PHIHIPS DATA HANDBOOK

COMPONENTS
 AND MATERIALS

PART 3 JANUARY 1969

Radio

Audio

Television

COMPONENTS AND MATERIALS

Part 3
January 1969

FM tuners
Coils and resonators
Audio and mains transformers

Loudspeakers

Electronic organ assemblies E
Television tuners F
Components
for black and white television G
Components for colour television H
Deflection assemblies for camera tubes

FOR '"FERRITES FOR RADIO, AUDIO AND TELEVISION" SEE RELEVANT SECTION OF PART 4

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts.
The three series, identified by the colours noted, are:

ELECTRON TUBES (9 parts) BLUE
SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED
COMPONENTS AND MATERIALS (5 parts)
GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the published data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

Transmitting tubes (Tetrodes, Pentodes)

Part 2

Tubes for microwave equipment

Part 3

Special Quality tubes

Part 4

Receiving tubes

Part 5

Cathode-ray tubes
Photo tubes
Camera tubes

Part 6

Photomultiplier tubes
Radiation counter tubes
Scintillators

Part 7

Voltage stabilizing and reference tubes
Counter, selector, and indicator tubes
Trigger tubes
Switching diodes

Part 9

Transmitting tubes (Triodes)
Tubes for R.F. heating (Triodes)

December 1968
Associated accessories
February 1969

February 1968
Miscellaneous devices

March 1968
T.V. picture tubes

April 1968
Photoconductive devices
Associated accessories

July 1968
Semiconductor radiation detectors Miscellaneous nuclear devices

May 1968
Thyratrons
Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes

December 1968
Associated accessories

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

General section
Signal diodes
Variable capacitance diodes
Voltage regulator diodes

Part 2

General section
Germanium transistors

Part 3-4

General section
Silicon transistors
Accessories and heatsinks

Part 5

General section
Digital integrated circuits
Linear integrated circuits

September 1968

Rectifier diodes
Thyristors
Rectifier stacks
Accessories and heatsinks

October 1968

Photo devices
Accessories and heatsinks

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices

September 1968

Circuit blocks:
100 kHz Series
1-Series
10-Series
20 -Series
40-Series
Norbits (60-Series)

Circuit blocks for ferrite core memory drive
Input/ output devices
Accessories for circuit blocks:
Power supplies
Mounting chassis
Printed-wiring boards

November 1968
Polycarbonate, paper, mica, polystyrene capacitors
Electrolytic capacitors
Variable capacitors

January 1969
Television tuners
Components for black and white television Components for colour television Deflection assemblies for camera tubes

Part 3 Radio, Audio, Television
FM tuners
Coils and resonators
Audio and mains transformers
Loudspeakers
Electronic organ assemblies

Part 4 Magnetic Materials, White Ceramics
March 1968

Ferrites for radio, audio
and television
Ferroxcube potcores
Microchokes

Ferroxcube transformer cores
Piezoxide
Insulating and dielectric materials
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, June 1968 Microwave Devices, Variable Transformers, Electro-mechanical Components

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters Isolators, circulators
Variable mains transformers
Electro-mechanical components

This Handbook does not give information on delivery or terms.

The information given in this Handbook does not imply a licence under any patent.

FM tuners

F.M. TUNER

F.M. tuner for European band; with automatic frequency control Equipped with silicon transistors.

APPLICATION

For use in radio sets for reception of F.M. signals in the European frequency band (not for portable and car radios as no supply voltage stabilisation is present).

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA

Supply voltage
Frequency range
Tolerance on scale calibration
Padding deviation
Total gain ${ }^{1}$)
I.F. frequency
I.F. bandwidth (3 dB$)^{1}$)

Maximum frequency drift
Radiation measured at a distance of 3 m (I.E.C.)
fundamental wave
second harmonic
$9 \mathrm{~V}_{\mathrm{dc}}$
$87-104 \mathrm{MHz}$
$<350 \mathrm{kHz}$
$<0.75 \mathrm{MHz}$
4.5 x
10.7 MHz

The oscillator frequency is higher than the signal frequency

210 kHz
$10 \mathrm{kHz} /$ deg C
$1000 \mu \mathrm{~V} / \mathrm{m}$
$300 \mu \mathrm{~V} / \mathrm{m}$

1) Measured with secondary i.f. filter 312210822850 (see Gain Measurement).

Scale calibration

angle of rotation (degrees)	frequency (MHz)	angle of rotation (degrees)	frequency (MHz)
0	86.7	238	96
9.5	87.5	261.5	97
38.5	88	285	98
65.5	89	309	99
91.5	90	333.5	100
116.5	91	358.5	101
141	92	$360+24.5$	102
165.5	93	$360+52$	103
190	94	$360+84$	104
214	95	$360+126.5$	105

Circuit diagram

GAIN MEASUREMENT

The aerial impedance of 300Ω is connected symmetrically.
The gain $=\frac{\text { i.f. voltage across } \mathrm{R}(=330 \Omega)}{\text { aerial e.m.f. }}$

F.M. TUNERS

F.M. tuner AP2152/00 for European band; with soldering lugs AP2152/01 for European band; with pins for printed-wiring AP2152/02 for American band; with soldering lugs

Automatic frequency control
Equipped with germanium transistors

APPLICATION

For use in Hi-Fi radio sets (not for portable radios as no supply voltage stabilisation is present).
The advantage of this tuner is the excellent big signal handling.

counter-clockwise rotation of the spindle increases the frequency

ELECTRICAL DATA

Supply voltage
Frequency range
Tolerance on scalecalibration
Padding deviation
Total gain ${ }^{1}$)
I.F. frequency
I.F. bandwidth (3 dB$)^{1}$)

Radiation measured at a
distance of 3 m (I.E.C.)
fundamental wave
second harmonic

AP2152/00 AP2152/01	AP2152/02
$14 \mathrm{~V} \mathrm{~V}_{\mathrm{dc}}$	14 V dc
$87-104 \mathrm{MHz}$	$87-108.9 \mathrm{MHz}$
$<350 \mathrm{kHz}$	$<350 \mathrm{kHz}$
$<0.5 \mathrm{MHz}$	$<0.5 \mathrm{MHz}$
4 x	4 x
10.7 MHz	10.7 MHz
The oscillator frequency	The oscillator frequency
is higher than the signal	is lower than the signal frequency
frequency 225 kHz	225 kHz
$1000 \mathrm{\mu V} / \mathrm{m}$	$1000 \mu \mathrm{~V} / \mathrm{m}$
$300 \mu \mathrm{~V} / \mathrm{m}$	$300 \mu \mathrm{~V} / \mathrm{m}$

[^0]Scale calibration

angle of rotation (degrees)		frequency (MHz)	angle of rotation (degrees)		frequency (MHz)
$\begin{aligned} & \text { AP2152/00 } \\ & \text { AP2152/01 } \end{aligned}$	AP2152/02		$\begin{aligned} & \text { AP2152/00 } \\ & \text { AP2152/01 } \end{aligned}$	AP2152/02	
0	0	87	311.5	279.5	98
26.5	20	87.5	341	302.5	99
41	34.5	88	$360+11$	327	100
68	61.5	89	$360+40$	350	101
94	88	90	$360+70.5$	$360+13$	102
121	112.5	91	$360+98.5$	$360+35$	103
147.5	137.5	92	$360+127$	$360+57$	104
174.5	161.5	93	$360+159$	$360+78.5$	105
202.5	185.5	94		$360+98.5$	106
230	209.5	95		$360+118$	107
257	232.5	96		$360+138.5$	108
284	256	97		$360+158.4$	108.9

Circuit diagram

GAIN MEASUREMENT

The aerial impedance of 300Ω is connected symmetrically.
The gain $=\frac{\text { i.f. voltage across } \mathrm{R}(=330 \Omega)}{\text { aerial e.m.f. }}$

Coils and resonators

\square

AP 1051

COILS
 for transistorised radio sets

These coils are designed for mounting in printed-wiring boards with an ϵ-grid ($\varepsilon=$ $\frac{\mathrm{e}}{4}=0.635 \mathrm{~mm}$).
They can be supplied with a built-in capacitor (capacitance values 47, 82, 100 or 150 pF).

Dimensions in mm

Hole pattern

TYPES (for catalog numbers see last page)

AM receivers

AP 1051/11 (oscillator coil S_{1}) AP 1051/15 (I.F. coil S2) AP 1051/13 (I.F. coil S3) AP 1051/14 (I.F. coil S4)

The following performance can be obtainedwith these coils in the above-given circuit, measured at a supply voltage of -7 V .
a. Sensitivity: input $2 \mu \mathrm{~V} \pm 6 \mathrm{~dB}$ at 1 MHz for 50 mV audio output. The input is modulated 30% at 400 Hz . The output is measured across a $5 \mathrm{k} \Omega$ load.
b. Bandwidth: $5.1 \mathrm{kHz} \pm 500 \mathrm{~Hz}$ at 6 dB measured under similar conditions with a centre frequency of 470 kHz .
c. Attenuation: $26 \mathrm{~dB} \pm 3 \mathrm{~dB}$ at 9 kHz from centre frequency.
d. Consumption: approx. 3.3 mA

$$
\begin{array}{ll}
\text { AP 1051/20 (I.F. coil S2) } & \text { AP 1051/22 (I.F. coil } \left.S_{4}\right) \quad\left(S_{1}=\text { oscillator coil) }\right) \\
\text { AP 1051/21 (I.F. coils } \left.S_{3} \text { and } S_{5}\right) & \text { AP 1051/23 (I.F. coil } \left.S_{6}\right)
\end{array}
$$

The following performance can be obtainedwith these coils in the above-given circuit, measured at a supply voltage of 6 V .
a. Sensitivity: input $1.6 \mu \mathrm{~V} \pm 6 \mathrm{~dB}$ at 1 MHz for 10 mV audio output.

The input is modulated 30% at 400 Hz . The output is measured unloaded.
b: Bandwidth: $4.8 \mathrm{kHz} \pm 500 \mathrm{~Hz}$ at 6 dB . Measured under similar conditions with a centre frequency of $\overline{4} 60 \mathrm{kHz}$.
c. Attenuation: $77 \times$ at 9 kHz from centre frequency.
d. Consumption: approx. 3.3 mA
e. Max. input: on base of first transistor $20 \mathrm{mV}(1 \mathrm{MHz})$.

AP 1051

FM receivers
AP 1051/17 (I.F. coils $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$)
AP 1051/18 (Detector coil S6)
AP 1051/19 (Detector coil S7)

The following performance can be obtained with these coils in the above-given circuit, measured at a supply voltage of 6 V .
a. Sensitivity: input $44 \mu \mathrm{~V}$ for 10 mV audio output. The output is measured unloaded.
$\Delta f=15 \mathrm{kHz}$.
b. Bandwidth: 160 kHz at 6 dB .
c. Attenuation: 450 x at 300 kHz from centre frequency.
d. Consumption: approx. 3.3 mA

AM/FM receivers

AP 1051/20 (I.F. coil S3)
AP 1051/21 (I.F. coil S4, S6)
AP 1051/22 (I.F. coil S5)
AP 1051/23 (I.F. coil S7)
AP 1051/17 (I.F. coils S8, S9, S $10, S_{11}, S_{12}$)
AP 1051/18 (Detector coil S 13)
AP 1051/19 (Detector coil S 14)
$\left(S_{1}=\right.$ aerial coil a.m. $; \quad S_{2}=$ oscillator coil a.m.)
For performance see above.

CATALOG NUMBERS (for ordering)

type	catalog number
AP1051/11	312210730940
AP1051/13	312210730960
AP1051/14	312210730970
AP1051/15	312210730980
AP1051/17	312210820570
AP1051/18	312210825550
AP1051/19	312210825560
AP1051/20	312299493890
AP1051/21	312299493900
AP1051/22	312299493910
AP1051/23	312299493920

PIEZOELECTRIC CERAMIC RESONATORS for a.m. radio sets

Resonant frequency
Quality factor
Ambient temperature range
$452,455,460,468,470$ and 480 kHz
>800
-25 to $+85^{\circ} \mathrm{C}$

GENERAL
The piezoelectric effect of lead zirconate titanate ceramic material makes it possible to achieve frequency selective elements with electrical characteristics far better than coils and far more economical than quartz crystals.
This series of ceramic resonators is intended to be used in intermediate stages of a.m. radio receivers. Compared with coils the resonators offer several advantages:

- no installation alignment
- high selectivity
- miniature size
- no shielding (due to the absence of magnetic fields)
- low price.

CONSTRUCTION

A disc of extremely pure and stable piezoelectric ceramic material is provided with two gold electrodes. The disc is clamped between two gold-plated springs with lockfitting printed-wiring terminals. This assembly is encapsulated in an insulating casing.
For each specific frequency between 452 and 480 kHz two versions are available:

- for printed-wiring boards with holes of 1.3 mm (Fig.1)
- for printed-wiring boards with holes of 0.8 mm (Fig.2).

Dimensions in mm

Fig. 1

Fig. 2

Marking

The resonators are marked with the resonant frequency (f_{r}) and the catalogue number.

PHYSICAL BEHAVIOUR

The mechanical resonance of the ceramic disc causes the frequency selectivity. Due to the piezoelectricity this mechanical vibration can be described with the equivalent circuit of Fig. 3.

Fig. 3
This circuit is valid over a very wide frequency range.
A typical impedance curve, in which impedance is plotted against frequency is shown in Fig. 4.

Fig. 4.
$\mathrm{f}_{\mathrm{r}}=$ resonant frequency $=452 \mathrm{kHz}$
$f_{o}=$ frequency at 0 -point of horizontal scale $=462 \mathrm{kHz}$
$f_{a}=$ anti-resonant frequency $=470 \mathrm{kHz}$

The impedance curve can be measured with the circuit shown in Fig. 5.

Fig. 5

At resonant frequency $100 \mathrm{~V}_{\mathrm{rms}}$ should be considered as maximum a.c. voltage.
To calculate the elements of the equivalent circuit (Fig.3) measuring of the following parameters is sufficient:

- resonant frequency f_{r}
- impedance at resonant frequency R_{S}
- anti-resonant frequency f_{a}
- capacitance at a frequency far below resonant frequency $(1 \mathrm{kHz}) \mathrm{C}=\mathrm{C}_{\mathrm{O}}+\mathrm{C}_{\mathrm{S}}$.

The elements of the circuit can be calculated with the formulae:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{S}} \mathrm{C}_{\mathrm{S}}}} \\
& \mathrm{f}_{\mathrm{a}}=\frac{1}{2 \pi \sqrt{L_{\mathrm{S}} \cdot \frac{\mathrm{C}_{\mathrm{S}} \mathrm{C}_{\mathrm{o}}}{\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\mathrm{O}}}}}
\end{aligned}
$$

TECHNICAL PERFORMANCE (see also Fig.3)

Resonant frequency (f_{r})
Tolerance on resonant frequency
(incl. ageing over a period of 10 years)
Quality factor ($Q=\frac{2 \pi f_{r} L_{S}}{R_{S}}$)
Inductance (L_{S})
Capacitance ($\mathrm{C}=\mathrm{C}_{\mathrm{O}}+\mathrm{C}_{\mathrm{S}}$), measured at 1 kHz
Maximum permissible a.c. voltage at resonant frequency

Maximum d.c. voltage
Ambient temperature range
Temperature coefficient of f_{r}
Solderability
$452,455,460,468,470$ or 480 kHz
$\pm 1 \mathrm{kHz}$
>800 (typical 1000)
$8.5 \mathrm{mH} \pm 10 \%$
$190 \mathrm{pF} \pm 10 \%$

100 mV rms
30 V
-25 to $+85{ }^{\circ} \mathrm{C}$
$<60.10^{-6} / \mathrm{deg} \mathrm{C}$
$250^{\circ} \mathrm{C}$, max. soldering time 5 s

AVAILABLE VERSIONS

f_{r} (kHz)	catalogue number	
	version for printed- wiring boards with holes of 1.3 mm	version for printed- wiring boards with holes of 0.8 mm
	242254000101	242254000201
455	102	202
460	103	203
468	104	204
470	105	205
480	106	206

APPLICATION INFORMATION

General

The ceramic resonators $242254000 \ldots$ are characterised by a high quality factor (which results in a high selectivity and low losses) a well-defined temperature behaviour, and a high stability.
The mechanical resonance responsible for these good properties also has some drawbacks, however, mainly regarding parasitic resonance effects. Although being designed to effectively suppress the harmonics of the fundamental radial vibration, in the 3 to 6 MHz frequency range the resonators will behave as thickness vibrators with inherent resonant frequencies. Therefore me asures must be taken to suppress these parasitic effects.
It should be remembered that connecting a low impedance in parallel or a high one in series with the resonator is likely to affect the low impedance at the resonant frequency, as well as the high impedance at other frequencies (also when these frequencies are in the immediate neighbourhood of the resonant frequency'), which is essential for the resonator's high Q factor.

Filters

The application to be described here is in intermediate frequency bandpass filters for entertainment and communication $\mathrm{a} . \mathrm{m}$. radio receivers. Here the resonators are used as coupling elements in a configuration where tuned LC circuits provide sufficient suppression of parasitic signals, whilst the resonators are responsible for high selectivity and low losses in the passband. The presence of the low-loss resonators allow the whole selectivity to be concentrated in a block preceding the i.f. amplifier. This lumped selectivity, being a feature in manufacturing conventional radio receivers, is a must when integrated circuits are used in the i.f. part. In the following sections three filters are shown of increasing quality. These filters are given as examples only. For specific requirements on selectivity and impedance levels more application assistance can be given on request.

Second order hybrid bandpass filter

This filter can serve as complete selectivity unit in simple radio receivers or replace double tuned LC sections in more complicated receivers. The ceramic resonator is used as coupling element between a tuned LC circuit and the first i.f. transistor. The capacitor C_{n} is a neutralising capacitor which compensates the asymmetry of the bandpass curve caused by the parallel resonance of the resonator.

Fig.6. Circuit diagram of a second order hybrid bandpass filter
Parts list:
$\mathrm{R}_{\mathrm{O}}=$ output impedance of the mixer/oscillator transistor BF195 (typ. $250 \mathrm{k} \Omega$ at 1 mA)
$\mathrm{R}_{\mathrm{i}}=$ input impedance of the i.f. transistor BF194 (typ. $3 \mathrm{k} \Omega$ at 1 mA)
$R_{1}=470 \Omega$
$\mathrm{C}_{1}=3000 \mathrm{pF}$
$\mathrm{C}_{2}=3300 \mathrm{pF}$
$\mathrm{C}_{\mathrm{n}}=180 \mathrm{pF}$
$L_{1}=40 \mu \mathrm{H}$
$\mathrm{V}_{\mathrm{Ll}}{ }^{\prime} / \mathrm{V}_{\mathrm{Ll}}=\mathrm{V}_{\mathrm{Ll}}{ }^{\prime \prime} / \mathrm{V}_{\mathrm{Ll}}=0.115$
Coupling factor $\mathrm{k}=1$ approx.
Quality factor Q_{0} of tuned circuit $=130 ; Q_{0}$ (resonator) $=1000$ approx.
CR = ceramic resonator 242254000 . .
Characteristics:
$B_{3 \mathrm{~dB}}=4.5 \mathrm{kHz}$
Selectivity $(\pm 9 \mathrm{kHz})=26 \mathrm{~dB}$
Centre frequency (f_{C}) $=452 \mathrm{kHz}$
Transfer impedance $\left(\mathrm{Z}_{\mathrm{T}}\right)=700 \Omega$

Frequency characteristics (centre frequency $\mathrm{f}_{\mathrm{C}}=452 \mathrm{kHz}$):

Fig. 7

Fig. 8

Fig. 9

Third order hybrid bandpass filter

A triple filter has been designed for more sophisticated radio receivers. It consists of two LC circuits intercoupled with a ceramic resonator. The selectivity of this filter is about 10 dB better than that of the second order filter. Resistor R_{1} provides the additional damping required for a symmetric bandpass curve.

Fig.10. Circuit diagram of a third order hybrid bandpass filter
Parts list:
$\mathrm{R}_{\mathrm{O}}=$ output impedance of the mixer/oscillator transistor BF195 (typ. $250 \mathrm{k} \Omega$ at 1 mA)
$R_{i}=$ input impedance of the i.f. transistor BF194 (typ. $3 \mathrm{k} \Omega$ at 1 mA)
$\mathrm{R}_{1}=82 \mathrm{k} \Omega$
$\mathrm{C}_{1}=3000 \mathrm{pF}$
$\mathrm{C}_{2}=3000 \mathrm{pF}$
$\mathrm{C}_{\mathrm{n}}=270 \mathrm{pF}$
$\mathrm{L}_{1}=\mathrm{L}_{2}=40 \mu \mathrm{H}$
$\mathrm{V}_{\mathrm{L} 1} 1 / \mathrm{V}_{\mathrm{L} 1}=\mathrm{V}_{\mathrm{L} 2}{ }^{\prime} / \mathrm{V}_{\mathrm{L} 2}=0.115$
$\mathrm{V}_{\mathrm{L} 1}{ }^{\prime \prime} / \mathrm{V}_{\mathrm{L} 1}=\mathrm{V}_{\mathrm{L} 2}{ }^{\prime \prime} / \mathrm{V}_{\mathrm{L} 2}=0.077$
Quality factor Q_{0} of tuned circuits (excluding R_{1}) $=130 ; Q_{0}$ (resonator) $=1000$ approx. CR = ceramic resonator 242254000 ...

Characteristics:
$\mathrm{B}_{3 \mathrm{~dB}}=4.5 \mathrm{kHz}$
Selectivity $(\pm 9 \mathrm{kHz})=36 \mathrm{~dB}$
Transfer impedance $\left(\mathrm{Z}_{\mathrm{T}}\right)=500 \Omega$

Frequency characteristics (centre frequency $\mathrm{f}_{\mathrm{C}}=452 \mathrm{kHz}$):

Fig. 11

Fig. 12

Fig. 13

Fifth order hybrid bandpass filter
This filter can provide the selectivity of a communication or a high-class entertainment receiver. Three resonators in series are intercoupling two LC circuits.

Fig.14. Circuit diagram of a fifth order hybrid bandpass filter
Parts list:
$\mathrm{R}_{\mathrm{O}}=300 \mathrm{k} \Omega$
$R_{i}=1200 \Omega$
$\mathrm{C}_{1}=\mathrm{C}_{2}=1000 \mathrm{pF}$
$\mathrm{C}_{3}=\mathrm{C}_{4}=1000 \mathrm{pF}$
$\mathrm{L}_{1}=\mathrm{L}_{2}=122 \mu \mathrm{H}$
$\frac{\mathrm{V}_{\mathrm{L} 1}{ }^{\prime}}{\mathrm{V}_{\mathrm{L} 1}}=\frac{\mathrm{V}_{\mathrm{L} 2}{ }^{\prime}}{\mathrm{V}_{\mathrm{L} 2}}=0.097$
$\frac{\mathrm{V}_{\mathrm{L} 1}{ }^{\prime \prime}}{\mathrm{V}_{\mathrm{L} 1}}=\frac{\mathrm{V}_{\mathrm{L} 2}{ }^{\prime \prime}}{\mathrm{V}_{\mathrm{L} 2}}=0.129$
Quality factor Q_{0} of tuned circuits $=50$
$C R=$ ceramic resonator
Characteristics:
$B_{6 \mathrm{~dB}}=7.5 \mathrm{kHz}$
Selectivity $(\pm 15 \mathrm{kHz}) \geq 60 \mathrm{~dB}$
Transfer impedance $\left(\mathrm{Z}_{\mathrm{T}}\right)=650 \Omega$

Frequency characteristics (centre frequency $\mathrm{f}_{\mathrm{C}}=455 \mathrm{kHz}$):

Fig. 15

Fig. 16

Fig. 17

Aerial filter

A ceramic resonator in the aerial circuit can suppress the i.f. frequency about 32 dB . The resonator decouples the base of the mixer-transistor at the i.f. frequency. This application is not recommended for short-wave receivers due to the thickness resonances of the resonator.

Fig. 18
Emitter bypassing

At the resonant frequency and in the neighbourhood of this frequency the ceramic resonator diminishes the feedback effect of the emitter resistor

Fig. 19
Loaded quality of the resonator $=Q_{L}=\frac{Q}{1+\frac{\mathrm{ye}_{e}}{\mathrm{y}_{\mathrm{fe}}}}$
$B_{3 d B}=\frac{f_{o}}{Q}\left(1+\frac{y_{e}}{y_{f e}}\right)$
in which:
$f_{0}=$ resonant frequency of the resonator
$\mathrm{Q}=$ quality factor of the resonator
$y_{e}=$ admittance of the emitter circuit (resonator parallel to resistor) at resonant frequency
yfe $=$ forward transfer admittance of the transistor.

Audio and mains transformers

AUDIO

 TRANSFORMERS
INTRODUCTION

C3/66

The range of audio transformers comprises a number of carefully designed items in various sizes for tube and transistor circuits. They show the following features:

- High efficiency

Thanks to a special manufacturing technique, the efficiency is high, even in the case of the smallest types.

- Sturdy construction

In order to obtain a very stable construction and a superior copper-space factor, the coils - with a few exceptions - are compressed after winding.

- Fully tropicalised

A moisture-repellent plastic is used as an inter-layer insulator. Moreover, the transformers are impregnated with a particular medium. Any electrolytic dissociation, which is the usual cause of burn-outs, is therefore avoided and the transformers are suitable for use under the most adverse climatic conditions.

- Superior quality

Low distortion and a flat frequency-response curve allow the transformers to be used in high-quality equipment.

AUDIO TRANSFORMERS FOR PUSH-PULL CIRCUITS WITH TRANSISTORS

Thanks to the application of anisotropic core material, these transformers will give excellent results in spite of their small size. They are symmetrically wound in order to obtain two absolutely identical halves as regards inductance, capacitance and d.c. resistance.

type number	AD9015	AD9049	AD905 1	AD9054		
				$\mathrm{V}_{\mathrm{b}}=7 \mathrm{~V}$	$\mathrm{V}_{\mathrm{b}}=14 \mathrm{~V}$	
Primary impedance	360	52	98	7	41	Ω
Secondary impedance	3	3	3		-5	Ω
Power	0.2	0.3	0.75		8	W
Efficiency at 400 Hz	85	85	80		70	\%
Transformation ratio	11	4.2	5.7	1.6-1.25	3.65-2.85	
Primary inductance	0.6	0.3	0.48		. 2	H
D.C. bias magnetization	-	-	-			mA
Primary resistance	16	2.6	9.5		13	Ω
Frequency response between -3 dB points (reference 1 kHz)	45-35000	50-10000	50-10 000	10-	10000	Hz
Distortion is 1% at	160	-	-		90	Hz

Dimensions (in mm) and connections

AUDIO TRANSFORMERS FOR SINGLE-ENDED CIRCUITS

	AD9008	AD9020	
Primary impedance	5400	5400	Ω
Secondary impedance	3-5	3-5	Ω
Power	3	6	W
Efficiency at 400 Hz	75	76	\%
Extra windings: anti-hum (\% of $\mathrm{N}_{\text {prim }}$) feed-back (\% of $\mathrm{N}_{\mathrm{sec}}$)	10	112	$\begin{aligned} & \% \\ & \% \end{aligned}$
Transformation ratio	45-34	46-33	
Primary inductance	10	10	H
D.C. bias magnetization	36	40	mA
Primary resistance	550	540	Ω
Frequency response between -3 dB points (reference 1 kHz)	$\begin{gathered} 50- \\ 10000 \end{gathered}$	$\begin{gathered} 40- \\ 20000 \end{gathered}$	Hz
Distortion is 1% at	60	65	Hz

In the AD9057 the coils are wound around a C-type core of oriented laminated sheet. The stray inductance and the winding capacitance are low and, consequently, the resonance frequency is so high that heavy feedback can be applied without risking instability.

Catalogue numbers (for ordering)
type AD9008: cat. No. 312299153040
AD9020: 312210839990

Dimensions (in mm) and connections

	AD9008	AD9020
a	40	50
b	32	40
c	16	20
d	36.5	41
e	38	45.5
f	41	49

AUDIO TRANSFORMERS FOR DRIVER CIRCUITS WITH TRANSISTORS

type number ${ }^{1}$)	AD9014	AD9048	AD9050	AD9053	
Efficiency at 400 Hz	70	70	75	95	$\%$
Transformation ratio	1	0.65	1.15	1.24	
Primary inductance	10	1.1	3.4	0.44	H
D.C. bias magnetization	1	4.5	4	75	mA
Primary resistance	400	106	123	4	Ω
Frequency response between -3 dB points (reference 1 kHz)	$20-40000$	$50-10000$	$50-10000$	$10-60000$	Hz
Distortion is 1% at	70	-	-	-	Hz

Dimensions (in mm) and connections

Lead $1=$ red
2 = blue
3 = yellow
4 = black
5 = green
$\overline{\text { 1) For ordering see last page. }}$

Catalog numbers (for ordering)

type	catalog number
AD9014	312299162030
AD9048	312299162260
AD9050	312299162240
AD9053	312299162270

FIXED MAINS TRANSFORMERS

RZ 17539-4

Type AD9026

Catal. No. : 312210839790
No-load current: max. 130 mA
No-load losses : max. 7.5 W
Weight: $\quad 1.93 \mathrm{~kg}$
The secondary voltages indicated in the diagram apply to the loaded condition.

Type AD9027

Catal. No. : 312210839800
No-load current: max. 90 mA
No-load losses : max. 6 W
Weight : $\quad 1.27 \mathrm{~kg}$
The secondary voltages indicated in the diagrams apply to the loaded condition.

Loudspeakers

CONTENTS

page
SURVEY OF LOUDSPEAKER TYPES D3
GENERAL D5
Introduction D8
New commercial coding system D6
Impedances D6
Frequency response curves D7
Measuring conditions
The use of response curves
The response curves for making comparisons
Response curves an aid for the manufacturer
Power handling capacity D8
Finish D8
DATA ON LOUDSPEAKERS D9
RECOMMENDED ENCLOSURES D75

SURVEY OF LOUDSPEAKER TYPES

STANDARD RANGE

$\begin{gathered} \text { nominal } \\ \text { size } \\ \text { (inches) } \end{gathered}$	shape of flange	basic part of type No. 1)	versions 2)	max. power (W)	old type number (basic part)	page
$2 \frac{1}{2}$	round	AD2070	Z4, Z8, Z15, Z25	0.5	AD3207	D31
$\begin{aligned} & 3 \\ & 3 \end{aligned}$	round square	$\begin{aligned} & \text { AD3070 } \\ & \text { AD3370 } \end{aligned}$	$\begin{aligned} & \mathrm{Y} 4, \mathrm{Y} 8, \mathrm{Y} 15, \mathrm{Y} 25 \\ & \mathrm{Y} 150 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{gathered} \text { D33 } \\ 4) \end{gathered}$
3×5	oval	AD3590	$\begin{aligned} & \mathrm{X} 4, \mathrm{X} 8, \mathrm{X} 15, \mathrm{X} 50 \text {, } \\ & \mathrm{X} 400 \end{aligned}$	2	AD3359	D37
$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	round round round		$\begin{aligned} & \mathrm{Y} 4, \mathrm{Y} 8, \mathrm{Y} 15, \mathrm{Y} 25 \\ & \mathrm{X} 4, \mathrm{X}, \mathrm{X} 15, \mathrm{X} 25 \\ & \mathrm{X} 8, \mathrm{X} 15 \\ & \mathrm{X} 400 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 0.6 \end{aligned}$	AD3419	$\begin{aligned} & \mathrm{D} 43 \\ & \text { D45 } \\ & \text { D47 } \end{aligned}$
$\begin{aligned} & 3 \times 8 \\ & 3 \times 8 \\ & \hline \end{aligned}$	oval oval	AD3890	$\begin{aligned} & \text { (X4) } \\ & \text { (X15) } \\ & \text { X4, X8 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	AD3386RX AD3386PX	D35 4)
4×6 4×6	oval oval	$\begin{aligned} & \text { AD4680 } \\ & \text { AD4690 } \end{aligned}$	Z4, Z8, Z15, Z25 M4, M8, M15, M25 X4, X8, X15, X25 M4, M50, M400, M800	$\begin{aligned} & 3 \\ & 4 \\ & 6 \\ & 4 \\ & 4 \end{aligned}$	AD3469	$\overline{\mathrm{D}} 51$ 4)
5	octag.	AD5080	$\begin{aligned} & \mathrm{Z} 4, \mathrm{Z} 8, \mathrm{Z} 15, \mathrm{Z} 25 \\ & \text { M4, M8, M15, M25 } \\ & \text { X4, X8, X15, X25 } \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 6 \end{aligned}$	-	D57
5×7	oval	AD5780	$\begin{aligned} & \mathrm{X} 4, \mathrm{X} 8, \mathrm{X} 15, \mathrm{X} 25 \\ & \text { M4, M8, M15, M25 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	-	D. 59
$6 \frac{1}{2}$ $6 \frac{1}{2}$	octag. octag.	AD7080 AD7091 3)	M4, M8 X4, X8 $\mathrm{X} 4, \mathrm{X} 8$ M4, M800	$\begin{aligned} & 4 \\ & 6 \\ & 3 \\ & 3 \end{aligned}$	AD3729	D65 D67

1) A complete type No. is composed of a basic part, a stroke and a version code, e.g. AD2070/Z4, AD7091/M800.
2). Letter for type of response characteristic (see General section), followed by the nominal impedance in Ω.
2) Inverted magnet system.
3) Data sheets will be issued separately.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { nominal } \\
\& \text { size } \\
\& \text { (inches) }
\end{aligned}
\] \& shape of flange \& basic part of type No. 1) \& \begin{tabular}{l}
versions \\
2)
\end{tabular} \& max. power (W) \& old type number (basic part) \& page \\
\hline \(6 \times 9\) \& oval \& 4 6 980 \& \begin{tabular}{l}
(X4) \\
(M4) \\
(M8)
\end{tabular} \& \[
\begin{aligned}
\& 6 \\
\& 6 \\
\& 6
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { AD3696RX } \\
\& \text { AD3696RM } \\
\& \text { AD3696SM }
\end{aligned}
\] \& D39

4

\hline 6×9 \& oval \& AD6980 \& $$
\mathrm{X} 4, \mathrm{X} 8, \mathrm{M} 4, \mathrm{M} 8
$$ \& \& - \& $\left.{ }^{4}\right)$

\hline 8 \& octag. \& - \& | (X4) |
| :--- |
| (X8) |
| (M4) |
| (M8) | \& \& | AD3806RX |
| :--- |
| AD3806SX |
| AD3806RM |
| AD3806SM | \& D41

\hline 8 \& octag. \& AD8080 \& X4, X8, M4, M8 \& 6 \& - \& 4)

\hline
\end{tabular}

SPECIAL AND HIGH QUALITY LOUDSPEAKERS
Tweeters

$2 \frac{1}{4}$	round	AD2070	T4, T8	$\left.10^{5}\right)$	-	D29
4	square	AD4490	T4, T8	10	AD3408	D49

Woofers

5	octag.	AD5060	W4, W8	10^{6})	AD3503	D55
$6 \frac{1}{2}$	octag.	AD7065	W8	206)	AD3703	D63
8	octag.	AD8065	W8	206)	AD3803	D71
10	round	AD1055	W8	406)	-	D11
12	round	AD1255	W8	20	AD5201	D17

Wide frequency range

5	octag.	AD5060	M4, M8	6	AD3501	D53
$6 \frac{1}{2}$	octag.	AD7060	M5	10	AD3701	D61
8	octag.	AD8050	M5	6	AD4800	D69
$8 \frac{1}{2}$	round	-	M7	10	$9710 \mathrm{M} / 01$	D73
			M800	10	9710 AM/01	
10	round	AD1050	M7, M800	10	AD4000	D9
12	round	AD1250	M7, M800	20	AD4200	D11
12	round	AD1255	M7, M800	20	AD5200	D15
12	round	AD1260	M5	10	AD4201	D27

4) Data sheets will be issued seperately.
5). With $5 \mu \mathrm{~F}$ in series.
5) In a closed acoustic box of specified volume.

