N}_{\mathrm{O}} \quad \max .50$ counts/min
T max. $60 \mu \mathrm{~s}$

$$
\begin{aligned}
& \text { for }{ }^{90} \mathrm{Sr} \\
& \text { for }{ }^{32} \mathrm{P} \\
& \text { for }{ }^{137} \mathrm{Cs} \\
& \text { for }{ }^{36} \mathrm{Cl}
\end{aligned}
$$

$\begin{array}{rr}32.5 \times 10^{3} & \text { counts/min } \\ 20 \times 10^{3} & \text { counts } / \mathrm{min} \\ 5.2 \times 10^{3} & \text { counts } / \mathrm{min} \\ 3.8 \times 10^{3} & \text { counts/min }\end{array}$
LIMITING VALUES (Absolute max. rating system)
Anode voltage
Ambient temperature
V_{a}
$t_{a m b}$
$\max .600 \mathrm{~V}$
min. $-50{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}_{1}=3.9 \mathrm{M} \Omega$
$R_{2}=68 \mathrm{k} \Omega$
$\mathrm{R}_{1} \mathrm{C}_{\text {stray }}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

REMARK

The glass wall may become contaminated during use. It is therefore recommended to check the background level of the tube and, if necessary, clean it.

BETA AND GAMMA RADIATION COUNTER TUBE

Glass wall halogen quenched β and γ radiation pour-in counter tube with a DINbase.

QUICK REFERENCE DATA									
Glass wall thickness	30	$\mathrm{mg} / \mathrm{cm}^{2}$							
Operating voltage	450 to 600	V							
Anode resistor, mounted in the base	3.9	$\mathrm{M} \Omega$							
Liquid capacity	100	$\mathrm{~cm}^{3}$							

DIMENSIONS AND CONNECTIONS

Dimensions in mm
Base matched to socket DIN 44421

GLASS WALL

Thickness
$30 \mathrm{mg} / \mathrm{cm}^{2}$
Effective length
66 mm

FILLING

Ne, A, halogen

CAPACITANCE

Anode to cathode
$\mathrm{C}_{\text {ak }}$
1.5 pF

OPERATING CHARACTERISTICS ($t_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of Fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope

Vign max. 360 V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} 450$ to 600 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .15 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .50$ counts/min
T max. $60 \mu \mathrm{~s}$

Dead time at $\mathrm{V}_{\mathrm{b}}=525 \mathrm{~V}$
Sensitivity ($10 \mu \mathrm{Ci} /$ litre $\mathrm{H}_{2} \mathrm{O}$)

$$
\begin{aligned}
& \text { for }{ }^{90} \mathrm{Sr} \\
& \text { for }{ }^{32} \mathrm{P} \\
& \text { for }{ }^{137} \mathrm{Cs} \\
& \text { for }{ }^{36} \mathrm{Cl}
\end{aligned}
$$

32.5×10^{3}	counts $/ \mathrm{min}$
20×10^{3}	counts $/ \mathrm{min}$
5.2×10^{3}	counts $/ \mathrm{min}$
3.8×10^{3}	counts $/ \mathrm{min}$

LIMITING VALUES (Absolute max. rating system)

Anode voltage

Ambient temperature

V_{a}	\max.	600	V
	min.	-50	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	\max.	+75	${ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$\mathrm{R}_{1}=3.9 \mathrm{M} \Omega$
$R_{2}=68 \mathrm{k} \Omega$
$\mathrm{R}_{1} \mathrm{C}_{\text {stray }}=\mathrm{R}_{2} \mathrm{C}_{2}$

REMARK

The glass wall may become contaminated during use. It is therefore recommended to check the background level of the tube and, if necessary, clean it.

ZP1081

ZP1082

BETA AND GAMMA RADIATION COUNTER TUBE

Glass wall halogen quenched β and γ radiation pour-in counter tube with a DIN base.

QUICK REFERENCE DATA			
Glass wall thickness	30	$\mathrm{mg} / \mathrm{cm}^{2}$	
Operating voltage	450 to 600	V	
Anode resistor, mounted in the base	3.9	$\mathrm{M} \Omega$	
Liquid capacity	10	$\mathrm{~cm}^{3}$	

DIMENSIONS AND CONNECTIONS Dimensions in mm
Base matched to socket DIN 44421

GLASS WALL

Thickness
Effective length

FILLING

CAPACITANCE

Anode to cathode
C_{ak}
1.5 pF

ZP1082

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of Fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
$V_{\text {ign }} \max .360 \mathrm{~V}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$V_{\mathrm{pl}} \quad 450$ to 600 V
$\mathrm{S}_{\mathrm{pl}} \quad \max .0 .15 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .50$ counts/min
T max. $60 \mu \mathrm{~s}$

Dead time at $\mathrm{V}_{\mathrm{b}}=525 \mathrm{~V}$
32.5×10^{3} counts/min
20×10^{3} counts/min
5.2×10^{3} counts/min
3.8×10^{3} counts $/ \mathrm{min}$

LIMITING VALUES (Absolute max. rating system)

Anode voltage
Ambient temperature
V_{a}
$t_{a m b}$
max. 600 V
min. $-50 \quad{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}_{1}=3.9 \mathrm{M} \Omega$
$R_{2}=68 \mathrm{k} \Omega$
$\mathrm{R}_{1} \mathrm{C}_{\text {stray }}=\mathrm{R}_{2} \mathrm{C}_{2}$

REMARK

The glass wall may become contaminated during use. It is therefore recommended to check the background level of the tube and, if necessary, clean it.

ZP1083

BETA AND GAMMA RADIATION COUNTER TUBE

Glass wall halogen quenched β and γ radiation dip-counter tube with an octal base.

QUICK REFERENCE DATA			
Glass wall thickness	30	$\mathrm{mg} / \mathrm{cm}^{2}$	
Operating voltage	450 to 600	V	
Anode resistor, mounted in the base	3.9	$\mathrm{M} \Omega$	

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

GLASS WALL

Thickness	$30 \mathrm{mg} / \mathrm{cm}^{2}$
Effective length	70 mm

FILLING

Ne, A, halogen

CAPACITANCE

Anode to cathode
C_{ak}
1.5 pF

ZP1083

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of Fig. 1

Starting voltage
Recommended operating voltage

Plateau

Plateau slope
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=525 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=525 \mathrm{~V}$
Sensitivity ($10 \mu \mathrm{Ci} /$ litre $\mathrm{H}_{2} \mathrm{O}$)

$$
\begin{aligned}
& \text { for }{ }^{90} \mathrm{Sr} \\
& \text { for }{ }^{32} \mathrm{P} \\
& \text { for }{ }^{137} \mathrm{Cs} \\
& \text { for }{ }^{36} \mathrm{Cl}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{ign}}$	max. 360 V
$\mathrm{~V}_{\mathrm{b}}$	arbitrary within plateau
V_{pl}	450 to 600 V
$\mathrm{~S}_{\mathrm{pl}}$	$\max \cdot 0.15 \quad \% / \mathrm{V}$

$\mathrm{N}_{\mathrm{O}} \quad \max .50$ counts/min

$$
\tau \quad \max .60 \mu \mathrm{~s}
$$

LIMITING VALUES (Absolute max. rating system)

Anode voltage
Ambient temperature

V_{a}	\max.	600	V
	min.	-50	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	\max.	+75	${ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

min. $-50{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
32.5 \times 10^{3} & \text { counts } / \mathrm{min} \\
20 \times 10^{3} & \text { counts } / \mathrm{min} \\
5.2 \times 10^{3} & \text { counts } / \mathrm{min} \\
3.8 \times 10^{3} & \text { counts } / \mathrm{min}
\end{aligned}
$$

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}_{1}=3.9 \mathrm{M} \Omega$
$R_{2}=68 \mathrm{k} \Omega$
$\mathrm{R}_{1} \mathrm{C}_{\text {stray }}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

REMARK

The glass wall may become contaminated during use. It is therefore recommended to check the background level of the tube and, if necessary, clean it.

GAMMA RADIATION COUNTER TUBE

Halogen quenched radiation counter tube for the measurement of γ radiation. The tube is provided with a filter. The energy response is flat within 15% referred to the 1.33 MeV point.

	QUICK REFERENCE DATA	
Dose rate range		
$(\gamma$ radiation)	10^{-3} to 3.10^{2}	R / h
Operating voltage	500 to 650 V	
Energy range	40 keV to 3 MeV	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

FILTER

Thickness
2 mm
Material

CATHODE

Thickness
Effective length
Material
FILLING 80 to $100 \mathrm{mg} / \mathrm{cm}^{2}$

16 mm $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$ He, Ne, halogen

CAPACITANCES

Anode to cathode
$\mathrm{C}_{\mathrm{ak}} 2.0 \mathrm{pF}$

Data based on pre-production tubes

OPERATING CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$
Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$

Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

Measured in circuit of fig. 1
$V_{\text {ign }}$
V_{b}
V_{pl}
S_{pl}
N_{O}
T
arbitrary within plateau
500 to 650 V
$\max .0 .15 \% / V$
max. 2 counts/min.
$\max . \quad 15 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R
Anode voltage	Va_{a}
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$

LIFE EXPECTANCY

Life expectancy
\min. $2.2 \mathrm{M} \Omega$
max. 650 V
$\min . \quad-40 \quad{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$

MEASURING CIRCUITS

$\mathrm{R}_{1}=2.2 \mathrm{M} \Omega$
$R_{2}=56 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

GAMMA RADIATION COUNTER TUBE

Halogen quenched γ radiation counter tube

QUICK REFERENCE DATA		
Range $\left({ }^{60}\right.$ Co γ radiation $)$	10^{-4} to $\quad 1 \quad \mathrm{R} / \mathrm{h}$	
Operating voltage	400 to 600	V

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

CATHODE

Thickness
$250 \mathrm{mg} / \mathrm{cm}^{2}$
Effective length
40 mm
Material $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

FILLING

 Ne, A, halogen
CAPACITANCE

Anode to cathode

Cak
2 pF

OPERATING CHARACTERISTICS ($\mathrm{tamb}=25^{\circ} \mathrm{C}$) measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb , at $\mathrm{V}_{\mathrm{b}}=500 \mathrm{~V}$
Dead time at $\mathrm{Vb}=500 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature

LIFE EXPECTANCY

Life expectancy

Vign max. 325 V 1) arbitrary within plateau 400 to 600 V $\max .0 .03 \% / \mathrm{V}$ max. 10 counts/min. $\max .90 \mu \mathrm{~s}$
\min. $4.7 \mathrm{M} \Omega$
$\max .600 \mathrm{~V}$
\min. $-50{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$\mathrm{R}_{1}=10 \mathrm{M} \Omega$
$R_{2}=220 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

BETA AND GAMMA RADIATION COUNTER TUBE

End window halogen quenched β and γ radiation counter tube

DIMENSIONS AND CONNECTIONS
Dimensions in mm

WINDOW

Thickness
Effective diameter
Material

CATHODE

Thickness
Effective length
Material

FILLING

CAPACITANCE

Anode to cathode

2 to $3 \mathrm{mg} / \mathrm{cm}^{2}$
9 mm
mica

OPERATING CHARACTERISTICS ($\mathrm{tamb}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=500 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=500 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ign}}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 400$ to 600 V
$\mathrm{S}_{\mathrm{pl}} \quad \max .0 .03 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max . \quad 10$ counts/min.
$\tau \quad \max . \quad 90 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R_{1}	\min.	4.7	$\mathrm{M} \Omega$
Anode voltage	V_{a}	\max.	600	V
Ambient temperature		$\mathrm{t}_{\mathrm{amb}}$	\min. -50 ${ }^{\circ} \mathrm{C}$ \max. +75 ${ }^{\circ} \mathrm{C}$	