LOUDSPEAKERS

GENERAL

INTRODUCTION

A correctly chosen loudspeaker is essential to obtain adequate acoustic results from electro-acoustic equipment. The following factors should be considered.

- Shape, size and attachment with reference to the available space.
- Quality and sensitivity, a compromise between fidelity of reproduction and price.
- The frequency-response characteristic in relation to the kind of application.
- Impedance and power-handling capacity, which should be adapted to the output stage of the equipment.
- Appearance and finish.

With a view to these factors our loudspeakers are divided into three groups:

Standard speakers

The standard speakers form an extensive group offering a diversity in characteris tics, size and price for all kinds of radio and television sets, gramophones, tape recorders, sound columns, etc.

Most standard speakers have a flat magnet system of powerful Ferroxdure. For television sets and other applications where the leakage field should be as small as possible, there are loudspeakers having a Ticonal magnet in a pot system. Due to the use of Ticonal 750 these pot systems are very small.

Special speakers

The special speakers have specific applications.
$\underline{\text { High-quality speakers }}$
The high-quality speakers have been specially designed for use in $\mathrm{Hi}-\mathrm{Fi}$ equipment, where a high power-handling capacity, a very wide frequency-range and a negligible distortion level are required. Examples of application: acoustic boxes, bass-reflex boxes, juke boxes, $\mathrm{Hi}-\mathrm{Fi}$ enclosures with or without cross-over network and stereo columns.

NEW COMMERCIAL CODING SYSTEM

> AD5080/M25
> AD1255/W8

$33=3$ in square
$35=3 \times 5$ in oval
$38=3 \times 8$ in oval
$40=4$ in round
$44=4$ in square
$46=4 \times 6$ in oval
$50=5$ in round
$57=5 \times 7$ in oval
$69=6 \times 9$ in oval
$70=6 \frac{1}{2}$ in round
$80=8$ in round
$10=10$ in round
$12=12$ in round

Z = Notably higher sensitivity around a response peak at about 3 kHz
$\mathrm{Y}=$ Notably higher response level in the region 2 to 6 kHz
$\mathrm{X}=$ Same as Y , but a wider frequency range
$M=$ Smooth response over wide frequency range
$\mathrm{W}=\mathrm{Woofer}$, extremely low resonance frequency
$\mathrm{T}=$ Tweeter, high frequency range
Magnet system
901) = sinterpot

80 = ferroxdure standard round
70 = ferroxdure square
65 = ferroxdure big, high quality
60 = ferroxdure small, high quality
$55=$ "Ticonal" big, high quality
$50=$ "Ticonal" small, high quality

IMPEDANCES

The nominal impedance is the lowest impedance on the impedance/frequency curve measured at the high-frequency side of the resonance peak.
Loudspeakers with impedances not given in the data sheets are available to special order. Details on request.

1) Mechanical or acoustical variations are indicated by replacing 0 or 5 by some other figure (91 = Sinterpot Wafer).

FREQUENCY RESPONSE CURVES

Measuring conditions

The frequency-response curves are measured under the following conditions:

1. recorded in anechoic room;
2. without baffle;
3. microphone in axis of loudspeaker at a distance of 50 cm ;
4. input 50 mW ($12^{\prime \prime}$ high-quality types 25 mW);
5. constant voltage;
6. 0 dB of the curves corresponds with 52 dB above $2 \times 10^{-4} \mu \mathrm{bar}$.

Comparing a constant-current characteristic of any loudspeaker with a constantvoltage one, we find the latter flatter in the region of the resonance frequency, whereas it drops more abruptly at the higher frequencies. This is explained as follows:

The power which moves the coil and the cone is proportional to the current through the coil. In the case of constant voltage the current will decline, as a consequence of rising coil impedance, in the neighbourhood of the resonance frequency and at higher frequencies. The result is a dropping sound pressure in these frequency regions. This should be borne in mind when comparing our response curves with those of other documentations.

The use of response curves

First of all we wish to emphasise that these curves should be used exclusively for comparison.

Never compare curves which are not based on one and the same measuring method (identical measuring equipment, measuring room, distance, power input and, even, identically mounted speakers). Only experienced experts are able to compare response curves not based on exactly identical conditions. Also the condition of the anechoic chamber may greatly affect the results.

Contrary to many other manufacturers' methods, frequency characteristics of our loudspeakers were determined without a baffle.

The response curves for making comparisons

The response curve does help us to disclose differences in reproduction quality. The comparison of curves determined under identical conditions may give a picture of a few acoustical aspects. A difference in level means a difference in sensitivity (efficiency) in various frequency regions. A difference in width means a difference in frequency range.

One should never forget, however, that the curves represent the sound pressure only in the centre of a circular plane. Since the distribution of the sound pressure is not uniform over the plane and different in various cases, the sound impression may differ more than the response curves suggest.

It will be evident that a high degree of expertness is required to interpret the differences in response curves. For the greater part, this expertness is gained through experience.

Response curves an aid for the manufacturer

Response curves play a great part in the development of loudspeakers, pinpointing their acoustic characteristics, manufacture and production checks.

It is but a small problem for the development engineer to establish response curves required for a particular application. And then, as the acoustic characteristics of a speaker are largely associated with its moving parts (coil, centring ring and cone), it is a fairly simple matter for him to base modifications on the frequency curve and with its aid examine the effect.

For loudspeakers in production the frequency characteristic is excellently useful to check the production quality and, at the same time, the sensitivity of the magnet system.

POWER HANDLING CAPACITY

The rated power handling capacity is the maximum power which the loudspeaker can withstand, when subjected to the following tests:

1. Operational test.

A test voltage of audio frequency is applied to the loudspeaker. The loudspeaker is then checked for buzz, chips, rattle, or cone break-up. The test voltage $\mathrm{V}=0.7 \times \sqrt{\mathrm{Z} \times \mathrm{P}_{\max }}$, where $\mathrm{Z}=$ nominal impedance in ohms and $\mathrm{P}_{\max }$ $=$ power handling capacity in watts.
2. Continuous load test.

100 hours life-test conforming to DIN 45573. - sheet 2 with a test-power of $P_{\max }$ and a white noise generator.

FINISH

The loudspeakers are tropic-proof, and cadmium-plated to prevent corrosion.

10" HIGH-QUALITY LOUDSPEAKERS

Primary application

$\mathrm{Hi}-\mathrm{Fi}$ and stereo equipment (see "Enclosures").

Details

Very high sensitivity, Ticonal magnet.
Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced as the coil amplitude is disproportional to the current. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
Very smooth response curves.
Clear bass response without boom effects, be-

RZ 14210-5 cause of mechanical damping at low frequencies.

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 1)
M7	M	7	10	50	98000	8000	242225641003
M800	M	800	10	50	98000	8000	242215641002

[^1]
$\underline{\text { Dimensions in mm }}$

Weight: 1.77 kg

10 in HIGH-QUALITY WOOFER LOUDSPEAKER

Application

In acoustic enclosures for $\mathrm{Hi}-\mathrm{Fi}$ reproduction; suitable for frequencies of 18 to 1000 Hz . See data sheet on the 40 W combination with AD5060/M8 and AD3506SM or AD5080/M8 in an acoustic box of 35 litres.

Construction

Ticonal magnet.
Weight of magnet 880 g .
Constant flux through moving voice coil resulting in

RZ 25052-31 a low distortion.
Rigid paper cone with highly flexible butyl-rubber suspension.

Technical performance

version	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number		
2)									W8
:---:									

1) In an acoustic enclosure of max. 35 litres, and conforming to DIN45573.
${ }^{2}$) For bulk packing the catal. No. is 430407901001 ; for single-unit packing the \longleftarrow catal. No. is 430407901021.

Dimensions in mm

${ }^{1}$) Baffle hole and clearance depth required for cone movement at 40 W input.
A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.

Weight: 3 kg

12" HIGH-QUALITY LOUDSPEAKERS

Primary application

$\mathrm{Hi}-\mathrm{Fi}$ installations.

Details

Very high sensitivity, Ticonal magnet.
Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced as the coil amplitude is disproportional to the current. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
Very smooth response curve.

RZ 19741-15 cause of mechanical damping at low frequencies.

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number l)
M7	M	7	20	50	98000	8000	242225641103
M800	M	800	20	50	98000	8000	242225641102

1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

Dimensions in mm

Weight: 1.8 kg

12" HIGH-QUALITY LOUDSPEAKERS

Primary application
$\mathrm{Hi}-\mathrm{Fi}$ installations.

Details

Extremely high sensitivity thanks to the use of a very powerful Ticonal magnet.
Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced as the coil amplitude is disproportional to the current. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
Very smooth response curves.
Clear bass response without boom effects, be-

C 65219 cause of mechanical damping at low frequencies.

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 1)
M7	M	7	20	50	134000	11000	242225851004
M800	M	800	20	50	134000	11000	242225851003

[^2]

Weight: 3.5 kg

12" HIGH-QUALITY WOOFER LOUDSPEAKER

RZ 19218-1

RZ 19218-2

Though the design of this woofer is based on the normal electrodynamical principle, a number of striking features make it unique in its kind. The use of new materials and techniques allowed the development of a Hi-Fi low-note speaker which, in conjunction with high and medium-note speakers and housed in an acoustically adequate enclosure, will be found a major contribution towards natural sound reproduction. Because of its specific design and characteristics, this speaker is a solitary in our programme.

Technical performance

power handling capacity (W)	impedance at 1 kHz (Ω)	response curve	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)
20	8	W	29	134000	9300

Catalog number, bulk packing

Response of the woofer in conjunction with two 5×7 " standard speakers (M4 version) and a cross-over filter in a 45 -litre acoustic box.

Response of the woofer (alone) in a 45 -litre acoustic box.
Note: See also "Recommended enclosures".

Weight： 3.5 kg

REMARKS ON LOW -NOTE REPRODUCTION

Introduction
Low notes are a perpetual obstacle on the way to Hi-Fi reproduction. Prior to discussing this problem, let us consider the importance of an effective reproduction of the low notes, particularly in the case of music.

One musical instrument differs from another not only in the range of notes but also in the tone colour or timbre. This latter phenomenon is a consequence of the fact that a musical instrument produces complex sounds which are composed of a fundamental tone and overtones. If the fundamental tone and the lower over tones are not reproduced, we hear the fundamental pitch - but the timbre will be degraded. Hence, the lower the notes reproduced by a loudspeaker, the more instruments we hear true-to-nature.

What are the requirements for a good low -note reproduction

1. The lower limit of the loudspeaker's frequency range should be as low as possible. A minimum frequency of $40-50 \mathrm{~Hz}$ is quite favourable.
Some instruments such as organs have a fundamental frequency of 16 Hz , which is about the limit of audibility. The wavelength of a tone of 25 Hz , for instance, is approx. 13 metres, and this is too large to sound well in the majority of rooms.
2. A sufficiently large acoustic power also in the lowest frequencies.
3. Generally, an acoustic power of 4 mW per cub. metre of room volume is ample. That means about 0.5 W for a living room of fair dimensions. Particularly in the case of organ music but also of orchestral music, for short periods this energy may be entirely concentrated in the lowest octaves. Therefore, a bass energy between 0.5 and 1 W in the lowest octaves is a must for a good Hi-Fi speaker.
4. The low notes should be reproduced without distortion.

This difficult requirement can be complied with only in the case of speakers specifically designed for low-note reproduction and housed in an adequate acoustic box.
5. The acoustic enclosure carries with it the difficulty of its size, and this leads to the additional requirement of small dimensions for the speaker system.

The acoustic box

The enclosure is a closed box which completely separates a given volume of air at the rear of the speaker.

Advantages

1. Between the so-called relaxation frequency ($800-1000 \mathrm{~Hz}$) and the frequency resonance, the low-note reproduction is improved by about 6 dB per octave with regard to a speaker without baffle.
The acoustic box acts, as it were, as a baffle of infinite size.
2. The separated air volume accomplishes an effective damping and, hence, an increased loadability.
3. The separated air volume increases the stiffness of the cone suspension and so prevents distortion due to non-linearity of the cone movement.

Drawbacks

1. The separated air raises the resonance frequency of the system.
2. The large box occupies much space.

With this woofer, these drawbacks are limited to the strict minimum.

The loudspeaker

The following equation applies to the acoustic power produced by a loudspeaker:

$$
\begin{aligned}
& \mathrm{W}=\mathrm{kxf} \mathrm{f}^{4} \times \mathrm{s}^{2} \times \mathrm{A}^{2} \text {, where } \\
& \mathrm{W}=\text { the acoustic energy in watts, } \\
& \mathrm{f}=\text { the frequency, } \\
& \mathrm{s}=\text { the stroke of the moving coil, } \\
& \mathrm{A}=\text { the area of the cone. }
\end{aligned}
$$

This implies that the product sA should be large enough to render, also in the lowest octaves, the required quantity of acoustic power (s is two times the amplitude of the coil movement in the air gap).

For a satisfactory low-note reproduction, the self-resonance of the speaker should be as low as possible, and also the resonance increase resulting from the insertion in a box. This increase will be greater when the box volume is smaller and the cone diameter larger. Hence, to obtain the final resonance-frequency of the system as low as possible at a box volume as small as possible, the cone diameter should not be chosen too large.

In order nevertheless to have a large product sxA, a large stroke is therefore a requirement of pre-eminent importance.
For the avoidance of distortion, notwithstanding the long stroke of the coil, the following requirements should be met.

Even in its ultimate positions, the coil should remain within the homogeneous magnetic field.
The reaction of cone and centring ring should always be in accordance with the coil movements.

This means that the cone suspension should be flexible, that the cone itself should be stiff, and that the non-harmonic movements of cone and centring ring should be adequately damped. Furthermore, an efficiency as high as possible is of importance to acquire the maximum acoustic output with the minimum electric input. This requires, among other things, a powerful magnetic field, a light cone and a light centring ring. Requirements to obtain a low resonance frequency are, inter alia, a flexible cone suspension and a not too small cone mass, which involves a fairly large cone diameter.
To complete the situation, we observe that an adequate loadability requires an effective damping and, therefore, a not too large volume of separated air, a sufficiently strong cone and a sturdy suspension.

From the above, the following will be clear.
The loudspeaker should have a cone of great stiffness, a powerful magnetic field, a large coil stroke in a homogeneous field, and a low resonance frequency.

The optimum compromise should be found for the stiffness of the cone suspension, the cone diameter, the cone weight and the box volume.
After a great numbre of experiments, we obtained the following as the optimum result.

DESIGN OF THE WOOFER

The cone

Foam plastic as the cone material guarantees a combination of great stiffness and a low mass.

Of course, though not ideal, paper is not a bad cone material; until recently, there was no second of equal strength, lightness and acoustic effect. The specific weight of cone paper is 0.2 . However, the lacquer required to obtain resistance to moisture, raises the specific weight to 0.5 .

The specific weight of the plastic foam used for the woofer is 0.02 . That means, the thickness may be 25 times as large before the weight of a corresponding cone in paper is reached. Thus, diaphragms having a thickness of 1 cm and more can be used that are perfectly rigid. These diaphragms, included the voice coil, do not weigh more than about 12 g .

In this case, it is not necessary to stiffen the cone artificially through the box to reduce the distortion, and the dimensions of the box can be chosen purely in view of the low-note reproduction. Distortions as a result of deformations of the diaphragms are likewise out of the question.

Frequency characteristic

The almost complete stiffness of the cone engenders a drawback. Paper diaphragms vibrate as a whole as long as the wavelength of the tone produced exceeds the cone diameter. Hence, at rising frequency, the effective area of the paper cone and, correspondingly, the moving mass, decrease steadily. As a result of this phenomenon, paper cones reproduce notes beyond 1 kHz with an adequate efficiency.

In the case of a relatively small cone such as that of the woofer, however, rise in frequency causes no drop in moving mass and, consequently, beyond the frequency at which the cone ceases to act as a piston, no effective output is to be expected. Therefore, the woofer should be used exclusively in conjunction with other speakers for reproduction of the high and the medium notes.

Cone suspension

It will be clear that the special cone design permits large amplitudes. Therefore, and to obtain a low resonance frequency, the cone suspension should be flexible. Also the centring edge should be flexible and have a large area; the ridges in the centring edge should have a hinging function.
The hinging edge might disturb the linearity of the movement and so cause distortion. In the case of the woofer this is avoided as follows.

The cone is not suspended at the ultimate edge but somewhat lower, and a metal flange is attached on to the cone bearer. The ultimate edge of the cone moves to and fro within this flange. Cone edge, centring ring and flange form a ringshaped chamber which is only connected to the external air by means of a narrow gap between cone and flange.
The dimensions of the separate air chamber are such that theoretically, during the entire stroke of the cone edge, the volume of the chamber remains almost constant if we assume a linear movement of the centring ring. According as nonlinearity in the cone suspension tends to deform the centring ring, any change in volume pumps the air through the narrow gap. Hence the surname of this original speaker: the low-note pump. The gap acts as a flow resistance whose energy absorption causes damping. Any distortion of the moving system is, as it were, pumped away.

The permissible stroke of the cone

All causes of distortion resulting from diaphragm deformations now being eliminated, or at least substantially reduced, it is all the more important to avoid any distortion resulting from non-linearity in the diaphragm drive as well.

The force exerted on the voice coil is $0.1 \times \mathrm{B} \times \mathrm{I} \times \mathrm{L}$, where B , is the induction, I the current through the coil and L the length of wire. At any moment and independent of the position of the coil, this force should be proportional to I and, therefore, the coil should be always in a field of constant intensity.
In principle, there are two manners to meet this condition. The first one is making the coil considerably longer than the thickness of the pole plate or, in other words, the height of the field in the air gap. An advantage of this method is a high field-intensity without a heavy magnet, which tends to keep the price low.

A disadvantage is a significant increase in mass and resistance of the coil, resulting in a drop in efficiency. Therefore, a more powerful amplifier will be required and the price of the total equipment will rise. Of even greater consequence may be the fact that the inactive part of the coil increases the internal resistance of the amplifier and so adversely affects the damping factor.
An alternative is heightening the air gap so as to keep the coil movement within the homogeneous field. In this case, the mass and the resistance of the coil can be kept as small as possible - but a drawback is, of course, the necessity of a much larger magnet. Freedom of distortion cannot be obtained on the cheap.
It is the second method that was applied to the woofer. The thickness of the pole plate is two times the length of the coil which can, thus, make a stroke of 8 mm within the homogeneous part of the filed. This stroke is an enormous feature of this speaker, the more so as - even at the stroke of this length - no distortion whatever of the signal occurs.

Non-linear distortion as a function of the input power compared with that of an $8 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}, 10 \mathrm{~W}$ high-quality loudspeaker.

The acoustic box

Building the speaker into an enclosure of about 40 litres nett, makes the resonance frequency of 29 Hz rise to about 50 Hz .

Measurements in a box of this volume demonstrated that even a $50-\mathrm{W}$ load did not cause any audible distortion; in larger boxes, an energy of at least 20 W is permissible (these figures apply to normal orchestral music). In the case of musical passages such as low organ notes, where almost the entire reproduction occurs in the lowest frequencies, a smaller electric energy suffices for an adequate sound intensity.

To obtain the optimum reproduction quality, we advice to build the speaker in an enclosure of 40-50 litres nett, which results in an almost flat response curve between 40 and 1000 Hz . At a load of 30 W , the distortion is max. 3% at half an octave beyond the resonance frequency.

Reproduction of the high and medium notes
If the speakers for these notes are housed in the same enclosure - of course in a separate room - it is not necessary to choose the cross-over frequency extra low: this would cause difficulties as regards the filter dimensions. A cross-over frequency of 800 Hz and a cut-off rate of 12 dB per octave are recommended.

12" SPECIAL LOUDSPEAKERS

Primary application

Juke boxes; acoustic boxes for musical installations. See "Recommended enclosures".

Details

Inexpensive speaker with a reasonably good efficiency, well suitable for those installations where both costs and quality are factors of importance.
Suited for stereo reproduction because of its wide frequency range,
Ferroxdure magnet.

RZ 14211-10

Technical performance

power handling capacity (W)	impedance at 1 kHz (Ω)	response curve	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $\left.(\text { bulk packing })^{1}\right)$
10	5	M	50	42600	9500	242225731002

${ }^{1}$) When ordering, the last but one digit should be 2 for bulk packing and 6 for single-unit packing.

Weight: 850 g

2 1/4 in TWEETER LOUDSPEAKERS

Application

In acoustic enclosures; suitable for frequencies of 800 Hz to 19 kHz . These tweeters can be combined with the 5 in woofer AD5060/W without extra loudspeaker being necessary for the medium frequency range.

Construction

Flat square magnet of Ferroxdure 300 R .
Weight of magnet 20 g .

RZ 25052-32B
Technical performance

version	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $2)$
T 4	T	4	$10^{\mathrm{l})}$	800	6900	>6900	242225722001
T 8	T	8	$\left.10^{\mathrm{l}}\right)$	800	6900	>6900	242225722002

1) With a capacitor of $5 \mu \mathrm{~F}$ in series and a signal in conformity with DIN45573.
2) When ordering bulk packing add 20 to the last two digits; when ordering singleunit packing add 60 to the last two digits.

Dimensions in mm

Baffle hole diameter 52 mm

A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.

Weight: 70 g

$21 / 2$ in STANDARD LOUDSPEAKERS

Application

Small transistorized radios.

Construction

Flat square magnet of Ferroxdure 300R.

RZ 20704.2

Technical performance

version	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalogue number
l)							

1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

Dimension in mm

Baffle hole diameter 59 mm .
Weight: 65 g

3 in STANDARD LOUDSPEAKERS

Application

Portable receivers.

Construction

Flat square magnet system of Ferroxdure 300R.

RZ 24408.4

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 1)
Y4	Y	4	1	250	6300	7500	242225723701
Y8	Y	8	1	250	6300	7500	242225723702
Y15	Y	15	1	250	6300	7500	242225723703
Y25	Y	25	1	250	6300	7500	242225723704

1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

Dimensions in mm

Baffle hole diameter 72 mm

Weight: 75 g

AD 3386.X

3"'×8" STANDARD LOUDSPEAKERS

Primary application

Radio and TV receivers.
Details
Magnet of Ticonal 750 and a pressed voice coil.

RZ 21906-9
Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $1)$
RX	X	4	2	130	15800	8800	242225530001
PX	X	15	2	130	15800	8800	242225530002

[^3]
Dimensions in mm

(

Weight: 210 g

3×5 in STANDARD LOUDSPEAKERS

Application

TV sets, portable radios, tape recorders

Construction

Equipped with a powerful magnet of Ticonal 750 and a pot of sintered iron.
Negligible stray field (at 1 mm distance from the magnet system, the stray field is hardly measurable).

Technical performance

	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number
X 4	X	4	2	200	11800	10000	242225630301
X 8	X	8	2	200	11800	10000	242225630304
X 15	X	15	2	200	11800	10000	242225630305
X 50	X	50	2	200	11800	10000	242225630302
X 400	X	400	2	200	11800	10000	242225630303

[^4]Dimensions in mm

Weight: 135 g

6'×9'' STANDARD LOUDSPEAKERS

Primary application
AM/FM receivers, TV receivers, radiograms.

Details
Equipped with a powerful magnet of Ticonal 750 and a pressed voice coil.

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 1)
RM	M	4	6	77	14500	8100	242225539001
SM	M	8	6	77	14500	8100	242225539004
RX	X	4	6	85	15800	8800	242225539002

[^5]

Weight: 310 g

8" STANDARD LOUDSPEAKERS

Primary application

Radio and TV receivers.

Details

Equipped with a powerful magnet of Ticonal 750 and a pressed voice coil.

RZ 20890-12

Technical performance

version	re- sponse curve	impe- dance at kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 1)
RM	M	4	6	75	14500	8100	242225538001
SM	M	8	6	75	14500	8100	242225538004
RX	X	4	6	95	15800	8800	242225538002
SX	X	8	6	95	15800	8800	242225538003

[^6]

Weight: 280 g

4 in STANDARD LOUDSPEAKERS

Application

Portable receivers, small tape recorders, intercoms.

Construction

Flat square magnet system of Ferroxdure 300R.

RZ 22408-3
Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number l)
Y4	Y	4	1	200	6300	7400	242225724201
Y8	Y	8	1	200	6300	7400	242225724202
Y15	Y	15	1	200	6300	7400	242225724203
Y25	Y	25	1	200	6300	7400	242225724204

 unit packing.

Dimensions in mm

Weight: 85 g

4 in STANDARD LOUDSPEAKERS

Application

Portable receivers, small tape recorders, intercoms.

Construction
Highly sensitive magnet system of Ferroxdure 300R .

RZ 24635-1

Technical performance

version		```impe- dance at l kHz (\Omega)```	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number 1)
X4	X	4	3	165	17500	9800	242225734301
X8	X	8	3	165	17500	9800	242225734302
X15	X	15	3	165	17500	9800	242225734303
X25	X	25	3	165	17500	9800	242225734304
Z4	Z	4	3	185	17500	9800	242225734305
Z8	Z	8	3	185	17500	9800	242225734306
Z15	Z	15	3	185	17500	9800	242225734307
Z25	Z	25	3	185	17500	9800	242225734308

[^7]

Baffle hole diameter 96 mm

Weight: 250 g

4 in STANDARD LOUDSPEAKERS

Primary application

Portable receivers (in particular for AM/FM)

Details

High sensitivity
Magnet of Ticonal 750 and a pot of sintered iron. Negligible stray field (at 1 mm distance from the magnet system, the stray field is hardly measurable).

RZ 20704.5

Technical performance

	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number 1)
X8	X	8	2	180	11800	10000	242225634301
X 15	X	15	2	175	11800	10000	242225634302
X 400	X	400	0.6	190	11800	10000	242225634303

[^8]AD 4090 / .

Dimensions in mm

Weight: 125 g

4" HIGH-QUALITY TWEETER LOUDSPEAKERS

Primary applications

Hi-Fi high-note reproduction. Particularly suitable for use in combination with high-quality loudspeakers for low - and medium-note reproduction.

Details
Equipped with a relatively small, but nevertheless powerful magnet of Ticonal 750, which ensures a high efficiency.
Rigid cone suspension.
Reproduction of high frequencies up to over 20 kHz .

RZ 21906.5

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 1)
T 4	T	4	10	300	18800	>7000	242225624102
T 8	T	8	10	300	18800	>7000	242225624101

[^9]
Dimensions in mm

Baffle hole diameter 96 mm .
A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.

Weight: 140 g

4×6 in STANDARD LOUDSPEAKERS

Application

Radios (car and domestic), tape recorders and TV receivers.

Construction

Round magnet of Ferroxdure 300R.
Weight of magnet 100 g .
Pressed voice coil.

Technical performance
RZ 25809-1

version	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number 2)
M4	M	4	41)	125	18000	>10000	242225730209
M8	M	8					242225730211
M15	M	15					242225730212
M25	M	25					242225730213
X4	X	4	6 1)	140	18000	>10000	242225730205
X8	X	8					242225730206
X15	X	15					242225730207
X25	X	25					242225730208
Z4	Z	4	$31)$	155	18000	> 10000	242225730201
Z8	Z	8					242225730202
Z15	Z	15					242225730203
Z25	Z	25					242225730204

1) With an input signal in conformity with DIN 45573.
2) When ordering bulk packing add 20 to the last two digits; when ordering singleunit packing add 60 to the last two digits .

Dimensions in mm

1) Baffle hole and clearance depth required for cone movement at specified power handling capacity

A red mark near one of the tags serves for in-phase connection with other loudspeakers.

Weight: 0.26 kg .

5 in HIGH-QUALITY LOUDSPEAKERS

Primary application

5-8 litres acoustic enclosures.

Details

Equipped with a very sensitive Ferroxdure mag net system.
Special textile cone rim allows large amplitudes of the cone movements at low frequencies. This results in an optimum bass reproduction in the smallest enclosures. Low resonance frequency and wide frequency range.

RZ 21906-13

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $1)$
M4	M	4	6	85	29400	9800	242225735101
M8	M	8	6	85	29400	9800	242225735102

[^10]
Dimensions in mm

Weight: 655 g

5 in WOOFER LOUDSPEAKERS

Application

In very small acoustic enclosures; suitable for frequencies of 38 to 2000 Hz . See data sheet on the 10 W combination with tweeter AD2070/T in an acoustic box of 3 litres.

Construction
Round magnet of Ferroxdure 300R.
Weight of magnet 260 g .
Constant flux through moving voice coil. Rigid paper cone with a highly flexible butyl-rubber suspension.

RZ 25052-32A
Technical performance

	re- version sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $2)$
W4	W	4	10	$1)$	50	39000	>9300
W8	W	8	$\left.10^{1}\right)$	50	39000	>9300	242225735301

$\overline{1)}$ In an acoustic enclosure of max. 3 litres, and conforming to DIN45573.
2) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

${ }^{1}$) Baffle hole and clearance depth required for cone movement at 10 W input.
A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.
Weight: 700 g

5 in STANDARD LOUDSPEAKERS

Application

Radios (car and domestic), television sets, tape recorders, portable gramophones, intercoms.

Construction

Round magnet of Ferroxdure 300R.
Magnet mass 100 g .

Technical performance

version	re- sponse	nom. impedance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number 2)
M4	M	4	$4^{\text {l }}$)	130	18000	> 10000	242225735209
M8		8					11
M15		15					12
M25		25					13
X4	X	4	6^{1})	140	18000	> 10000	242225735205
X8		8					06
X15		15					07
X25		25					08
Z4	Z	4	3^{1})	155	18000	> 10000	242225735201
Z8		8					02
Z15		15					03
Z25		25					04

[^11]${ }^{2}$) When ordering bulk packing add 20 to the last two digits; when ordering singleunit packing add 60 to the last two digits.

Dimensions in mm

${ }^{1}$) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.

Weight: 260 g

5×7 in STANDARD LOUDSPEAKERS

Application

Radios (car and domestic), television sets, portable gramophones, acoustic enclosures.

Construction

Round magnet of Ferroxdure 300R.
Magnet mass 100 g .

Technical performance

	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number 2 2)
M4	M	4	$4{ }^{\text {l }}$)	100	17500	>9800	272225736105
M8		8					06
M15		15					07
M25		25				08	
X4	X	4	$31)$	115	17500	>9800	272225736101
X8		8					02
X15		15					03
X25		25				04	

${ }^{1}$) Signal in conformity with DIN 45573.
${ }^{2}$) When ordering bulk packing add 20 to the last two digits; when ordering singleunit packing add 60 to the last two digits.

${ }^{1}$) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.

A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.