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$R_{1}=10 \mathrm{M} \Omega$
$\mathrm{R}_{2}=220 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$
Fig. 1
${ }^{1}$) Temperature coefficient of starting voltage $=0.5 \mathrm{~V} /{ }^{\circ} \mathrm{C}$

$7 Z 07824$

ALPHA, BETA AND GAMMA RADIATION COUNTER TUBE

End window halogen quenched α, β and γ radiation counter tube

	QUICK REFERENCE DATA		
Window thickness	1.5 to	2	$\mathrm{mg} / \mathrm{cm}^{2}$
Window diameter		19.8	mm
Operating voltage	450 to 700	V	

DIMENSIONS AND CONNECTIONS
Dimensions in mm

WINDOW

Thickness
Effective diameter
Material
CATHODE

Thickness

Effective length
Material
FILLING
CAPACITANCE
1.5 to $2 \mathrm{mg} / \mathrm{cm}^{2}$
19.8 mm
mica
1.2 mm

37 mm $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

Ne, A, halogen

[^58]Cak
2.5 pF

OPERATING CHARACTERISTICS ($\mathrm{tamb}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=500 \mathrm{~V}$
$V_{\text {ign }}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 450$ to 700 V
$\mathrm{S}_{\mathrm{pl}} \quad \max .0 .02 \quad \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .15$ counts/min.
$\tau \quad \max .175 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor
Anode voltage

Ambient temperature

$\mathrm{R}_{1} \quad \min .2 .2 \mathrm{M} \Omega$
$\mathrm{V}_{\mathrm{a}} \max .700 \mathrm{~V}$
$t_{a m b}$
min. $\quad-50{ }^{\circ} \mathrm{C}$
max. $+75{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

Life expectancy
5.10 ${ }^{10}$ counts

MEASURING CIRCUIT

$\mathrm{R}=10 \mathrm{M} \Omega$

Fig. 1

BETA AND GAMMA RADIATION COUNTER TUBE

End window halogen quenched β and γ radiation counter tube

	QUICK REFERENCE DATA	
Window thickness		2.5 to 3.5
Window diameter		27.8
$\mathrm{~mm} / \mathrm{cm}^{2}$		
Operating voltage		450 to 700

DIMENSIONS AND CONNECTIONS

Dimensions in mm

WINDOW

Thickness
Effective diameter
Material
CATHODE
Thickness
Effective length
Material

FILLING
2.5 to $3.5 \mathrm{mg} / \mathrm{cm}^{2}$ 27.8 mm mica

$$
1.3 \mathrm{~mm}
$$

37 mm $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$ Ne, A, halogen

18506

CAPACITANCE

Anode to cathode
Cak
3.5 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1 .
Starting voltage
Recommended operating voltage
Plateau
Plateau slope
$\mathrm{V}_{\text {ign }} \max .375 \mathrm{~V}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$V_{\mathrm{pl}} \quad 450$ to 700 V
$S_{p l} \max .0 .035 \% / V$
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
$\mathrm{N}_{\mathrm{O}} \quad$ max. 25 counts/min.
T $\quad \max \quad 190 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor
Anode voltage
Ambient temperature
$\mathrm{R}_{1} \quad \min .2 .2 \mathrm{M} \Omega$
$\mathrm{V}_{\mathrm{a}} \max .700 \mathrm{~V}$
$\begin{array}{llll}t_{a m b} & \text { min. } & -50 & { }^{\circ} \mathrm{C} \\ \text { max. } & +75 & { }^{\circ} \mathrm{C}\end{array}$

LIFE EXPECTANCY

Life expectancy
5.10^{10} counts

MEASURING CIRCUIT

$\mathrm{R}_{1}=10 \mathrm{M} \Omega$
$R_{2}=220 \mathrm{k} \Omega$
$C_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

18506

X-RAY COUNTER TUBE

End window halogen quenched X-ray counter tube.

QUICK REFERENCE DATA			
X-ray energy	2.5 to $20 \mathrm{keV} ; 0.6$ to	5	\AA
Window thickness	2.5 to	3.5	$\mathrm{mg} / \mathrm{cm}^{2}$
Operating voltage	1600 to 2000	V	

DIMENSIONS AND CONNECTIONS
Dimensions in mm

WINDOW

Thickness
Effective diameter
Material
2.5 to $3.5 \mathrm{mg} / \mathrm{cm}^{2}$
19.8 mm
mica

CATHODE

Thickness

Effective length
Material
FILLING
1.2 mm

107 mm
$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$
A, halogen
Gas pressure 60 cm Hg

CAPACITANCE

Anode to cathode
C_{ak}
2.8 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$). Measured in circuit of fig. 1 .

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=1800 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature
$V_{\text {ign }}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$V_{\text {pl }} 1600$ to 2000 V
$\mathrm{S}_{\mathrm{pl}} \quad \max . \quad 0.04 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{o}} \quad \max .25$ counts/min.
$\tau \quad \max . \quad 110 \mu \mathrm{~s}$

LIFE EXPECTANCY

Life expectancy

R	min.	5	$\mathrm{M} \Omega$
V_{a}	max.	2000	V
	min.	0	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {amb }}$	max.	75	${ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$R=5 \mathrm{M} \Omega$

Fig. 1

BETA AND GAMMA RADIATION COUNTER TUBE

Halogen quenched radiation counter tube for the measurement of γ and high energy $\beta(>0.5 \mathrm{MeV})$ radiation.

QUICK REFERENCE DATA		
Range $\left({ }^{60}\right.$ Co γ radiation)	10^{-3} to 3.10^{2}	R / h
Operating voltage	500 to	650

DIMENSIONS AND CONNECTIONS Dimensions in mm

CATHODE

Thickness
Effective length
Material
80 to $100 \mathrm{mg} / \mathrm{cm}^{2}$
16 mm
$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

FILLING He, Ne, halogen

CAPACITANCE

C_{ak}
1 pF

18509

\square

OPERATING CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$
Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R
Anode voltage	V_{a}
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$

LIFE EXPECTANCY

Life expectancy
\min. $2.2 \mathrm{M} \Omega$
max. 650 V
$\min . \quad-40{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$\mathrm{R}_{1}=2.2 \mathrm{M} \Omega$
$\mathrm{R}_{2}=56 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

X-RAY COUNTER TUBE

Side window organic quenched X-ray counter tube

QUICK REFERENCE DATA		
X-Ray energy	2.5 to $40 \mathrm{keV}(0.3$ to 5	A)
Window thickness	2 to 2.5	$\mathrm{mg} / \mathrm{cm}^{2}$
Operating voltage	1500 to 1850	V

DIMENSIONS AND CONNECTIONS
Dimensions in mm

WINDOW

Thickness
Dimensions
2 to $2.5 \mathrm{mg} / \mathrm{cm}^{2}$
$7 \times 18 \mathrm{~mm}^{2}$
Material
mica

CATHODE

Effective length
Material

FILLING

67 mm $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

Xenon, organic vapour
Xenon pressure 25 cm Hg

CAPACITANCE

Anode to cathode
C_{ak}
2 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1 .

Operating voltage
Geiger threshold
Operating voltage for pulse amplitude

$$
\mathrm{V}_{\mathrm{p}}=1 \mathrm{mV}
$$

Operating voltage for pulse amplitude

$$
\mathrm{V}_{\mathrm{p}}=10 \mathrm{mV}
$$

Energy resolution (See sheet A)
Integrated background for pulses 50% of the pulse amplitude P (unshielded), at $\mathrm{V}_{\mathrm{b}}=1550 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode voltage
Ambient temperature
$\mathrm{V}_{\mathrm{b}} \quad 1500$ to 1850 V l)
min. 1900 V
$\mathrm{V}_{\mathrm{b}} \quad 1460$ to $1540 \quad \mathrm{~V}^{2}$)
$\mathrm{V}_{\mathrm{b}} \quad 1690$ to $1770 \mathrm{~V}{ }^{2}$)
$\left.\Delta \mathrm{P} / \mathrm{P} \quad \max . \quad 22 \quad \%^{2}\right)^{3}$)

V_{a}	\max.	1850	V
	min.	-20	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	\max.	+50	${ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$\mathrm{R}_{1}=2.2 \mathrm{k} \Omega$
$\mathrm{R}_{2}=0.1 \mathrm{M} \Omega$

Fig. 1

[^59]7207589 -aheaa.

ALPHA AND BETA RADIATION COUNTER TUBE

End window halogen quenched α and β radiation counter tube for low level measurements in combination with a guard counter (e.g. type 18518).

	QUICK REFERENCE DATA		
Window thickness	1.5 to	2	$\mathrm{mg} / \mathrm{cm}^{2}$
Window diameter	19.8	mm	
Operating voltage	500 to 700	V	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

WINDOW

Thickness
Effective diameter
Material
1.5 to $2 \mathrm{mg} / \mathrm{cm}^{2}$
19.8 mm

CATHODE

Thickness
Effective length
Material

FILLING

$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$ Ne, A, halogen
1.2 mm

13 mm

CAPACITANCE
Anode to cathode
Cak
1 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 100 mm Fe and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V} \quad \mathrm{~N}_{\mathrm{O}} \max .5$ counts/min.

Background in anticoincidence circuit with guard counter 18518, shielded with 100 mm Fe
and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V} \quad \mathrm{~N}_{\mathrm{O}} \quad \max .1 .2$ counts $/ \mathrm{min}$.
Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor
Anode voltage
Ambient temperature

R
V_{a}
$t_{a m b}$
$\max .700 \mathrm{~V}$
min. $\quad-50{ }^{\circ} \mathrm{C}$
$\max . \quad+75{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

Life expectancy
5.10^{10} counts

MEASURING CIRCUIT

$R_{1}=4.7 \mathrm{M} \Omega$
$\mathrm{R}_{2}=100 \mathrm{k} \Omega$
$C_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

REMARK

In order to prevent leakage the tube should be kept dry and well cleaned.

[^60]

BETA RADIATION COUNTER TUBE

End window. halogen quenched β radiation counter tube for low level measurements in combination with a guard counter (e.g. type 18518)

	QUICK REFERENCE DATA		
Window thickness		10	$\mathrm{mg} / \mathrm{cm}^{2}$
Window diameter	27.8	mm	
Operating voltage	500	to 750	V

DIMENSIONS AND CONNECTIONS
Dimensions in mm

WINDOW

Thickness
Effective diameter
Material
$10 \mathrm{mg} / \mathrm{cm}^{2}$
27.8 mm

CrFe

CATHODE

Thickness
1.3 mm

Effective length
Material

FILLING

$$
18 \mathrm{~mm}
$$

$$
28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}
$$

Ne, A, halogen

CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}}
$$

$$
1.3 \mathrm{pF}
$$

OPERATING CHARACTERISTICS ($t_{\text {amb }}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background,
shielded with 100 mm Fe
and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$
Background in anticoincidence
circuit with guard counter 18518,
shielded with 100 mm Fe
and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R	\min.	4.7	$\mathrm{M} \Omega$
Anode voltage	V_{a}	\max.	750	V
		\min.	-50	${ }^{\circ} \mathrm{C}$
Ambient temperature	$\mathrm{t}_{\mathrm{amb}}$	\max.	+75	$\circ^{\circ} \mathrm{C}$

LIFE EXPECTANCY

Life expectancy

$\mathrm{V}_{\text {ign }}$	max. 375 V
$\mathrm{~V}_{\mathrm{b}}$	arbitrary within plateau ${ }^{\mathrm{l}}$)
V_{pl}	500 to 750 V
$\mathrm{~S}_{\mathrm{pl}}$	$\max .0 .03 \% / \mathrm{V}$

$\mathrm{N}_{\mathrm{O}} \quad \max . \quad 9$ counts/min.
$\mathrm{N}_{\mathrm{O}} \quad \max . \quad 1.3$ counts/min. $\tau \quad \max \quad 70 \mu \mathrm{~s}$
tamb
max. $\quad+75{ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$\mathrm{R}=10 \mathrm{M} \Omega$

Fig. 1
5.10^{10} counts

COSMIC RAY GUARD COUNTER TUBE

Halogen quenched cosmic ray guard counter tube for low background measurements together with a β counter tube (e.g. type 18515) in an anticoincidence circuit.

	QUICK REFERENCE DATA		
Hollow anode diameter	32	mm	
Operating voltage	800 to 1200	V	

DIMENSIONS AND CONNECTIONS
Dimensions in mm

Connectors
0.127 mm thick

CATHODE AND ANODE

Thockness
1 mm
Material
$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

FILLING
Ne, A, halogen

CAPACITANCE

Anode to cathode
C_{ak}
5.5 pF

OPERATING CHARACTERISTICS $\left(t_{\text {amb }}=25^{\circ} \mathrm{C}\right)$ Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau (at 50 counts/s)
Plateau slope (at 50 counts/s)
Background, shielded with 100 mm Fe and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=1000 \mathrm{~V}$
Dead time (at 50 counts/s)
$\mathrm{V}_{\mathrm{ign}}$
V_{b}
V_{b}
S_{pl}
$\mathrm{N}_{\mathrm{O}} \quad \max .75$ counts/min.
$\tau \quad \max \quad 1 \mathrm{~ms}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
R
Anode voltage
V_{a}
t_{amb}

$$
\begin{array}{lrl}
\min . & 10 & \mathrm{M} \Omega \\
\max . & 1200 & \mathrm{~V} \\
\min . & -50 & { }^{\circ} \mathrm{C} \\
\max . & +75 & { }^{\circ} \mathrm{C}
\end{array}
$$

LIFE EXPECTANCY

Life expectancy

CIRCUITS

For use as guard counter tube in anticoincidence circuits in combination with 18515: recommended circuit see fig. 2 .

$$
\mathrm{R}=10 \mathrm{M} \Omega
$$

$$
\begin{aligned}
& \mathrm{R}_{1}=10 \mathrm{M} \Omega \\
& \mathrm{R}_{2}=10 \mathrm{M} \Omega
\end{aligned}
$$

Fig. 1

Fig. 2

COSMIC RAY GUARD COUNTER TUBE

Halogen quenched cosmic ray guard counter tube for low background measurements in combination with β counter (e.g. type 18515 or 18536) in an anticoincidence circuit. It can also be used in combination with a gas-flow counter.

QUICK REFERENCE DATA			
Hollow anode diameter	40	mm	
Operating voltage	800 to 1200	V	

DIMENSIONS AND CONNECTIONS

CATHODE AND ANODE

Thickness	1 mm
Material	$28 \% \mathrm{Cr}, 72 \%{ }^{\prime} \mathrm{Fe}$
FILLING	Ne, A, halogen

CAPACITANCE

Anode to cathode
C_{ak}
8 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau (at 50 counts/s)
Plateau slope (at 50 counts/s)
Background, shielded with 100 mm Fe and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=1000 \mathrm{~V}$
Dead time (at 50 counts/s)
$V_{\text {ign }} \max .650 \mathrm{~V}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} 800$ to 1200 V
$S_{p l} \max .0 .03 \% / V$
$\mathrm{N}_{\mathrm{O}} \quad \max . \quad 70$ counts/min.
T max. 1 ms

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R	\min.	10	$\mathrm{M} \Omega$
Anode voltage	V_{a}	\max.	1200	V
Ambient temperature		\min.	-50	${ }^{\circ} \mathrm{C}$
Amb	\max. +75 ${ }^{\circ} \mathrm{C}$			

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

For use as guard counter tube in anticoincidence circuits in combination with 18515 or 18536: recommended circuit see fig. 2 .

$$
\mathrm{R}=10 \mathrm{M} \Omega
$$

Fig. 1

$$
\mathrm{R}_{1}=10 \mathrm{M} \Omega
$$

$$
\mathrm{R}_{2}=10 \mathrm{M} \Omega
$$

Fig. 2

GAMMA RADIATION COUNTER TUBE

Halogen quenched γ radiation counter tube.

QUICK REFERENCE DATA			
Range (${ }^{60}$ Co γ radiation)	5.10^{-4} to 2.10^{-1}	R / h	
Operating voltage	375 to	475	

DIMENSIONS AND CONNECTIONS

CATHODE

Thickness $\quad 0.7 \mathrm{~mm}$
Effective length
Material

FILLING
Ne, A, halogen

CAPACITANCE

Anode to cathode
C_{ak}
4.5 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$). Measured in circuit of fig. 1 .

Starting voltage	$\mathrm{V}_{\mathrm{ign}}$	max. 360	V
Recommended operating voltage	V_{b}	arbitrary wi	hin plateau
Plateau	V_{pl}	375 to 475	V
Plateau slope	S_{pl}	$\max .0 .15$	\%/V
Background, shielded with 50 mm Pb , at $\mathrm{V}_{\mathrm{b}}=450 \mathrm{~V}$	N_{0}	40	counts/min.
Dead time at $\mathrm{V}_{\mathrm{b}}=450 \mathrm{~V}$	T	$\max .220$	$\mu \mathrm{s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R	\min.	2.2	$\mathrm{M} \Omega$
Anode voltage	V_{a}	\max.	475	V
Ambient temperature		\min.	-50	${ }^{\mathrm{o}} \mathrm{C}$
Amb		$\mathrm{t}_{\mathrm{amb}}$		\max.
		${ }^{\circ} \mathrm{C}$		

LIFE EXPECTANCY

Life expectancy

$$
5.10^{10} \text { counts }
$$

MEASURING CIRCUIT

$\mathrm{R}=2.7 \mathrm{M} \Omega$

Fig. 1

GAMMA RADIATION COUNTER TUBE

Halogen quenched γ radiation counter tube.

QUICK REFERENCE DATA			
Range (60Co γ radiation)	10^{-5} to 3.10^{-2}	R / h	
Operating voltage	600 to 1000	V	

DIMENSIONS AND CONNECTIONS Dimensions in mm

Cathode connector: 0.127 mm thick

CATHODE

Thickness
0.5 mm

Effective length 400 mm

Material $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

FILLING Ne, A, halogen

CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}}
$$

15 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1
Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb at $\mathrm{V}_{\mathrm{b}}=800 \mathrm{~V} \mathrm{~N}_{\mathrm{O}}$
Dead time at $\mathrm{V}_{\mathrm{b}}=800 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}=10 \mathrm{M} \Omega$

Fig. 1

ALPHA, BETA AND GAMMA RADIATION COUNTER TUBE

End window halogen quenched α, β and γ radiation counter tube.

	QUICK REFERENCE DATA		
Window thickness		1.5 to	2
$\mathrm{mg} / \mathrm{cm}^{2}$			
Window diameter		27.8	mm
Operating voltage		450 to 700	V

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Cathode connector
0.127 mm thick

WINDOW

Thickness
Effective diameter
Material
1.5 to $2 \mathrm{mg} / \mathrm{cm}^{2}$
27.8 mm mica

CATHODE

Thickness
Effective length
Material
FILLING
1.3 mm

37 mm $28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

Ne, A, halogen

CAPACITANCE

Anode to cathode

$$
\mathrm{C}_{\mathrm{ak}}
$$

$$
3.5 \mathrm{pF}
$$

OPERATING CHARACTERISTICS ($\mathrm{tamb}=25^{\circ} \mathrm{C}$)
Measured in circuit of fig. 1
Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
Vign max. 375 V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 450$ to 700 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .035 \% / \mathrm{V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature
Anode resistor
Anode voltage
Ambient temperature

R

$$
\begin{array}{llll}
\mathrm{R} & \min . & 2.2 & \mathrm{M} \Omega \\
\mathrm{~V}_{\mathrm{a}} & \max . & 700 & \mathrm{~V}
\end{array}
$$

$$
\mathrm{t}_{\mathrm{amb}}
$$

$\mathrm{N}_{\mathrm{O}} \quad$ max. 25 counts/min.
T
$\max .190 \mu \mathrm{~s}$

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT
$\mathrm{R}_{1}=10 \mathrm{M} \Omega$
$\mathrm{R}_{2}=220 \mathrm{k} \Omega$
$C_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

ALPHA, BETA AND GAMMA RADIATION COUNTER TUBE

End window halogen quenched α, β and γ radiation counter tube with a DIN base.

QUICK REFERENCE DATA								
Window thickness	1.5 to	2						
$\mathrm{mg} / \mathrm{cm}^{2}$								
Window diameter	27.8	mm						
Operating voltage	450 to 700	V						
Anode resistor, mounted in the base	10	$\mathrm{M} \Omega$						

DIMENSIONS AND CONNECTIONS

Base matched to socket DIN44421

WINDOW

Thickness
Effective diameter
Material

CATHODE

Thickness

Effective length
Material

FILLING

CAPACITANCE

Anode to cathode
C_{ak}
3.5 pF

OPERATING CHARACTERISTICS $\left(\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$)
Measured in' circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$
$V_{\text {ign }} \quad \max .375 \mathrm{~V}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 450$ to 700 V
$\mathrm{S}_{\mathrm{pl}} \quad 0.035 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max . \quad 25$ counts $/ \mathrm{min}$. T. max. $190 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Anode voltage
Ambient temperature

V_{a}	\max.	700	V
$\mathrm{t}_{\mathrm{amb}}$	\min.	-50	${ }^{\circ} \mathrm{C}$
	max.	+75	${ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY
5. 10^{10} counts

MEASURING CIRCUIT

$\mathrm{R}_{1}=10 \mathrm{M} \Omega$
$R_{2}=220 \mathrm{k} \Omega$
$\mathrm{R}_{1} \mathrm{C}_{\text {stray }}=\mathrm{R}_{2} \mathrm{C}_{2}$

BETA AND GAMMA RADIATION COUNTER TUBE

Halogen quenched radiation counter tube for the measurement of γ and high energy β ($>0.5 \mathrm{MeV}$) radiation.