Weight: 320 g .

6 $1 / 2$ in HIGH QUALITY LOUDSPEAKERS

Primary application

Small closed cabinets for monophonic and stereophonic reproduction. See "Recommended enclosures".

Details
$\mathrm{Hi}-\mathrm{Fi}$ reproduction over a very wide frequency range owing to the special double cone which has a very low resonance frequency and reproduces even the highest tones so as to ensure a true timbre.
Great power-handling capacity when placed in a closed cabinet having a volume of maximum

RZ 14210-9 25 litres.
Very high sensitivity owing to the large annular Ferroxdure magnet.

Technical performance

power handling capacity (W)	impedance at 1 kHz (Ω)	response curve	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $1)$
10	5	M	55	42600	9500	242225737102

1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

Dimensions in mm

Weight: 525 g

6½" HIGH-QUALITY WOOFER LOUDSPEAKER

Primary application

Small acoustic enclosures for low-note reproduction.

Details

Very low resonance frequency, thanks to the rigid paper cone together with butyl-rubber cone rim. High flexible suspension of the cone, resulting in a sound reproduction with extremely low distortion, even at high powers.
Housed in a well damped acoustic box, even in a small volume of 9 litres, and in combination with the right loudspeaker for the medium and high note reproduction ${ }^{1}$), this $6 \frac{1}{2}{ }^{\prime \prime}$ woofer loudspeaker

RZ 23783-1 meets the requirements of DIN 45500 ($\mathrm{Hi}-\mathrm{Fi}$) spec-

Technical performance

Ferroxdure 300R
450 g
5 mm
9.5 mm

Material of magnet system
Weight of magnet system
Height of air gap
Length of voice coil

power handling capacity (W)	nominal impedance (Ω)	response curve	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $\left.{ }^{3}\right)$
$\left.20^{2}\right)$	8	W	28	45000	9600	242225737701

[^12]
Dimensions in mm

Baffle hole diameter 95 mm .

Weight: 1.2 kg

61/2 in STANDARD LOUDSPEAKERS

Application

Radios (car and domestic), television sets, acoustic enclosures.

Construction

Round magnet of Ferroxdure 300R.
Magnet mass 100 g .

Technical performance

RZ 25905-5

	re- version curve curse	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catal. number 2)
M4	M	4	$\left.4^{1}\right)$	95	17500	>9800	242225737803
M 8		8					04
X 4	X	4	6	110	17500	>9800	242225737801
X 8		8					02

[^13]
Dimensions in mm

1) Baffle hole and clearance depth required for cone movement at the specified power handling capacity.
A red mark near one of the tags serves for in-phase connection with other loudspeakers of our rangé.

Weight: 300 g

6 $1 / 2$ in STANDARD LOUDSPEAKERS

Application

TV receivers .

Construction

Small mounting depth as a result of the inverted construction.
High sensitivity owing to the use of a Ticonal 650 magnet.
Absence of a stray field.
When the speakers, which are supplied in a plastic envelope, are built in, the front must be covered with a piece of muslin so as to prevent dust from entering the air gap.

RZ 19741-14

Technical performance

	re- sponse curve	impe- dance at kHz (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $1)$
M4	M	4	3	95	18900	7000	242225637004
M800	M	800	3	95	18900	7000	242225637001
X 4	X	4	3	100	18900	7000	242225637005
X800	X	800	3	100	18900	7000	242225637002

1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

Dimensions in mm

Weight: 250 g

8'" HIGH-QUALITY LOUDSPEAKERS

Primary application

$\mathrm{Hi}-\mathrm{Fi}$ and stereo equipment. See "Recommended enclosures"

Details

High sensitivity, Ticonal magnet.
When these speakers are placed in an acoustic box or any other suitable enclosure, their sensitivity and response qualities result in an almost constant sound pressure over the entire audible frequency range.

Practically undistorted sound reproduction.

A 46102

Technical performance

power handling capacity (W)	impedance at 1 kHz (Ω)	response curve	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $1)$
6	5	M	60	58300	13000	242225648002

1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
$\underline{\text { Dimensions in } \mathrm{mm}}$

Weight: 1.5 kg

AD8065/W8

8 in HIGH-QUALITY WOOFER LOUDSPEAKER

Application

In small acoustic enclosures for Hi -Fi reproduction; suitable for frequencies of 22 to 1800 Hz . See data sheet on the 20 W combination with AD5780/M4 in an acoustic box of 15 litres.

Construction

Round magnet of Ferroxdure 300 R.
Weight of magnet 450 g .
Constant flux through moving voice coil, resulting in a low distortion.
Rigid paper cone with highly flexible butyl-rubber

RZ 24709-5 suspension.

Technical performance

version	re- sponse curve	nom. impe- dance (Ω)	power handling capacity (W)	resonance frequency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number
2)							

${ }^{1}$) In an acoustic enclosure of max. 15 litres, and conforming to DIN45573.
${ }^{2}$) For bulk packing the catalog number is 2422257 38121, for single-unit packing 242225738161.

Dimensions in mm

${ }^{1}$) Baffle hole and clearance depth required for cone movement at 20 W input.
A red mark near one of the tags serves for in-phase connection with other loudspeakers of our range.
Weight: 1.35 kg

81/2" HIGH-QUALITY LOUDSPEAKERS

Primary application
$\mathrm{Hi}-\mathrm{Fi}$ equipment. See "Recommended enclosures".

Details

High sensitivity, Ticonal magnet.
Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced as the coil amplitude is disproportional to the current. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.

Very smooth response curve.
Clear bass response without boom effects, because of mechanical damping at low frequencies.

Technical performance

version	re- sponse curve	impe- dance at 1 kHz (Ω)	power handling capacity (W)	resonance (requency (Hz)	total magnetic flux (Mx)	flux density (Gs)	catalog number $1)$
M/01	M	7	10	50	98000	8000	242225848002
AM/01	M	800	10	50	98000	8000	242225848004

[^14]Dimensions in mm

RECOMMENDED ENCLOSURES

GENERAL

INTR ODUCTION

On the following pages drawings are shown of enclosures which will give good results when used in combination with the indicated loudspeaker types.
We distinguish standard class and high-fidelity class combinations.

Standard class

In some of the combinations of standard quality, less expensive standard loudspeakers are employed, and the acoustic boxes can in general be made cheaply by the user himself. Yet, used in conjunction with a good radio, tape recorder or record player with amplifier, the enclosures will give the builder much pleas ure because of their good quality of reproduction.

High-fidelity class

Combinations of this class have an exceptional performance thanks to the use of high-quality loudspeakers. Users are recommended to employ hi-fi equipment for best results.

POINTS TO OBSERVE WHEN ASSEMBLING ACOUSTIC BOXES
All boxes are built up of three mains parts:

- a front panel (1)
- four side panels, fastened together (2)
- a rear panel (3).

These components can be screwed together. Of course, the handy man may well decide to join the front panel and the four side panels together in his own way. He should, however, remember the following pieces of advice:

1. Use strong and rigid material for the sides, preferably multi-layer plywood or chipboard.
2. Minimum wall thickness is indicated on the Installation drawings.
3. A suitable damping lining must be provided, e.g. cotton wool 2 cm thick.
4. The enclosure must be acoustically sealed.
5. Make sure that the loudspeaker is properly fastened and that there are no loose component parts.
6. Make sure to use suitable loudspeaker cloth because otherwise the sound might be muffled.

ACOUSTIC BOX FOR 6½" LOUDSPEAKER

This enclosure can be built for loudspeaker AD7060/M5 (AD3701M).
Installation drawing (dimensions in mm)

Technical data

Quality class Permissible music	$\mathrm{Hi}-\mathrm{fi}$
\quad power	10 W
Frequency range	$100-18000 \mathrm{~Hz}$
Impedance at 1 kHz	5Ω

This enclosure can be built for loudspeaker AD7060/M5 (AD3701M).
Installation drawing (dimentions in mm)

Technical data
Quality class
$\mathrm{Hi}-\mathrm{fi}$
Permissible music power $10 . \mathrm{W}$
Frequency range $\quad 70-18000 \mathrm{~Hz}$
Impedance at $1 \mathrm{kHz} 5 \Omega$

ACOUSTIC BOX FOR 8'' LOUDSPEAKER

This enclosure can be built for loudspeaker AD8050/M5 (AD4800M).
Installation drawing (dimensions in mm)

(2)

Technical data

$$
\begin{aligned}
& \text { Quality class } \\
& \mathrm{Hi}-\mathrm{Fi} \\
& \text { Permissible music } \\
& \text { power } \\
& \text { Frequency range } \\
& \text { Impedance at } 1 \mathrm{kHz} \\
& 15 \text { W } \\
& 80-18000 \mathrm{~Hz} \\
& 5 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text {-3 }
\end{aligned}
$$

3 I ACOUSTIC BOX FOR AD5060/W. AND AD2070/T.

This box can be built for the 5 in woofer AD5060/W4 or /W8 and the $2 \frac{1}{4}$ in tweeter AD2070/T4 or T8.
Main properties: max. $10 \mathrm{~W} ; 90-20000 \mathrm{~Hz}$; simple filter.
Constructional data

Nett volume
Wall thickness
Damping

Fastening of the panels

3 litres
$\min .7 \mathrm{~mm}$
5 cm damping material against the back panel
with glue, baffle with screws

Both loudspeakers to be mounted behind the baffle, the tweeter acoustically sealed off from the woofer.
The clearance depth for the woofer's cone movement falls within baffle thickness.
Baffle holes diameters 108 mm and 52 mm , centre to centre distance min. 98 mm

Electrical and acoustical data

Power handling capacity (DIN 45573)
Frequency range (DIN 45500, Blatt 7)
Cross-over filter

Cross-over frequency
Resonance frequency
Nominal impedance
Sensitivity: input power for an average sound level of 86 dB ($4 \mu \mathrm{bar}$) over $50-12500 \mathrm{~Hz}$ at 3 m distance from the box

10 W
90-20 000 Hz
1 mH in series with the woofer $5 \mu \mathrm{~F}$ in series with the tweeter

2000 Hz
110 Hz
4Ω or 8Ω

8 W

0 dB corresponds with 52 dB above $2 \times 10^{-4} \mu$ bar $\mathrm{V}=$ constant; input $=50 \mathrm{~mW}$ at 400 Hz ; microphone at 50 cm

9 I ACOUSTIC BOX FOR AD7065/W8 AND AD5080/M4

This box can be built for the $6 \frac{1}{2}$ in woofer $A D 7065 / \mathrm{W} 8$ and the 5 in loudspeaker AD5080/M4. (Instead of the 5 in loudspeaker, the 4 in tweeter AD4490/T4 can be used) Main properties: max. 20 W ; $50-18000 \mathrm{~Hz}$; filter available.

Installation drawing (dimensions in mm)

Notes

TECHNICAL DATA

Quality class
Nett volume
Permissible music power
Frequency range
Resonance frequency
Impedance
Sensitivity, measured at a distance of 3 m from the acoustic box

Distortion, measured at an average sound level of 86 dB , in the frequency range

$$
\begin{array}{r}
250-1000 \mathrm{~Hz} \\
1000-2000 \mathrm{~Hz} \\
2000-18000 \mathrm{~Hz}
\end{array}
$$

Hi-fi; in conformity with DIN 45500 (page 7) 9 litres
20 W ; in conformity with DIN 45573 (page 2) $50-18000 \mathrm{~Hz}$; in conformity with DIN 45500
(page 7)
60 Hz
8Ω
at an input of 8 W the average sound level over the frequency range $50-12500 \mathrm{~Hz}$ is 86 dB ($4 \mu \mathrm{bar}$); in conformity with DIN 45500
(page 7)
$<3 \%$
from 3 to 1% decreasing continually
$<1 \%$

. Note: The sensitivity at frequencies from 1.5 kHz upwards will be about 3 dB higher, if the M8 version of the $5^{\prime \prime}$ loudspeaker is used, and the 3Ω resistor in the cross-over filter is short-circuited.

15 I ACOUSTIC BOX FOR AD8065/W8 AND AD3576RM

This box can be built for the 8 in woofer AD8065/W8 and the 5×7 in loudspeaker AD3576RM (or AD5780/M4).

Main properties: max. $20 \mathrm{~W} ; 50-16000 \mathrm{~Hz}$; filter available.

Constructional data

Nett volume
Inside height x width x depth
Wall thickness
Damping

15 litres
$400 \times 225 \times 180 \mathrm{~mm}$
10 mm (minimum)
5 cm damping material against the back panel

Both loudspeakers to be mounted against front of baffle, the AD3576RM acoustically sealed off from the remainder of the compartment.

Electrical and acoustical data

Power handling capacity (DIN 45573)
Frequency range (DIN 45500, Blatt 7)
Cross-over filter
Cross-over frequency
Resonance frequency
Nominal impedance
Sensitivity: input power for an average sound level of $86 \mathrm{~dB}(4 \mu \mathrm{~b})$ over $50-12500 \mathrm{~Hz}$ at 3 m from the box
Distortion, measured at an average sound level of 86 dB

0 dB corresponds with 52 dB above $2 \times 10^{-4} \mu \mathrm{~b} \mathrm{~V}=\mathrm{constant}$; input $=$ 50 mW at 400 Hz ; microphone at 50 cm

20 W
$50-16000 \mathrm{~Hz}$
catalog number 430407871330
850 Hz
55 Hz
8Ω

8 W
conforms to DIN 45500, Blatt 7;
see curve.

Circuit diagram of cross-over filter 430407871330 and loudspeakers

35 I ACOUSTIC BOX FOR ADIO55/W8, AD5060/M8 AND AD3506SM

This box can be built for the 10 in woofer AD1055/W8, the 5 in loudspeaker AD5060/M8 (AD3501SM) for the medium notes and the 5 in loudspeaker AD3506SM or AD5080/M8 for the high notes.
Main properties: max. 40 W ; $40-20000 \mathrm{~Hz}$
Constructional data

Nett volume
Wall thickness
Damping
Mounting of the loudspeakers

Baffle hole diameters

351
min. 13 mm
box entirely filled with damping material
behind baffle, each fixed by 8 screws. The AD5060/M8 and the AD3506SM should be acoustically sealed off from the woofer.
$227 \mathrm{~mm}, 105 \mathrm{~mm}$ and 105 mm

The clearance depth for the woofer's cone movement falls within the baffle thickness.
Electrical and acoustical data

Power handling capacity (DIN 45573)
Frequency range (DIN 45500, Blatt 7)
Cross-over network
Cross-over frequencies
Resonance frequency
Nominal impedance
Sensitivity; input power for an average sound level of $86 \mathrm{~dB}(4 \mu \mathrm{~b})$
over $50-12500 \mathrm{~Hz}$ at 3 m from the box
Distortion, measured at an average
sound level of 86 dB

8 W
40 W
40-20 000 Hz
see below
500 Hz and 4000 Hz
48 Hz
8Ω
conforms to DIN 45500, Blatt 7; see curve

cross-over network

0 dB corresponds with 52 dB above $2 \times 10^{-4} \mu$ bar. $\mathrm{V}=$ constant; input $=$ 50 mW at 400 Hz ; microphone at 50 cm

45 I ACOUSTIC BOX FOR AD1255/W8 AND 9710/01

This enclosure can be built for the high-quality loudspeakers $9710 \mathrm{M} / 01$ and the AD1255/W8 (AD5201S/77). This is a combination of one of the best middle and highnote loudspeakers and that remarkable woofer (also called "Bombardon") which has a resonance frequency of 29 Hz .

RZ. 20890-9

Rear view, box opened; top loudspeaker enclosed in plastic pot.
Technical data

Quality class	$\mathrm{Hi}-\mathrm{fi}$
Permissible music	
power	40 W
Frequency range	$40-18000 \mathrm{~Hz}$
Impedance at 1 kHz	7Ω

451 ACOUSTIC BOX FOR AD1255/W8 AND 9710M/01

Installation drawing (without plastic pot, dimensions in mm)

Notes

1. The top loudspeaker must be acoustically sealed off from the remainder of the enclosure, otherwise it will affect the reproduction quality of the low-tone loudspeaker. The polystyrene pot is not available, a cubic wooden enclosure is a good alternative.
2. For proper damping of the low tones, a partition must be placed between the two loudspeakers; this should be made from a perforated plate covered by two layers of flannel.
3. The use of a cross-over filter is recommended. The one shown below has its cross-over frequency at 450 Hz and a rate of attenuation of 12 dB per octave; it can be ordered under No. 312210854130.

Electronic organ assemblies

INTRODUCTION

As the only supplier of a complete range of assemblies for electronic church and concert organs, we are aware of special responsibilities. Not only must the units be exceptionally well designed and constructed but also, as a range, permit of infinite variety in their end product - the electronic organ. Further, our customers must be confident of a prompt and continuing supply and of first-class technical assistance. These we guarantee.

We recognize that voicing an organ is a matter of personal taste and are therefore unwilling to inflict our taste on an organ-builder. We supply basic functions that for the most part only need interconnecting, and leave the organ-builder free to develop his taste in voicing, number of key-boards, number and kind of stops, sound character etc.
To this end the transistorised units are complete in themselves and pose no technical problems for the user. By adding equalizing networks and formant circuits, the organ-builder can voice an organ to his or his customer's needs. We can advise on the choice of networks as we can on any other aspect of building electronic organs for churches or concert-halls.

Although the electronic organs built with our assemblies are much cheaper than equivalent pipe-organs of the same scope, we can truthfully say that it is very difficult to distinguish their sound characters from those of pipe-organs.
Our Instruction Manual 'Electronic Organ Assemblies'is available to electronic organ builders; it gives details of how to use our assemblies to the best advantage. As an example we describe the construction of a two manual, full pedal, organ of twenty-one stops; this is just an example, organs built with our assemblies can have any number of keyboards, any number of stops, and can be given the voicing and character that suits the individual builder and his customers.

Do not hesitate to consult us; we are happy to advise on any aspect of the design and construction of electronic organs of professional standing.

Typical layout for a small (2 manual) organ.
A 51473

SET OF 12 + 1 OSCILLATORS

RZ 23681-19

DESCRIPTION

This unit contains 13 oscillator circuits for the frequencies between 4096 Hz and 8192 Hz , spaced in 12 steps according to the equal tempered scale.
The frequencies are generated as sine waves, but converted to square waves to drive the frequency dividers and to feed the input of the gating circuits of the highest octave. The inductance in each oscillator circuit can be fine tuned within a range of at least 250 Hz above and below the nominal frequency.

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight
Ambient temperature range
storage :
operating:
Max. relative humidity
$396 \mathrm{~mm} \times 123 \mathrm{~mm} \times 45 \mathrm{~mm}$
800 g
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+5{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
80\%

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.
Power supply
$\mathrm{V}_{\mathrm{P}}=+6 \mathrm{~V} \pm 10 \% ; \mathrm{I}_{\mathrm{P}}=18 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \% ; \mathrm{I}_{\mathrm{N}}=-22 \mathrm{~mA}$ 4096 Hz to 8192 Hz in 12 steps according to equal tempered scale $\pm 250 \mathrm{~Hz}$ per oscillator
$\leq 0.1 \% /{ }^{\circ} \mathrm{C}$

Output data
Output level "negative low"
voltage
load current
transient charge over
3 V in $1 \mu \mathrm{~s}$
Output level "negative high"
voltage
load current
Rise time trigger edge
Tolerance between half pulse periods

Input data

From noise and choir effect unit: voltage
current
$\min .1 \mathrm{~V}_{\mathrm{p}}-\mathrm{p}$
$\max .0 .5 \mathrm{~mA}_{\mathrm{p}}-\mathrm{p}$

SET OF 12 FREQUENCY DIVIDERS

DESCRIPTION

The frequency dividers are a series of transistor flip-flops, each stage being triggered by the preceding, or in the case of the first stage, by the master oscillators. The set comprises twelve sub-units, each responsible for one note of the octave, and containing seven or eight stages. The first stage halves the frequency of the as sociated oscillator to give a note of the c_{4} octave, the second stage for the c_{3} octave, and so on down to the contra octave, or in the case of an eight stage divider the sub contra. Both seven and eight stage dividers are standard, the last named being needed if a 32^{\prime} pitch is included in the pedal unit.

Catalogue number 7 stages: 432202637650
Catalogue number 8 stages: 432202637660

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight 7-stage version
8 -stage version
Ambient temperature range
storage :
operating:
Max. relative humidity
$396 \mathrm{~mm} \times 289 \mathrm{~mm} \times 75 \mathrm{~mm}$ 2100 g 2150 g
$-20{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+5{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
80\%

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.

Power supply 7-stage version

$$
8 \text {-stage version }
$$

Frequency range

Input data

Voltage V_{AM}
Transient charge over
3 V in $1 \mu \mathrm{~s}$
Rise time trigger edge t_{r}
Length of driving pulse t_{1}
Time between two pulses T
Output data
Output level "negative low"
voltage
load current
Output level "negative high" voltage load current
$V_{P}=+6 \mathrm{~V} \pm 10 \% ; I_{P}=60 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \% ; \mathrm{I}_{\mathrm{N}}=-550 \mathrm{~mA}$
$V_{P}=+6 \mathrm{~V} \pm 10 \% ; I_{P}=69 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \% ; \mathrm{I}_{\mathrm{N}}=-630 \mathrm{~mA}$ 0 to 30 kHz
$\min .-0.7 \mathrm{~V}_{\mathrm{N}} ; \max .-0.85 \mathrm{~V}_{\mathrm{N}}$
2.3 nC
$\max .1 \mu \mathrm{~s}$
$\min . \quad 2 \mu \mathrm{~s}$
$\min .33 \mu \mathrm{~s}$

$-\mathrm{V}=\max .0 .2 \mathrm{~V}$
$+\mathrm{I}_{\mathrm{Q}}=\max .0 \mathrm{~mA}$
$-\mathrm{V}=\min . \quad-0.15 \mathrm{~V}_{\mathrm{N}}$
$+\mathrm{I}_{\mathrm{Q}}=\max .0 .1 \mathrm{~mA}$

MANUAL UNITS

DESCRIPTION

RZ 23856-5
In design and print-lay-out the three versions are identical, they differ only in the facilities provided.
The main printed wiring board carries 61 sub-units, each sub-unit being connected to a particular key on the keyboard. The sub-units are in two parts: one having provision for 5 gates to control the admission of tones to the stop circuits; the other having a network to delay the response of certain pitches, plus facilities to insert wind-noise and gate the chiff.
Each gate controls a particular pitch and can have two outputs, a saw-tooth for the open diapason and reed characters, and a square wave for the flute stops.
When a key is depressed, all associated gates are opened and all outputs are admitted to the stop circuits, where the stop switches determine which output shall become audible. The outputs are fed to the stop-circuits via equalising networks that over the full compass of the keyboard pre-shape the tone to the main characters,so that a single voicing network in each stop circuit can determine the specific character of the individual voices.
In the second part of the sub-units, three networks are shared among the five pitches to delay the gating of a note for a specific period depending on its pitch. The same unit also gates the two chiff frequencies, obtained by strapping the chiff input to a selected output of the frequency dividers. The chiff frequency will be heard in advance of the note played, in the same way that partials precede the fundamental in pipe organs.
Versions I and II are not fully equipped as far as the gating circuits are concerned experience having shown that the majority of organs do not need all the facilities available. Version III is fully equipped.

Version I

4

$8^{\prime}-4^{\prime}-2^{\prime}-2^{2} / 3^{\prime} \quad 8^{\prime}$ $8^{\prime}-4^{\prime}-2^{\prime}-2^{2} / 3^{\prime} \quad 8^{\prime}-4^{\prime}-2^{\prime}-2^{2} / 3^{\prime}$ $8^{\prime}-4^{\prime}-2^{2} / 3^{\prime}$ 432202637680

Version II

Version III
5
$1^{\prime}-8^{\prime}-4^{\prime}-2^{\prime}-2^{2} / 3^{\prime}$ $16^{\prime}-8^{\prime}-4^{\prime}-2^{\prime}-2^{2} / 3^{\prime}$, $16^{\prime}-8^{\prime}-4^{\prime}-2^{\prime}-2 \frac{2}{3} 3^{\prime}$ 432202637930

All versions can be used for pitches one octave higher than those designated, this is of greatest interest for version III. This unit is so versatile as to be suited to any keyboard - great organ, swell organ, solo organ, etc.

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight
versions I and II
version III
Ambient temperature range
storage :
operating:
Max. relative humidity
$671 \mathrm{~mm} \times 276 \mathrm{~mm} \times 75 \mathrm{~mm}$

$$
5200 \mathrm{~g}
$$

5500 g

$$
\begin{aligned}
& -20 \text { to }+70^{\circ} \mathrm{C} \\
& +5 \text { to }+50^{\circ} \mathrm{C} \\
& 80 \%
\end{aligned}
$$

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.

Gating circuits

Power supply

Input data for each gate
Output level "negative low" voltage current
Output level "negative high" voltage
$\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \%$
$\mathrm{I}_{\mathrm{N}}=-0.7 \mathrm{~mA}$ for each gate

Output data

Output level "negative low"

Output level "negative high"
$\underline{\text { RC time delay circuits }}$
Power supply

Time delays

square wave output	saw-tooth output
$-\mathrm{V}=\max \cdot-\mathrm{V}_{\mathrm{N}}-\Delta \mathrm{V}$	$\max \cdot 0 \mathrm{~V}$
$\Delta \mathrm{~V}=\frac{4.4}{62-\mathrm{n}} \mathrm{V}$	
$\mathrm{n}=$ number of operated keys)	$-\mathrm{V}=\min .0-\Delta \mathrm{V}$
$-\mathrm{V}=-\mathrm{V}_{\mathrm{N}}$	$\Delta \mathrm{V}=\frac{3}{62-\mathrm{n}} \mathrm{V}$
	(n number of operated keys)

$\mathrm{V}_{\mathrm{N}}=-1.5 \mathrm{~V} \pm 10 \%$
$\mathrm{I}_{\mathrm{N}}=-0.5 \mathrm{~mA}$
between 2 ms and 25 ms (approx., depending on pitch and position in unit)
\square

PEDAL UNITS

RZ 23856-7

DESCRIPTION

This unit is identical to the manual units as far as functions are concerned. The main printed-wiring board, however, has only 32 sub-units (each in two parts) corresponding to the number of keys in the pedal.
In version I the first part of the sub-units is equipped with only three gating circuits, each with both square wave and saw-tooth wave outputs, for the pitches $16^{\prime}, 8^{8}$ and 4^{\prime}. The second part of each sub-unit has 2 delay circuits and one gating circuit for the chiff frequency (instead of three and two as on the manual units). Version II is fully equipped.

Version I

3
$16^{\prime}-8^{\prime}-4^{\prime}$
$16^{\prime}-8^{\prime}-4^{\prime}$
$1^{\prime}-8^{\prime}-4^{\prime}$
432202637670

Version II

5
$32^{\prime}-16^{\prime}-8^{\prime}-4^{\prime}-5^{1} / 3^{\prime}$
$32^{\prime}-16^{\prime}-8^{\prime}-4^{\prime}-5^{\prime} / 3^{\prime}$,
32' $-16^{\prime}-8^{\prime}-4^{\prime}-5^{\prime} / 3^{\prime}$
432202637920

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight
version I
version II
Ambient temperature range
storage :
operating:
Max. relative humidity
$396 \mathrm{~mm} \times 276 \mathrm{~mm} \times 75 \mathrm{~mm}$

$$
\begin{aligned}
& 2800 \mathrm{~g} \\
& 2900 \mathrm{~g} \\
& -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& +5^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\
& 80 \%
\end{aligned}
$$

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.

Gating circuits

Power supply

Input data for each gate
Output level "negative low" voltage
current
Output level "negative high" voltage

Output data

Output level "negative low"

Output level "negative high"
$\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \%$
$\mathrm{I}_{\mathrm{N}}=-0.7 \mathrm{~mA}$ for each gate
$-\mathrm{I}_{\mathrm{G}}=\max .0 .014 \mathrm{~mA}\left(\right.$ at $\mathrm{V}_{\mathrm{G}}=0.15 \mathrm{~V}_{\mathrm{N}}$)
$-\mathrm{V}_{\mathrm{G}}=\max \cdot 0.2 \mathrm{~V} \quad \min .0 \mathrm{~V}$

square wave output	saw-tooth output
$-\mathrm{V}=\max ,-\mathrm{V}_{\mathrm{N}}-\Delta \mathrm{V}$	max. 0 V
$\Delta \mathrm{~V}=\frac{4.4}{33-\mathrm{n}} \mathrm{V}$	
(n $=$ number of operated keys)	$-\mathrm{V}=\min .0-\Delta \mathrm{V}$
$-\mathrm{V}=-\mathrm{V}_{\mathrm{N}}$	$\Delta \mathrm{V}=\frac{3}{33-\mathrm{n}} \mathrm{V}$
$\mathrm{n}=$ number of	
operated keys)	

RC time delay circuits

Power supply

$$
\mathrm{V}_{\mathrm{N}}=-1.5 \mathrm{~V} \pm 10 \%
$$

$$
\mathrm{I}_{\mathrm{N}}=-0.5 \mathrm{~mA}
$$

Time delays
between 8 ms and 50 ms (nominal)

NOISE GENERATOR AND CHOIR-EFFECT UNIT

RZ 23681-21

DESCRIPTION

The noise and choir-effect circuits are combined on a single printed wiring board. The noise generator provides the background hiss that simulates the wind-noise of a pipe-organ, and is fed to the manual and pedal gating circuits via the resistor/ capacitor time delay circuits.
The choir-effect unit consists of 5 individual oscillators with separately adjustable frequencies and amplitudes; these are fed to the master oscillators, where they randomly modulate the generated frequencies to prevent over-purity of tone.
The third oscillator can be used as tremulant if required.
Catalogue number: 432202637730

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight
Ambient temperature range
storage :
operating:
Max. relative humidity
$396 \mathrm{~mm} \times 123 \mathrm{~mm} \times 25 \mathrm{~mm}$
700 g

$$
\begin{aligned}
& -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& +5^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\
& 80 \%
\end{aligned}
$$

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.
Power supply
$V_{P}=+6 \mathrm{~V} \pm 10 \% ; I_{P}=16 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \% ; \mathrm{I}_{\mathrm{N}}=-16 \mathrm{~mA}$

Noise generator

Noise frequency band
Noise amplitude
20 kHz at least
adjustable between 0 and 300 mV loaded with two manual and one pedal units

Choir-effect unit

Adjustable frequency range
Output voltage
Output current
between 0.5 Hz and 10 Hz
$\min .2 \mathrm{Vp}-\mathrm{p}$
$\max .1 .5 \mathrm{mAp}-\mathrm{p}$

MIXTURE PRE-STAGE UNIT

RZ 23681-17

This unit consists of 61 separate stages each shaping a particular frequency for the main mixture unit.
The inputs are square waves direct from the master oscillators and frequency dividers; the frequencies used depend upon the type of mixture or cymbal to be constructed (based on 2^{\prime} and $\frac{1}{2}^{\prime}$ or $1^{1} / 3^{\prime}$ and $1 / 3^{\prime}$ etc.) The outputs are saw-tooth waveforms to suit the open diapason character of the mixture stops.

Catalogue number: 432202637750

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight
Ambient temperature range
storage :
operating:
Max. relative humidity
$671 \mathrm{~mm} \times 114 \mathrm{~mm} \times 15 \mathrm{~mm}$
1050 g

$$
\begin{aligned}
& -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& +5^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\
& 80 \%
\end{aligned}
$$

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.
Power supply

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \% \\
& \mathrm{I}_{\mathrm{N}}=-85 \mathrm{~mA}
\end{aligned}
$$

Input data

Output level "negative low"

Output level "negative high"

Output data

Output level "negative low"
Output level "negative high"
$-\mathrm{V}_{\mathrm{G}}=\min . \quad-0.15 \mathrm{~V}_{\mathrm{N}}$
$=\max .-\mathrm{V}_{\mathrm{N}}$
$-\mathrm{I}_{\mathrm{G}}=\max .0 .05 \mathrm{~mA}$ (per stage at $\mathrm{V}_{\mathrm{G}}=0.15 \mathrm{~V}_{\mathrm{N}}$)
$-\mathrm{V}_{\mathrm{G}}=\min .0 \mathrm{~V} \max .0 .2 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{Q}}=\min .0 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{Q}}=\min . \quad-0.15 \mathrm{~V}_{\mathrm{N}}$
$+\mathrm{I}_{\mathrm{Q}}=\max \cdot 0.03 \mathrm{~mA}$ (per stage)

MIXTURE UNIT

RZ 23856-6

DESCRIPTION

This unit has 61 separate sub-units (one per key on the keyboard) each of which has two circuits, a four-input and a three-input mixture. The mixtures are quite separate, generally they are gated from different keybaards. If desired the outputs can be strapped to form chords of up to seven notes. The gates must then be strapped as well.
The unit is so arranged that, by mixing outputs from the pre-stage, the organ buildder can construct chords to suit his own taste.
Although the stages are basically similar, there are differences in component values along the keyboard, to compensate for the frequency dependence of the ear's sensitivity, and to meet specific voicing requirements. No equalising networks are needed, just a single voicing network in the stop circuits.