QUICK REFERENCE DATA			
Range (${ }^{60}$ Co γ radiation)	10^{-2} to 2.10^{3}	R / h	
Operating voltage	500 to	600	

DIMENSIONS AND CONNECTIONS

CATHODE

Thickness
Effective length
Material

FILLING

CAPACITANCE

Anode to cathode
C_{ak}
0.7 pF

OPERATING CHARACTERISTICS ($\mathrm{tamb}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Vign max. 400 V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
Vpl 500 to 600 V
S_{pl} max. $0.3 \% / \mathrm{V}$
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=550 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=550 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}_{1}=2.2 \mathrm{M} \Omega$
$R_{2}=47 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

ALPHA AND BETA RADIATION COUNTER TUBE

End window halogen quenched α and β radiation counter tube, for low level measurements in combination with a guard counter (e.g. type 18518)

	QUICK REFERENCE DATA		
Window thickness	1.5 to	2	$\mathrm{mg} / \mathrm{cm}^{2}$
Window diameter	27.8	mm	
Operating voltage	500 to 750	V	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

WINDOW

Thickness
Effective diameter
Material
1.5 to $2 \mathrm{mg} / \mathrm{cm}^{2}$ 27.8 mm mica

CATHODE
Thickness 1.3 mm

Effective length
Material
FILLING
CAPACITANCE
Anode to cathode
Cak
1.4 pF

OPERATING CHARACTERISTICS ($\mathrm{tamb}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$)
Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 100 mm Fe and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V} \quad \mathrm{~N}_{\mathrm{O}} \quad \max .9$ counts/min.

Background in anticoincidence circuit with guard counter 18518, shielded with 100 mm Fe and $30 \mathrm{~mm} \mathrm{~Pb}, \mathrm{Fe}$ outside, at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature
t_{amb}
min. $4.7 \mathrm{M} \Omega$
$\max .750 \mathrm{~V}$
min. $\quad-50 \quad{ }^{\circ} \mathrm{C}$
$\max .+75{ }^{\circ} \mathrm{C}$
$V_{\text {ign }}$ $\max .0 .07 \% / V$
$\mathrm{N}_{\mathrm{O}} \quad \max .2$ counts/min.
$\tau \quad \max .60 \mu \mathrm{~s}$

R
V_{a}

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$R_{1}=10 \mathrm{M} \Omega$
$R_{2}=220 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

GAMMA RADIATION COUNTER TUBE

Halogen quenched γ radiation counter tube

QUICK REFERENCE DATA		
Range $\left({ }^{60} \mathrm{Co} ~\right.$	γ radiation $)$	10^{-4} to 10^{-1}
	R / h	
Operating voltage	380 to	480

CATHODE

Thickness
Effective length
Material

FILLING

CAPACITANCE

Anode to cathode
Cak
10 pF

18545

OPERATING CHARACTERISTICS ($t_{a m b}=25{ }^{\circ} \mathrm{C}$). Measured in circuit of fig. 1 .

Starting voltage	$\mathrm{V}_{\text {ign }}$	max. 360	V
Recommended operating voltage	V_{b}	arbitrary w	thin plateau
Plateau	V_{pl}	380 to 480	V
Plateau slope	S_{pl}	max. 0.10	\%/V
Background, shielded with 50 mm Pb and 6 mm Al , at $\mathrm{V}_{\mathrm{b}}=420 \mathrm{~V}$	N_{o}	$\max .75$	counts/min.
Dead time at $\mathrm{V}_{\mathrm{b}}=420 \mathrm{~V}$	T	max. 200	$\mu \mathrm{s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor	R	\min.	2.7	$\mathrm{M} \Omega$
Anode voltage	V_{a}	\max.	480	V
Ambient temperature		\min.	-50	${ }^{\circ} \mathrm{C}$
Amb	$\mathrm{t}_{\mathrm{amb}}$	\max.	+75	$\mathrm{o}^{\circ} \mathrm{C}$

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$R=2.7 \mathrm{M} \Omega$

Fig. 1

beta radiation counter tube

End window halogen quenched β radiation counter tube.

	QUICK REFERENCE DATA		
Window thickness	3.5 to	4	$\mathrm{mg} / \mathrm{cm}^{2}$
Window diameter		51	mm
Operating voltage	700 to 1100	V	

DIMENSIONS AND CONNECTIONS
Dimensions in mm

WINDOW
Thickness
Effective diameter
Material
3.5 to $4 \mathrm{mg} / \mathrm{cm}^{2}$
51 mm mica

CATHODE

Thickness
Effective length
Material
$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$
FILLING Ne, A, halogen

CAPACITANCE

Anode to cathode
C_{ak}
5 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)
Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=900 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=900 \mathrm{~V}$

Vign max. 400 V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 700$ to 1100 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .04 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .30$ counts/min.
T max. $45 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)

Anode resistor
Anode voltage
Ambient temperature

LIFE EXPECTANCY

Life expectancy
$\mathrm{R} \quad$ min. $3.9 \mathrm{M} \Omega$
$\mathrm{V}_{\mathrm{a}} \quad \max .1100 \mathrm{~V}$
min. $\quad-50{ }^{\circ} \mathrm{C}$
$t_{a m b}$
$\max .+75{ }^{\circ} \mathrm{C}$

MEASURING CIRCUIT

$\mathrm{R}=4.7 \mathrm{M} \Omega$

Fig. 1

BETA AND GAMMA RADIATION COUNTER TUBE

Halogen quenched $\beta(>0.25 \mathrm{MeV})$ and γ radiation counter tube.

QUICK REFERENCE DATA			
Range $\left({ }^{60} \mathrm{Co} \gamma\right.$ radiation $)$	10^{-3} to 10^{2}	R / h	
Cathode wall thickness	32 to 40	$\mathrm{mg} / \mathrm{cm}^{2}$	
Operating voltage	500 to 650	V	

DIMENSIONS AND CONNECTIONS Dimensions in mm

CATHODE

Thickness
Effective length
Material

FILLING
Ne, A, halogen

CAPACITANCE

Anode to cathode
Cak
1.1 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)
Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=575 \mathrm{~V}$

Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$
Vign max. 380 V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} 500$ to 650 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .08 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .12$ counts/min.
$\max .45 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature

R	\min.	2.2	$\mathrm{M} \Omega$
V_{a}	\max.	650	V
	\min.	-50	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{amb}}$	\max. +75 ${ }^{\circ} \mathrm{C}$		

LIFE EXPECTANCY

Life expectancy
5.1010 counts

MEASURING CIRCUITS

$\mathrm{R}_{1}=4.7 \mathrm{M} \Omega$
$R_{2}=100 \mathrm{k} \Omega$
$\mathrm{C}_{1}=1 \mathrm{pF}$
$\mathrm{R}_{1} \mathrm{C}_{1}=\mathrm{R}_{2} \mathrm{C}_{2}$

Fig. 1

BETA AND GAMMA RADIATION COUNTER TUBE

Halogen quenched $\beta(>0.3 \mathrm{MeV})$ and γ radiation counter tube.

QUICK REFERENCE DATA			
Range (${ }^{60}$ Co γ radiation)	10^{-3} to 10	R / h	
Cathode wall thickness between the strengthening rings	40 to 60	$\mathrm{mg} / \mathrm{cm}^{2}$	
Operating voltage	450 to 800	V	

DIMENSIONS AND CONNECTIONS
 Dimensions in mm

CATHODE

Construction
Thickness between the strengthening rings

Total effective length
Material

FILLING

CAPACITANCE

Anode to cathode
Cak
4 pF
cylindrical wall with strengthening rings

$$
\begin{aligned}
& 40 \text { to } 60 \mathrm{mg} / \mathrm{cm}^{2} \\
& 75 \mathrm{~mm} \\
& 28 \% \mathrm{Cr}, 72 \% \mathrm{Fe} \\
& \mathrm{Ne}, \mathrm{~A}, \text { halogen }
\end{aligned}
$$

OPERATING CHARACTERISTICS ($\mathrm{tamb}=25^{\circ} \mathrm{C}$)
Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=625 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature
$V_{\text {ign }} \max .400$ V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
Vpl 450 to 800 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .02 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{o}} \quad \max .30$ counts/min.
$\tau \quad \max .70 \mu \mathrm{~s}$
$\mathrm{R} \quad \mathrm{min} .1 \mathrm{M} \Omega$
$\mathrm{V}_{\mathrm{a}} \max .800 \mathrm{~V}$
$t_{\text {amb }} \quad \min . \quad-500^{\circ} \mathrm{C}$
$\begin{array}{lll}\min . & -50 & { }^{\circ} \mathrm{C} \\ \max . & +75 & { }^{\circ} \mathrm{C}\end{array}$

LIFE EXPECTANCY

Life expectancy
5.10^{10} counts

MEASURING CIRCUIT

$\mathrm{R}=2.2 \mathrm{M} \Omega$

Fig. 1

BETA AND GAMMA RADIATION COUNTER TUBE

Halogen quenched β ($>0.3 \mathrm{MeV}$) and γ radiation counter tube

QUICK REFERENCE DATA			
Range $\left({ }^{60}\right.$ Co γ radiation)	10^{-4} to	1	
Cathode wall thickness between	h		
the strengthening rings	40 to 60	$\mathrm{mg} / \mathrm{cm}^{2}$	
Operating voltage	450 to 800	V	

DIMENSIONS AND CONNECTIONS

CATHODE

Construction
Thickness between the strengthering rings
Total effective length between
the strengthening rings
Material
cylindrical wall with strengthening rings 40 to $60 \mathrm{mg} / \mathrm{cm}^{2}$

185 mm
$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

FILLING
Ne, A, halogen

CAPACITANCE

Anode to cathode
$\mathrm{C}_{\mathrm{ak}} \quad 10 \mathrm{pF}$

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Measured in circuit of fig. 1

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background, shielded with
50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=625 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
Anode voltage
Ambient temperature

Vign max. 400 V
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 450$ to 800 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .02 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .60$ counts/min.
T $\quad \max .100 \mu \mathrm{~s}$

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}=2.2 \mathrm{M} \Omega$

Fig. 1

18553

BETA AND GAMMA RADIATION COUNTER TUBE

Halogen quenched β ($>0.3 \mathrm{MeV}$) and γ radiation counter tube suitable for use in damp and/or saline atmosphere.

QUICK REFERENCE DATA		
Range $\left({ }^{60}\right.$ Co γ radiation)	10^{-3} to 10	R / h
Cathode wall thickness between		
the strengthening rings Operating voltage	40 to 60	$\mathrm{mg} / \mathrm{cm}^{2}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

CATHODE

Construction
Thickness between the strengthening rings

Total effective length
Material

FILLING

cylindrical wall with strengthening rings 40 to $60 \mathrm{mg} / \mathrm{cm}^{2}$

75 mm
$28 \% \mathrm{Cr}, 72 \% \mathrm{Fe}$

Ne, A, halogen

CAPACITANCE

Anode to cathode
C_{ak}
4 pF

OPERATING CHARACTERISTICS ($\mathrm{t}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) Measured in circuit of fig. 1 .

Starting voltage
Recommended operating voltage
Plateau
Plateau slope
Background shielded with 50 mm Pb and 3 mm Al , at $\mathrm{V}_{\mathrm{b}}=625 \mathrm{~V}$
Dead time at $\mathrm{V}_{\mathrm{b}}=600 \mathrm{~V}$
$\mathrm{V}_{\text {ign }} \max .400 \mathrm{~V}$
$\mathrm{V}_{\mathrm{b}} \quad$ arbitrary within plateau
$\mathrm{V}_{\mathrm{pl}} \quad 450$ to 800 V
$\mathrm{S}_{\mathrm{pl}} \max .0 .02 \% / \mathrm{V}$
$\mathrm{N}_{\mathrm{O}} \quad \max .30$ counts/min.
T max. $70 \mu \mathrm{~s}$

LIMITING VALUES (Absolute max. rating system)
Anode resistor
$\mathrm{R} \quad \min . \quad 1 \quad \mathrm{M} \Omega$
Anode voltage
Ambient temperature

$$
\begin{array}{llll}
\mathrm{V}_{\mathrm{a}} & \max . & 800 & \mathrm{~V} \\
& \min . & -50 & { }^{\circ} \mathrm{C} \\
\mathrm{t}_{\mathrm{amb}} & \max . & +75 & { }^{\circ} \mathrm{C}
\end{array}
$$

LIFE EXPECTANCY

Life expectancy

MEASURING CIRCUIT

$\mathrm{R}=2.2 \mathrm{M} \Omega$

Fig. 1

REMARK

The cathode is covered with a corrosion resistive coating of lacquer, fulfilling the conditions of salt spray testing according to ASTM B117-49T and PNX41-002.

Semiconductor radiation detectors

LITHIUM DRIFTED GERMANIUM DETECTORS

Planar detectors intended for measurement of gamma-radiation and X-rays, used at cryogenic temperatures.

MECHANICAL DATA

Dimensions in mm

Available sizes

envelope number	d	D	h	B
$31 / 12$	31	34	12	9.5
$31 / 16$	31	34	16	9.5
$31 / 21$	31	34	21	9.5
$36 / 12$	36	39	12	12
$36 / 16$	36	39	16	12
$36 / 21$	36	39	21	12
$46 / 12$	46	49	12	17
$46 / 16$	46	49	16	17
$46 / 21$	46	49	21	17

MOUNT

To prevent surface contamination and to reduce surface leakage, detectors are supplied in an evacuated envelope with an entrance window 0.50 mm thick. One connection is made via a feed-through connector, the can is grounded. Residual gas pressure in the envelope is less than 10^{-5} torr.

ENTRANCE WINDOW
The entrance window consists of:

- 0.5 mm Fe (envelope)
- about $500 \mu \mathrm{~m} \mathrm{Ge}$.

UNENCAPSULATED DETECTORS

For low energy measurement, we can supply detectors unencapsulated and mounted in one of the cryostat systems.

ACCESSORIES

Cryostat
CRY 1 to CRY 4
CHARACTERISTICS

Basic type number	Active area $\left(\mathrm{cm}^{2}\right)$	$\begin{aligned} & \text { Depletion } \\ & \text { depth } \\ & \text { (mm) } \end{aligned}$	Gammaenergyresolution$(1.33 \mathrm{MeV})$(keV-FWHM)at 77 OK	Envelope number	Capacitance (p^{F}) 1)	
					Envelope	Total
APY16	3	5	3.5	31/12	2.8	11.2
		8	3.5	31/16	2.8	8.1
		10	4.0	31/21	2.8	7.0
		12	4.0	31/21	3.0	6.5
APY17	5	5	3.5	36/12	3.3	17.3
		8	3.5	36/16	3.3	12.1
		10	4.0	$36 / 21$	3.3	10.3
		12	4.0	36/21	4.5	10.4
APY18	8	5	3.5	46/12	3.8	20.2
		8	4.0	46/12	3.8	17.8
		10	4.0	46/21	3.5	14.7
		12	4.0	46/21	4.3	13.7
APY19	10	5	3.5	46/12	4.8	32.8
		8	4.0	46/16	4.8	22.3
		10	4.0	46/21	4.0	18.0
		12	4.0	46/21	5.0	16.7

COMPOSITION OF TYPE NUMBER
basic type number
 depletion depth

1) These values are approximate as the thickness of the germanium slice differs slightly for a given depletion depth.

Resolution

System gamma resolution at least as good as stated in the accompanying table is guaranteed. It is measured at $77{ }^{\circ} \mathrm{K}$ with ${ }^{60} \mathrm{Co}(1.33 \mathrm{MeV})$ at a low count rate with main amplifier differentiating and integrating time constants of $3.2 \mu \mathrm{~s}$.

Bias voltage

Detectors will withstand a bias of 2000 V , thus permitting the most efficient charge collection.

Leakage current

Leakage is less than 1 nA , measured at operating voltage and at the temperature of liquid nitrogen.

Storage

Encapsulated detectors are delivered packed in dry ice and must be stored at a temperature below $-80^{\circ} \mathrm{C}$.

Test certificate

Certified test data accompanying all detectors include:
System gamma resolution at FWHM and at FW 0.1 M, for several energies, Effective thickness,
Detector capacitance, Photo-peak to Compton ratio, Relative photo-peak efficiency, Bias voltage - with polarity.

LITHIUM DRIFTED GERMANIUM DETECTORS

Coaxial detectors intended for measurement of gamma-radiation and X-rays, used at cryogenic temperatures.

MECHANICAL DATA

Shape and size

Detectors are right circular cylinders, active volumes range from $10 \mathrm{~cm}^{3}$ to $60 \mathrm{~cm}^{3}$; depletion depths are up to 12 mm .

Cryostat system

These detectors are unencapsulated so they can only be supplied in one of the cryostat systems.

ACCESSORIES

Cryostat
cry 2 to cry 4

APY20 to APY29

CHARACTERISTICS

Basic type number	Effective active volume $\left(\mathrm{cm}^{3}\right)$	Depletion depth	Gamma energy resolution $(1.33 \mathrm{MeV})$ at $77 \mathrm{O}^{\mathrm{O}}$				
(keV-FWHM)				$	$	APY20	10
:---:	:---:						
APY21	20						

COMPOSITION OF TYPE NUMBER
Basic type number——depletion depth
Resolution
Gamma energy resolution is quaranteed to be better than 4 keV (typically 3 keV to 3.5 keV) for ${ }^{60} \mathrm{Co}(1.33 \mathrm{MeV})$, measured with the detector in a cryostat and with the pre-amplifier at room temperature.

Bias-voltage
The detectors will withstand a bias of 2000 V , thus permitting the most efficient charge collection.

Leakage current

Less than 1 nA , measured at operating voltage and at the temperature of liquidnitrogen.

Storage

Detectors must be stored in vacuum at a temperature below- $80^{\circ} \mathrm{C}$.

Test Certificate

Certified test data accompanying all detectors include:
System gamma resolution at FWHM and FW 0.1 M, for several energies,
Dimensions,
Detector capacitance,
Photo-peak to Compton ratio,
Relative photo-peak efficiency,
Bias voltage-with polarity.

LITHIUM DRIFTED SILICON DETECTORS

Detectors intended for measurement of alpha- and beta- radiation and particles as well as particle identification (standard series), measurement of low energy gamma radiation and X-rays (low temperature series).

MECHANICAL DATA

Dimensions in mm

Standard mount
$\mathrm{h}=15 \mathrm{~mm}$ (for depletion depth $\leq 3 \mathrm{~mm}$)
$\mathrm{h}=17 \mathrm{~mm}$ (for depletion depth of 5 mm)

Basic type number	Standard mount			Transmission mount		
	d	D	p	d	D	p
BPX10	5.6	13.6	19.6	5.6	21.5	15.0
BPX12	11.3	19.3	25.3	11.3	31.6	25.0
BPX13	16.0	25.6	31.6	16.0	36.5	30.0
BPX14	20.0	31.6	37.6	20.0	36.5	30.0

BPX10 to BPX14

MECHANICAL DATA (continued)
Standard series
Mount
The following gold plated mounts are available:
Standard - with rear female connector Microdot 33-36 for mating socket 32-11 or 32-17.
Transmission - type T with side female connector Microdot 33-36 for mating socket 32-11 or 32-17.

Entrance and rear window
The entrance window is a layer of deposited gold less than $60 \mu \mathrm{~g} / \mathrm{cm}^{2}$. The rear window is silicon less than 200μ m thick.

Low temperature series
Mount
Detectors are supplied in standard mount fitted with rear female connector Microdot 33-36 for mating socket 32-11 or 32-17.

Entrance window
The entrance window is a layer of deposited gold less than $60 \mu \mathrm{~g} / \mathrm{cm}^{2}$.

ACCESSORIES

Cryostat
CRY 1 to CRY 4

CHARACTERISTICS

		Standard series				Low temperature series	
Basic type number	Active area $\left(\mathrm{mm}^{2}\right)$	$\begin{aligned} & \text { Depletion } \\ & \text { depth } \\ & (\mathrm{mm}) \end{aligned}$	Maximum resolution (keV-FWHM)			Depletion depth (mm)	Maximum beta resolution (keV-FWHM)$77{ }^{\circ} \mathrm{K}$
			alpha	beta			
			$20^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$		
BPX10	25	$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	25 30 50	$\begin{aligned} & 12 \\ & 15 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 6 \\ & 8 \end{aligned}$	$31)$	4
BPX12	100	2 3 5	40 50 70	17 20 22	6 7 9	3	4
BPX13	200	$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	50 70 90	$\begin{aligned} & 18 \\ & 22 \\ & 25 \end{aligned}$	$\begin{array}{r} 7 \\ 9 \\ 11 \end{array}$	-	-
BPX14	300	2 3 5	60 80 100	21 25 30	8 10 12	-	-

COMPOSITION OF TYPE NUMBER

[^61]
BPX10 to BPX14

CHARACTERISTICS (continued)
Standard series
Resolution
Alpha resolution is measured at $20^{\circ} \mathrm{C}$, in total darkness, at a pressure of 10^{-3} torr, with a non-collimated ${ }^{241} \mathrm{Am}$ source (5.48 MeV) approximately 3 cm from the entrance window. Beta resolution is measured in the same way but with a ${ }^{207} \mathrm{Bi}$ source (976 keV) at $20^{\circ} \mathrm{C}$ and at $-30^{\circ} \mathrm{C}$.

Temperature
Detectors are for use between $-60^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$.

Storage

We advise storing at about $-40^{\circ} \mathrm{C}$, but detectors may be stored for a limited time at room temperature in darkness. In either case they are ready for immediate use.

Test certificate
Certified test date accompany all detectors.Depletion depth is stated to an accuracy of $\pm 10 \%$.

Low temperature series:
Resolution
Beta resolution is measured at 77 OK , in total darkness, at a pressure of 10^{-3} torr, with a non-collimated ${ }^{207} \mathrm{Bi}$ source (976 keV) approximately 3 cm from the entrance window. Beta resolution is better than 4 keV , but typically 3 keV to 3.5 keV .

Temperature
Detectors are for use at 770 K .

Storage

We advise storing at about $-40^{\circ} \mathrm{C}$, but detectors may be stored for a limited time at room temperature in darkness. In either case they are ready for immediate use.

Test certificate

Certified test date accompany all detectors.Depletion depth is stated to an accuracy of $\pm 10 \%$.

DIFFUSED SILICON DETECTORS

Detectors intended for measurement of particles and for health physics applications.

MECHANICAL DATA

Basic type number				
	d	D	h	
BPY22	11.8	17	6	
BPY23	16.5	23	6	

Mount
BPY20 is supplied in TO-5 envelope with open front.
BPY22 and BPY23 are supplied in brass mount with male connector UG589/U for mating socket UG89/U.
Entrance window
The detector is opaque. The entrance window is a layer of silicon of less than 120 $\mu \mathrm{g} / \mathrm{cm}^{2}$.

CHARACTERISTICS

Depletion depth
Depletion depth is $>50 \mu \mathrm{~m}$ for all types

Basic type number	Active area $\left(\mathrm{mm}^{2}\right)$
BPY20	12
BPY22	100
BPY23	200

Resolution
Alpha resolution is better than 100 keV (FWHM) at $20^{\circ} \mathrm{C}$ for ${ }^{241} \mathrm{Am}$ (5.48 MeV).
Storage
Detectors can be stored at any temperature between $+80^{\circ} \mathrm{C}$ and $-50^{\circ} \mathrm{C}$. They are ready for immediate use.