Catalogue number: 432202638190

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions
Weight
Ambient temperature range
storage
operating
Max. relative humidity
$671 \mathrm{~mm} \times 143 \mathrm{~mm} \times 38 \mathrm{~mm}$ 1800 g

$$
\begin{aligned}
& -20^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
& +5^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \\
& 80 \%
\end{aligned}
$$

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.
Power supply

Input data

Output level "negative low"

Output level "negative high"

Output data

Output level "negative low"

Output level "negative high"
RC time delay

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \% \\
& \mathrm{I}_{\mathrm{N}}=-1 \mathrm{~mA} \text { (for each gate) }
\end{aligned}
$$

$$
-\mathrm{V}_{\mathrm{G}}=\min . \quad-0.15 \mathrm{~V}_{\mathrm{N}}
$$

$$
=\max .-0.25 \mathrm{~V}_{\mathrm{N}}
$$

$$
-\mathrm{I}_{\mathrm{G}}=\max \cdot 0.027 \mathrm{~mA} \text { (per sub-unit) }
$$

$$
-\mathrm{V}_{\mathrm{G}}=\min .0 \mathrm{~V}, \max \cdot 0.15 \mathrm{~V}
$$

$$
-\mathrm{V}_{\mathrm{Q}}=\max .-\mathrm{V}_{\mathrm{N}}-\Delta \mathrm{V}
$$

$$
\Delta V=\frac{2.04}{62-\mathrm{n}} \mathrm{~V} \begin{aligned}
& (\mathrm{n}=\text { number of } \\
& \text { operated keys })
\end{aligned}
$$

$$
-\mathrm{V}_{\mathrm{Q}}=\min .-\mathrm{V}_{\mathrm{N}}
$$

between 4 ms and 10 ms (actual value depends on position in unit)

STOP UNIT

RZ 23856-11

DESCRIPTION

Each stop-unit panel contains 11 plug-in printed wiring boards mounted on a chassis. Each printed wiring board contains two stop circuits that can be used separately or together.
They are completely equipped except for those components that affect voice, these may be inserted to suit particular needs and personal taste.
The circuits contain provision for an input from the equalizing networks and an input for a chiff frequency. A potentiometer enables the volume of the stop to be adjusted to suit the organ's location.

Catalogue number: 432202637720

MECHANICAL AND ENVIRONMENTAL DATA

Overall dimensions	$396 \mathrm{~mm} \times 110 \mathrm{~mm} \times 140 \mathrm{~mm}$
Weight	1050 g
Ambient temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
storage :	$+5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
operating:	80%

ELECTRICAL DATA

Note: A positive current value indicates a current flowing toward the circuit.
Power supply

voltage	$\mathrm{V}_{\mathrm{N}}=-6 \mathrm{~V} \pm 10 \%$
current	$\mathrm{I}_{\mathrm{N}}=-0.3 \mathrm{~mA}$ (for each stop-circuit)
Amplification	$\mathrm{V}_{\text {out }}=\min .30 \times \mathrm{V}_{\text {in }}$

Television tuners

UHF TELEVISION TUNERS

System
Frequency range Intermediate frequencies picture sound
Equipped with transistors

CCIR
$470-890 \mathrm{MHz}$ (bands IV and V)
38.9 MHz
33.4 MHz

GENERAL

These continiously variable UHF transistor tuners are designed for the reception of television signals in the UHF bands IV and V covering the frequency range of $470-890 \mathrm{MHz}$. The tuners with indication / 01 are equipped with transistors AF 139 in both RF and mixeroscillator stages; the / 03 versions are equipped with transistors AF 186 in the stages mentioned. Moreover the $/ 03$ versions have a damping resistor of 100Ω, located near the Lecher system.
Tuning is achieved by a 4 -gang variable capacitor, which is coupled to $1 / 4 \lambda$-Lecher wires.
The spindle of the capacitor is brought out directly through the tuner case, permitting the use of various forms of drives, e.g. push buttons. When no push buttons are used a suitable reduction gear should be mounted on to the spindle, which will assist in reducing the direct axial spindle torque.

Inside the case a stop has been mounted by which the spindle rotation is limited to approx. 180°. This stop can be removed for motor tuning in case 360° angle rotation is required (clockwise or counter-clockwise). When slow motion dialsare used the gearing should be about 1: 40.

Thanks to the use of transistors and $1 / 4 \lambda$-Lecher wires an overall reduction in the size of the tuners has been made possible.

TECHNICAL PERFORMANCE	101 /03
Transistors	RF amplifier : $\overline{\mathrm{AF} 139} \overline{\mathrm{AF} 186}$ Mixer-oscillator: AF 139 AF 186
Supply	$\begin{aligned} & V_{\text {osc }} \\ & V_{R F} \\ & I_{\text {total }} \sim 8 \mathrm{~mA}(\text { without } A G C) \end{aligned}$
Mechanical drive	Direct to tuner spindle. $\mathrm{C}_{\text {max }}=$ spindle fully turned in clockwise direction Max. permissibleaxial torque on the spindle $=$ 40 Ncm
Frequency range	$470-890 \mathrm{MHz}$ (Angle of rotation approximately 180°; frequency dependency approximately linear)
RF bandwidth	$10-20 \mathrm{MHz}$ at the 3 dB points
Intermediate frequencies	Picture IF 38.9 MHz Sound IF 33.4 MHz The oscillator frequency is higher than the receiving frequency. The If filter on the tuner is adjusted to approximately 36.5 MHz .
Aerial impedance	300Ω symmetrical
Standing wave ratio	$\mathrm{p}<3$
Maximum permissible input voltage	50 mV emf at 300Ω
Gain	$>14 \mathrm{~dB}$ (for an IF bandwidth of 6 MHz at the 3 dB points)
Gain reduction	$>30 \mathrm{~dB}$ (forward AGC)
Noise	$\begin{aligned} & \text { at } 470 \mathrm{MHz} \leq 10 \mathrm{~dB} \text { (average } 8.5 \mathrm{~dB} \text {) } \\ & \text { at } 800 \mathrm{MHz} \leq 11 \mathrm{~dB} \text { (average } 9.5 \mathrm{~dB} \text {) } \\ & \text { at } 860 \mathrm{MHz} \leq 12 \mathrm{~dB} \text { (average } 10.5 \mathrm{~dB} \text {) } \\ & \text { at } 890 \mathrm{MHz} \leq 13 \mathrm{~dB} \text { (average } 11 \mathrm{~dB} \text {) } \end{aligned}$
Image frequency rejection	$>43 \mathrm{~dB}$

IF rejection
IF output

Oscillator frequency stability

Difference in amplitudes between picture and sound carriers

Maximum permissible case temperature
$>60 \mathrm{~dB}$
Capacitive foot coupling (capacity in the tuner $\sim 42 \mathrm{pF}$)
$\Delta f_{\text {osc }} \leq \pm 150 \mathrm{kHz}$ at supply-voltage variations of $\pm 10 \%$.
$\Delta \mathrm{f}_{\text {Osc }}<500 \mathrm{kHz}$, measured between 0 and 60 min after switching on and a rise of the ambient temperature from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
$\leq 2 \mathrm{~dB}$ at nominal gain
$\leq 4 \mathrm{~dB}$ at a gain reduction of 20 dB
$60^{\circ} \mathrm{C}$ (at nominal value of the supply voltage)

VERSIONS
AT6381/02, for Great Britain
312210859490
AT6381/30, for France
AT6381/38, for Italy and the FCC system
312210859500

7Z46972.A

Fig. 2. Circuit diagram

U.H.F. TELEVISION TUNER

R223508-1

System
Frequency range
Intermediate frequencies
picture
sound
Equipped with transistors
C.C.I.R.
$470-890 \mathrm{MHz}$ (bands IV and V)
38.9 MHz
33.4 MHz

GENERAL

This continuously variable u.h.f. transistor tuner is designed for the reception of television signals in the u.h.f. bands IV and V covering the frequency range of $470-890 \mathrm{MHz}$.
The r.f. stage operates with a transistor AF 239; in the mixer-oscillator stage a transistor AF 139 is used.
Tuning is achieved by a 4-gang variable capacitor, which is coupled to $1 / 4 \lambda$ Lecher wires.
The spindle of the capacitor is brought out directly through the tuner case, permitting the use of various forms of drives, e.g. push buttons. When no push buttons are used a suitable reduction gear should be mounted on to the spindle, which will assist in reducing the direct axial spindle torque.

Inside the case a stop has been mounted by which the spindle rotation is limited to approximately 180°. This stop can be removed for motor tuning in case 360° angle rotation is required (clockwise or counter-clockwise). When slow motion dials are used the gearing should be about $1: 40$.

Thanks to the use of transistors and $1 / 4 \lambda$-Lecher wires an overall reduction in the size of the tuner has been made possible.

TECHNICAL PERFORMANCE

Transistors

$$
\begin{array}{ll}
\text { r.f. amplifier } & \text { AF } 239 \\
\text { mixer-oscillator } & \text { AF } 139
\end{array}
$$

Supply voltages
r.f. amplifier
+12 V (minimum +9.5 V)
oscillator
Total supply current without a.g.c.
Frequency range
Intermediate frequencies
picture
sound
R.F. bandwidth at 3 dB

Gain for an i.f. bandwidth of
7 MHz at 3 dB
$\geqslant 18 \mathrm{~dB}$
Gain reduction (forward a.g.c.) $>30 \mathrm{~dB}$
Maximum permissible input voltage
without modulation distortion
at a cross modulation factor of 1%
Aerial impedance
Standing wave ratio
Noise, at 470 MHz at 600 MHz at 800 MHz
at 860 MHz
at 890 MHz
50 mV emf at 300Ω
20 mV emf at 300Ω
300Ω
p<3
average value $7.0 \mathrm{~dB}(\max .8 .5 \mathrm{~dB}$)
average value 7.0 dB (max. 8.0 dB)
average value 7.0 dB (max. 8.5 dB)
average value 8.5 dB (max. 10.0 dB)
average value 9.0 dB (max. 11.0 dB)

Image frequency rejection
$>46 \mathrm{~dB}$
I.F. rejection

Oscillator frequency stability at supply-voltage variations of $\pm 10 \%$
between 0 and 60 min after switching on and a rise of the ambient temperature from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
I.F. output

Difference in amplitude between picture carrier and sound carrier at nominal gain
at a gain reduction of 20 dB
Maximum permissible case temperature at the nominal value of the supply voltage

Frequency variation with the angle of rotation
Maximum angle of rotation
Mechanical drive

Permissible axial spindle torque
$>60 \mathrm{~dB}$
$\leq \pm 150 \mathrm{kHz}$
$<500 \mathrm{kHz}$
capacitive foot coupling.
Capacitance in the tuner is approximately 42 pF .
$\leq 2 \mathrm{~dB}$
$\leq 4 \mathrm{~dB}$
$60^{\circ} \mathrm{C}$
approximately linear
180°
direct to tuner spindle.
$\left(\mathrm{C}_{\max }=\right.$ spindle fully turned in clockwise direction.)
$\leq 40 \mathrm{Ncm}$

U.H.F. TELEVISION TUNER

RZ 23096-1

System
Frequency range
Intermediate frequencies picture sound

French u.h.f.
$470-890 \mathrm{MHz}$ (bands IV and V)
32.7 MHz
39.2 MHz

Equipped with transistors

GENERAL

This continuously variable u.h.f. transistor tuner is designed for the reception of the French u.h.f. channels in the bands IV and V covering the frequency range of $470-890 \mathrm{MHz}$.
The r.f. stage operates with a transistor AF 239; in the mixer-oscillator stage a transistor AF 139 is used.

Tuning is achieved by a 4-gang variable capacitor, which is coupled to $1 / 4 \lambda$ Lecher wires.
The spindle of the capacitor is brought out directly through the tuner case, permitting the use of various forms of drives, e.g. push buttons. When no push buttons are used a suitable reduction gear should be mounted on to the spindle, which will assist in reducing the direct axial spindle torque.

Inside the case a stop has been mounted by which the spindle rotation is limited to approximately 180°. This stop can be removed for motor tuning in case 360° angle rotation is required (clockwise or counter-clockwise). When slow motion dials are used the gearing should be about $1: 40$.

Thanks to the use of transistors and $1 / 4 \lambda$-Lecher wires an overall reduction in the size of the tuner has been made possible.

TECHNICAL PERFORMANCE

Transistors

```
r.f. amplifier
mixer-oscillator
AF 239
AF 139
```

Supply voltages
r.f. amplifier
oscillator
Total supply current without a.g.c.
Frequency range
Intermediate frequencies
picture
sound
R.F. bandwidth at 3 dB

Gain for an i.f. bandwidth of
7 MHz at 3 dB
Gain reduction (forward a.g.c.)
Maximum permissible input voltage
Aerial impedance
Standing wave ratio
Noise, at 470 MHz
at 600 MHz
at 750 MHz
at 860 MHz
at 890 MHz
+12 V (minimum +9.5 V)
+12 V (minimum +9.5 V)
approximately 8 mA
470-890 MHz
32.7 MHz
39.2 MHz

The oscillator frequency is lower than the signal frequency.
The i.f. filter is adjusted to approximately 36.5 MHz .

10-14 MHz
$>24 \mathrm{~dB}$
$>30 \mathrm{~dB}$
25 mV emf at 75Ω
75Ω
p<3
average value 6.5 dB (max. 7.5 dB)
average value 6.5 dB (max. 7.0 dB)
average value 6.5 dB (max. 7.0 dB)
average value 8.0 dB (max. 9.0 dB)
average value 8.5 dB (max. 10.0 dB)

Image frequency rejection

I.F. rejection

Oscillator frequency stability at supply-voltage variations
of $\pm 10 \%$
between 0 and 60 min after switching on and a rise of the ambient temperature from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

I. F. output

Difference in amplitude between picture carrier and sound carrier at nominal gain at a gain reduction of 20 dB
Maximum permissible case temperature at the nominal value of the supply voltage
Frequency variation with the angle of rotation
Maximum angle of rotation
Mechanical drive

Permissible axial spindle torque
$>46 \mathrm{~dB}$
$>60 \mathrm{~dB}$
$\leq \pm 150 \mathrm{kHz}$
$<500 \mathrm{kHz}$
capacitive foot coupling.
Capacitance in the tuner is approximately 42 pF .

$$
\begin{aligned}
& \leq 2 \mathrm{~dB} \\
& \leq 4 \mathrm{~dB}
\end{aligned}
$$

$60^{\circ} \mathrm{C}$
approximately linear
180°
direct to tuner spindle.
$\left(\mathrm{C}_{\text {max }}=\right.$ spindle fully turned in clock wise direction.)
$\leq 40 \mathrm{Ncm}$

Fig.1. Dimensions in mm

UHF TELEVISION TUNERS

RZ 18528-1

These tuners are push-button versions of the AT 6381/01 and AT 6381/03. The tuners AT 6385/01 and AT 6385/03 are fitted with a VHF/UHF switch, while tuners AT 6386/01 and AT 6386/03 have not.
Up to four selections are possible, each of which may be pre-adjusted to any UHF channel. For information on all other properties of the tuners, see the data on the UHF television tuners AT 6381/01 and AT 6381/03.

Dimensions in mm

Catalog numbers
AT6385/01
312210851050
AT6385/03 312210800440
AT6386/01 312210854380
AT6386/03

VHF TELEVISION TUNER

GENERAL
This small VHF tuner has a 13-position turret switch equipped with $10 \mathrm{VHF} \cdot \mathrm{CCIR}$ channel strips (channels 2-11) covering the frequency bands I and III (47-68 MHz and 174-223 MHz respectively).
The tuner has a compact and simplified memomatic fine-tuning device at the front of the tuner, which is operated from the spindle of the turret; it can be adjusted to each individual channel.

In the RF stage a PC 900 in neutrodyne configuration is used; the oscillator/mixer stage operates with a PCF 801.

This tuner is supplied with a bridge circuit for coupling the IF output voltage of a UHF tuner to the first grid of the pentode part of the PCF 801: in this case this tube operates as an IF amplifier tube.
There are two separate supply voltage connections (+135V) available (one for the RF stage and oscillator stage, one for the mixer stage), so that UHF/NHF reception can be effected by means of a simple D.C. supply switch.

TECHNICAL PERFORMANCE

Tubes		PC900 (RF amplifier) PCF801, triode part (oscillator) PCF801, pentode part (mixer)		$\left\{\begin{array}{l} V_{f}=12 \mathrm{~V} \\ \mathrm{I}_{\mathrm{f} \text { nom }}=300 \mathrm{~mA} \end{array}\right.$		
Supply		RF and oscillator stages: $\mathrm{V}_{\mathrm{b}}=135 \mathrm{~V}$				
Tuning ranges						
band channel (switch position)		frequency range (MHz)	carrier frequency (MHz) picture sound			
111	1	-	-	-		
	2	47-54	48.25	53.75		
	3	54-61	55.25	60.75		
	4	61-68	62.25	67.75		
	5	174-181	175.25	180.75		
III	6	181-188	182.25	187.75		
	7	188-195	189.25	194.75		
	8	195-202	196.25	201.75		
	9	202-209	203.25	208.75		
	10	209-216	210.25	215.75		
	11	216-223	217.25	222.75		
	12	-	-	-		
	13	-	-	-		
Fine tuning range		Band I : $\Delta \mathrm{f}=2-5 \mathrm{MHz}$ Band III: $\Delta \mathrm{f}=2.5-8 \mathrm{MHz}$				
RF bandwidth		$\left.\begin{array}{l}\text { Band I : } \leq 10 \mathrm{MHz} \\ \text { Band III: } \leq 15 \mathrm{MHz}\end{array}\right\}$ at the 3 dB points				

The RF bandwidth is measured at the testpoint H (which is external connected to earth via a resistor of $220 \mathrm{k} \Omega$) of the mixer grid with the oscillator in operation and $V_{\text {agc }}=-1.4 \mathrm{~V}$. In Fig. 1 the ideal bandpass curves together with the tolerated deviations are shown.

Tilt of the bandpass curves IF frequencies
$\leq 20 \%$ for all channels at $V_{\text {agc }}=-1.4 \mathrm{~V}$ Picture-carrier frequency: 38.9 MHz Sound-carrier frequency : 33.4 MHz The oscillator frequency lies beyond the receiving frequency. The IF primary coil on the tuner is adjusted to approximately 36.5 MHz

Fig. 1

Aerial input impedance
Reflections
Gain

Gain of the pentode part of the PCF801 used as an IF amplifier Noise

Image frequency rejection
IF rejection

Reset accuracy

Oscillator frequency stability

Radiation

300Ω symmetrical
$\leq 40 \%$ at maximum gain
35 dB from aerial-emf to the grid of the first IF stage (for an IF bandwidth of 6.5 MHz at the 3 dB points and flat within 5%)

20 dB
Band I : $\leq 3.5 \mathrm{kT}$ 。
Band III: $\leq 6.5 \mathrm{kT}_{0}$
Band I $:>60 \mathrm{~dB}$
Band III: $>54 \mathrm{~dB}$
Band I : $>40 \mathrm{~dB}$ symmetrical) for both picBand III: > 60 dB symmetrical \} ture and sound When switching from one channel to another and back again $\Delta f_{\text {osc }}<100 \mathrm{kHz}$
$\Delta f_{\text {osc }}= \pm 150 \mathrm{kHz}$ at variations of V_{b} osc of $\pm 10 \%$
$\Delta \mathrm{f}_{\text {osc }} \leq 250 \mathrm{kHz}$, measured between 2 mi nutes and 60 minutes after switching on and an ambient temperature rise from $20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. The radiation from the tuner complies with the requirements specified by the German Post Office.

ADJUSTMENT OF THE SUPPLY VOLTAGE

When the tuner is used as a VHF mixer (not as an IF amplifier for UHF reception) the supply voltage for the mixer at point L must be adjusted to +135 V ; the supply voltage for the RF amplifier and the oscillator at point M must also be adjusted to +135 V .
Moreover point A must be connected to earth via a resistor of $1 \mathrm{M} \Omega$. (This resistor is necessary to prevent overloading of the PC900).

TESTING OF THE IF BANDPASS CURVES

For testing the IF bandpass curves use must be made of the testpoint N. The tuner has to be set in one of the channels of band III; the supply voltage at point M must be switched off (oscillator switched off). Point F must be connected to earth.
When the tuner is used as a VHF mixer, point H must be connected to earth via a resistor of $220 \mathrm{k} \Omega$; the $\mathrm{A} G \mathrm{C}$ voltage must be connected to point A .
When used as an IF amplifier for UHF the resistor of $220 \mathrm{k} \Omega$ must be switched off and the AGC voltage must be switched over to point H.

CATALOG NUMBER OF THE CHANNEL STRIPS

channel	indication	catalog number
2	E2V	312299757290
3	E3V	312299757300
4	E4V	312299757310
5	E5V	312299757320
6	E6V	312299757330

channel	indication	catalog number
7	E7V	312299757340
8	E8V	312299757350
9	E9V	312299757360
10	E10V	312299757370
11	E11V	312299757380

TUNER VERSIONS

type	for	catalog number
AT7650/11	New Zealand	312210854651
AT7650/18	the FCC system	312210850091
AT7650/21	Great Britain	312210850061
AT7650/25	France	312210850111
AT7650/38	Italy (Italian IF)	312210850081
AT7650/39	Italy (CCIR IF)	312210850071
AT7650/80	Germany (11 channels)	312210854071
AT7650/82	Austria	312210850021
AT7650/84	Finland	312210850031
AT7650/86	Belgium	312210850051

Fig. 2. Dimensions in mm

Fig. 3. Circuit diagram

VHF TELEVISION TUNER

System
Frequency ranges
Intermediate frequencies
picture $\quad 38.9 \mathrm{MHz}$
sound $\quad 33.4 \mathrm{MHz}$

CCIR
$47-68 \mathrm{MHz}$ (band I)
174-223 MHz (band III)

Equipped with transistors

GENERAL

This VHF transistor tuner has a 13-position turret sw itch equipped with $10 \mathrm{VHF}-\mathrm{CCIR}$ channel strips (channels 2-11) covering the frequency bands I and III ($47-68 \mathrm{MHz}$ and 174223 MHz respectively).
The tuner has the same memomatic fine-tuning system as used in the VHF tuner AT7650/90; it can be adjusted to each individual channel.
The RF stage operates with a transistor AF180 ${ }^{1}$. In the mixer stage and in the oscillator stage a transistor AF178 is used.

1) Known as AF 180 double star

Forward AGC can be applied to the RF stage by means of which a gain reduction can be obtained of $\sim 40 \mathrm{~dB}$.

The tuner is supplied with a bridge circuit for coupling the IF output voltage of a UHF tuner to the emitter of the AF 178 (mixer); in this case this transistor operates as an IF amplifier giving an additional gain of approximately 10 dB .

TECHNICAL PERFORMANCE

Transistors

AF 180 (RF amplifier):	$\mathrm{I}_{\mathrm{B}} \sim 50 \quad \mu \mathrm{~A}$
	$\mathrm{I}_{\mathrm{E}}=2.5 \mathrm{~mA}$
	$\mathrm{~V}_{\mathrm{agc}}=12 \mathrm{~V}$
AF 178 (oscillator)	$: \mathrm{I}_{\mathrm{E}} \sim 1.85 \mathrm{~mA}$
	$\mathrm{I}_{\mathrm{B}} \sim 0.92 \mathrm{~mA}$
	$\mathrm{~V}_{\mathrm{b}}=12 \mathrm{~V}$
AF178 (mixer)	$: \mathrm{I}_{\mathrm{E}} \sim 1.9 \mathrm{~mA}$
	$\mathrm{I}_{\mathrm{B}} \sim 1.15 \mathrm{~mA}$
	$\mathrm{~V}_{\mathrm{b}}=12 \mathrm{~V}$

Tuning ranges

band	channel (switch position)	frequency range (MHz)	carrier frequency (MHz) picture	
sound				

Fine tuning range
RF bandwidth

Tilt of the bandpass curves

Band I : $\Delta f=2.5-5 \mathrm{MHz}$
Band III: $\Delta f=2.5-8 \mathrm{MHz}$
$\left.\begin{array}{l}\text { Band I : } \leq 14 \mathrm{MHz} \\ \text { BandIII: } \leq 12 \mathrm{MHz}\end{array}\right\}$ at the 3 dB points
The RF bandpass curves are adjustable at $\mathrm{I}_{\mathrm{E}}=2.5 \mathrm{~mA}$
$<25 \%$ for all channels

IF frequencies

Aerial input impedance
Reflections
Gain

Gain reduction

Noise

Image frequency rejection

IF rejection
Reset accuracy
Minimum oscillator voltage
Oscillator frequency stability

Picture-carrier frequency: 38.9 MHz Sound-carrier frequency : 33.4 MHz The oscillator frequency lies beyond the receiving frequency. The IF coil on the tuner is adjusted to approximately 36.5 MHz 300Ω symmetrical
$\leq 40 \%$ at maximum gain and $\mathrm{IE}=2.5 \mathrm{~mA}$ 26 dB from aerial -emf to the first IF stage (for an IF bandwidth of 6.5 MHz at the 3 dB points and flat within 5%)

$$
\begin{aligned}
40 \mathrm{~dB} \text { at } V_{\text {agc }} & \sim 8 \mathrm{~V} \\
\mathrm{I}_{\text {agc }} & \sim 0.66 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{B}} & \sim 180
\end{aligned} \quad \mathrm{\mu A}
$$

Band I : $\leq 5 \mathrm{k} \mathrm{T}_{0}$
Band III: $\leq 9 \mathrm{k}$ T。
Band I : $>32 \mathrm{~dB} \left\lvert\, \begin{aligned} & \text { at } \mathrm{V}_{\mathrm{agc}}=12 \mathrm{~V} \text { and an in- } \\ & \text { put voltage of the chosen }\end{aligned}\right.$ Band III: $>46 \mathrm{~dB}\left\{\begin{array}{l}\text { put. voltage of the } \\ \text { signal } \leq 100 \mu \mathrm{~V}\end{array}\right.$
Band I : $>40 \mathrm{~dB}$ at $\mathrm{V}_{\text {agc }}=12 \mathrm{~V}$; for both Band III : $>60 \mathrm{~dB}$ \{ picture and sound When switching from one channel to another and back again : Δ fosc $<100 \mathrm{kHz}$ 100 mV
Band I : $\Delta \mathrm{f}_{\text {osc }} \leq-150 \mathrm{kHz}$ and $\leq+120 \mathrm{kHz}$ at a voltage variation from 12 V to 10 V . Band III: $\Delta \mathrm{f}_{\text {Osc }} \leq-500 \mathrm{kHz}$ and $\leq+400 \mathrm{kHz}$ at a voltage variation from 12 V to 14 V . $\Delta f_{\text {osc }}<400 \mathrm{kHz}$, measured between 0 and 30 minutes after switching on and an ambient temperature rise from $25^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

CATALOG NUMBERS OF THE CHANNEL STRIPS

channel	indication	catalog number
2	E2T	312210851820
3	E3T	312210851830
4	E4T	312210851840
5	E5T	312210851850
6	E6T	312210851860
7	E7T	312210851870
8	E8T	312210851880
9	E9T	312210851890
10	E10T	312210851900
11	EllT	312210851910

VHF/UHF TELEVISION TUNER

RZ 22666-1

System
Fiequency ranges

Intermediate frequencies

$$
\begin{array}{ll}
\text { picture } & 38.9 \mathrm{MHz} \\
\text { sound } & 33.4 \mathrm{MHz}
\end{array}
$$

With push-button unit
Equipped with transistors

CCIR
47-68 MHz (band I)
174-230 MHz (band III)
470-890 MHz (bands IV and V)

APPLICATION

This push,-button television tuner has been developed for reception of television signals in the bands I, III, IV and V (CCIR system).

CONSTRUCTION

The tuner is fitted with a push-button unit. Up to six selections are possible, each of which may be pre-adjusted to any VHF or UHF channel. However for reception of colour television it is advisable to use the push-buttons 1 and 2 (see Fig. 1).
The band selection slide switch (7, Fig. 1) is operated by a push-button which must be first fully depressed and then turned.

Ail dimensions are given in mm .

Fig. 2. (Knobs are not delivered with the tuners)

Fig. 1

It has the following five positions in the order given:
bands IV and V, band III, band I, reserve (for other systems) and test position(slide switch against limit). The band selection switch must be set in the test position when i.f. signals are injected for aligning the i.f. circuit of the tuner and the i.f. amplifier. It can be fixed in this position by means of a little pin $(0.8 \mathrm{~mm} \phi)$ through the aperture at the end of the switch.

The tuner is provided with amounting plate, for building into the television receiver. To prevent large temperature variations it is recommended to mount the tuner not in the top of the housing.
For VHF and UHF reception the tuner has a separate r.f. amplifier, mixer and oscillator.

It is possible to mount a filter on the tuner to give an extra rejection of strong unwanted signals (e.g.f.m. signals). For ordering this filter use the catalog number 312210865030.

The tuners are delivered without knobs, scale, cover plate and pointer. For suggestions on these parts, see the figures 8 to 11 inclusive.

TECHNICAL PERFORMANCE

Transistors
r.f. amplifier
mixer
oscillator
Supply voltages
r.f. amplifier
oscillator
Total supply current without a.g.c. with a.g.c.
Frequency ranges

Intermediate frequencies picture sound

AF 239
AF 139
AF 139
$+12 \mathrm{~V}($ minimum $+9.5 \mathrm{~V})$
$+12 \mathrm{~V}(\operatorname{minimum}+9.5 \mathrm{~V})$
approximately 11 mA
approximately 17 mA
$47-68 \mathrm{MHz}$ (band I)
174-230 MHz (band III)
$470-890 \mathrm{MHz}$ (bands IV and V)
38.9 MHz
33.4 MHz

The oscillator frequency is higher than the signal frequency.
The i.f. filter is adjusted to approximately 36.5 MHz .
$8-12 \mathrm{MHz}$
$8-14 \mathrm{MHz}$
$8-18 \mathrm{MHz}$

Gain for an i.f. bandwidth of

7 MHz at 3 dB
bands I and III
bands IV and V
Gain reduction (see Figs 3 and 4)
bands I and III
bands IV and V
Maximum permissible input voltage
Aerial impedance
Reflection factor
Noise, band I
band III
at 470 MHz
at 650 MHz
at 800 MHz
at 860 MHz
at 890 MHz

Fig. 3
$\geq 22 \mathrm{~dB}$ (average value 26 dB)
$\geq 18 \mathrm{~dB}$ (average value 24 dB)
$\geq 40 \mathrm{~dB}$
$\geq 30 \mathrm{~dB}$
18 mV
300Ω, symmetrical
$\leq 40 \%$
$\leq 7.0 \mathrm{~dB}$ (average value 5.5 dB)
$\leq 7.5 \mathrm{~dB}$ (average value 6 dB)
$\leq 9.0 \mathrm{~dB}$ (average value 6 dB)
$\leq 9.0 \mathrm{~dB}$ (average value 7 dB)
$\leq 10.0 \mathrm{~dB}$ (average value 8 dB)
$\leq 11.0 \mathrm{~dB}$ (average value 9.5 dB)
$\leq 12.0 \mathrm{~dB}$ (average value 10 dB)

Fig. 4

Image frequency rejection

band I	$\geq 60 \mathrm{~dB}$
band III	$\geq 56 \mathrm{~dB}$
bands IV and V	$\geq 50 \mathrm{~dB}$
tion	
band I	$\geq 34 \mathrm{~dB}$
band III	$\geq 60 \mathrm{~dB}$
bands IV and V	$\geq 60 \mathrm{~dB}$

Oscillator frequency stability at a supply voltage variation from 12 to 10 V or from 12 to 14 V
$\leq 250 \mathrm{kHz} / \mathrm{V}$
at a temperature variation of $25^{\circ} \mathrm{C}$
band I
band III
bands IV and V
Reset accuracy
$\leq 300 \mathrm{kHz}$
$\leq 700 \mathrm{kHz}$
$\leq 1 \mathrm{MHz}$
$\leq 250 \mathrm{kHz}$
I.F. output
bottom coupled band pass filter.
Capacitance in the tuner is approximately
20 pF
Difference in amplitude between picture carrier and sound carrier at nominal gain

Fig. 5

Frequency variation with the angle of rotation, measured without push-button unit

	angle of rotation (deg)	frequency (MHz)
band I	20 ± 3	51
	169 ± 3	65
band III	25 ± 3	178
	124 ± 3	220
bands IV	148 ± 3	227
and V	8.5	470 ± 2

Maximum permissible ambient
temperature at the nominal value
of the supply voltage
Radiation
$60^{\circ} \mathrm{C}$
in conformity with the requirements of VDE 0872 and of CISPR. See table below

	distance	requirement
fundamental wave of channels 2,3 and 4	30 m	$\leq 50 \mu \mathrm{~V} / \mathrm{m}$
second harmonic of channels 2,3 and 4	30 m	$\leq 30 \mu \mathrm{~V} / \mathrm{m}$
fundamental wave of channels 5 and 6	30 m	$\leq 150 \mu \mathrm{~V} / \mathrm{m}$
second harmonic of channels 8 to 11 inclusive	10 m	$\leq 90 \mu \mathrm{~V} / \mathrm{m}$
third harmonic of channels 5 to 11 inclusive	10 m	$\leq 90 \mu \mathrm{~V} / \mathrm{m}$
fundamental wave of u.h.f. channels	10 m	$\leq 450 \mu \mathrm{~V} / \mathrm{m}$

MEASUREMENTS

Conditions

The supply circuit must be connected as given in Fig. 6.
The a.g.c. voltage can be adjusted by means of potentiometer R (switch S closed).
The r.f. signals should be applied to the symmetrical aerial inputs.
The aerial input impedance is 300Ω.