Test certificate
Certified test data accompany all detectors.

PARTIALLY DEPLETED SILICON SURFACE BARRIER DETECTORS

Detectors intended for measurement of alpha- and low energy beta-radiation, particles and fission products.
In conjunction with totally depleted detectors they can be used for particle identification purposes.

MECHANICAL DATA

Versions
Detectors are available in two versions:

Circular with a choice of mounts:

- standard, silver plated brass with male connector BNC31-304 for mating socket UG89/U .
- planar, silver plated brass with female connector Microdot 33-36 for mating socket 32-11 or 32-17.
(Types BPY51 to BPY55)

Annular-in a silver plated brass transmission mount (open front and back) with female connector Microdot 33-36 for mating socket 32-11 or 32-17.
(Types BPY58 and BPY59)

Entrance window
The entrance window is a layer of deposited gold $40 \mu \mathrm{~g} / \mathrm{cm}^{2}$.

MECHANICAL DATA (continued)

CIRCULAR DETECTORS

Standard mount
$\mathrm{h}=7.5 \mathrm{~mm}$ for depletion depth $\leq 1000 \mu \mathrm{~m}$
$\mathrm{h}=10 \mathrm{~mm}$ for depletion depth $>1000 \mu \mathrm{~m}$

Planar mount
(type S)

Basic type number	Kind of mount	Depletion depth $\leq 1000 \mu \mathrm{~m}$			Depletion depth $>1000 \mu \mathrm{~m}$		
		d	D	p	d	D	p
BPY51	standard planar	5.6	16.0	-	5.6	22.0	-
	5.6	22.0	15.0	5.6	32.0	25.0	
BPY53	standard	11.5	22.0	-	11.5	26.5	-
	planar	11.5	32.0	25.0	11.5	37.0	30.0
BPY54	standard	16.0	26.5	-	16.0	30.0	-
	planar	16.0	37.0	30.0	16.0	37.0	30.0
BPY55	standard	19.6	30.0	-	-	-	-
	planar	19.6	37.0	30.0	-	-	-

ANNULAR DETECTORS

Standard hole diameter is 4 mm , but they can be supplied with holes up to 10 mm , if required.

Standard hole diameter is 4 mm , but they can be supplied with holes up to 10 mm , if required.

Transmission mount

Basic type number	Kind of mount	Depletion depth $\leq 1000 \mu \mathrm{~m}$				Depletion depth $>1000 \mu \mathrm{~m}$		
		d	D	p	d	D	p	
BPY58	transmission	16.0	32.0	25.0	16.0	37.0	30.0	
BPY59	transmission	19.6	37.0	30.0	19.6	37.0	30.0	

CHARACTERISTICS

+ Available types.

Basic type number	$\begin{gathered} \text { Active } \\ \operatorname{area}^{2} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	Quality class	Max. resolutionat $20^{\circ} \mathrm{C}$$(\mathrm{keV}-\mathrm{FWHM})$		Depletion depth ($\mu \mathrm{m}$)								
			alpha	beta	100	200	350	500	700	1000	1500	2000	2500

CIRCULAR DETECTORS

BPY51	25	$\begin{aligned} & \text { SQ } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 15 \\ & 18 \\ & 25 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \\ & 20 \end{aligned}$	+ + +	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	+ + +	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	+ + +	+ + +	$+$	+ +	+
BPY53	100	$\begin{aligned} & \text { SQ } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	+ + + +	+ + +	+ + +	+ + +	$\begin{aligned} & + \\ & + \end{aligned}$	+ +	+
BPY54	200	$\begin{aligned} & \text { SQ } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	+ + +	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	+ +
BPY55	300	$\begin{aligned} & \mathrm{SQ} \\ & \mathrm{~A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & + \\ & + \\ & + \end{aligned}$	+ + + +	+ + + +	+ + +	+ + +	+ + +			

ANNULAR DETECTORS

BPY58	100		30	25	+	+	+	+	+	+	+	+	
BPY59	200		40	35	+	+	+	+	+	+	+	+	

COMPOSITION OF TYPE NUMBER

CHARACTERISTICS (continued)

Resolution

Alpha resolution is measured at $20^{\circ} \mathrm{C}$, in total darkness, at a pressure of 10^{-3} torr, with a non-collimated ${ }^{244} \mathrm{Cm}$ source $(5.806 \mathrm{MeV}) 6 \mathrm{~cm}$ to 8 cm from the entrance window. Beta resolution is measured under the same conditions but with ${ }^{137} \mathrm{Ba}^{\mathrm{m}}$ conversion electrons.

Stability under vacuum

Detector stability is unaffected by vacuum as high as 10^{-6} torr.
Shock and vibration
Detectors can withstand the following conditions:
severe shock - acceleration up to 1000 g ;
vibration - acceleration up to 10 g in the range 20 Hz to 2000 Hz .

Storage

Detectors can be stored indefinitely at room temperature and be ready for immediate use.

Test certificate
Certified test data accompany all detectors. Depletion depth is stated to an accuracy of $\pm 10 \%$.

TOTALLY DEPLETED SILICON SURFACE BARRIER DETECTORS

Detectors for measurement of alpha-radiation and particles. They can be stacked with a partially depleted silicon surface barrier detector or with a lithium drifted silicon detector.

MECHANICAL DATA

Versions
Detectors are available in two versions:
Circular - in a silver plated brass transmis sion mount (open front and back) with female connector Microdot 33-36 for mating socket 32-11 or 32-17.
(Types BPY81 to BPY85)

Annular - in the same transmission mount. (Types BPY88 and BPY89)

Annular - in the same transmission mount.
(Types BPY88 and BPY89)

Entrance window

The entrance window is a layer of deposited gold $40 \mu \mathrm{~g} / \mathrm{cm}^{2}$

MECHANICAL DATA (continued)
CIRCULAR DETECTORS

Basic type number	Depletion depth $\leq 1000 \mu \mathrm{~m}$			Depletion depth $>1000 \mu \mathrm{~m}$		
	d	D	p	d	D	p
BPY81	5.6	22.0	15.0	5.6	32.0	25.0
BPY83	11.5	32.0	25.0	11.5	37.0	30.0
BPY84	16.0	37.0	30.0	16.0	37.0	30.0
BPY85	19.6	37.0	30.0	-	-	-

ANNULAR DETECTORS

Standard hole diameter is 4 mm , but they can be supplied with holes up to 10 mm , if required

Basic type number	Depletion depth $\leq 1000 \mu \mathrm{~m}$			Depletion depth $>1000 \mu \mathrm{~m}$		
	d	D	p	d	D	p
BPY88	16.0	32.0	25.0	16.0	37.0	30.0
BPY89	19.6	37.0	30.0	19.6	37.0	30.0

MECHANICAL DATA (continued)
Dimensions in mm

Note

Detectors that are to be stacked must have the same diameter mount. If necessary we will fit totally depleted detectors in a larger than normal transmission mount to match the planar mount of a specific partially depleted detector.

CHARACTERISTICS

Basic type number	Active area (mm^{2})	Quality class	$\begin{gathered} \text { Max. resolution } \\ \text { at } 20^{\circ} \mathrm{C} \\ (\mathrm{keV}-\mathrm{FWHM}) \end{gathered}$	
			alpha	beta
CIRCULAR DETECTORS				
BPY81	25	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$
BPY83	100	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$
BPY84	200	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$
BPY85	300	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$
ANNULAR DETECTORS				
BPY88	100	-	30	25
BPY89	200	-	40	35

CHARACTERISTICS (continued)

- Circular detectors available in one quality class only.

Instead of the maximum resolution we guarantee a noise $<20 \mathrm{keV}$.

+ Available types. In the case of circular detectors, available in both quality classes A and B.

Basic type number	Depletion depth ($\mu \mathrm{m}$)													
	3 to 7	7 to 12	12 to 17	17 to 22	22 to 30	50	100	200	350	500	700	1000	1500	2000
CIRCULAR DETECTORS														
BPY81	± 0.25	$\pm 0.5 \mu \mathrm{~m}$				$\pm 1 \mu \mathrm{~m}$					$\pm 2 \mu \mathrm{~m}$			
	-	-	-	-	-	+	+	$+$	+	+	+	$+$	+	+
BPY83			$\pm 1 \mu \mathrm{~m}$								$\pm 2 \mu \mathrm{~m}$			
			-	-	-	+	+	+	+	+	+	+	+	+
BPY84					$\pm 2 \mu \mathrm{~m}$									
					-	+	+	$+$	+	+	+	+	+	+
BPY85					$\pm 2 \mu \mathrm{~m}$									
						+	+	+	+	+	+	$+$		
ANNULAR DETECTORS														
BPY88							+	+	+	+	+	+	+	+
BPY89							+	+	+	+	+	+	+	+

COMPOSITION OF TYPE NUMBER

[^62]
CHARACTERISTICS (continued)

Resolution
Alpha resolution is measured at $20^{\circ} \mathrm{C}$, in total darkness, at a pressure of 10^{-3} torr, with a non-collimated ${ }^{244} \mathrm{Cm}$ source (5.806 MeV) 6 cm to 8 cm from the entrance window. Beta resolution is measured under the same conditions but with ${ }^{137} \mathrm{Ba}_{\mathrm{Ba}} \mathrm{m}$ conversion electrons.

Crystal regularity
The wafers are specially cut to prevent particles being channelled along the crystal axes thus obviating asymmetric output pulses.

Stability under vacuum
Detector stability is unaffected by vacuum as high as 10^{-6} torr.

Shock and vibration

Detectors can withstand the following conditions:
severe shock - acceleration up to 1000 g ,
vibration - acceleration up to 10 g in the range 20 Hz to 2000 Hz .
Storage
Detectors can be stored indefinitely at room temperature and be ready for immediate use.

Test certificate
Certified test data accompany all detectors.

CRYOSTAT

CRY1: vertical cryostat supplied without dewar.
CRY2 : cryostat CRY1 supplied with a 25 litre dewar.
CRY3 : right-angle cryostat mounted on top of the dewar.
CRY4 : right-angle cryostat mounted below the dewar.

NOTES - For X-ray and low energy gamma ray spectrometry the cryostats can be fitted with a special beryllium window.

- An additional connector (Amphenol 17-20090) is fitted if the first stage of the pre-amplifier is mounted in the cryostat.
- The horizontal arms of CRY3 and CRY4 are normally 46 cm long, but if requested they can be of any length up to 60 cm .
- Types CRY3 and CRY4 are provided with an additional pumping connection, suitable for a 1 litre per second ion pump.

SPECIFICATIONS

Consumption of cryostat and dewar per 24 hours:
CRY2: 0.9 litres
CRY3: 1.5 litres
CRY4: 2.6 litres
Holding time for one charge:
CRY2: 24 days
CRY3: 14 days
CRY4: 10 days

Min. liquid nitrogen level (recharging level)
Getter
Reactivation of zeolite

- reactivating intervals
- temperature
- vacuum
- reconditioning time

Pre-vacuum (before immersion into
liquid nitrogen)
Vacuum (cryostat, during operation)
Total capacitance of electrical connection Electrical connection
Number of adaptors available (aluminium)
Hood (aluminium)

- entrance window
- cylindrical wall

CRY2 and 3:50 mm
Zeolite; type 13X (Union Carbide)
approx. 6 to 12 months
$\min .180^{\circ} \mathrm{C}$; max. $200^{\circ} \mathrm{C}$
$\max .10^{-2}$ torr
min. 2 hours
$10^{-3}\left(<10^{-2}\right)$ torr
$10^{-5}\left(<10^{-4}\right)$ torr
$4 \pm 0.5 \mathrm{pF}$
modified version MHV UG932/U
9 models
diameter 40 mm
thickness 0.75 mm
thickness 0.50 mm

DIMENSIONS in mm

CRY1: A standard vertical cryostat supplied without dewar
Net weight: 2.2 kg
${ }^{1}$) Relief valve and connection for pumping.