Fig. 6

Gain measurements

The circuit of Fig. 7 should be connected to the i.f. output of the tuner (point G), to form an i.f. bandpass filter and i.f. detector. The coupling capacitance (approximately 39 pF) and the damping resistance (approximately 2700Ω) should be so chosen that at 36.15 MHz the bandwidth curve is 7 MHz at 3 dB down, flat within 5%. The gain is defined as $\frac{e_{k o}}{e^{m f} 300}$ (emf 300 measured at the aerial input terminals).

Fig. 7

SUGGESTIONS FOR ADDITIONAL PARTS

All dimensions are given in mm .

Fig. 8.Knob

Fig. 9. Scale

Fig. 10. Cover plate

Fig. 11. Pointer

Fig. 12. Diagram without symmetrical aerial inputs (bands IV and V selected)
75Ω aerial inputs: C band I, B band III, D bands I + III, A bands IV $+V$.

V.H.F./U.H.F. TELEVISION TUNER

RZ 24108-11

Standard system	C.C.I.R .
Frequency ranges	$47-68 \mathrm{M}$
	$174-230 \mathrm{M}$ Intermediate frequencies picture sound
	$370-890 \mathrm{M}$

Tuning by means of two concentric knobs
Equipped with transistors

APPLICATION

This v.h.f./u.h.f. television tuner has been developed for reception of television signals in the bands I, III, IV and V (C.C.I.R. system).

CONSTRUCTION

The tuner is fitted with a tuning device with two concentric knobs. With the aid of the outer knob a disc can be operated, which in its turn is setting the band selection slide switch to the desired band. With the inner knob, a channel out of this band can now be chosen. By slightly pushing the inner knob the tuner can be coarsetuned. After release of the knob, fine tuning is possible. The device is coupled to an indication mechanism consisting of a drum, onto which a scale can be fitted, and a pointer.

Dimensions are given in mm

Fig. 1

The band selection switch has the following five positions in the order given: bands IV and V, band III, band I, reserve (for other systems) and test position (slide switch against limit). It must be set in the test position when i.f. signals are injected for aligning the i.f. circuit of the tuner and the i.f. amplifier. It can be fixed in this position by means of a little pin ($0.8 \mathrm{~mm} \phi$) through the aperture at the end of the switch.

To prevent large temperature variations it is recommended to mount the tuner not in the top of the housing.

For v.h.f. and u.h.f. reception the tuner has a separate r.f. amplifier, mixer and oscillator.

It is possible to mount a filter on the tuner to give an extra rejection of strong unwanted signals (e.g.f.m. signals). For ordering this filter use the catalog number 312210865030.

The tuner is delivered without knobs, scale, cover plate and pointer.

TECHNICAL PERFORMANCE

Transistors
r.f. amplifier
mixer
oscillator
Supply voltages
r.f. amplifier
oscillator
Total supply current
without a.g.c.
with a.g.c.
Frequency ranges

Intermediate frequencies picture sound
R.F. bandwidth at 3 dB
band I
band III
bands IV and V

AF 239
AF 139
AF 139
$+12 \mathrm{~V}($ minimum $+9.5 \mathrm{~V})$
+12 V (minimum +9.5 V)
approximately 11 mA
approximately 17 mA
47-68 MHz (band 1)
$174-230 \mathrm{MHz}$ (band III)
$470-890 \mathrm{MHz}$ (bands IV and V)
38.9 MHz
33.4 MHz

The oscillator frequency is higher than the signal frequency.
The i.f. filter is adjusted to approximately 36.5 MHz
$8-12 \mathrm{MHz}$
$8-14 \mathrm{MHz}$
8-18 MHz

Gain for an i.f. bandwidth of
7 MHz at 3 dB

> bands I and III
bands IV and V
Gain reduction (see Figs. 2 and 3) bands I and III bands IV and V
Maximum permissible input voltage
Aerial impedance
V.S.W.R.

Noise, band I
band III
at 470 MHz
at 650 MHz
at 800 MHz
at 860 MHz
at 890 MHz

Fig. 2
Fig. 3

Image frequency rejection
band I
band III
bands IV and V
I.F. rejection
band I
band III
bands IV and V
Oscillator frequency stability
at a supply voltage variation from 12 to 10 V or from 12 to $14 \mathrm{~V} \leq 250 \mathrm{kHz} / \mathrm{V}$
at a temperature variation of $15^{\circ} \mathrm{C}$
band I
band III
bands IV andV
I.F. output
$\geq 60 \mathrm{~dB}$
$\geq 56 \mathrm{~dB}$
$\geq 50 \mathrm{~dB}$
$\geq 34 \mathrm{~dB}$
$\geq 60 \mathrm{~dB}$
$\geq 60 \mathrm{~dB}$
$\leq 300 \mathrm{kHz}$
$\leq 350 \mathrm{kHz}$
$\leq 500 \mathrm{kHz}$
bottom coupled band pass filter
Capacitance in the tuner is approximately 20 pF

Difference in amplitude between picture carrier and sound carrier at nominal gain

Fig. 4

Frequency variation with the angle of rotation, measured without fine tuning system

	angle of rotation (deg)	frequency (MHz)
band I	20 ± 3	51
	169 ± 3	65
band III	25 ± 3	178
	124 ± 3	220
bands IV	148 ± 3	227
and V	8.5	470 ± 2

Maximum permissible ambient temperature at the nominal value of the supply voltage
Radiation
$60^{\circ} \mathrm{C}$
in conformity with the requirements of VDE 0872 and of CISPR. See table below

	distance	requirement
fundamental wave of channels 2, 3 and 4	30 m	$\leq 50 \mu \mathrm{~V} / \mathrm{m}$
second harmonic of channels 2, 3 and 4	30 m	$\leq 30 \mu \mathrm{~V} / \mathrm{m}$
fundamental wave of channels 5 and 6	30 m	$\leq 150 \mu \mathrm{~V} / \mathrm{m}$
second harmonic of channels 8 to 11 inclusive	10 m	$\leq 90 \mu \mathrm{~V} / \mathrm{m}$
third harmonic of channels 5 to 11 inclusive	10 m	$\leq 90 \mu \mathrm{~V} / \mathrm{m}$
fundamental wave of u.h.f. channels	10 m	$\leq 450 \mu \mathrm{~V} / \mathrm{m}$

MEASUREMENTS

Conditions

The supply circuit must be connected as given in Fig. 5.
The a.g.c. voltage can be adjusted by means of potentiometer R (switch S closed).
The r.f. signals should be applied to the symmetrical aerial inputs.
The aerial input impedance is 300Ω.

Fig. 5

Gain measurements

The circuit of Fig. 6 should be connected to the i.f. output of the tuner (point G), to form an i.f. bandpass filter and i.f. detector. The coupling capacitance (approximately 39 pF) and the damping resistance (approximately 2700Ω) should be so chosen that at 36.15 MHz the bandwidth curve is 7 MHz at 3 dB down, flat within 5%. The gain is defined as $\frac{e_{k o}}{\operatorname{emf} 300}\left(\mathrm{emf}_{300}\right.$ measured at the aerial input terminals).

Fig. 6
VERSIONS

type number	system	aerial impedance	catalog number
AT 7680/20	English (tuner equipped with silicon transistors)	75Ω	
AT 7680/25	French	75Ω	
AT 7680/38	Italian (Italian i.f.)	300Ω	312210882190
AT 7680/39	Italian (C.C.I.R.i.f.)	300Ω	312210881990
AT 7680/86	5-system Belgian	300Ω	
AT 7681/90	C.C.I.R.	75Ω (v.h.f.)	
AT 7682/90	C.C.I.R. (tuner equipped	300Ω (u.h.f.)	
	with suppression filter)	300Ω	312210881510

SUGGESTION FOR ADDITIONAL PART

Fig. 7. Scale (dimensions in mm)
Fig.8. Diagram without symmetrical aerial inputs (bands IV and V selected)

Components for black and white television

DEFLECTION UNIT

RZ 20526-2
For transistor-equipped television receivers

APPLICATION

This deflection unit is designed for use with the 11 inch 900 picture tube A28-14W and the 12 inch 90° picture tube A31-20W, in conjunction with the line-output transformer AT2042/01 and the linearity control unit AT4036 in transistor-equipped television sets.

CONSTRUCTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the picture tube.
The frame deflection coils are wound on a ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide. The provision of separate connecting points makes it possible to connect the frame deflection coils either in series or in parallel. At the rear, the line and frame deflection coils, as well as the yoke ring, are potted in polyester resin.

Dimensions in mm

Fig. 1

TECHNICAL PERFORMANCE

Maximum working temperature
Line deflection coils
Connecting terminals
Inductance
Resistance
Sensitivity
Frame deflection coils
Connecting terminals
Inductance
Resistance
Sensitivity
$95^{\circ} \mathrm{C}$
parallel connected, see Fig. 2
2 and 4
$81 \mu \mathrm{H}$
0.15Ω
$23 \mu \mathrm{~V} / \mathrm{cm}$
series or parallel connected, see Fig. 3
6 and 8
$2 \times 21 \mathrm{mH}$
$\left.\begin{array}{l}2 \times 15 \Omega \\ 9 \mathrm{~mW} / \mathrm{cm}^{2}\end{array}\right\}$ when coils are series connected

Fig. 3

MOUNTING

The unit should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.
External circuit connection is made to soldering tags, positioned as indicated in Fig. 1. If the frame deflection coils are to be connected in series, tags A and A ' must be interconnected; for parallel connection, tag 8 must be connected with tag A, and tag 6 with $\operatorname{tag} A^{\prime}$.
To orient the raster correctly, the unit may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring, cooperative with a pair of rubber friction shoes, permits it to be locked, both axially and radially, in the desired position.

CENTRING THE BEAM

With the deflection unit mounted on the picture tube and clamped in position, the beam can be centred by rotating two, independently movable, steel magnet discs positioned adjacent the clamping ring.

RASTER ADJUSTMENT POSSIBILITIES

Vertical pin-cushion distortion can be corrected by small ferroxdure rods, which can be mounted on the deflection unit brackets. Limited correction of asymmetrical vertical pincushion distortion can be achieved by unequal rotation of the rods.

The shape of the corners of the raster can be adjusted by means of small rubber magnets having a centre hole to fit the pins on the rim of the deflection unit.
Both the ferroxdure rods (catalog number 4312020 60101) and the rubber magnets (catalog number 312210402721) can be supplied on request.

DEFLECTION UNIT

RZ 20526-2
For tube-equipped television receivers

APPLICATION

This deflection unit is designed for use with the 11 inch 90° picture tube $\mathrm{A} 28-14 \mathrm{~W}$ and the 12 inch 90° picture tube A31-20W, in conjunction with the line-output transformer AT2043 and the linearity control unit AT4037 in tube-equipped television receivers.

CONSTRUCTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the picture tube.
The frame deflection coils are wound on a ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide.
At the rear the line and frame deflection coils, as well as the yoke ring, are potted in polyester resin.
The unit is equipped with a built-in NTC-thermistor (with a parallel connected carbon resistor) connected in series with the frame coils in order to compensate for temperature dependence of the coils. By this, in frame-output circuits with voltage feedback for linearising the saw-tooth voltage a constant deflection current and so a constant picture height has been obtained throughout the temperature range $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
For frame-output circuits using current feedback it is possible to make connection to the frame coils without the NTC-thermistor.

Dimensions in mm

Fig. 1

TECHNICAL PERFORMANCE

Maximum working temperature Line deflection coils

Connecting terminals
Inductance
Resistance
Sensitivity
Frame deflection coils
Connecting terminals
Inductance
Resistance
Sensitivity
$95^{\circ} \mathrm{C}$
parallel connected, see Fig. 2
2 and 4
1.7 mH
3.6Ω
$108 \mu \mathrm{~V} / \mathrm{cm}$
series connected, see Fig. 3
6 and 8 a (centre tap at A)
42 mH
30Ω, between connecting terminals 6 and 8 38Ω, between connecting terminals 6 and $8 a$ $9 \mathrm{~mW} / \mathrm{cm}^{2}$

Fig. 2

Fig. 3

MOUNTING

The unit should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

External circuit connection is made to soldering tags, positioned as indicated in Fig. 1.
To orient the raster correctly, the unit may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring, cooperative with a pair of rubber friction shoes, permits it to be locked, both axially and radially, in the desired position.

CENTRING THE BEAM

With the deflection unit mounted on the picture tube and clamped in position, the beam can be centred by rotating two, independently movable, steel magnet discs positioned adjacent the clamping ring.

RASTER ADJUSTMENT POSSIBILITIES

Vertical pin-cushion distortion can be corrected by small ferroxdure rods, which can be mounted on the deflection unit brackets. Limited correction of asymmetrical vertical pincushion distortion can be achieved by unequal rotation of the rods.

The shape of the corners of the raster can be adjusted by means of small rubber magnets having a centre hole to fit the pins on the rim of the deflection unit.
Both the ferroxdure rods (catalog number 4312020 60101) and the rubber magnets (catalog number 312210402721) can be supplied on request.

DEFLECTION UNIT

For tube-equipped television receivers

APPLICATION

This deflection unit has been designed for use with $110^{\circ}\left(114^{\circ}\right)$ picture tubes with a neck diameter of 28 mm in conjunction with the line-output transformer AT2025/01 and the linearity control unit AT4034/01 in tube-equipped television receivers.

CONSTRUCTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the picture tube.
The frame deflection coils are wound on a ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide.
At the rear the line and frame deflection coils, as well as the yoke ring, are potted in polyester resin.
The unit is equipped with a built-in NTC thermistor connected in series with the frame deflection coils in order to compensate for temperature dependence of the coils. By this, in frame-output circuits with voltage feedback for linearising the saw-tooth voltage a constant deflection current and so a constant picture height has been obtained up to temperatures of $95^{\circ} \mathrm{C}$.
For frame-output circuits using current feedback it is possible to make connection to the frame coils without the NTC thermistor.

Dimensions in mm

Fig. 1

TECHNICAL PERFORMANCE

Maximum working temperature
Line deflection coils
Connecting terminals
Inductance
Resistance
Deflection current at 18 kV for a
deviation of 495 mm
Sensitivity
Frame deflection coils
Connecting terminals
Inductance
Resistance between terminals 6 and 8 between terminals 6 and 8 a at $25^{\circ} \mathrm{C}$
Deflection current at 18 kV for a deviation of 390 mm
Sensitivity
$95^{\circ} \mathrm{C}$
parallel connected, see Fig. 2
2 and 4
2.9 mH
4.6Ω
2.29 Ap-p
$135 \mu \mathrm{~V} / \mathrm{cm}$
series connected, see Fig. 3
6 and 8 (centre tap at A)
82 mH
38Ω
48Ω
$0.44 \mathrm{~A}_{p-p}$
$4.8 \mathrm{~mW} / \mathrm{cm} 2$

Fig. 2

Fig. 3

MOUNTING

The unit should be mounted as far forward as possible on the neck of therpicture tube, so that it touches the cone.

External circuit connection is made to soldering tags, positioned as indicated in Fig. 1.
To orient the raster correctly, the unit may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring, cooperative with a pair of rubber friction shoes, permits it to be locked, both axially and radially, in the desired position.

ADJUSTMENT POSSIBILITIES

Vertical pin-cushion distortion
Vertical pin-cushion distortion can be corrected by small ferroxdure rod magnets, which have been mounted on the deflection unit brackets. Limited correction of asymmetrical vertical pin-cushion distortion can be achieved by unequal rotation of these magnets.
Eccentricity of the picture tube
After adjustment of the linearity of the deflection current, the eccentricity of the picture tube and the deflection unit can be corrected by means of two independently movable centring magnets. These magnets are diametrically magnetised. By turning the magnets with respect to each other the magnetic force of the resultant field of both magnets is adjusted. The direction of the resultant magnetic field is adjusted by turning the magnets simultaneously.
It should be noted that these centring magnets can not be used for compensating the effects of non-linearity or of phase differences between synchronisation and time base, as otherwise the correction needed becomes excessive and, even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

Horizontal pin-cushion distortion

Horizontal pin-cushion distortion can be corrected by two rod magnets of plastic bonded ferroxdure, which can be mounted on the two holders on the rim.
When the deflection unit is used in conjunction with a 19 inch picture tube the use of these rod magnets is necessary to get an optimum raster.
These rod magnets can be supplied on request (catalog number 3122104 90360).

Shape of the corners of the raster

The shape of the corners can be adjusted by means of small plastic bonded ferroxdure magnets having a centre hole to fit the pins on the rim of the deflection unit. These four magnets can be supplied on request (catalog number 3122104 93540).

DEFLECTION UNIT

RZ 24284-13
RZ 24284-14
For tube-equipped and transistor-equipped television receivers

APPLICATION

This deflection unit has been designed for use with $110^{\circ}\left(114^{\circ}\right)$ picture tubes with a neck diameter of 28 mm . The unit can be driven by the line-output transformer AT2036 (standard), the AT2036/25 (which has auxiliary windings for $3 \times 110 \mathrm{~V}_{\mathrm{p}}$) or the AT2034 (819/625 lines) in tube-equipped television sets, and by the AT 2045 in fully transistorised television sets.
The standard frame output transformer is the AT3513, which can be used for tube and transistor-equipped television sets.
The linearity control is accomplished by the unit AT4042/02.

CONSTRUCTION

The frame deflection coils are wound on a ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide.

The unit is equipped with a built-in NTC thermistor and a parallel resistor connected in series with the frame deflection coils in order to compensate for temperature dependence of the coils. By this, in frame-output circuits with voltage feedback for linearising the saw-tooth voltage a constant deflection current and so a constant picture height has been obtained up to temperatures of $100^{\circ} \mathrm{C}$.
For frame-output circuits using current feedback it is possible to make connection to the frame coils without the temperature compensating network.

Fig. 1

TECHNICAL PERFORMANCE

Maximum operating temperature
Maximum peak voltage between terminals of frame and line coil (50 Hz)

Line deflection coils
Connecting terminals
Inductance
Resistance
Peak to peak current
Frame deflection coils
Connecting terminals
Inductance
Resistançe between terminals 6 and 8 between terminals 6 and 8 a at $25^{\circ} \mathrm{C}$

Peak to peak current
$100^{\circ} \mathrm{C}$

$$
2000 \mathrm{~V}
$$

parallel connected, see Fig. 2
2 and 4
$2.1 \mathrm{mH} \pm 5 \%$
$3.9 \Omega \pm 10 \%$
$\left.2.82 \mathrm{~A} \pm 2.5 \%^{1}\right)$
series connected, see Fig. 3
6 and 8 (centre tap at A)
$66 \mathrm{mH} \pm 10 \%$
$30 \Omega \pm 8 \%$
$44 \Omega \quad$ 2)
$545 \mathrm{~mA} \pm 5 \%^{3}$)
$\overline{\text { 1) At } 18 \mathrm{kV}}$ accelerator voltage and a deviation of 495 mm on the 23 inch reference picture tube.
2) Variation of total circuit resistance within 10 to $95{ }^{\circ} \mathrm{C}$ is $\pm 0.1 \Omega$ when using the output transformer AT3513.
3) At 18 kV accelerator voltage and a deviation of 390 mm on the 23 inch reference picture tube.

Characteristics measured at 18 kV accelerator voltage on a 23 inch reference picture tube:

Pin cushion distortion
Trapezium distortion
Barrel pattern distortion
Line asymmetry
Frame asymmetry
Eccentricity of deflection centre
Adjustment range of centring magnets
Geometry distortion ${ }^{4}$)

Fig. 2

MOUNTING

The unit should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

External circuit connection is made to soldering tags, positioned as indicated in Fig. 1.

To orient the raster correctly, the unit may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position.

[^15]
ADJUSTMENT FACILITIES

Vertical pin-cushion distortion
Vertical pin-cushion distortion can be corrected by small ferroxdure rod magnets, which have been mounted on the deflection unit brackets. Limited correction of asymmetrical vertical pin-cushion distortion can be achieved by unequal rotation of these magnets.

Eccentricity of the picture tube
After adjustment of the linearity of the deflection current, the eccentricity of the picture tube and the deflection unit can be corrected by means of two independently movable centring magnets of plastic-bonded ferroxdure. These magnets are diametrically magnetised. By turning the magnets with respect to each other the magnetic force of the resultant field of both magnets is adjusted. The direction of the resultant magnetic field is adjusted by turning the magnets simultaneously.
It should be noted that these centring magnets can not be used for compensating the effects of non-linearity or of phase differences between synchronisation and time base, as otherwise the correction needed becomes excessive and, even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

Notes

To correct the corners of the raster small plastic bonded ferroxdure magnets can be supplied on request (catalog number 312210494120).

LINE-OUTPUT TRANSFORMER

For tube-equipped television receivers
RZ 17574-1
Without auxiliary winding

APPLICATION

This line-output transformer has been developed to provide the required scanning amplitude for $19^{\prime \prime}$ or $23^{\prime \prime}$ picture tubes in television receivers presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).
It is intended for use in conjunction with deflection unit AT 1030, linearity control unit AT 4034/01, line-output tube PL504, rectifying tube DY802 and booster diode PY 88. The EHT is stabilised at 18 kV .

CONSTRUCTION

The magnetic circuit of the transformer comprises a ferroxcube U-core and a ferroxcube I-core. The primary winding 5-8 and the secondary windings 1-2 and 3-4 (see Fig. 2) are polyester dipped and situated on one leg of the core.
The EHT winding is polyester encapsulated and situated on the other leg.
The transformer has been provided with four mounting pins and two threaded holes for mounting.
External circuit connection is made to connecting pins, positioned as indicated in Fig. 1.

Dimensions in mm

Fig. 1

ELECTRICAL DATA (see Fig. 2)

The electrical data are measured with a booster load at connection (5) of 1 mA and a capacitance of 100 pF between connections (1) and (4) at different values of capacitor C 4 .

C 4	0 pF		120 pF		270 pF		
Beam current ${ }^{1 \text { 1) }}$	35	400	35	400	35	400	$\mu \mathrm{A}$
Supply voltage ${ }^{2)}$	240		240	225	240		V
Booster voltage	640		650	618	660		V
EHT voltage	18.1		18.0	16.4	17.6		kV
Overscan 1)	+ 6		+9		+ 12		\%
Stability down to	194	205	195	205	197	208	V
Flyback ratio	17.2		17.5		17.9		\%
Internal resistance of EHT		≤ 4.5		≤ 4.5		≤ 4.5	$M \Omega$

1) A beam current increase of $200 \mu \mathrm{~A}$ results in an amplitude increase of maximum 2%.
2) Internal resistance of power supply $=250 \Omega$.

C 4	0 pF		120 pF		270 pF		
PY 88							
Average booster current	103		100	135	104		mA
Peak booster current	215	230	220	235	230	245	mA
Booster current at end of scan	5	60	5	50	5	55	mA
PL504							
Peak cathode current	280	360	280	360	280	360	mA
Peak anode current			255	330			mA
Average screen-grid current			10	13			mA
Average screen-grid voltage			227	209			V
Anode dissipation				9			W
Screen-grid dissipation				3			W

The transformer core should not be left "floating", but must be connected to the chassis.
Driving pulse of the PL504:
Cut-off time at least 19% at -100 V
Peak voltage higher than - 120 V
Slope of leading edge of driving pulse less than $2 \mu \mathrm{~s}$ per 100 V . The shape of the driving pulse in the conducting period of the PL504 should be such that the booster current at end-of-scan (measured with zero beam current) just does not disappear.

The maximum load on the transformer, including the booster load (but excluding the load of the VDR stabilization circuit) should not exceed 2.5 W .
This load results in a current increase of about 15 mA .
The maximum capacitive load is (with a view to parasitic oscillations after flyback):
between (1) and (2): 270 pF ,
absolute maximum permissible is e.g. (with C4 = 120 pF) :
270 pF between (1) (2) and
or: 120 pF between
(1) (2) and
330 pF between (3) (4). 390 pF between (3) (4).

Line-output stage (see Fig. 2)
C1 4700 pF ceramic
R1 $2.2 \mathrm{M} \Omega, 1200 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
C2 1500 pF ceramic
C3 270 pF ceramic, 1000 V dc
C4 $0-270 \mathrm{pF}$ ceramic, $2000 \mathrm{~V} \mathrm{p}-\mathrm{p}$,
amplitude adjustment
R2 $1000 \Omega, 1 / 4 \mathrm{~W}$
R3 $2200 \Omega, 2 \mathrm{~W}$ 2)
R4 $\quad 10 \mathrm{M} \Omega, 1200 \mathrm{~V} \mathrm{dc}$
R5 $0.5 \mathrm{M} \Omega$, potentiometer, booster voltage adjustment
C5 22000 pF paper) 1300 V , booster
C7 56000 pF paper (capacitors
R6 $1500 \Omega, 1 \mathrm{~W}$
C6 $\quad 0.18 \mu \mathrm{~F}(5 \%)$) S -correctors 1)
R7 $2700 \Omega, 1 \mathrm{~W}$
C8 $\quad 0.20 \mu \mathrm{~F}(5 \%)$
VDR 232256490014 (910 V)

1) The picture width depends on this value.
2) With low supply voltage, dissipation may exceed 1 W .

Fig. 2a

The operation of the transformer is influenced by its surroundings. Variations in electrical characteristics due to the influence of surrounding components, shields and circuitry can be compensated to a certain degree by selecting the right value for the capacitor C 4 parallel to part of the transformer primary.

The deflection unit is connected to a secondary which is separated from the primary by the booster capacitor C5. Pulses for blanking, synchronisation, etc. are to be taken directly from the deflection unit connections. There is no auxiliary winding on this transformer. A circuit diagram of a flywheel synchronisation circuit is given below.

Fig. 3

C 11	6800 pF, ceramic
$\mathrm{C} 12, \mathrm{C} 13$	1000 pF , ceramic
C 14	$0.1 \mu \mathrm{~F}$, polyester
$\mathrm{C} 15, \mathrm{C} 16$	120 pF , ceramic
R 11	$10 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
$\mathrm{R} 12, \mathrm{R} 13$	$39 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
R 14	$5 \mathrm{M} \Omega$, trimmer
	potentiometer
$\mathrm{R} 15, \mathrm{R} 16$	$15 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
L	$25-35 \mathrm{mH}$, choke
D1, D2	OA 202

The split secondary offers two possibilities to the setmaker. If the transformer is connected according to Fig. 2a, the conventional circuit is obtained, with booster capacitor C $7=56 \mathrm{nF}$ and S -correction capacitor $\mathrm{C} 8=200 \mathrm{nF}$ ($\pm 5 \%$). If, however, the S -correction capacitor is placed between the two halves of the secondary (C6 in Fig. 2), the booster capacitance has to be reduced considerably (22 nF instead of 56 nF) because the parabola voltages on C 6 and C 5 are of opposite sign. Besides, the S-correction capacitor has to be reduced (180 nF). This means an important saving in cost.

From connection (3) a parabola-shaped voltage of $90 \mathrm{~V}_{p-p}$ can betaken for use in the TV set.
If the resistive load on connection (3) is about 2700Ω or less, the resistor $R 7$ (damping resistor against dynatron oscillations) can be omitted. The load resistance should, however, not be lower than about 820Ω.

If the boosted d.c. voltage is needed elsewhere in the set, it has to be filtered from the booster parabola voltage and from the flyback peaks.

MOUNTING

The transformer can be mounted on either a printed-wiring board or a metal chassis. The latter should be apertured as shown in the mounting diagram, Fig. 4, to pass the pins. The transformer is secured by two 3 mm screws. The mounting pins can be bent or soldered.
When mounted on a printed-wiring board the transformer is secured by means of its four mounting pins and two 3 mm screws. The fit of the connecting pins in a printedwiring grid with a pitch of 0.1 " is illustrated in Fig. 5.

Fig. 4 Fig. 5

Like the other connections, those to the PL504 and PY 88 can be soldered to the printed-wiring board. If bent upwards (as supplied) they are very suitable for direct connection to the anode caps of these tubes.
\rightarrow A tube socket for the DY802 (type AT 7130) comprising a resistor (R, Fig.2) of 1.6Ω is available; for ordering this socket the catalog number 312210731240 should be used. See also the relevant data sheet.

Certain minimum distances between the transformer and neighbouring components and shields must be maintained.

- The radial distance between the EHT coils and any flat metal part (free from sharp edges) should be at least 25 mm .
The axial distance from the EHT coil should be at least 15 mm .
- The distance from the EHT cap and lead should be at least 25 mm .
- The distance between the primary coil and any flat and smooth metal part should be at least 10 mm .
- The distance between the upper edge of the DY802 socket and the primary coil should be at least 7 mm .

In the design of a printed-wiring board and also of a handwired chassis the following peak pulse voltages should be taken into account:
Connection (1) : - $500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
(5), (4) : + $500 \vee_{p-p}$
(6) $:+1100 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

The capacitance of the leads to the PL 504 and PY 88 caps should be less than 2 pF .
Note: The transformer and the leads and components carrying high tension pulses should be kept free from metal particles, solder drops etc.

The operating temperature of the transformer coils and the core should not exceed $95^{\circ} \mathrm{C}$ under worst circumstances, i.e. taking into account:

- overvoltage
- Iow atmospheric pressure (at high altitudes) implying bad cooling by convection
- high room temperature (up to $45^{\circ} \mathrm{C}$).

Direct heat radiation from the PL 504 and PY 88 anodes to the transformer and the heater cable should be avoided by a screen. (If this screen is made from insulating material, it should be placed at least 15 mm from the coils.)

The socket of the DY802 should not be exposed to any direct heat radiation from the PL 504 and the PY 88.
The heater cable should be able to withstand $95^{\circ} \mathrm{C}$ without the risk of the copper core damaging the insulating material under mechanical stress; a p.v.c. sleeve for mechanical protection is sufficient.
Ample cool air circulation should be provided around the transformer.

LINE-OUTPUT TRANSFORMER

RZ 17574-1
For tube-equipped television receivers
Without auxiliary winding

APPLICATION

This line-output transformer has been developed to provide the required scanning amplitude for $17,19,20,23$ or 24 inch picture tubes in television receivers presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).
It is intended for use in conjunction with deflection unit AT1040, linearity control unit AT4042/02, line-output tube PL504, rectifying tube DY802 and booster diode PY88. The EHT is stabilised at 18 kV .

CONSTRUCTION

The magnetic circuit of the transformer comprises a ferroxcube U-core and a ferroxcube I-core. The primary winding 5-8 and the secondary windings 1-2 and 3-4 (see Fig. 2) are polyester dipped and situated on one leg of the core.
The EHT winding is polyester encapsulated and situated on the other leg.
The transformer has been provided with four mounting pins and two threaded holes for mounting.

External circuit connection is made to connecting pins, positioned as indicated in Fig. 1 .

Dimensions in mm

Fig. 1

ELECTRICAL DATA (see Fig. 2)

The electrical data are measured with a booster load at connection (5) of 1 mA and a capacitance of 100 pF between connections (1) and (4), at different values of capacitor C4.

C4	120 pF		270 pF		390		pF
Beam current 1)	35	400	35	400	35	400	$\mu \mathrm{~A}$
Supply voltage 2)	240	234	240	234	240	234	V
Booster voltage	632	616	640	622	648	632	V
EHT voltage	18.3	17.0	18.2	16.9	18.1	16.8	kV
Overscan 1)	+7		+9		+11		$\%$
Stability down to	212	217	215	220	217	222	V
Flyback ratio	16.8		17		17.2		$\%$
Internal resistance of EHT		≤ 4.5		≤ 4.5		≤ 4.5	$\mathrm{M} \Omega$

[^16]| C4 | 120 pF | | 270 pF | | 390 pF | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PY88 | | | | | | | |
| Average booster current | | 150 | 109 | 149 | 110 | 150 | mA |
| Peak booster current | 250 | | 250 | | 250 | | mA |
| Booster current at end of scan | 50 | | 50 | | 50 | | mA |
| Peak booster voltage | | | 5.4 | | | | kV |
| PL504 | | | | | | | |
| Peak cathode current | | | | 330 | | | mA |
| Peak anode current | | | | 320 | | | mA |
| Average screen-grid current | | | 10 | | | | mA |
| Average screen-grid voltage | | | 220 | | | | V |
| Anode dissipation | | | | 11.5 | | | W |
| Screen-grid dissipation | | | 3 | | | | W |
| Peak anode voltage | | | 6.8 | | | | kV |

The transformer core should not be left "floating", but must be connected to the chassis.

Driving pulse of the PL504:
Cut-off time at least 19% at -100 V
Peak voltage higher than -120 V
Slope of leading edge of driving pulse less than $2 \mu \mathrm{~s}$ per 100 V . The shape of the driving pulse in the conducting period of the PL504 should be such that the booster current at end-of-scan (measured with zero beam current) just does not disappear.
The maximum load on the transformer, including the booster load (but excluding the load of the VDR stabilization circuit) should not exceed 2.5 W .
This load results in a current increase of about 15 mA .
The maximum capacitive load is (with a view to parasitic oscillations after flyback):
to be established
Line-output stage (see Fig. 2)
C1 $\quad 4700 \mathrm{pF}$ ceramic
R1
C2 22000 pF ceramic
C3 $\quad 270 \mathrm{pF}$ ceramic, $1000 \mathrm{~V}_{\mathrm{dc}}$
R2 $1000 \Omega, 1 / 4 \mathrm{~W}$
C4 120-390 pF ceramic, $2000 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$,
amplitude adjustment
C5 27000 pF) paper, 1300 V
C7 56000 pF (booster capacitors

C6	$\begin{array}{l}0.22 \mu \mathrm{~F}(5 \%) \\ \mathrm{C} 8\end{array}$

R3 $2200 \Omega, 2 \mathrm{~W}$ 2)
R4 $10 \mathrm{M} \Omega, 1200 \mathrm{~V} \mathrm{dc}$
R5 $0.5 \mathrm{M} \Omega$, potentiometer, booster voltage adjustment

1) The picture width depends on this value.
2) With low supply voltage, dissipation may exceed 1 W .

Fig. 2.
Fig.2a
The operation of the transformer is influenced by its surroundings. Variations in electrical characteristics due to the influence of surrounding components, shields and circuitry can be compensated to a certain degree by selecting the right value for the capacitor C4.

The deflection unit is connected to a secondary which is separated from the primary by the booster capacitor C7. Pulses for blanking, synchronisation, etc. are to be taken directly from the deflection unit connections. There is no auxiliary winding on this transformer. A circuit diagram of a flywheel synchronisation circuit is given below.

C11	6800 pF, ceramic
$\mathrm{C} 12, \mathrm{C} 13$	1000 pF, ceramic
C14	$0.1 \mu \mathrm{~F}$, polyester
C15, C16	120 pF, ceramic
R11	$10 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
R12, R13	$39 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
R14	$5 \mathrm{M} \Omega$, trimmer
	potentiometer R15, R16 $15 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$ L
$25-35 \mathrm{mH}$, choke D1, D2 OA 202	

Fig. 3

The split secondary offers two possibilities to the setmaker. If the transformer is connected according to Fig.2, the conventional circuit is obtained, with booster capacitor $\mathrm{C} 7=56 \mathrm{nF}$ and S -correction capacitor $\mathrm{C} 8=270 \mathrm{nF}$ ($\pm 5 \%$).
If, however, the S -correction capacitor is placed between the two halves of the secondary (C6 in Fig.2a), the booster capacitance has to be reduced considerably (27 nF instead of 56 nF) because the parabola voltages on C6 and C5 are of opposite sign. Besides, the S-correction capacitor has to be reduced (220 nF). This means an important saving in cost.
From connection (3) a parabola-shaped voltage of $90 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ can be taken for use in the TV set.
If the resistive load on connection (3) is about 2700Ω or less, the resistor R7 (damping resistor against dynatron oscillations) can be omitted. The load resistance should, however, not be lower than about 820Ω.
If the boosted d.c. voltage is needed elsewhere in the set, it has to be filtered from the booster parabola voltage and from the flyback peaks.

MOUNTING

The transformer can be mounted on either a printed-wiring board or a metal chassis. The latter should be apertured as shown in the mounting diagram, Fig.4, to pass the pins. The transformer is secured by two 3 mm screws. The mounting pins can be bent or soldered.
When mounted on a printed-wiring board the transformer is secured by means of its four mounting pins and two 3 mm screws. The fit of the connecting pins in a printedwiring grid with a pitch of 0.1 inch is illustrated in Fig. 5 .

Fig. 4

Fig. 5

Like the other connections, those to the PL504 and PY88 can be soldered to the printed-wiring board. If bent upwards (as supplied) they are very suitable for direct connection to the anode caps of these tubes.
A tube socket for the DY802 (type AT7130) comprising a resistor (R, Fig.2) of 1.6Ω is available, for ordering this socket use the catalog number 312210731240. See also the relevant data sheet.

Certain minimum distances between the transformer and neighbouring components and shields must be maintained.

- The radial distance between the EHT coils and any flat metal part (free from sharp edges) should be at least 25 mm .
The axial distance from the EHT coil should be at least 15 mm .
- The distance from the EHT cap and lead should be at least 25 mm .
- The distance between the primary coil and any flat and smooth metal part should be at least 10 mm .
- The distance between the upper edge of the DY802 socket and the primary coil should be at least 7 mm .

In the design of a printed-wiring board and also of a handwired chassis the following peak pulse voltages should be taken into account:

Connection (1) : - $500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
$\begin{array}{ll}\text { (5), (4) } & :+500 V_{p-p} \\ \text { (6) } & :+1100 V_{p-p}\end{array}$
The capacitance of the leads to the PL504 and PY88 caps should be less than 2 pF .
Note: The transformer and the leads and components carrying high tension pulses should be kept free from metal particles, solder drops etc.

The operating temperature of the transformer coils and the core should not exceed $95^{\circ} \mathrm{C}$ under worst circumstances, i.e. taking into account:

- overvoltage
- low atmospheric pressure (at high altitudes) implying bad cooling by convection
- high room temperature (up to $45^{\circ} \mathrm{C}$).

Direct heat radiation from the PL504 and PY88 anodes to the transformer and the heater cable should be avoided by a screen. (If this screen is made from insulating material, it should be placed at least 15 mm from the coils.)

The socket of the DY802 should not be exposed to any direct heat radiation from the PL504 and the PY88.

The heater cable should be able to withstand $95^{\circ} \mathrm{C}$ without the risk of the copper core damaging the insulating material under mechanical stress; a p.v.c. sleeve for mechanical protection is sufficient.

Ample cool air circulation should be provided around the transformer.

LINE-OUTPUT TRANSFORMER

RZ 17574-1R
For tube-equipped television receivers
With auxiliary winding

APPLICATION

This line-output transformer has been developed to provide the required scanning amplitude for $17,19,20,23$ or 24 inch picture tubes in television receivers presenting 625 lines at 50 frames per second (CCIR) or 525 lines at 60 frames per second (USA).
It is intended for use in conjunction with deflection unit AT1040, linearity control unit AT4042/02, line-output tube PL504, rectifying tube DY802 and booster diode PY88. The EHT is stabilised at 18 kV .

CONSTRUCTION

The magnetic circuit of the transformer comprises a ferroxcube U-core and a ferroxcube I-core. The primary winding 9-12, the secondary windings 5-6 and 7-8 and the auxiliary winding 1-4 (see Fig.2) are polyester dipped and situated on one leg of the core. The EHT winding is polyester encapsulated and situated on the other 'leg.

The transformer has been provided with four mounting pins and two threaded holes for mounting.

External circuit connection is made to connecting pins, positioned as indicated in Fig. 1.
$\underline{\text { Dimensions in } \mathrm{mm}}$

Fig. 1

\rightarrow ELECTRICAL DATA (see Fig. 2)

The electrical data are measured with a booster load at connection (9) of 1 mA and a capacitance of 100 pF between connections (5) and (8) at different values of capacitor C4.

C4	120 pF		270 pF		390		pF
Beam current ${ }^{1}$)	35	400	35	400	35	400	$\mu \mathrm{~A}$
Supply voltage 2)	240	234	240	234	240	234	V
Booster voltage	632	616	640	622	648	632	V
EHT voltage	18.9	17.0	18.2	16.9	18.1	16.8	kV
Overscan 1)	+7		+9		+11		$\%$
Stability down to	212	217	215	220	217	222	V
Flyback ratio	16.8		17		17.2		$\%$
Internal resistance of EHT		≤ 4.5		≤ 4.5		≤ 4.5	$\mathrm{M} \Omega$

[^17]| C4 | 120 pF | | 270 pF | | 390 pF | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Auxiliary voltage between (1) and (2) | | | | | | | $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$ |
| Auxiliary voltage between (3) and (2) | | | | | | | $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$ |
| Auxiliary voltage between
 (4) and (2) | | | | | | | $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$ |
| PY88 | | | | | | | |
| Average booster current | 110 | 150 | 109 | 149 | 110 | 150 | mA |
| Peak booster current | 250 | | 250 | 250 | 250 | | mA |
| Booster current at end of scan | 50 | | | 100 | 50 | | mA |
| Peak booster voltage | | | 5.4 | | | | kV |
| PL504 | | | | | | | |
| Peak cathode current | | | 280 | 330 | | | mA |
| Peak anode current | | | 270 | 320 | | | mA |
| Average screen-grid current | | | 10 | | | | mA |
| Average screen-grid voltage | | | 220 | | | | V |
| Anode dissipation | | | | 11.5 | | | W |
| Screen-grid dissipation | | | 3 | | | | W |
| Peak anode voltage | | | 6.8 | | | | kV |

The transformer core should not be left "floating", but must be connected to the chassis.

Driving pulse of the PL504:
Cut-off time at least 19% at -100 V
Peak voltage higher than -120 V
Slope of leading edge of driving pulse less than $2 \mu \mathrm{~s}$ per 100 V . The shape of the driving pulse in the conducting period of the PL504 should be such that the booster current at end-of-scan (measured with zerobeam current) just does not disappear.

The maximum load on the transformer, including the booster load (but excluding the load of the VDR stabilization circuit) should not exceed 2.5 W .
This load results in a current increase of about 15 mA .
The maximum capacitive load is (with a view to parasitic oscillations after flyback):
to be established

Line-output stage

Fig. 2
Fig. 2a

C1 4700 pF ceramic
C2 22000 pF ceramic
C3 $\quad 270 \mathrm{pF}$ ceramic, $1000 \mathrm{~V}_{\mathrm{dc}}$
C4 120-390 pF ceramic, $2000 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, amplitude adjustment
C5 27000 pF paper, 1300 V
C7 56000 pF) booster capacitors
$\left.\begin{array}{ll}\text { C6 } & 0.22 \mu \mathrm{~F}(5 \%) \\ \text { C8 } & 0.27 \mu \mathrm{~F}(5 \%)\end{array}\right\}$ S-correctors ${ }^{1}$)

R1
R2
R3
R4
R5

R6
R7
VDR 232256490014 (910 V)

[^18]The operation of the transformer is influenced by its surroundings. Variations in electrical characteristics due to the influence of surrounding components, shields and circuitry can be compensated to a certain degree by selecting the right value for the capacitor C4.

The deflection unit is connected to a secondary which is separated from the primary by the booster capacitor C7. Pulses for blanking, synchronisation, etc. are to be taken directly from the deflection unit connections. There is an auxiliary winding on this transformer, which delivers $+110 \mathrm{~V}_{\mathrm{p}-\mathrm{p}},+220 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and $-110 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ if connection (2) is connected to earth. A circuit diagram of a flywheel synchronisation circuit is given below.

Fig. 3

C11
C12, C13
C14
C15, C16

> R11

R12, R13
R14
R15, R16
L
D1, D2

6800 pF , ceramic
1000 pF , ceramic
$0.1 \mu \mathrm{~F}$, polyester
120 pF , ceramic
$10 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
$39 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
$5 \mathrm{M} \Omega$, trimmer potentiometer
$15 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$ 25-35 mH, choke
OA202

The split secondary offers two possibilities to the setmaker. If the transformer is connected according to Fig.2, the conventional circuit is obtained, with booster capacitor $\mathrm{C} 7=56 \mathrm{nF}$ and S -correction capacitor $\mathrm{C} 8=270 \mathrm{nF}(\pm 5 \%)$.
If, however, the S -correction capacitor is placed between the two halves of the secondary (C6 in Fig.2a), the booster capacitance has to be reduced considerably (27 nF instead of 56 nF) because the parabola voltages on C 6 and C 5 are of opposite sign. Besides, the S-correction capacitor has to be reduced (220 nF). This means an important saving in cost.

From connection (7) a parabola-shaped voltage of $90 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ can be taken for use in the TV set.
If the resistive load on connection (7) is about 2700Ω or less, the resistor R7 (damping resistor against dynatron oscillations) can be omitted. The load resis tance should, however, not be lower than about 820Ω.
If the boosted d.c. voltage is needed elsewhere in the set, it has to be filtered from the booster parabola voltage and from the flyback peaks.

MOUNTING

The transformer can be mounted on either a printed-wiring board or a metal chassis. The latter should be apertured as shown in the mounting diagram, Fig.4, to pass the pins. The transformer is secured by two 3 mm screws. The mounting pins can be bent or soldered.
When mounted on a printed-wiring board the transformer is secured by means of its four mounting pins and two 3 mm screws. The fit of the connecting pins in a printedwiring grid with a pitch of 0.1 inch is illustrated in Fig.5.

Like the other connections, those to the PL504 and PY88 can be soldered to the printed-wiring board. If bent upwards (as supplied) they are very suitable for direct connection to the anode caps of these tubes.

A tube socket for the DY802 (type AT7130) comprising a resistor (R, Fig.2) of 1.6Ω is available; for ordering this socket use the, catalog number 312210731240 . See also the relevant data sheet.

Certain minimum distances between the transformer and neighbouring components and shields must be maintained.

- The radial distance between the EHT coils and any flat metal part (free from sharp edges) should be at least 25 mm .
The axial distance from the EHT coil should be at least 15 mm .
- The distance from the EHT cap and lead should be at least 25 mm .
- The distance between the primary coil and any flat and smooth metal part should be at least 10 mm .
- The distance between the upper edge of the DY802 socket and the primary coil should be at least 7 mm .

In the design of a printed-wiring board and also of a handwired chassis the following peak pulse voltages should be taken into account:

$$
\begin{aligned}
& \text { Connection (1) : - } 110 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\
& \text { (3) }:+110 V_{p-p} \\
& \text { (4) : + } 220 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\
& \text { (5) : }-500 V_{p-p} \\
& \text { (9) : + } 500 V_{p-p} \\
& \text { (10) : + } 1100 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}
\end{aligned}
$$

The capacitance of the leads to the PL504 and PY88 caps should be less than 2 pF .
Note: The transformer and the leads and components carrying high tension pulses should be kept free from metal particles, solder drops etc.

The operating temperature of the transformer coils and the core should not exceed $95{ }^{\circ} \mathrm{C}$ under worst circumstances, i.e. taking into account:

- overvoltage
- low atmospheric pressure (at high altitudes) implying bad cooling by convection
- high room temperature (up to $45^{\circ} \mathrm{C}$).

Direct heat radiation from the PL504 and PY88 anodes to the transformer and the heater cable should be avoided by a screen. (If this screen is made from insulating material, it should be placed at least 15 mm from the coils).

The socket of the DY802 should not be exposed to any direct heat radiation from the PL504 and the PY88.

The heater cable should be able to withstand $95^{\circ} \mathrm{C}$ without the risk of the copper core damaging the insulating material under mechanical stress; a p.v.c. sleeve for mechanical protection is sufficient.

Ample cool air circulation should be provided around the transformer.

LINE-OUTPUT TRANSFORMER

This line-output transformer is derived from the AT2036/25. Provided with an E.H.T. lead of $75+5 \mathrm{~mm}$, without E.H.T. cap, it can be used with E.H.T. solid state rectifier stacks.
For further data, see data sheets of the line-output transformer AT2036/25.

LINE-OUTPUT TRANSFORMER

For transistor-equipped television receivers

APPLICATION

This line-output transformer has been developed to provide the required scanning amplitude for the 11 inch 90° picture tube A28-14W and the 12 inch 90° picture tube A31-20W in transistor-equipped television receivers presenting 625 lines at 50 frames per second (C.C.I.R.) or 525 lines at 60 frames per second (U.S.A.). It is intended for use in conjunction with deflection unit AT1020/01, linearity control unit AT4036, line-output transistor AU103, parallel diode BY118 and rectifying tube DY51.

CONSTRUCTION

The magnetic circuit of the transformer comprises two ferroxcube U-cores.
The primary winding 1-4 and the secondary windings 5-12 and 10-11 (see Fig.2) are situated on one leg of the transformer. On the opposite leg, the E.H.T. winding is situated. This winding is polyester-encapsulated and is terminated in a conductive rubber grommet in which the anode lead of the E.H.T. rectifier may be inserted.

The transformer has been provided with four mounting pins and two threaded holes for mounting.

External circuit connection is made to connecting pins, positioned as indicated in Fig.l.

Dimensions in mm

Fig. 1
\rightarrow ELECTRICAL DATA
E.H.T. voltage (no load)

Flyback ratio
Average current
Overscan

11 kV
17.5%
0.52 A
5%

The values mentioned above have been measured with an extrawinding on the transformer (load of 1 W) and including a heating power of the E.H.T. rectifier DY51 of 0.77 W .

Line-output stage

The line-output circuit of Fig. 2 is designed around the line-output transistor AU103, the parallel diode BY118 and the E.H.T. rectifier DY51.
The circuit is fed from a stabilized power supply at 11 V and driven by a pulse of the shape shown.
The deflection unit AT1020/01 and the series connected adjustable linearity control unit AT4036 are connected in parallel with the diode BY118. The $0.068 \mu \mathrm{~F}$ capacitor and the various parasitic capacitances of the transformer form, together with the inductances of the deflection unit and the transformer, a resonant LC circuit which determines the flyback time.

Fig. 2

To damp ringing oscillations, the coil of the linearity control unit must be shunted by a $220 \Omega, 1 \mathrm{~W}$, carbon resistor. To prevent spurious oscillations, which would manifest themselves as ringing bars in the picture, the connecting leads should be as short as possible. In Fig. 2 the critical leads are indicated by heavy lines. The $0.068 \mu \mathrm{~F}$ capacitor, especially, should be closely connected to the parallel diode BY118.

The heater current for the DY5l may be supplied by two turns around the cross member of the transformer core, in series with a resistor of 0.5Ω.

The supply voltage for the transistor in the video-output stage of the receiver and for the first anode and focus electrode of the picture tube is available at terminal 5 .

The supply voltage for the brightness control of the picture tube is provided by the winding 9-12.

Symmetrical voltage pulses of 60 V for a.g.c. gating and horizontal synchronizing circuits are available at terminals 6 and 8 .

Where a d.c. voltage with low spread in value and low internal resistance is required, the best way to obtain it is by rectification during the scan. Less critical voltages can be obtained by pulse rectification during flyback.

MOUNTING

The transformer can be mounted on either a printed-wiring board or a metal chas sis. The latter should be provided with holes as shown in the mounting diagram, Fig. 3.
The transformer is secured by two 3 mm screws.
When mounted on a printed-wiring board, the transformer is secured by means of four soldering lugs. The fit of the terminal pins in a printed-wiring grid with a pitch of 0.1 inch or 2.50 mm is illustrated in Fig. 4 .

Fig. 3

Fig. 4 ($\mathrm{e}=0.1$ inch or 2.50 mm)

Whether it is board- or chassis-mounted the core of the transformer must be earthed.

A special tube socket for the DY51 rectifier (type number AT7108/50) is delivered with the line-output transformer. The socket includes a plate with soldering tags for making circuit connections to the tube, and can be secured to the transformer by means of a screw.

The following minimum distances between the transformer and neighbouring conductive surfaces must be maintained:

- radially from the E.H.T. winding, 18 mm
- axially from the E.H.T. winding, 10 mm
- radially and axially from the primary winding, 8 mm .

To avoid corona discharge, care must be taken that the anode lead of the E.H.T. rectifier does not protrude beyond the rubber grommet.

LINE-OUTPUT TRANSFORMER

-RZ 20305-2
For tube-equipped television receivers

APPLICATION

This line-output transformer has been developed to provide the required scanning amplitude for the 11 inch 900 picture tube A28-14W and the 12 inch 900 picture tube A31-20W in tube-equipped television receivers presenting 625 lines at 50 frames per second (C.C.I.R.) or 525 lines at 60 frames per second (U.S.A.).
It is intended for use in conjunction with deflection unit AT1021/01, linearity control unit AT4037, line-output tube PL81, booster diode PY'81 and rectifying tube DY51. Thanks to the low deflection power requirement of the picture tubes mentioned above, the transformer losses are small and its operating temperature is, therefore, advantageously low, which is important in view of the use of semiconductor devices in the television receiver.

CONSTRUCTION

The magnetic circuit of the transformer comprises two ferroxcube U-cores. The primary winding 9-12, secondary windings $1-2$ and 3-4 and auxiliary windings 5-6 and 7-8 (see Fig.2) are polyester dipped and situated on one leg of the core.
The E.H.T. winding 10-13 is polyester encapsulated and situated on the other leg. Terminal 13 is a conductive rubber grommet in which the anode lead of the E.H.T. rectifier may be inserted.

The transformer has been provided with four mounting pins and two threaded holes for mounting.

External circuit connection is made to connecting pins, positioned as indicated in Fig. 1.

Dimensions in mm

Fig. 1
\rightarrow ELECTRICAL DATA
E.H.T. voltage (no load)

Booster voltage
Flyback ratio
Average current
Overscan
Maximum load capability of auxiliary windings 5-6 and 7-8

> 11 kV
> $240+440=680 \mathrm{~V}$
> 17.5%
> 38 mA
> 5%
> 0.7 W , during scan
> 0.3 W , during flyback

Line-output stage

The circuit of Fig. 2 is designed around the line-output tube PL81, the booster diode PY81, and the E.H.T. rectifier DY51.
The stabilizing circuit for the supply voltage includes the voltage-dependent resistor 2322564 90014, which operates down to a supply voltage of about 205 V .
The stabilizing circuit must be adjusted to the nominal value of the booster voltage $(680 \mathrm{~V})$ at the nominal value of the supply voltage $(240 \mathrm{~V})$ by means of the $500 \mathrm{k} \Omega$ potentiometer.

One terminal of the $0.022 \mu \mathrm{~F}$ booster capacitor is connected to the positive terminal of the voltage supply, so that at an adjusted voltage of 440 V across the capacitor the total booster voltage is 680 V . The scanning amplitude and E.H.T. will then be correct, since the line-output transformer has been made for the proper ratio of booster voltage, E.H.T. and scanning amplitude, within narrow tolerances.
The drive voltage must be adjusted so that the booster diode conducts throughout the whole scanning period, the booster current at the end of the scan ranging from 5 to 10 mA .

Fig. 2
The deflection unit AT1021/01 and the adjustable linearity control unit AT4037 are connected to the secondary winding 1-4 of the line-output transformer. The split secondary winding offers the set manufacturer three possible modes of connection.

To minimize ringing oscillations after flyback, the linearity control unit AT4037 must be connected nearest to terminal 4 , that is, to the "positive" side of the deflection unit AT1021/01. In addition, the coil of the linearity control unit must be shunted by a $1500 \Omega, 1 \mathrm{~W}$, carbon resistor.

The heater current for the DY51, may be supplied by a single turn around the cross member of the transformer core, without series resistor.
The heater supply for the picture tube is provided by the auxiliary winding 7-8, which delivers a peak-to-peak voltage of 38 V , corresponding to $11 \mathrm{~V}_{\mathrm{rms}}$. Current supply for transistor circuits in hybrid receivers is provided by the auxiliary winding 5-6 ($28 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$).

MOUNTING

The transformer can be mounted on either a printed-wiring board or a metal chas sis. The latter should be apertured as shown in the mounting diagram, Fig.3, to pass the connecting pins. The transformer is secured by two 3 mm screws. When mounted on a printed-wiring board, the transformer is secured by means of four soldering lugs. The fit of the terminal pins in a printed-wiring grid with a pitch of 0.1 inch or 2.50 mm is illustrated in Fig. 4 .

Whether it is board- or chassis-mounted, the core of the transformer must be earthed.

A special tube socket for the DY51 rectifier (type number AT7108/51) is delivered with the line-output transformer. The socket includes a plate with soldering tags for making circuit connections to the tube, and can be secured to the transformer by means of a screw.

Fig. 3

Fig. 4 ($\mathrm{e}=0.1$ inch or 2.50 mm)

The following minimum distances between the transformer and neighbouring conductive surfaces must be maintained:

- radially from the E.H.T. winding, 18 mm
- axially from the E.H.T. winding, 10 mm
- radially and axially from the primary winding, 8 mm .

To avoid corona discharge, care must be taken that the anode lead of the EHT rectifier does not protrude beyond the rubber grommet.

FRAME-OUTPUT TRANSFORMER

RZ 24284-11

For tube-equipped and transistorised television receivers

APPLICATION

This frame-output transformer is intended for use with 19 and 23 inch $110^{\circ}\left(114^{\circ}\right)$ picture tubes, in conjunction with the deflection unit AT1040.

CONSTRUCTION

The magnetic circuit of the transformer comprises two C-cores. The transformer has three separate windings; the tertiary winding cean be used for voltage feedback. The transformer has been provided with four holes for mounting on either a printedwiring board or a metal chassis.
External circuit connection is made to connecting pins, positioned as indicated in Fig. 1.

Fig.1. $\mathrm{e}=2.52 \mathrm{~mm}$, suitable for mounting on a grid with $2.54 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$ or 2.50 mm pitch.

ELECTRICAL DATA

Fig. 2

Primary winding
Connecting terminals
Inductance
at a primary d.c. current of 55 mA
at a primary d.c. current of 70 mA
Resistance
1 and 2
$7.5 \mathrm{H} \pm 10 \%$
$6 \mathrm{H} \pm 10 \%$
$230 \Omega \pm 12 \%$
Secondary winding
Connecting terminals
3 and 4
Resistance
$9.7 \Omega \pm 12 \%$
Tertiary winding
Connecting terminals
5 and 6
Resistance
Transformation ratio $\frac{N_{\text {prim }}}{N_{\text {Sec }}}$
$165 \Omega \pm 12 \%$
5.6
$\frac{N_{\text {prim }}}{N_{\text {tert }}}$
Maximum primary d.c. current
Maximum primary peak voltage
Maximum ambient temperature

75 mA
1500 V
$70{ }^{\circ} \mathrm{C}$

1) With respect to chassis.

Fig. 4
4

ADJUSTABLE LINEARITY CONTROL UNIT

For tube-equipped television receivers

APPLICATION

This unit has been designed for use in tube-equipped television receivers, to adjust the linearity of the line deflection. It can be used in combination with deflection unit AT 1030 and line-output transformer AT2025/01.

CONSTRUCTION

This control unit consists of a coil wound on a ferroxcube rod, two ferroxdure magnets and one magnet of plastic bonded ferroxdure. The lastmentioned magnet is placed around the ferroxcube rod, above the coil. One of the ferroxdure magnets has the shape of a half ring; it is placed around the ferroxcube rod under the coil. The other ferroxdure magnet is cylindrical; it is positioned parallel to and clamped against the ferroxcube rod opposite the first one. It is provided with a square hole to facilitate turning to adjust the biasing field and so the linearity of the line deflection.

Fig. 5. Two versions of a line-output stage.
$\mathrm{C}_{\mathrm{a}} 0-270 \mathrm{pF}, 2000 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$, amplitude adjustment
C_{b}^{a} booster capacitor
C_{s}^{b} S-corrector
$V D R=232256490014(910 \mathrm{~V})$

ADJUSTABLE LINEARITY CONTROL UNITS

AT 4036

RZ 19806-2
AT 4037

For tube-equipped (AT4037) and transistor-equipped (AT4036) television receivers

APPLICATION

These linearity control units are designed to be used in television receivers, in combination with the 11 inch 90° picture tube $\mathrm{A} 28-14 \mathrm{~W}$ and the 12 inch 90° picture tube A31-20W.
The unit AT4036 is intended for use in transistor-equipped sets, in conjunction with the deflection unit AT1020/01 and the line-output transformer AT2042/01.
The unit AT4037 is intended for use in tube-equipped sets, in conjunction with the deflection unit AT1021/01 and the line-output transformer AT2043.
The difference between the two units lies only in the number of turns of the coils.

CONSTRUCTION

The unit consists of a coil wound on a ferroxcube rod and two ferroxdure magnets. One of these magnets has the shape of a half ring and is placed around the ferroxcube rod under the coil. The other magnet is cylindrical; it is placed parallel to and clamped against the ferroxcube rod opposite the first one. This magnet is provided with a square hole to facilitate turning of it to adjust the biasing field and so the linearity of the line deflection.

Dimensions in mm

Fig. 2.Circuit diagram

Fig. 1

ELECTRICAL DATA

AT 4036
When a saw-tooth current (without S-correction) of $6 \mathrm{~A}_{p-p}$, frequency $15,625 \mathrm{~Hz}$, flyback ratio 18%, flows through the linearity control unit (one connection point to earth), the correction voltage is adjustable between 1.05 V and 1.95 V .

AT 4037
When a saw-tooth current (without S-correction) of $1.4 \mathrm{~A}_{p-p}$, frequency $15,625 \mathrm{~Hz}$, flyback ratio 18%, flows through the linearity control unit (one connection point to earth), the correction voltage is adjustable between 5.3 V and 9.5 V .

MOUNTING

The unit can be mounted either on printed-wiring boards by means of its two connection pins and two mounting pins (see Fig. 3), or on conventional panels by bending of the two mounting pins and/or by means of a screw through an aperture in the casing (see Fig. 4). To prevent distortion of the magnetic field no iron part should approach the magnetic parts anywhere nearer than 3 mm . The coilshould be shuntedwith a 1 W carbon resistor to damp ringing phenomena.

Fig. 3. Hole pattern for mounting on a printed-wiring board $7246786(\mathrm{e}=0.1$ inch or 2.50 mm$)$

Fig. 4. Hole pattern for mounting on a chassis

[^19]

$2 \cdot \ln +$

ADJUSTABLE LINEARITY CONTROL UNIT

APPLICATION

This unit is intended to be used in black and white, and in colour television sets equipped with tubes, to adjust the linearity of the line deflection.
In black and white television sets it can be used in conjunction with deflection unit AT1040 and line-output transformer AT2036, AT2036/25, AT2036/36, AT2034 or AT2045.

For further information see section "Components for colour television".

E.H.T. SOCKET FOR TUBE DY802

The socket has been provided with a series resistor of 1.6Ω in the heater circuit.

Dimensions in mm

RELAYS

A 50733-1

GENERAL
These relays find their application in a variety of electronic and electrical equipment, e.g. for system switching in universal television receivers.
They have been developed on the principle of only one spring acting on both the armature and the contacts. The switching action is positive owing to the minimum contact bounce; the contact capacitance is very low.
The sockets of the relays are provided with pins, which are arranged to fit printed wiring boards with a grid of $0.1^{\prime \prime}$.

CONSTRUCTION

Fig.1. Dimensions in mm. $\mathrm{e}=2.54 \mathrm{~mm}$ (0.1").

A 50733-2
Fig.2. View on contacts

Fig. 3.
Rest position of relay

Mounting
The relays can be mounted in any position.
The pin length is sufficient for board thicknesses up to 4 mm .

Fig.4. Hole pattern for mounting on a printed-wiring board (e = 0.1")

TECHNICAL PERFORMANCE

General

Maximum permissible acceleration
Solderability
10 g
$400{ }^{\circ} \mathrm{C}$ during 5 s
Weight 20 g

Operating (for d.c. voltage)

		8 8 O c1	O	$\xrightarrow{\text { ¢ }}$	令	¢ 析 $\underset{y}{4}$		
Voltage	$\pm 15 \%$	55	36	24	12	6	3	V_{dc}.
Current	$\pm 20 \%$	11	16.5	22	50	93	200	mA
Power	nom.	600	600	530	600	560	600	mW
Resistance at $20{ }^{\circ} \mathrm{C}$	nom.	5000	2200	1100	240	65	15	Ω
Temperature rise of the coil	nom.	30	30	30	30	30	30	$\operatorname{deg} \mathrm{C}$
Temperature	max.	100	100	100	100	100	100	${ }^{\circ} \mathrm{C}$
Number of turns		15000	9600	7100	3300	1600	900	
Security demands				no				
Climatic robustness				tropi	proof			
Contact bounce				minir	um			

Contact

Minimum pressure
Voltage
Current
Maximum resistance
Minimum insulation resistance
Maximum capacitance
Number of operations
$0.1 \mathrm{~N} / \mathrm{cm}^{2}$
300 Vdc
40 mA
$100 \mathrm{~m} \Omega$
$40 \mathrm{M} \Omega$
2 pF
minimum 5×10^{5}

CATA LOG NUMBERS (for ordering)

type number	catalog number
ER1000	312210795940
ER1010	312210886520
ER1020	312210886510
ER1030	312210886500
ER1040	312210886490
ER1050	312210886480

0rotas ooor 29

Components for colour television

NON-PREFERRED

DEFLECTION UNITS

RZ 24284.8

RZ 24284-10

APPLICATION

These deflection units have been designed for use with 22 in and 25 in 900 shadow mask colour picture tubes, in conjunction with line-output transformer AT2053/.. 1) or line-deflection transformer AT2051/.. and E.H.T. transformer AT2052/.., and convergence unit AT1023/.., blue lateral unit AT1025/.. or AT1028.., linearity control unit AT4042/ . . and transductor AT4041/ ...

[^20]
MECHANICAL DATA

The saddle-shaped line and frame deflection coils as well as the yoke ring are mounted in a polypropylene ring. This set is built in a polypropylene coaxial housing provided with a guidance in which the set is movable in axial direction over 12 mm .
After the complete unit has been mounted on the colour tube the coils can be moved for purity adjustment and then secured by means of two winged nuts.

The moulding at the rear of the housing is extended so, that the convergence unit AT1023/. . can be easily mounted.
The unit is equipped with a built-in NTC thermistor which can be connected in series with the frame deflection coils in order to compensate for temperature dependence of the coils. By this, in frame-output circuits with voltage feedback for linearising the saw-tooth voltage a constant deflection current and so a constant picture height can be obtained up to temperatures of $95{ }^{\circ} \mathrm{C}$.