DIMENSIONS in mm

CRY2 : As CRY1, but supplied with 25 litre dewar

${ }^{1}$) Relief valve and connection for pumping.

DIMENSIONS in mm

CRY3 : A right angle cryostat mounted on top of a dewar
Net weight: empty $: 12.5 \mathrm{~kg}$
filled with 25 litres liquid nitrogen: 33 kg

[^63]
DIMENSIONS in mm

CRY4: A right angle cryostat mounted below a dewar
Net weight: empty
filled with 25 litres liquid nitrogen: 36 kg

1) Additional pumping connection, suitable for a 1 litre per second ion pump.
2) Relief valve and connection for pumping.

ADAPTORS

Dimensions in mm
A series of nine aluminium adaptors is availableto match the various detector envelopes to the cryostat.

Fig. 2
Adaptor. Every adaptor is delivered complete with screws.

Adaptor	Envelope	D	d	b	h	p
A31/12	$31 / 12$	45	32	34.5	88	39.0
$\mathrm{~A} 31 / 16$	$31 / 16$	45	32	34.5	84	39.0
$\mathrm{~A} 31 / 21$	$31 / 21$	45	32	34.5	80	39.0
$\mathrm{~A} 36 / 12$	$36 / 12$	50	37	39.5	88	44.0
$\mathrm{~A} 36 / 16$	$36 / 16$	50	37	39.5	84	44.0
A36/21	$36 / 21$	50	37	39.5	80	44.0
A46/12	$46 / 12$	60	47	49.5	88	54.0
A46/16	$46 / 16$	60	47	49.5	84	54.0
A46/21	$46 / 21$	60	47	49.5	80	54.0

Neutron generator tubes

NEUTRON GENERATOR TUBE

Sealed-off neutron generator tube for continuous and pulsed operation.

DESCRIPTION

The 18601 is a compact and sturdy type of sealed-off accelerating tube that makes use of the $\mathrm{T}(\mathrm{d}, \mathrm{n}){ }^{4} \mathrm{He}$ reaction to generate 14 MeV neutrons, thus forming a mono-energetic continuous or pulsed neutron source without accompanying γ radiation. The tube operates at a high voltage of -125 kV . It produces in continuous operation over 10^{8} neutrons per second, in pulsed operation up to 2.10^{11} neutrons per second (typical) during the pulse.
The tube contains a Penning ion source, which operates at the same pressure as the accelerating system.
The gas filling is a mixture of deuterium and tritium the pressure of which is controlled by a pressure regulator (replenisher) and can be measured by a built in ionization gauge. The beam of accelerated deuterium-and tritium ions strikes and replenishes the titanium-tritium target ensuring a tube life that is not limited by the tritium content of the target. The life expectancy of the tube is more than 1000 h under "Typical operation" conditions.

APPLICATION

The tube is intended for use in applications such as:

- bore-hole logging for oil, coal and mineral prospecting;
- activation analysis with fast or thermal neutrons;
- soil studies for highway, airport and similar constructions;
- ground-water measurements in drainage and irrigation control projects;
- subcritical reactor research;
- fast reactor control;
- fundamental nuclear research;
- radiobiology;
- radiochemistry;
- production of radioisotopes;
- training and education;
- different applications in industry:
labelling of items for tracer work;
moisture control of foundry sand;
inventory of large stockpiles of coal and grain.

Mounting position: any
Weight
Net weight $\quad 6 \mathrm{~kg}$
Shipping weight 11.5 kg

Accessories

a) Supplied with the tube:

- Tube filled with silicone grease X01805 or equivalent (e.g. Dow Corning DC4) for high tension connector
- 12 pin female connector plug Amphenol with cable clamp AN3057-16 (or equivalent)
type MS3106A28-18S See page 3
b) Optional at extra costs:
- HT cable with connectors (length 6.5 m)
- Supply cable for ion source /ionization gauge/ pressure regulator
- Ionization gauge control unit
type 56066
on request.
type WPS-3-NL/NG

CHARACTERISTICS

Neutron energy
approx. 14 MeV (DT-reaction)
Neutron yield at $\mathrm{V}_{\mathrm{t}}=-125 \mathrm{kV}, \mathrm{I}_{\mathrm{t}}=100 \mu \mathrm{~A}$ continuous and average during pulsed operation
during pulse max. yield
Pulse duration at a yield of $10^{11} \mathrm{n} / \mathrm{s}$
Neutron yield $n=f$ (target voltage V_{t})
Maxium duty cycle $=f$ (gas pressure p)
Peak neutron yield $n_{\text {peak }}=f$ (gas pressure p)
Peak ion source current I_{i}.s.peak $=f$ (gas $\min . \quad 10^{8} \mathrm{n} / \mathrm{s}$
$>10^{11} \mathrm{n} / \mathrm{s}$
5 to $1000 \mu \mathrm{~s}$
See page 7
See page 8
See page 9

See page 10

See page 11
Peak target current $I_{\text {tpeak }}=f$ (gas pressure p)
Gas pressure $p=f$ (replenisher current $I_{\text {repl }}$.)
See page 12
Build-up time T of ion source current pulse $=f$ (gas pressure p)

See page 13

TYPICAL OPERATION

Neutron output
Pulse duration
Target voltage -125

Target current 100

Ion source supply voltage
Ion source current
Replenisher current
Gas pressure
Ambient temperature
Ionization gauge:

emission current	10	$\mu \mathrm{~A}$
cathode voltage	33	V
grid-filament voltage	150	V
collector-filament voltage	-28	V
filament voltage	approx. 2	V

Ion source circuit

[^64]LIMITING VALUES (Absolute max. rating system)
Target voltage (during continuous operation) (during high output mode)

Target voltage
Target dissipation (continuous)

\min.	-30	kV
\min.	-80	kV
\max.	-130	kV

Target dissipation $\left(T_{a v}=\max 5 \mathrm{~s}\right)$
Target current (during continuous operation)
($\mathrm{T}_{\mathrm{av}}=\max .5 \mathrm{~s}$)
(during pulse), peak
, average
Ion source supply voltage
Replenisher current
Gas pressure
\max. 12.5 W
\max. 15 W
$\max \quad 100 \mu \mathrm{~A}$
\max. $120 \mu \mathrm{~A}$
\max. 300 mA
$\max .100 \mu \mathrm{~A}$
$\max . \quad 3 \mathrm{kV}$

Ambient temperature
\max. 6 A
$\max .10^{-2}$ torr
min. $\quad-25{ }^{\circ} \mathrm{C}$
$\max . \quad 70{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY

The life expectancy of the tube is $>1000 \mathrm{~h}$ under "Typical operation" conditions.

WARNINGS

1. The tube contains 9.5 Curie titanium-bound tritium.
2. It is necessary to protect the user against the neutron radiation and the secondary γ radiation.

OPERATIONAL CONSIDERATION

For satisfactory operation of the tube the recommendations given in the "Instructions for operation" packed with each tube should be observed.

Fig. 1

Fig. 2
Maximum duty cycle as a function of gaspressure (p)

NOTES

- Operation in the region at the right of above given curve results in exceeding the limiting values and is therefore not permitted.
- In the dotted regions the ion source gives different types of discharge resulting in a variation in neutron output per pulse.

Fig. 3
Peak neutron yield ($n_{\text {peak }}$) as a function of gaspressure (p)
Target dissipation $=12.5 \mathrm{~W}\left(\mathrm{I}_{\mathrm{t}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{t}}=-125 \mathrm{kV}\right)$

NOTES

- Operation in the region at the right of above given curve results in exceeding the limiting values and is therefore not permitted.
- In the dotted regions the ion source gives different types of discharge resulting in a variation in neutron output per pulse.

Fig. 4
Peak ion source current ($I_{i} . s$. peak) as a function of gas pressure (p) Target dissipation $=12.5 \mathrm{~W}\left(\mathrm{I}_{\mathrm{t}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{t}}=-125 \mathrm{kV}\right)$

NOTES

- Operation in the region at the right of above given curve results in exceeding the limiting values and is therefore not permitted.
- In the dotted regions the ion source gives different types of discharge resulting in a variation in neutron output per pulse.

Fig. 5
Peak target current (I_{t} peak) as a function of gas pressure (p)
Target dissipation $=12.5 \mathrm{~W}\left(\mathrm{I}_{\mathrm{t}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{t}}=125 \mathrm{kV}\right)$

NOTES

\therefore Operation in the region at the right of above given curve results in exceeding the limiting values and is therefore not permitted.

- In the dotted regions the ion source gives different types of discharge resulting in a variation in neutron output per pulse.

Fig. 6

Build-up time (τ) of ion source current pulse as a function of gas pressure (p)

Fig. 7

Associated accessories

MU-METAL CYLINDRICAL SHIELDS

Dimensions

Type No.	A (mm)	B (mm)	C (mm)
56127	$42+1$	90 ± 1	1
56128	$57+1$	90 ± 1	1
56129	$132+1$	150 ± 1	1
56130	$57+1$	110 ± 1	1
56131	$75+1$	110 ± 1	1
56132	$240+1$	300 ± 1	1
56133	$145+1$	250 ± 1	1
56134	$21+1$	80 ± 1	1
56135	$78+1$	130 ± 1	1
56136	$28+1$	110 ± 1	1
56138	$28+1$	80 ± 1	1

48 5

INDEX OF TYPENUMBERS

Type No.	Section
APY16 to 19	S.R.D.
APY20 to 29	S.R.D.
BPX10 to 14	S.R.D.
BPY20 to 23	S.R.D.
BPY51 to 55	S.R.D.
BPY58, 59	S.R.D.
BPY81 to 85	S.R.D.
BPY88, 89	S.R.D.
CRY1 to 4	S.R.D.
PS1010	Ph.Sc.
PS1011	Ph. Sc.
PS1012	Ph. Sc.
PS1013	Ph. Sc.
PS1014	Ph. Sc.
PS1014SF	Ph. Sc.
PS1520	Ph. Sc.
PS1521	Ph. Sc.
PS1531	Ph. Sc.
PS5302	Ph.Sc.
PS5400	Ph. Sc.
PS5410	Ph. Sc.
SAM	Sc.
SSS	Sc.
SPF	Sc.
SPH	Sc.

Type No.	Section
S5600	Ph. Sc.
XP1000	Pm. T.
XP1001	Pm. T.
XP1002	Pm. T.
XP1003	Pm. T.
XP1004	Pm. T.
XP1005	Pm. T.
XP1006	Pm. T.
XP1010	Pm. T.
XP1011	Pm. T.
XP1015	Pm. T.
XP1015C	Pm. T.
XP1016	Pm. T.
XP1020	Pm. T.
XP1021	Pm. T.
XP1023	Pm. T.
XP1030	Pm. T.
XP1031	Pm. T.
XP1032	Pm. T.
XP1033	Pm. T.
XP1034	Pm. T.
XP1040	Pm. T.
XP1041	Pm. T.
XP1050	Ph. Sc.
XP1051	Ph. Sc.