The line deflection coils have been connected in parallel.
The provision of separate connecting points makes it possible to connect the frame deflection coils either in series or in parallel.

Dimensions in mm

Fig. 1

Mounting

The housing should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

External circuit connection is made to soldering tags, positioned as indicated in Fig. 3.

To orient the raster correctly, the housing may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring, cooperative with rubber friction shoes, permits it to be locked radially in the desired position.

Subsequently the correct centre of deflection can be determined by moving the coil assembly in axial direction; it can be locked by means of the two winged nuts.
In Fig. 2 an assembly consisting of deflection unit AT1022/.., convergence unit AT1023/. . and blue lateral unit AT1025/. . on a picture tube is given.

ELECTRICAL DATA

Two versions are available, the AT1022/04 with a circuit (NTC thermistor of $50 \Omega / /$ resistor of 33Ω) compensating for temperature dependence in the case of series connected frame coils and the AT1022/06 with a circuit (NTC thermistor of $6 \Omega / /$ resistor of 12Ω) compensating for temperature dependence in the case of parallel connected frame coils.

Typical values

Line deflection coils, parallel connected
Inductance
Resistance at $25^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to edge scan in both directions
Frame deflection coils, series connected

Inductance

Resistance at $25{ }^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to edge scan in both directions
Frame deflection coils, parallel connected
Inductance
Resistance at $25{ }^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to
edge scan in both directions
Maximum working temperature
Connections (see Fig. 3)

Line deflection coils (H)
parallel connected
parallel connected with balancing coil (e.g. AT4040/57)
connecting tags

$$
1 \text { or } 2 \text { and }
$$

$$
1^{\prime} \text { or } 2^{\prime}
$$

1 or 2 and centre tap of balancing coil
1^{\prime} or 2^{\prime} and centre tap of balancing coil
tags which have to be interconnected

2.95 mH	2.95 mH
2.9Ω	2.9Ω
$2.6 \mathrm{Ap}-\mathrm{p}$	$2.6 \mathrm{Ap}-\mathrm{p}$
114 mH	114 mH
$56+20^{*} \Omega$	56Ω
$0.415 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$	$0.415 \mathrm{Ap}_{\mathrm{p}-\mathrm{p}}$
28 mH	28 mH
14Ω	$14+4^{* *} \Omega$
$0.830 \mathrm{~A}_{p-p}$	$0.830 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$
$95{ }^{\circ} \mathrm{C}$	$95{ }^{\circ} \mathrm{C}$

1 and 2
1^{\prime} and 2^{\prime}
1 and 2 (balancing
coil between 1' and
2^{\prime})
1^{\prime} and 2^{\prime} (balancing
coil between 1 and
2)
1 and 2 (balancing
coil between 1' and
2^{\prime})
1^{\prime} and 2^{\prime} (balancing
coil between 1 and
2)
1 and 2 (balancing
coil between 1' and
2^{\prime})
1^{\prime} and 2^{\prime} (balancing
coil between 1 and
2)
1 and 2 (balancing
coil between 1' and
2^{\prime})
1^{\prime} and 2^{\prime} (balancing
coil between 1 and
2)
1 and 2 (balancing
coil between 1' and
2^{\prime})
1^{\prime} and 2^{\prime} (balancing
coil between 1 and
2) 2)

AT1022/04 AT1022/06

2.95 mH	2.95 mH
2.9Ω	2.9Ω
$2.6 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$	$2.6 \mathrm{~A}-\mathrm{p}$
114 mH	114 mH
$56+20^{*} \Omega$	56Ω
$0.415 \mathrm{~A}_{p-p}$	$0.415 \mathrm{~A}_{p-p}$

$28 \mathrm{mH} \quad 28 \mathrm{mH}$
$14 \Omega \quad 14+4^{* *} \Omega$

4 and 5

4^{\prime} and 5^{\prime}
6 and $6^{\prime \prime}$
3 and 4
5 and 6
3^{\prime} and 4^{\prime}
5^{\prime} and 6^{\prime}
6 and 6^{\prime}

Frame deflection coils (V), without NTC thermistor
series connected
parallel connected

3 and 3^{\prime}

3 and 3^{\prime}

* NTC thermistor in parallel with a resistor of 33Ω.
** NTC thermistor in parallel with a resistor of 12Ω.

Frame deflection coils (V), with NTC thermistor

AT1022/04

series connected coils

connecting tags
tags which have to be interconnected

3 and 3^{\prime}
4 and 5
6 and 7
4^{\prime} and 5^{\prime}
6^{\prime} and 7^{\prime}

AT1022/06

parallel connected coils

3 and 3^{\prime}
3 and 4
5 and 6
6 and 7
3^{\prime} and 4^{\prime}
5^{\prime} and 6^{\prime}
6^{\prime} and 7^{\prime}

Fig. 3

Misconvergence (dynamic convergence tolerances)

Misconvergence is defined as the distance between the centres of the red, blue and green beams on the screen using rectangular coordinates (see Fig.4).
The centre is defined as the centre of the brightest portion of the beam.
The misconvergences listed in the table below, are given for a nominal 25 in 90° colour picture tube equipped with a deflection unit AT1022/.., a convergence unit AT1023/. . and a blue lateral unit AT1025/. . or AT1028/ . . at 25 kV . The values in the table are only valid provided that these units have been adjusted to optimum convergence on the lines BC and DE (See Fig. 5).

Fig. 4

Fig. 5 (Dimensions in mm)

location	colour	misconvergence (in mm)			
		typical horizontal \|vertical		maximum	
				horizontal	vertical
A	R to G to B to R	0	0	0	0
B, C	$\begin{gathered} \mathrm{R} \text { to } \mathrm{G} \\ \mathrm{~B} \text { to } \mathrm{R} / \mathrm{G} \end{gathered}$	$\begin{gathered} 0 \\ <0.5 \end{gathered}$	$\begin{gathered} 0 \\ <0.5 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0
D, E	$\begin{gathered} \mathrm{R} \text { to } \mathrm{G} \\ \mathrm{~B} \text { to } \mathrm{R} / \mathrm{G} \end{gathered}$	$\begin{gathered} 0 \\ <0.5 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
K, L, P, R, M, N	R to G to B to R	<0.5	<0.5	1	1
F, G, H, J	R to B to G to R	<1.5	< 1.5	2	2

CONVERGENCE UNIT

RZ 22858-5
RZ 22858-6

APPLICATION

This unit is intended to be used with a 900 shadow mask colour picture tube, in conjunction with the deflection unit AT1022/.. and the blue lateral unit AT1025/.. or AT1028/..., to converge the three colour pictures statically and dynamically and to adjust the purity.

MECHANICAL DATA

Dimensions in mm

Fig. 1

Mounting

The convergence unit can easily be mounted on the deflection unit. To this end the three hooks of the convergence unit have to be placed in the circular slot at the rear of the deflection unit. Consequently the convergence unit must be turned to the right as fas as possible; then it is locked in axial direction by means of two retaining pins and a screw. When this screw is fastened, the convergence unit is also locked in radial direction.
The cover plate of the convergence unit is provided with three holes to facilitate fixing of cables.

In Fig. 2 an assembly consisting of deflection unit, convergence unit and blue lateral

Fig. 2

ELECTRICAL DATA

Every convergence unit AT1023/.. consists of three identical parts, one for each colour; so the electrical data given for one part suit all three.

Static convergence shift with magnet, for red and green
for blue

$$
\begin{aligned}
& \pm>14 \mathrm{~mm} \\
& \pm>20 \mathrm{~mm}
\end{aligned}
$$

Dynamic convergence takes place by feeding the line and frame coils with parabolic and sawtooth currents respectively.

AT1023/01, catalog number 312210730530
Line deflection coils, series connected

Inductance
Resistance
Connecting tags
Frame deflection coils, series connected
Inductance
Resistance
Connecting tags
0.42 mH 4Ω
5 and 7
1.44 H
170Ω
3 and 4

Fig. 3

AT1023/02, catalog number 312210730330
Electrically the same as AT1023/01, however without permanent magnets. Static convergence by means of a d.c. current through the frame coils.

AT1023/05, catalog number 312210730560
Line deflection coils, series connected
Inductance
Resistance
Connecting tags
Tags which have to be interconnected
Line deflection coils, parallel connected
Inductance
Resistance
Connecting tags
Tags which have to be interconnected
Frame deflection coils, parallel connected
Inductance
Resistance
Connecting tags
0.42 mH
4Ω
4 and 7
5 and 6
0.1 mH 1Ω
4 and 6
4 and 5
6 and 7
0.36 H
42.5Ω
2 and 3

Fig. 4

AT1023/10, catalog number 312210730540
Line deflection coils, series connected
Inductance
Resistance
Connecting tags
Frame deflection coils, series connected
Inductance
Resistance
Connecting tags
Tags which have to be interconnected
Frame deflection coils, parallel connected
Inductance
Resistance
Connecting tags
Tags which have to be interconnected
0.36 H
4.7 mH 46Ω 5 and 7
1.44 H
170Ω
1 and 4
2 and 3
42.5Ω
1 and 3
1 and 2
3 and 4

AT1023/12, catalog number 312210730430
Line deflection coils, parallel connected

Inductance	1.2 mH
Resistance	11.5Ω
Connecting tags	6 and 7

Frame deflection coils, series connected
Inductance
1.44 H

Resistance
Connecting tags
Tags which have to be interconnected
Frame deflection coils, parallel connected
Inductance
Resistance
Connecting tags
170Ω
1 and 4
2 and 3

Tags which have to be interconnected
0.36 H
42.5Ω
1 and 3

Fig. 6

1 and 2
3 and 4
AT1023/13, catalog number 312210731480
Electrically the same as AT1023/10, however without permanent magnets. Static convergence by means of a d.c. current through the frame coils.

Purity adjustment
The purity can be adjusted by means of two independently movable magnets. These magnets are diametrically magnetised; when the notches of the magnets coincide the magnetic fields are in opposite phase. By turning the magnets with respect to each other the magnetic force of the resultant field of both magnets is adjusted. The direction of the resultant magnetic field is adjusted by turning the magnets simultaneously. The area of purity adjustment which can be obtained on the screen of the picture tube is given in Fig. 7.

Fig. 7 (Dimensions in mm)

BLUE LATERAL UNIT

RZ 22858-4
For series or parallel connection

APPLICATION

This unit is intended for use with a 90° shadow mask colour picture tube in conjunction with a deflection unit AT 1027/. . and convergence units AT 4045/. . or AT 4046/.. for static and dynamic lateral adjustment, or in conjunction with a deflection unit AT 1022/. . and a convergence unit AT 1023/. . respectively.

MECHANICAL DATA

Fig. 1. Dimensions in mm

The unit must be positioned on the colour picture tube as close as possible to the convergence unit.
An assembly consisting of a deflection unit, a convergence unit and a blue lateral unit on a picture tube is given in Fig. 2.

Fig. 2

ELECTRICAL DATA

Coils, series connected Inductance
Resistance
3.2 mH
36Ω

Fig. 3
Coils, parallel connected
Inductance
0.63 mH

Resistance
9Ω

Fig. 4

Maximum working temperature $95^{\circ} \mathrm{C}$

Static lateral adjustment

Static lateral adjustment in the centre can be obtained by turning the magnet holder. A turn of 360° gives a minimum adjustment range of 6.5 mm ; red/green and blue are in opposite phase(see Fig. 5).'

Dynamic lateral adjustment

A horizontal shift in the points B and C between red/green and blue of $\geq 3.5 \mathrm{~mm}$ can be obtained with a saw tooth current of $350 \mathrm{~mA}_{p-p}$, frequency 15 kHz , through the coils when they are series connected, a saw tooth current of $700 \mathrm{~mA}_{p-p}$ when they are parallel connected (see Fig. 6).

Fig. 5

PURITY AND BLUE LATERAL UNIT

Dimensions in mm

APPLICATION

This unit has been designed for electrical purity and blue lateral adjustment in monitors, etc.. It must be used in combination with the convergence unit AT 1023/.. .

MOUNTING

After removing the purity rings, convergence magnets and the cover of the AT 1023/.., this unit can be fixed onto the AT 1023/. . by means of a snap-lock construction. The combination must be positioned on the deflection unit in such a way that the connections of the AT 1026 are opposite the blue gun.

ELECTRICAL DATA

Purity coils
Horizontal shift 1-7 ($\mathrm{R}=60 \Omega$)
Vertical shift $2-8(R=60 \Omega)$

Blue lateral coils
Static shift $\quad 3-6(R=130 \Omega)$
Dynamic shift 4-5 ($R=5.8 \Omega$, $\mathrm{L}=0.6 \mathrm{mH}$)

Note: Static convergence can be achieved by means of a direct current through the frame coils of the AT 1023/. . .

DEFLECTION UNIT

RZ 26059.5
With built-in NTC thermistor of 50Ω in parallel with a resistor of 33Ω

APPLICATION

This deflection unit has been designed for use with 22 in and 25 in 90° shadow mask colour picture tubes, in conjunction with line-output transformer AT2053/.. 1) or line-deflection transformer AT2051/.. and E.H.T. transformer AT2052/... and convergence units AT4045/.. or AT4046/.., blue lateral unit AT1025/.. or AT1028/.., linearity control unit AT4042/ . . and transductor AT4041/ . . .

[^21]
MECHANICAL DATA

The saddle-shaped line and frame deflection coils as well as the yoke ring are mounted in a polypropylene ring. This set is built in a polypropylene coaxial housing provided with a guidance in which the set is movable in axial direction over 20 mm . After the complete unit has been mounted on the colour tube the coils can be moved for purity adjustment and then secured by means of four winged nuts.
The housing also includes a construction in which the convergence units AT4045/.. or AT4046/. . easily fit.
The unit is equipped with a built-in NTC thermistor which can be connected in series with the frame deflection coils in order to compensate for temperature dependence of the coils. By this, in frame-output circuits with voltage feedback for linearising the saw-tooth voltage a constant deflection current and so a constant picture height can be obtained up to temperatures of $95^{\circ} \mathrm{C}$.

The line deflection coils have been connected in parallel.
The provision of separate connecting points makes it possible to connect the frame deflection coils either in series or in parallel.

Dimensions in mm

Fig. 1

Mounting

The housing should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

External circuit connection is made to soldering tags, positioned as indicated in Fig. 3 .

To orient the raster correctly, the housing may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring, cooperative with rubber friction shoes, permits it to be locked radially in the desired position.
Subsequently the correct centre of deflection can be determined by moving the coil assembly in axial direction; it can be locked by means of the four winged nuts.
In Fig. 2 an assembly consisting of deflection unit AT1027/04 and three convergence units AT4045/.. is given.

Fig. 2

ELECTRICAL DATA (typical values)

Line deflection coils, parallel connected

Inductance
Resistance at $25^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to edge scan in both directions
Frame deflection coils, series connected
Inductance
Resistance at $25^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to edge scan in both directions
2.95 mH
2.9Ω
$2.6 A_{p-p}$

* NTC thermistor in parallel with a resistor of 33Ω.

```
Frame deflection coils, parallel connected Inductance
Resistance at \(25^{\circ} \mathrm{C}\)
Deflection current at 25 kV , edge to edge scan in both directions
Maximum working temperature
```

Connections (see Fig.3)
Line deflection coils, parallel connected
parallel connected with balancing coil (e.g. AT4040/57)
connecting tags

1 or 2 and 1^{\prime} or 2^{\prime}

1 or 2 and centre tap of balancing coil
1^{\prime} or 2^{\prime} and centre tap of balancing coil

3 and 3^{\prime}

3 and 3^{\prime}

3 and 3^{\prime}
tags which have to be interconnected

1 and 2
1^{\prime} and 2^{\prime}
1 and 2 (balancing coil between 1' and 2^{\prime})
1^{\prime} and 2^{\prime} (balancing coil between 1 and 2)

4 and 5
4^{\prime} and 5^{\prime}
6 and 6^{\prime}
4 and 5
6 and 7
4^{\prime} and 5^{\prime}
6^{\prime} and 7^{\prime}
3 and 4
5 and 6
3^{\prime} and 4^{\prime}
5^{\prime} and 6^{\prime}
6 and 6^{\prime}

[^22] dence is obtained with series connected frame coils.

Fig. 3

Misconvergence (dynamic convergence tolerances)

Misconvergence is defined as the distance between the centres of the red, blue and green beams on the screen using rectangular coordinates (see Fig.4).
The centre is defined as the centre of the brightest portion of the beam.
The misconvergences listed in the table below, are given for a nominal $25 i n 90^{\circ}$ colour picture tube equipped with a deflection unit AT1027/04, convergence units AT4045/ . . or AT4046/ . . and a blue lateral unit AT1025/ . or AT1028/ . . at 25 kV . The values in the table are only valid provided that these units have been adjusted to optimum convergence on the lines BC and DE (see Fig. 5).

Fig. 4

Fig. 5 Dimensions in mm

location 	misconvergence (in mm)				
		typical horizontal	maximum horizontal		
A	R to G to B to R	0	0	0	0
B, C	R to G	0	0	0	0
	B to R/G	<0.5	<0.5	1	1
D, E	R to G	0	0	0	0
	R to G to B to R	<0.5	<0.5	1	1
F, G, H, J	R to B to G to R	<1.5	<1.5	2	2

Purity adjustment

The purity can be adjusted by means of two independently movable magnets. These magnets are diametrically magnetised; when the notches of the magnets coincide the magnetic fields are in opposite phase. By turning the magnets with respect to each other the magnetic force of the resultant field of both magnets is adjusted. The direction of the resultant magnetic field is adjusted by turning the magnets simultaneously. The area of purity adjustment which can be obtained on the screen of the picture tube is given in Fig. 7.

Fig. 7

DEFLECTION UNIT

With built-in NTC thermistor of 6Ω in parallel with a resistor of 12Ω

APPLICATION

This deflection unit has been designed for use with 22 in and 25 in 90° shadow mask colour picture tubes, in conjunction with line-output transformer AT2053/.. l) or line-deflection transformer AT2051/.. and E.H.T. transformer AT2052/.., and convergence units AT4045/.. or AT4046/... blue lateral unit AT1025/.. or AT1028/.., linearity control unit AT4042/.. and transductor AT4041/...

1) future type

MECHANICAL DATA

The saddle-shaped line and frame deflection coils as well as the yoke ring are mounted in a polypropylene ring. This set is built in a polypropylene coaxial housing provided with a guidance in which the set is movable in axial direction over 20 mm . After the complete unit has been mounted on the colour tube the coils can be moved for purity adjustment and then secured by means of four winged nuts.
The housing also includes a construction in which the convergence units AT4045/.. or AT4046/ . . easily fit.
The unit is equipped with a built-in NTC thermistor which can be connected in series with the frame deflection coils in order to compensate for temperature dependence of the coils. By this, in frame-output circuits with voltage feedback for linearising the saw-tooth voltage a constant deflection current and so a constant picture height can be obtained up to temperatures of $95^{\circ} \mathrm{C}$.

The line deflection coils have been connected in parallel.
The provision of separate connecting points makes it possible to connect the frame deflection coils either in series or in parallel.

Dimensions in mm

Fig. 1

Mounting

The housing should be mounted as far forward as possible on the neck of the picture tube, so that it touches the cone.

External circuit connection is made to soldering tags, positioned as indicated in Fig. 3.

To orient the raster correctly, the housing may be rotated by hand on the neck of the picture tube, with which it makes a slip fit. A screw-tightened clamping ring, cooperative with rubber friction shoes, permits it to be locked radially in the desired position.

Subsequently the correct centre of deflection can be determined by moving the coil assembly in axial direction; it can be locked by means of the four winged nuts. In Fig. 2 an assembly consisting of deflection unit AT1027/06 and three conververgence units AT4045/.. is given.

Fig. 2

ELECTRICAL DATA (typical values)

Line deflection coils, parallel connected Inductance
2.95 mH

Resistance at $25^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to edge scan in both directions
2.6 Ap-p

Frame deflection coils, series connected Inductance

114 mH
Resistance at $25^{\circ} \mathrm{C}$
56Ω
Deflection current at 25 kV , edge to edge scan in both directions
$0.415 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$

Frame deflection coils, parallel connected

Inductance
Resistance at $25^{\circ} \mathrm{C}$
Deflection current at 25 kV , edge to edge scan in both directions
Maximum working temperature

28 mH
$14+4^{*} \Omega$
$0.830 \mathrm{Ap}_{\mathrm{p}-\mathrm{p}}$
$95^{\circ} \mathrm{C}$
Connections (see Fig.3)
connecting tags
tags which have to be interconnected
Line deflection coils,
parallel connected
parallel connected with balancing coil (e.g. AT4040/57)
1 or 2 and
1^{\prime} or 2^{\prime}
1 or 2 and centre
tap of balancing
coil
1^{\prime} or 2^{\prime} and centre
tap of balancing
coil

3 and 3^{\prime}

3 and 3^{\prime} NTC thermistor

3 and 4
5 and 6
6 and 7
3^{\prime} and 4^{\prime}
5^{\prime} and 6^{\prime}
6^{\prime} and 7^{\prime}
parallel connected, with NTC thermistor **)

3 and 3^{\prime}

*) NTC thermistor in parallel with a resistor of 12Ω.
**) NTC thermistor value is such that right compensation for temperature dependence is obtained with parallel connected frame coils.

Fig. 3

Misconvergence (dynamic convergence tolerances)

Misconvergence is defined as the distance between the centres of the red, blue and green beams on the screen using rectangular coordinates (see Fig.4).
The centre is defined as the centre of the brightest portion of the beam.
The misconvergences listed in the table below, are given for a nominal 25 in 900 colour picture tube equipped with a deflection unit AT1027/06, convergence units AT4045/ . . or AT4046/ . . and a blue lateral unit AT1025/ . or AT1028/ . . at 25 kV . The values in the table are only valid provided that these units have been adjusted to optimum convergence on the lines BC and DE (see Fig. 5).

Fig. 4

Fig.5. Dimensions in mm

location	colour	misconvergence (in mm)			
		typical		maximum horizontal vertical $^{\prime}$	
A	R to G to B to R	0	0	0	0
B, C	$\begin{gathered} \mathrm{R} \text { to } \mathrm{G} \\ \mathrm{~B} \text { to } \mathrm{R} / \mathrm{G} \end{gathered}$	$\begin{gathered} 0 \\ <0.5 \end{gathered}$	$\begin{gathered} 0 \\ <0.5 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
D, E	$\begin{gathered} R \text { to } G \\ B \text { to } R / G \end{gathered}$	$\begin{gathered} 0 \\ <0.5 \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
K, L, P, R, M, N	R to G to B to R	<0.5	<0.5	1	1
F, G, H, J	R to B to G to R	<1.5	< 1.5	2	2

Purity adjustment

The purity can be adjusted by means of two independently movable magnets. These magnets are diametrically magnetised; when the notches of the magnets coincide the magnetic fields are in opposite phase. By turning the magnets with respect to each other the magnetic force of the resultant field of both magnets is adjusted. The direction of the resultant magnetic field is adjusted by turning the magnets simultaneously. The area of purity adjustment which can be obtained on the screen of the tube is given in Fig. 7.

Fig. 7

blue lateral unit

RZ 24284-15

APPLICATION

This blue lateralunit is intended for use with a 90° shadow mask colour picture tube in conjuction with a deflection unit AT1022/.. and a convergence unit AT1023/... or deflection unit AT1027/.. with convergence units AT4045/.. or AT4046/ . . for electrical static and dynamic lateral adjustment.

MECHANICAL DATA

Fig.1. Dimensions in mm
The unit must be positioned on the colour picture tube as close as possible to the convergence unit.
An assembly consisting of a deflection unit, a convergence unit and a blue lateral unit on a picture tube is given in Fig. 2.

Fig. 2

ELECTRICAL DATA

There are two versions of blue lateral unit: AT1028/00 and AT1028/01, which are different as regards the coils for static lateral adjustment. The electrical values of these coils are adapted to either a low d.c. voltage or a higher one.

Static lateral adjustment
Terminals
Resistance
D. C. current for minimum shift of 6.5 mm in centre ${ }^{*}$)

AT1028/00	AT1028/01
3 and 4	3 and 4
175Ω	18Ω
35 mA	110 mA

Dynamic lateral adjustment

In points B and C a horizontal shift between red/green and blue of $\geq 3.5 \mathrm{~mm}$ can be obtained with a saw tooth current of $500 \mathrm{~mA}_{\mathrm{p}-\mathrm{p}}$, frequency 15 kHz . (See Fig.4)

Terminals
Resistance
Inductance

1 and 2
5.8Ω
0.6 mH

Fig. 3

Fig.5. Circuit diagram

Fig. 4

Fig.6. Wiring diagram

[^23]
DEFLECTION UNITS

RZ 26059-4

RZ 26059.5

With built-in NTC thermistor of 6Ω in parallel with a resistor of 12Ω

APPLICATION

This deflection unit has been designed for use with a 19 in 90° shadow mask colour picture tube, in conjunction with line-output transformer AT2053/.. l) or linedeflection transformer AT2051/.. and E.H.T. transformer AT2052/..., and convergence units AT4045/ . . or AT4046/ . . , blue lateral unit AT1025/ . . or AT1028/ . . . linearity control unit AT4042/ . . and transductor AT4041/ ...

For further information see AT1027/04 and AT1027/06 respectively. Misconvergence of the AT1029/.. is given for a nominal 19 in 90° colour picture tube.

[^24]
LINE-OUTPUT TRANSFORMER

APPLICATION

This transformer has been developed for use in colour television receivers presenting 625 and 819 lines at 50 frames per second. It is intended for use in conjunction with deflection unit AT $1022 /$. or AT $1027 /$. , convergence unit AT 1023/.. , AT 4045/. . or AT 4046/.. and linearity control unit AT 4042/02.

MECHANICAL DATA

The primary coil is dipped, the EHT coil is encapsulated in a flame retarding polyester.

Dimensions in mm

Mounting instructions

1. Temperature

a. The operating temperature of the transformer coils and the core should not exceed $95{ }^{\circ} \mathrm{C}$ under worst circumstances, i.e. taking into account:

- overvoltage
- low atmospheric pressure (at high altitudes) implying bad cooling by convection - high room temperature (up to $45^{\circ} \mathrm{C}$).
b. Direct heat radiation from the PL509 and PY500 to the transformer and the heater cable of the GY501 should be avoided by a screen. (If this screen is made from insulating material, it should be placed at least 20 mm from the coils.)
c. The socket of the GY501 should not be exposed to any direct heat radiation from the PL509 and the PY500.
d. Ample cool air circulation should be provided around the transformer.

2. Distances

It is important in the design of a line output and E.H.T. stage to maintain certain minimum distances between the transformer and the surrounding components and shields.
a. The radial distance between the E.H.T. coils and any flat metal part (free from sharp edges) should be at least 30 mm . The axial distance from the E.H.T. coil should be at least 20 mm .
b. The distance from the E.H.T. cap and lead should be at least 45 mm .
c. The distance between the primary coil and any flat and smooth metal part should be at least 10 mm .
d. The distance between the upper edge of the GY501 socket and the primary coil should be at least 15 mm .
e. The distances between the caps of PL509 and PY500 and any flat and smooth metal part should be at least 15 mm .
f. The transformer and the leads and components carrying high tension pulses should be kept free from metal particles, solder drops etc.
3. The metal bracket must be connected to the chassis.

ELECTRICAL DATA (see circuit diagram)

	625 lines	819 lines
V_{b}	315 V	315 V
V boost	590 V	590 V
E.H.T.	24.7 kV	24.1 kV
I load	312 mA	330 mA
Overscan	+9\%	+ 9%
Stabilisation	$\mathrm{V}_{\mathrm{b}}-15 \%$	$\mathrm{V}_{\mathrm{b}}-12 \%$
$\mathrm{V}_{1} \mathrm{p}-\mathrm{p}$	- 135 V	- 125 V
$\mathrm{V}_{2} \mathrm{p}-\mathrm{p}$	$+135 \mathrm{~V}$	$+125 \mathrm{~V}$
$V_{3} \mathrm{p}-\mathrm{p}$	$+310 \mathrm{~V}$	$+280 \mathrm{~V}$
PL 509		
$\mathrm{V}_{\mathrm{bg} 2}$	315 V	315 V
$\mathrm{Va}_{\mathrm{a}} \mathrm{p}-\mathrm{p}$	6.9 kV	6.6 kV
$\mathrm{I}_{\mathrm{a}} \mathrm{p}-\mathrm{p}$	620 mA	630 mA
W ${ }_{\text {a }}$	27 W	29 W
PY 500		
I_{k}	510 mA	600 mA
V_{k}	5.4 kV	5.1 kV
$\begin{aligned} & \mathrm{I}_{\mathrm{k}} \text { rest } \\ & \text { (end of scan) } \end{aligned}$	80 mA	80 mA

LINE-DEFLECTION TRANSFORMER

RZ 22830-7B

APPLICATION

This transformer has been designed to be used in combination with the E.H.T. transformer AT 2052/. . to drive a colour picture tube with a deflection angle of 90° and an E.H.T. of 25 kV .
It is intended for use in conjunction with deflection unit AT 1027/.. or AT 1022/.., linearity control AT 4042/.., transductor AT4041/.., line-output tube PL500, focus voltage rectifier DY51 and booster diode PY88.

MECHANICAL DATA

The coil is dipped in a flame retarding polyester.
Dimensions in mm

Mounting
The transformer can be mounted on either a printed-wiring board or a metal chassis. If a metal chassis is used, holes for the pins must be cut in it in accordance with Fig. 2. The transformer must be secured with two 3 mm screws. The mounting pins can be bent or soldered.
For mounting on a printed-wiring board the fit of the connecting and mounting pins in a printed-wiring grid with a pitch of 2.54 or 2.50 mm is illustrated in Fig. 3.
The metal bracket must be connected to the chassis.
Like the other connections, those to the PL500 and PY88 can be soldered to the printedwiring board. If bent upwards (as supplied) they are very suitable for direct connection to the top caps of these tubes.

Fig. 2

Fig. 3
14

ELECTRICAL DATA

The following data are based on a circuit with a convergence load of about 10 W (on the input side) and about 4 W (on the output side) for stabilisation, burst suppression, blanking, synchronisation, frame output, etc. For more details see corresponding application information (e.g. A.I. 238).

Fig. 4

Flyback time
Stabilisation
Overscan 18\%

Deflection current 2.8 $\mathrm{A}_{\mathrm{p}-\mathrm{p}}$

1) The stabilisation can be improved to $\mathrm{V}_{\mathrm{b}}-15 \%$ with the PL504 (instead of PL500) at $\mathrm{V}_{\mathrm{b}}=255 \mathrm{~V}$.

PY88	PL500
V b $=240 \mathrm{~V}$	$\mathrm{V}_{\mathrm{g} 2}=203 \mathrm{~V}$
$V_{\text {boost }}$ (between point 9 and	$\mathrm{I}_{\mathrm{ap}-\mathrm{p}}=410 \mathrm{~mA}$
anode) $=580 \mathrm{~V}$	$\mathrm{I}_{\mathrm{kp}-\mathrm{p}}=435 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{a}}(\mathrm{av})=180 \mathrm{~mA}$ I_{a} end-of-scan	$V_{\text {a p-p }}=6.2 \mathrm{kV}$
$=30 \mathrm{~mA}$	$\mathrm{Wa}_{\mathrm{a}} \quad=11.5 \mathrm{~W}$
$\begin{aligned} & \mathrm{I}_{\mathrm{a} p-\mathrm{p}}=390 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{ap}-\mathrm{p}}=5 \mathrm{kV} \end{aligned}$	$\mathrm{W}_{\mathrm{g} 2}=2 \mathrm{~W}$

Auxiliary windings

Connection 2 to chassis: $+110 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 3 and 2
$+250 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 4 and 2
$-250 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 1 and 2
Connection 3 to chassis: $+140 \mathrm{~V}_{\mathrm{p}}$-p between 4 and 3
$-360 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 1 and 3

- $110 V_{p-p}$ between 2 and 3

Notes

1. With a view to the total load of the transformer the average booster current (PY88, I_{a}) must not exceed 200 mA .
2. An excessive additional capacitive load on a connection point of the transformer may increase the ringing just after flyback.
3. For adjustment of the amplitude $\mathrm{V}_{\text {boost }}$ may be set to within $\pm 4 \%$ of the given nominal value.

LINE-DEFLECTION TRANSFORMER

RZ 22830-7A

APPLICATION

This transformer has been designed to be used in combination with the E.H.T. transformer AT 2052/. . to drive a colour picture tube with a deflection angle of 90° and an E.H.T. of 25 kV .
It is intended for use in conjunction with deflection unit AT 1027/.. or AT 1022/.., linearity control AT 4042/.., transductor AT 4041/.., line-output tube PL500, focus voltage rectifier DY51 and booster diode PY88.

MECHANICAL DATA

The coil is dipped in a flame retarding polyester.

Dimensions in mm

Fig.

Mounting

The transformer can be mounted on either a printed-wiring board or a metal chassis. If a metal chassis is used, holes for the pins must be cut in it in accordance with Fig. 2. The transformer must be secured with two 3 mm screws. The mounting pins can be bent or soldered.
For mounting on a printed-wiring board the fit of the connecting and mounting pins in a printed-wiring grid with a pitch of 2.54 or 2.50 mm is illustrated in Fig. 3. The metal bracket must be connected to the chassis.
Like the other connections, those to the PL500 and PY88 can be soldered to the printedwiring board. If bent upwards (as supplied) they are very suitable for direct connection to the top caps of these tubes.