Type No.	Section
XP1052	Ph. Sc.
XP1053	Ph. Sc.
XP1110	Pm. T.
XP1111	Pm. T.
XP1113	Pm. T.
XP1114	Pm. T.
XP1115A	Pm. T.
XP1115B	Pm. T.
XP1116	Pm. T.
XP1117	Pm. T.
XP1118	Pm. T.
XP1120	Pm. T.
XP1121	Pm. T.
XP1122	Pm. T.
XP1123	Pm. T.
XP1130	Pm. T.
XP1131	Pm. T.
XP1140	Pm. T.
XP1141	Pm. T.
XP1143	Pm. T.
XP1180	Pm. T.
XP1190	Ph. Sc.
XP1191	Ph. Sc.
XP1192	Ph. Sc.
XP1193	Ph. Sc.

Acc. = Accessories
N.G.T. = Neutron generator tubes

Ph. Sc. = Photoscintillators
Pm. T. = Photomultiplier tubes
R.C.T. = Radiation counter tubes

Sc = Scintillators
S.R.D. = Semiconductor radiation detectors

Type No.	Section
XP1200	Ph. Sc.
XP1210	Pm. T.
XP1220	Pm. T.
ZP1080	R.C.T.
ZP1081	R.C.T.
ZP1082	R.C.T.
ZP1083	R.C.T.
ZP1100	R.C.T.
53 AVP	Pm. T.
53 UVP	Pm. T.
54 AVP	Pm. T.
54 UVP	Pm. T.
56 AVP	Pm. T.
56 AVP/03	Pm. T.
56 AVP/05	Pm. T.
56 CVP	Pm. T.
56 DUVP	Pm. T.
56 DUVP/03	Pm. T.
56 DVP	Pm. T.
56 DVP/03	Pm. T.
56 TUVP	Pm. T.
56 TVP	Pm. T.
56 UVP	Pm. T.
57 AVP	Pm. T.
58 AVP	Pm. T.

Type No.	Section
58 DVP	Pm. T.
58 UVP	Pm. T.
60 AVP	Pm. T.
150 AVP	Pm. T.
150 CVP	Pm.T.
150 UVP	Pm. T.
153 AVP	Pm.T.
18503	R.C.T.
18504	R.C.T.
18505	R.C.T.
18506	R.C.T.
18507	R.C.T.
18509	R.C.T.
18511	R.C.T.
18515	R.C.T.
18516	R.C.T.
18517	R.C.T.
18518	R.C.T.
18520	R.C.T.
18522	R.C.T.
18526	R.C.T.
18527	R.C.T.
18529	R.C.T.
18536	R.C.T.
18545	R.C.T.

Type No.	Section
18546	R.C.T.
18550	R.C.T.
18552	R.C.T.
18553	R.C.T.
18555	R.C.T.
18601	N.G.T.
56138	Acc.

Acc. = Accessories
N.G.T. = Neutron generator tubes

Ph. Sc. = Photoscintillators
Pm. T = Photomultiplier tubes
R.C.T. = Radiation counter tubes

Sc = Scintillators
S.R.D. = Semiconductor radiation detectors

Photomultiplier tubes

Scintillators
Photoscintillators
Radiation counter tubes
Semiconductor radiation detectors
Neutron generator tubes
Associated accessories

[^0]: 1) As from June, 1969, this subsection forms part of Part 5, section Electro-mechanical components.
 ${ }^{2}$) See also Part 5, section Electro-mechanical components
[^1]: 1) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^2]: 1) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^3]: ${ }^{1}$) For an infintely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^4]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^5]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 3) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^6]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^7]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^8]: 1) For an infinitely short light pulse, fully illuminating the photo cathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^9]: 1) For an infintely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^10]: ${ }^{1}$) Measured with a $32 \mathrm{~mm} \times 1 \mathrm{~mm} \mathrm{NaI}(\mathrm{Tl})$ crystal, at a counting rate of about 2500 Hz in the middle of the plateau, and with the discriminator bias set at 0.7 V . Preamplifier gain 250 x (source $100 \mu \mathrm{Ci}{ }^{55} \mathrm{Fe}$).
 ${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^11]: 1) See spectral response curve in front of this section
[^12]: ${ }^{1}$) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2854^{\circ} \mathrm{K}$

[^13]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^14]: $\overline{\left.\left.\left.1)^{2}\right)^{3}\right)^{4}\right)^{5}}$ See page 3.

[^15]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^16]: 1) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^17]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When caculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^18]: ${ }^{1}$) Measured with a tungsten ribbon lamp with a colour temperature of $2854^{\circ} \mathrm{K} . \mathrm{Be}-$ cause of the resistivity of D-type photocathodes the value of the cathode sensitivity is only an approximation. (See also the "operational considerations")
 ${ }^{2}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.

[^19]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^20]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
 ${ }^{3}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^21]: 1) The tube is delivered with a plane-concave acrylate adaptor and with a metalenvelope.
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$. Because of the resistivity of D-type of photocathodes the value of the cathodesensitivity is only an approximation. (See also the "Operational Considerations")
 3^{3}) At an ambient temperature of $25^{\circ} \mathrm{C}$.
[^22]: 1) For an infinitely short light pulse, fully illuminating the photocathode.
 2) Or the voltage at which the tibe circuited in the voltage divider A has a gain of about 5×10^{8}, whichever is lowest.
 3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^23]: ${ }^{1}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^24]: ${ }^{1}$) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temper ature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
 ${ }^{4}$) For an infinitely short light pulse, fully illuminating the photocathode.

[^25]: 1) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
 ${ }^{4}$) For an infinitely short light pulse, fully illuminating the photocathode
[^26]: ${ }^{1}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^27]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 3) At an ambient temperature of $25^{\circ} \mathrm{C}$
 ${ }^{4}$) For an infinitely short light pulse, illuminating the photocathode.
[^28]: ${ }^{1}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^29]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 2) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^30]: 1) When the tube is to be used at 5000 V preferably the cathode should be grounded.
 2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$.
[^31]: ${ }^{1}$) When the tube is to be used at 5000 V preferably the cathode should be grounded.
 2) The HT shall never be applied to the tube when the inner pressure exceeds $10^{-5} \mathrm{mmHg}$ 。

[^32]: 1) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
 2) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^33]: ${ }^{1}$) These time characteristics bear relation to an infinitely short light pulse, fully illuminating the photocathode and at $\mathrm{V}_{\mathrm{b}}=6500 \mathrm{~V}$.

[^34]: ${ }^{1}$) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
 4) For an infinitely short light pulse, fully illuminating the photocathode.

[^35]: 1) See spectral response curve in front of this section,
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$.
 3^{3}) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 2) For an infinitely short light pulse, fully illuminating the photocathode.
[^36]: ${ }^{1}$) See spectral response curve in front of the Handbook section "Photomultiplier tubes".
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$.
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 ${ }^{4}$) For an infinitely short light pulse, fully illuminating the photocathode.

[^37]: ${ }^{1}$) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$

[^38]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25{ }^{\circ} \mathrm{C}$
[^39]: 1) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
 3) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^40]: 1) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^41]: 1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
 ${ }^{2}$) See spectral response curve Fig. 5.
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854{ }^{\circ} \mathrm{K}$
[^42]: 1) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 2) For an infinitely short light pulse, fully illuminating the photocathode.
 3) Or the voltage at which the tube circuited in the voltage divider A has a gain of about 10^{9}, whichever is lowest.
 ${ }^{4}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^43]: ${ }^{1}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensurea high tension insulation between the aquadag shield and the mu-metal shield.
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of 2854 OK . Because of the resistivity of DU-types photocathodes the value of the cathode sensitivity is only an approximation (See also the "operational considerations").

[^44]: ${ }^{1}$) At an ambient temperature of $25^{\circ} \mathrm{C}$.
 ${ }^{2}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{3}$) Measured with a threshold at the anode of the photomultiplier of $4.25 \times 10^{-13} \mathrm{C}$. Anode coupling capacitor $=10 \mathrm{nF}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$.

[^45]: For notes see page 5

[^46]: ${ }^{1}$) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
 ${ }^{2}$) See spectral response curve in front of this section.
 ${ }^{3}$) Measured with a tungsten ribbon lamp having a colour temper ature of $2854^{\circ} \mathrm{K}$

[^47]: 1) To avoid electric field distortion in the electron optical system the aquadag shield (pin No.18) must be connected to a voltage near to the cathode voltage. If the cathode is connected to the negative H.T., precautions should be taken to ensure a high-tension insulation between the aquadag shield and the mumetal shield.
 ${ }^{2}$) See spectral response curve in front of this section.
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
[^48]: 1) The tube is delivered with a plane-concave acrylate adaptor and with a metal envelope.
 ${ }^{2}$) See spectral response curve in front of this section
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
 ${ }^{4}$) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^49]: ${ }^{1}$) The tube is delivered with a plane-concave acrylate adaptor and with a metal envelope.
 ${ }^{2}$) See spectral response curve in front of this section
 3) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
 ${ }^{4}$) At an ambient temperature of $25^{\circ} \mathrm{C}$

[^50]: 1) For an infinitely short light pulse, fully illuminating the photocathode.
 2) Or the voltage at which the tube circuited in the voltage divider A has a gain of of about 10^{9}, whichever is lowest.
 3) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^51]: 1) The tube is delivered with a plane-concave acrylate adaptor and with a metalenvelope.
 2) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$. Because of the resistivity of D-type of photocathodes the value of the cathode sensitivity is only an approximation. (See also the "Operational Considerations")
 3^{3}) At an ambient temperature of $25^{\circ} \mathrm{C}$.
[^52]: $\left.\left.\left.\overline{1})^{2}\right)^{3}\right)^{4}\right)$ See page 3.

[^53]: 1) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temperature of $2854^{\circ} \mathrm{K}$
 2) At an ambient temperature of $25^{\circ} \mathrm{C}$
[^54]: 1) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.
[^55]: ${ }^{1}$) See spectral response curve in front of this section
 ${ }^{2}$) Measured with a tungsten ribbon lamp having a colour temper atue of $2854{ }^{\circ} \mathrm{K}$
 ${ }^{3}$) At an ambient temperature of $25^{\circ} \mathrm{C}$

[^56]: ${ }^{1}$) For an infinitely short light pulse, fully illuminating the photocathode.
 ${ }^{2}$) When calculating the anode voltage, the voltage drop in the load resistance should not be overlooked.

[^57]: 1) This efficiency is defined as the counted number of disintegrations divided by the total number of disintegrations of the source. It is given as a percentage.
[^58]: Anode to cathode

[^59]: 1) To obtain max. tube life V_{b} should be kept as low as possible.
 2) For $\mathrm{Mn} \mathrm{K} \alpha$ radiation (5.9 keV)
 3) $\mathrm{P}=$ average pulse height, $\Delta \mathrm{P}=$ width of the pulse height distribution at half of the max. value.
[^60]: ${ }^{1}$) For application in anticoincidence circuits the recommended value of $V_{b}=600 \mathrm{~V}$.

[^61]: ${ }^{1)}$ Available on request

[^62]: 1) For 3-7, 7-12, etc. use 7, 12, etc. The true value of the depletion depth is stated in the test certificate. The tolerance on the true value is shown in the table.
[^63]: 1) Additional pumping connection, suitable for a 1 litre per second ion pump.
 2) Relief valve and connection for pumping.
[^64]: 1) At lower yields longer pulses are permissible, however, the maximum target dissipation should be observed.