Fig. 3

The distance between the primary coil and any flat and smooth metal part should be at least 10 mm .

The transformer and the leads and components carrying high tension pulses should be kept free from metal particles, solder drops etc.
The operating temperature of the transformer coils and the core should not exceed $95^{\circ} \mathrm{C}$ under worst circumstances, i.e. taking into account:

- overvoltage
- low atmospheric pressure (at high altitudes) implying bad cooling by convection
- high room temperature (up to $45^{\circ} \mathrm{C}$)

Direct heat radiation from the PL500 and PY88 anodes to the transformer and the heater cable should be avoided by a screen. (If this screen is made from insulating material, it should be placed at least 15 mm from the coils).

Ample cool air circulation should be provided around the transformer.

ELECTRICAL DATA

The following data are based on a circuit with a convergence load of about 10W (on the input side) and about 4W (on the output side) for stabilisation, burst suppression, blanking, synchronisation, frame output, etc. For more details see corresponding application information (e.g. A.l. 238).

Fig. 4

Flyback time Stabilisation Overscan

$$
18 \%
$$

$$
V_{b}-12 \%
$$

$$
6 \%
$$

Deflection current 2.8 Ap-p
1)

The stabilisation can be improved to $\mathrm{V}_{\mathrm{b}}-15 \%$ with the PL504 (instead of PL500) at $\mathrm{V}_{\mathrm{b}}=255 \mathrm{~V}$.

PY88	PL500
$\mathrm{V}_{\mathrm{b}} \quad=240 \mathrm{~V}$	$\mathrm{V}_{\mathrm{g} 2}=203 \mathrm{~V}$
$V_{\text {boost }}$ (between point 10 and	$I_{\text {a } p^{\prime} \text { p }}=410 \mathrm{~mA}$
anode) $=580 \mathrm{~V}$	$\mathrm{I}_{\mathrm{kp-p}}=435 \mathrm{~mA}$
$I_{a}(a v)=180 \mathrm{~mA}$	$V_{\text {ap-p }}=6.2 \mathrm{kV}$
$=30 \mathrm{~mA}$	$\mathrm{Wa}_{\mathrm{a}}=11.5 \mathrm{~W}$
$\begin{aligned} & \mathrm{I}_{\mathrm{ap}-\mathrm{p}}=390 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{ap}-\mathrm{p}}=5 \mathrm{kV} \end{aligned}$	$\mathrm{W}_{\mathrm{g} 2}=2 \mathrm{~W}$

Auxiliary windings

Connection 2 to chassis: $+55 \quad V_{p-p}$ between 3 and 2
$+110 V_{p-p}$ between 4 and 2
$+405 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 5 and 2

- $295 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 1 and 2

Connection 3 to chassis: $+55 \vee_{p-p}$ between 4 and 3
$+350 \vee_{p-p}$ between 5 and 3

- $350 \mathrm{~V}_{p-p}$ between 1 and 3
- $55 \vee_{p-p}$ between 2 and 3

Connection 4 to chassis: $+295 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 5 and 4

- $405 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ between 1 and 4
- $110 \mathrm{~V}_{\text {p-p }}$ between 2 and 4
- $55 V_{p-p}$ between 3 and 4

Notes

1. With a view to the total load of the transformer the average booster current (PY88, la) must not exceed 200 mA .
2. An excessive additional capacitive load on a connection point of the transformer may increase the ringing just after flyback.
3. For adjustment of the amplitude $V_{\text {boost }}$ may be set to within $\pm 4 \%$ of the given nominal value.

E.H.T. TRANSFORMER

APPLICATION

This transformer is intended for use in combination with the line deflection transformer AT2051/. . to generate the E.H.T.

MECHANICAL DATA

The primary coil is dipped and the E.H.T. coil is encapsulated in flame retarding polyester.

Dimensions in mm

Mounting instructions

1. Temperature
a. The operating temperature of the transformer coils and the core should not exceed $95{ }^{\circ} \mathrm{C}$ under worst circumstances, i.e. taking into account:

- overvoltage
- low atmospheric pressure (at high altitudes) implying bad cooling by convection
- high room temperature (up to $45{ }^{\circ} \mathrm{C}$).
b. Direct heat radiation from the PL505 and PY500 to the transformer and the heater cable of the GY501 should be avoided by a screen. (If this screen is made from insulating material, it should be placed at least 20 mm from the coils.)
c. The socket of the GY501 should not be exposed to any direct heat radiation from the PL505 and the PY500.
d. Ample cool air circulation should be provided around the transformer.

2. Distances

It is important in the design of a E.H.T. stage to maintain certain minimum distances between the transformer and the surrounding components and shields.
a. The radial distance between the E.H.T. coils and any flat metal part (free from sharp edges) should be at least 25 mm .
The axial distance from the E.H.T. coil should be at least 20 mm .
b. The distance from the E.H.T. cap and lead should be at least 45 mm .
c. The distance between the primary coil and any flat and smooth metal part should be at least 10 mm .
d. The distance between the upper edge of the GY501 socket and the primary coil should be at least 15 mm .
e. The distances between the caps of PL505 and PY500 and any flat and smooth metal part should be at least 15 mm .
f. The transformer and the leads and components carrying high tension pulses should be kept free from metal particles, solder drops etc.
3. The metal bracket must be connected to the chassis.

ELECTRICAL DATA

ELECTRICAL DATA (continued)
$I_{\text {beam }}$
$I_{a p-p}$
$I_{g_{2} p-p}$
$I_{g_{2}}(a v)$
$I_{k ~ p-p}$
$V_{a} p-p$
W_{a}
$W_{g_{2}}$
stabilisation to

	if PL505 is used		if PL509 is used	
$\left(\begin{array}{c}0\end{array}\right)$	0	1500	0	1500
$(\mathrm{~mA})$	430	730	430	730
$(\mathrm{~mA})$	45	70	45	70
$(\mathrm{~mA})$	12	25	12	25
$(\mathrm{~mA})$	475	800	475	800
(kV)	5.5	6.8	5.5	6.8
(W)	25	21	27.5	28.5
(W)	3	5.5	3	5.5
(V)		230		215

CONVERGENCE AND PIN-CUSHION ADJUSTORS

RZ 24284-5

RZ 24284-6

APPLICATION

The convergence adjustors are intended for use in conjunction with the convergence unit AT1023/.., AT4045/. . or AT4046/.. for convergence adjustment.
The pin-cushion adjustors are intended for use in conjunction with the transductor AT4041/.. (for pin-cushion adjustment), and deflection unit AT1027/.. or AT1022/..; the adjustor AT4040/50 for deflection units with parallel connected frame coils, the adjustor AT4040/55 for deflection units with series connected frame coils.

MECHANICAL DATA

The convergence adjustors are provided with pins for mounting on printed-wiring boards and have a knob at the top for adjustment. Except for the AT4040/17 which can easily be soldered directly on the soldering tags of the deflection unit and can be adjusted by means of a screw-driver. Also the pin-cushion adjustors can be adjusted by means of a screw-driver and are suitable for mounting on printed-wiring boards.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

type number 1)	circuit diagram	Fig.	ter- minals	L-range *) (mH)	d.c. *) resistance (Ω)	catalog number
Convergence adjustors 2)						
(AT4040/17)	E	4	$1-3$	$0.1-0.32$	0.66	312210730740
AT4040/49	A	1	$1-2$	$0.32-1.08$	2.4	312210730030
(AT4040/52)	C	2	$3-4$	$3-4$	$0.925-5.0$	4.1
AT4040/53	D	2	$3-4$	$0.635-3.725$	3.65	312210730050
(AT4040/54)	C	2	$3-4$	$0.035-0.275$	0.88	312210730060
AT4040/56	B	1	$1-4$	$0.00575-0.0225$	0.11	312210730080
			$5-4$	$0.0295-0.0105$	0.165	

*) Typical values.
**) However, with a 6 -pins socket.

1) Type numbers between brackets for non-preferred types .
2) At a frequency of 15 kHz , the current through the convergence adjustment coils has to be such that the formula $\mathrm{I}^{2} \mathrm{RMS} \cdot \mathrm{R}_{\mathrm{dc}} \leq 0.3 \mathrm{~W}$ remains in force.

ELECTRICAL DATA

*) The socket has a colour dot near pin 5.

TRANSDUCTOR

APPLICATION

The AT4041/05 is intended for use in conjunction with deflection unit AT1027/... line output transformer AT2050/.., pin-cushion adjustor AT4040/.. and a frame output transformer to correct pin-cushion distortion.

MECHANICAL DATA
Dimensions in mm

Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA $\underline{\text { Circuit diagram }}$

Connections
For AT1027/. . or AT1022/. . with parallel connected frame coils

$R=$ potentiometer of 47Ω, adjusted to 20Ω (typical value)

For AT1027/.. or AT1022/. . with series connected frame coils

$\mathrm{R}=$ potentiometer of 150Ω

$50-8$
4

TRANSDUCTOR

APPLICATION

The AT4041/06 is intended for use in conjunction with deflection unit AT1027/.. or AT1022/.., line deflection transformer AT2051/.., pin-cushion adjustor AT4040/.. and a frame output transformer to correct pin-cushion distortion.

MECHANICAL DATA
Dimensions in mm

Hole pattern for mounting on a printed-wiring board.

ELECTRICAL DATA
Circuit diagram

Connections
For AT1027/.. or AT1022/.. with parallel connected frame coils

For AT2051/00

$$
A-B=1-3
$$

For AT2051/01

$$
\mathrm{A}-\mathrm{B}=3-5 \text { or } 3-1
$$

For AT1021/. . or AT1022/.. with series connected frame coils
AT2051\% AT4041/06

For AT2051/00

$$
A-B=1-3
$$

For AT2051/01

$$
A-B=3-5 \text { or } 3-1
$$

ADJUSTABLE LINEARITY CONTROL UNIT

RZ 22858-8

APPLICATION

This unit is intended to be used in black and white, and in colour TV sets equipped with tubes, to adjust the linearity of the line-deflection. In colour TV sets it can be used in combination with deflection unit AT 1027/. . or AT 1022/.. and line-output transformer AT 2050/ . . or AT 2051/ . .

CONSTRUCTION

This control unit consists of a coil wound on a ferroxcube rod, and three ferroxdure magnets. One magnet is placed around the ferroxcube rod, above the coil. One of the magnets has the shape of a half ring, it is placed around the ferroxcube rod under the coil. The third ferroxdure magnet is cylindrical, it is positioned parallel to and clamped against the ferroxcube rod opposite the second. It is provided with a square hole to facilitate turning to adjust the biasing field and so the linearity of the line deflection.

Fig. 2. Hole pattern for mounting on a chassis

Fig. 3. Hole pattern for mounting on a printed-wiring board $\left(e=0.1^{\prime \prime}\right)$

ELECTRICAL DATA

When a saw-tooth current (without S-correction) of $2.8 \mathrm{~A}_{\mathrm{p}-\mathrm{p}}$, frequency $15,625 \mathrm{~Hz}$, flyback ratio 18%, flows through the linearity control unit (one connection point to earth), the correction voltage is adjustable between 15 V and 26 V .

Fig. 4. Circuit diagram

MOUNTING

The unit can be mounted either on printed-wiring boards by means of its two connection pins and two mounting pins (see Fig. 3), or on metal chassis, by bending of the two mounting pins and/or by means of a screw through an aperture in the casing (see Fig. 2). To prevent distortion of the magnetic field no iron part should approach the magnetic parts anywhere nearer than 3 mm . The coil should be shunted with a carbon resistor to dampringing phenomena(value of resistor depends on applied line-deflection transformer).

[^25]

Fig. 5. Line-output circuit
fircor
Prater
172

CONVERGENCE UNITS

APPLICATION

These units are intended to be used with a 90° shadow mask colour picture tube, in conjunction with the deflection unit AT1027/.. and the blue lateral unit AT1025/05 or AT1028/.. to converge the three colour pictures statically and dynamically and to adjust the purity.

MECHANICAL DATA
Dimensions in mm

Mounting

The housing of the deflection unit AT1027/.. is so constructed that the convergence units can easily slide in and then, after they have been properly pushed back, lock. The units have to be put into the housing with the printed wiring up (see drawing below). To take out the units the locks must be released; this can be done by pushing a screwdriver or the like between each unit and the housing.

Assembly consisting of a deflection unit AT1027/.. and three convergence units AT4045/...

ELECTRICAL DATA

The units have 4 coils, two for horizontal and two for vertical deflection. They are mounted on a printed-wiring board. The coils can be connected either by soldering to the printed-wiring pads or by pushing a plug over the pins. The convergence unit AT4046/07 is provided with a permanent magnet for static convergence with which a shift of $\pm>20 \mathrm{~mm}$ can be obtained. Static convergence with the AT4045/07 is ef fected by a d.c. current through its frame coils.

Series connected line coils
Inductance
Resistance
Connecting tags
Tags to be interconnected
Parallel connected line coils

Inductance
Resistance
Connecting tags
Tags to be interconnected

0.10 mH	0.11 mH
0.6Ω	0.6Ω
2 and 3	2 and 3
2 and 7,	2 and 7,
3 and 6	3 and 6

$\underline{\text { Series connected frame coils }}$

Inductance
Resistance
Connecting tags
Tags to be interconnected
Parallel connected frame coils
Inductance
Resistance
Connecting tags
Tags to be interconnected
0.35 H
38.8Ω
1 and 4
1 and 8 ,
4 and 5
1.48 H
194Ω
1 and 5
4 and 8
0.37 H
48.5Ω
1 and 4
1 and 8 ,
4 and 5

CONVERGENCE UNITS

RZ 26110-4

APPLICATION

These units are intended to be used with a 90° shadow mask colour picture tube, in conjunction with the deflection unit AT1027/.. and the blue lateral unit AT1025/05 or AT1028/.. to converge the three colour pictures statically and dynamically and to adjust the purity.

MECHANICAL DATA
Dimensions in mm

Mounting

The housing of the deflection unit AT1027/.. is so constructed that the convergence units can easily slide in and then, after they have been properly pushed back, lock. The units have to be put into the housing with the printed wiring up (see drawing below). To take out the units the locks must be released; this can be done by pushing a screwdriver or the like between each unit and the housing.

Assembly consisting of a deflection unit AT1027/.. and three convergence units AT4045/...

ELECTRICAL DATA

The units have 4 coils, two for horizontal and two for vertical deflection. They are mounted on a printed-wiring board. The coils can be connected either by soldering to the printed-wiring pads or by pushing a plug over the pins. The convergence unit AT4046/08 is provided with a permanent magnet for static convergence with which a shift of $\pm>20 \mathrm{~mm}$ can be obtained. Static convergence with the AT4045/08 is effected by a d.c. current through its frame coils.

$\underline{\text { Series connected line coils }}$
Inductance
Resistance
Connecting tags
Tags to be interconnected
$\underline{\text { Parallel connected line coils }}$
Inductance
Resistance
Connecting tags
Tags to be interconnected
$\underline{\text { Series connected frame coils }}$
Inductance
1.40 H
1.52 H

Resistance
Connecting tags
Tags to be interconnected

Parallel connected frame coils

Inductance
Resistance
Connecting tags
Tags to be interconnected

0.35 H	0.38 H
38.8Ω	48.5Ω
1 and 4	1 and 4
1 and 8,	1 and 8,
4 and 5	4 and 5

LUMINANCE DELAY LINE

RZ 22858-3

APPLICATION

This delay line is intended for use in the luminance video amplifier of colour TV sets.

MECHANICAL DATA
Dimensions in mm

$\mathrm{e}=2.54 \mathrm{~mm}$

ELECTRICAL DATA

Delay time (τ)
Rise time
Impedance
Temperature coefficient of the delay time

Maximum permissible temperature
Maximum d.c. working voltage (between SQ and PT)

Pre-shoot

$$
750 \mathrm{~ns} \pm 5 \%
$$

$$
85 \mathrm{~ns}
$$

$$
1000 \Omega \pm 10 \%
$$

0.04 \%/deg C
$90^{\circ} \mathrm{C}$

75 V
5%

Delay time as a function of the frequency

Amplitude characteristic

DELAY LINE

RZ 24284-9

APPLICATION

This delay-line is intended for use in the decoder circuits of television receivers. It consists of a glass delay-line, appropriate transductors and coils which are accurately adjusted during manufacture to provide the correct overall phase delay-time when fed by a source with an internal impedance of 100Ω and terminated with a load of 100Ω.

DL 1 E

MECHANICAL DATA

Dimensions in mm

Fig. 1
Weight 310 g

Mounting

The unit is intended for insertion directly into a printed-wiring board. Additionally, two holes are provided in the underside for the purpose of fixing the unit by means of self-tapping screws, if so required.

Fig.2. Hole pattern for mounting on a printed-wiring board. $\mathrm{e}=2.54 \mathrm{~mm}$.

ELECTRICAL DATA

Nominal frequency $f_{\text {nom }}$
Nominal phase delay-time (V1-V2) at
$\mathrm{f}_{\text {nom }}$ (unmodulated sinewave voltage)
Accuracy of adjustment
-3 dB points (bandwidth)
Insertion loss
Temperature drift (relative to $25^{\circ} \mathrm{C}$)

4. 433619 MHz

$63.943 \mu \mathrm{~s}$
$\pm 5 \mathrm{~ns}$
one below 3.43 MHz ,
the other above 5.23 MHz
$13 \pm 4 \mathrm{~dB}$ at $\mathrm{f}_{\text {nom }}$
measured while temperature is made to rise
linearly ($\pm 1^{\circ} \mathrm{C}$) in an interval of 3 h from
20 to $50^{\circ} \mathrm{C}$, after which it is kept constant at $50^{\circ} \mathrm{C}$ for 2 h .
$\max . \pm 5 \mathrm{~ns}$, typical value 3 ns
typical $\pm<0.3 \mathrm{~dB}$
10 V p-p
100Ω
$-<22 \mathrm{~dB}$ with respect to 1 T signal
$-<27 \mathrm{~dB}$ with respect to 1 T signal
measured at $\mathrm{f}_{\text {nom }}$ with a burst of 25μ s length and a repetition frequency of 2.6 kHz
$-20^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
<0.05 (see Fig. 4)

Fig.3. Circuit diagram and connections

Fig.4. Set-up for measuring coil asymmetry
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{2}$ (at $\mathrm{f}_{\text {nom }}$)

Fig.5. Amplitude limits of V_{2}

DELAY LINE

RZ 26110-2

APPLICATION

This delay-line is intended for use in the decoder circuits of television receivers. It consists of a glass delay-line, appropriate transductors and coils which are accurately adjusted during manufacture to provide the correct overall phase delay-time when fed by a source with an internal impedance of 100Ω and terminated with a load of 100Ω.

DL 20

MECHANICAL DATA

Dimensions in mm

A = Fastening pins
$B=$ Fixing holes
$\mathrm{C}=$ Connecting pins (0.8 mm diam.)
Weight $\quad 165 \mathrm{~g}$
Mounting
The unit is intended for insertion directly into a printed-wiring board.
Additionally, two holes are provided in the underside for the purpose of fixing the unit by means of M3 screws, if so required.

Fig.2. Hole pattern for mounting on a printed-wiring board. $\mathrm{e}=2.54 \mathrm{~mm}$.

ELECTRICAL DATA

Nominal frequency $f_{\text {nom }}$
Nominal phase delay-time ($\mathrm{V}_{1}-\mathrm{V}_{2}$) at
$\mathrm{f}_{\text {nom }}$ (unmodulated sinewave voltage)
Accuracy of adjustment
-3 dB points (bandwidth)
Insertion loss
Temperature drift (relative to $25^{\circ} \mathrm{C}$)
phase delay
insertion loss
Maximum input at $\mathrm{f}_{\text {nom }}$
(terminals 3 and 4)
Termination impedances
Unwanted reflections at 3T
other reflections

Operating temperature range
Asymmetry of the coils
at $\mathrm{f}_{\text {nom }}\left|\frac{\mathrm{V}_{0}}{\mathrm{~V}_{2}}\right|$

4.433619 MHz

$63.943 \mu \mathrm{~s}$
$\pm 5 \mathrm{~ns}$
one below 3.43 MHz , the other above 5.23 MHz
$11 \pm 3 \mathrm{~dB}$ at $\mathrm{f}_{\text {nom }}$
measured while temperature is made to rise linearly ($\pm 1^{\circ} \mathrm{C}$) in an interval of 3 h from 20 to $50^{\circ} \mathrm{C}$, after which it is kept constant at $50^{\circ} \mathrm{C}$ for 2 h .
$\max . \pm 5 \mathrm{~ns}$, typical value 3 ns
typical $\pm<0.3 \mathrm{~dB}$
$10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
100Ω
$-<22 \mathrm{~dB}$ with respect to 1τ signal
$-<27 \mathrm{~dB}$ with respect to 1τ signal measured at $\mathrm{f}_{\text {nom }}$ with a burst of 25μ s lenght and a repetition frequency of 2.6 kHz
$-20^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C}$
<0.05 (see Fig.4)

Fig.3. Circuit diagram and connections

Fig.4. Set-up for measuring coil asymmetry $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{2}\left(\right.$ at $\left.\mathrm{f}_{\mathrm{nom}}\right)$

Fig.5. Amplitude limits of V_{2}

Deflection assemblies for camera tubes

\square

VIDICON DEFLECTION UNIT

APPLICATION

Deflection assembly, consisting of deflection and focus coils and alignment ring magnets, for a l" Vidicon.

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA (typical values)

coils	measuring points	earth points	inductance (mH)	resistance (Ω)
$\mathrm{S}_{1}+\mathrm{S}_{2}$	$2-4$	2	0.75	2.5
$\mathrm{~S}_{3}+\mathrm{S}_{4}$	$3-5$	5	23	80
$\mathrm{~S}_{5}$	$6-7$	-	-	4200

Required currents for normal operation ($\mathrm{V}_{4}=300 \mathrm{~V}$)
Line deflection current: $170 \mathrm{~mA} \mathrm{p-p}$
Frame deflection current : $24 \mathrm{~mA} \mathrm{p-p}$
Focus current : 17 mA
Geometric distortion
Distortions inside the circle : about 1% of picture height
Distortions outside the circle : about 2% of picture height

Alignment range: $\pm \geq 10 \%$ of picture height

PLUMBICON DEFLECTION UNIT

APPLICATION

Deflection assembly, consisting of deflection, focus and alignment coils, for a Plumbicon.

MECHANICAL DATA

ELECTRICAL DATA (typical values)

$\mathrm{NTC}=1300 \Omega \pm 20 \%$ at $25{ }^{\circ} \mathrm{C}$
$\mathrm{R}=560 \Omega \pm 5 \%$
1 = black
2 = transparent (screened)
3 = brown
4 = yellow (screened)
5 = red
6 = orange
7 = yellow
$8=9=$ blue
$10=$ white
$11=$ -
$12=-$
13 = grey

coils	measuring points	inductance $(\mathrm{mH}) \pm 3.5 \%$	resistance at $25{ }^{\circ} \mathrm{C}$ $(\Omega) \pm 10 \%$
$\mathrm{~S}_{1}+\mathrm{S}_{2}$	$2-4$	0.995	2.6
$\mathrm{~S}_{3}+\mathrm{S}_{4}$	$3-5$	22.1	63.8
$\mathrm{~S}_{5}+\mathrm{S}_{7}$	$6-8$		$21431)$
$\mathrm{S}_{6}+\mathrm{S}_{8}$	$7-9$		$2143 \mathrm{l})$
$\mathrm{S}_{9}+\mathrm{S}_{10}$	$10-13$		148
Internal shield	1		

[^26]$\underline{\text { Required currents for normal operation }}$

		$\mathrm{V}_{\mathrm{g}_{3}}=300 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{g}_{3}}=600 \mathrm{~V}$
Line deflection current	$:$	$160 \mathrm{~mA} \mathrm{p-p}$	$225 \mathrm{~mA} \mathrm{p-p}$
Frame deflection current	$:$	$25 \mathrm{~mA} \mathrm{p-p}$	$35 \mathrm{~mA} \mathrm{p-p}$
Focus current	$:$	$75 \mathrm{~mA}\left(\mathrm{~S}_{9}+\mathrm{S}_{10}\right.$	100 mA
in series $)$			

Geometric distortion
Distortions inside the circle max. 0.5% of picture height
Distortions outside the circle $\max . \quad 1 \%$ of picture height

PLUMBICON DEFLECTION UNIT

RZ 18033-18

APPLICATION

Deflection assembly, consisting of deflection, focus and alignment coils for a Plumbicon.

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA (typical values)

NTC resistor: $1300 \Omega \pm 20 \%$ at $25{ }^{\circ} \mathrm{C}$
$\mathrm{R} \quad: \quad 560 \Omega \pm 5 \%$

coils	measuring points	inductance (mH)	resistance (Ω)
$\mathrm{S}_{1}+\mathrm{S}_{2}$	$2-4$	0.99	2.6
$\mathrm{~S}_{3}+\mathrm{S}_{4}$	$3-5$	22.1	63.8
$\mathrm{~S}_{5}+\mathrm{S}_{7}$	$6-8$		2390
$\mathrm{~S}_{6}+\mathrm{S}_{8}$	$7-9$		2390
$\mathrm{~S}_{9}$	$12-13$		1100
$\mathrm{~S}_{10}$	$10-11$		1650
Internal shield	1		

Required currents for normal operation
$\left(\mathrm{Vg}_{3}=300 \mathrm{~V}\right)$
$\left(\mathrm{V}_{\mathrm{g}_{3}}=600 \mathrm{~V}\right)$
line deflection current : $160 \mathrm{~mA} \mathrm{p}-\mathrm{p}$
frame deflection current : $25 \mathrm{~mA} \mathrm{p-p} 35 \mathrm{~mA} \mathrm{p-p}$
focus current $: \quad 17 \mathrm{~mA}\left(\mathrm{~S}_{9}+\mathrm{S}_{10} \quad 25 \mathrm{~mA}\right.$ in series)
$\pm 5 \mathrm{~mA}$
$\pm 5 \mathrm{~mA}$

Geometric distortion

Distortions inside the circle : max. 1% of picture height Distortions outside the circle : max. 2% of picture height

(asple

PLUMBICON DEFLECTION UNIT

APPLICATION

Deflection assembly, consisting of deflection, focus and alignment coils for a Plumbicon.

MECHANICAL DATA

Dimensions in mm

ELECTRICAL DATA (typical values)

NTC resistor: $1300 \Omega \pm 20 \%$ at $25{ }^{\circ} \mathrm{C}$
$\mathrm{R}: \quad 560 \Omega \pm 5 \%$

coils	measuring points	inductance (mH)	resistance (Ω)
$\mathrm{S}_{1}+\mathrm{S}_{2}$	$2-4$	0.99	2.6
$\mathrm{~S}_{3}+\mathrm{S}_{4}$	$3-5$	22.1	63.8
$\mathrm{~S}_{5}+\mathrm{S}_{7}$	$6-8$		2390
$\mathrm{~S}_{6}+\mathrm{S}_{8}$	$7-9$		2390
$\mathrm{~S}_{9}$	$12-13$		1100
$\mathrm{~S}_{10}$	$10-11$		1650
Internal shield	1		

| Required currents for normal operation | $\left(V_{g_{3}}=300 \mathrm{~V}\right)$ | $\left(\mathrm{V}_{\mathrm{g}_{3}}=600 \mathrm{~V}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| line deflection current $:$ $160 \mathrm{~mA} \mathrm{p-p}$ $235 \mathrm{~mA} \mathrm{p-p}$
 frame deflection current $:$ $25 \mathrm{~mA} \mathrm{p-p}$
 focus current $:$ $17 \mathrm{~mA}\left(\mathrm{~S}_{9}+\mathrm{S}_{10}\right.$ $35 \mathrm{~mA} \mathrm{p-p}$
 in series $)$ | 25 mA | |
| maximum alignment currents : | $\pm 5 \mathrm{~mA}$ | $\pm 5 \mathrm{~mA}$ |

Geometric distortion

Distortions inside the circle : max. 0.5% of picture height
Distortions outside the circle : max. 1% of picture height

Contents

page
DATA HANDBOOK SYSTEM 2
F.M. TUNERS
F.M. tuner AP2151/00A 3
F.M. tuners
AP2152/00AP2152/01AP2152/02A7
COILS AND RESONATORS
Coils for transistorised radio sets AP1051 B3
Piezoelectric ceramic resonators for
a.m. radio setsB7
AUDIO AND MAINS TRANSFORMERS
Audio transformers
Introduction C3
Audio transformers for push-pull circuits with transistors C5
Audio transformers for single-ended circuits AD9008 AD9020 C7
Audio transformers for driver circuits with transistors C9
Fixed mains transformeis AD9026AD9027C11
LOUDSPEAKERS
Contents D2
Survey of loudspeaker types D3
10 in high-quality loudspeakers AD1050/M. D9
10 in high-quality woofer loudspeaker AD1055/W8 D11
12 in high-quality loudspeakers AD1250/M. D13
12 in high-quality loudspeakers AD1255/M. D15
12 in high-quality woofer loudspeaker AD1255/W8 D17
12 in special loudspeakers AD1260/M5 D27
$2 \frac{1}{4}$ in tweeter loudspeakers
$2 \frac{1}{2}$ in standard loudspeakersAD2070/T.D293 in standard loudspeakers
3×8 in standard loudspeakersAD2070/Z.D31
3×5 in standard loudspeakers
AD3070/Y. D33
AD3386. X D35
AD3590/X. D37
page
6×9 in standard loudspeakers
AD3696RX -
AD3696SM
D39
AD3806RM-
AD3806SX
D41
AD4070/Y. D43
AD4080/X4-
AD4080/Z25
D45
AD4090/X. D47
AD4490/T. D49
AD4680/M4 -
AD4680/Z25 D51
AD5060/M. D53
AD5060/W. D55
AD5080/M4-
AD5080/Z25
D57
AD5070/M4-
AD5780/X25
D59
AD7060/M5 D61
AD7065/W8 D63
AD7080/M4-
AD7080/X8
D65
AD7091/M4-
AD7091/X800 D67
AD8050/M5 D69
AD8065/W8 D71
9710M/01,
9710AM/01
D73

Recommended enclosures
General D75
Acoustic box for $6 \frac{1}{2}$ in loudspeaker D76
Acoustic box for 8 in loudspeaker D79
31 acoustic box for AD5060/W and AD2070/T. D81
91 acoustic box for AD7065/W8 and AD5080/M4 D83
151 acoustic box for AD8065/W8 and AD3576RM D85
351 acoustic box for AD1055/W8, AD5060/M8 and AD3506SM D87
451 acoustic box for AD1255/W8 and 9710/01 D89
ELECTRONIC ORGAN ASSEMBLIES
Introduction E3
Set of 12 H oscillators 432202637640 E5Set of 12 frequency dividersManual units
432202637650432202637660E7
page
Pedal units 432202637670

Noise generator and choir-effect unit
Mixture pre-stage unit
Mixture unit
Stop unit
TELEVISION TUNERS
U.H.F. television tuners
U.H.F. television tuner
U.H.F. television tuner
U.H.F. television tuners
V.H.F. television tuner
V.H.F. television tuner
V.H.F./U.H.F. television tuner
V.H.F./U.H.F. television tuner

COMPONENTS FOR BLACK AND WHITE TELEVISION
Deflection unit
Deflection unit
Deflection unit
Deflection unit
Line-output transformer
Line-output transformer
Line-output transformer
Line-output transformer
Line-output transformer
Line-output transformer
Frame-output transformer
Adjustable linearity control unit
Adjustable linearity control units
Adjustable linearity control unit E.H.T. socket for tube DY802

Relays

432202637670
432202637920 E13
432202637730 E15
432202637750 E17
432202638190 E19
432202637720 E21

COMPONENTS FOR BLACK AND WITE TELEVISION

AT1020/01 G3
AT1021/01 G7
AT1030 G11
AT1040 G15
AT2025/01 G19
AT2036 G25
AT2036/25 G31
AT2036/36 G39
AT2042/01 G41
AT2043 G45
AT3513 G51
AT4034/01 G57
AT4036
AT4037
G61
AT4042/02 G65
AT7130 G67
ER1000

ER1010
ER1020
ER1030
ER1040
ER1050
G69

COMPONENTS FOR COLOUR TELEVISION
page

Deflection units	AT1022/04	
	AT1022/06	H3
Convergence unit	AT1023/..	H9
Blue lateral unit	AT1025/05	H15
Purity and blue lateral unit	AT1026	H19
Deflection unit	AT1027/04	H21
Deflection unit	AT1027/06	H27
Blue lateral unit	AT1028/00	
Deflection units	AT1028/01	H33
	AT1029/04	
Line-output transformer	AT1029/06	H37
Line-deflection transformer	AT2050/03	H39
Line-deflection transformer	AT2051/00	H45
E.H.T. transformer	AT2051/01	H51
Convergence and pin-cushion adjustors	AT2052/03	H57
Transductor	AT4040/..	H63
Transductor	AT4041/05	H67
Adjustable linearity control unit	AT4041/06	H71
Convergence units	AT4042/02	H75
Convergence units	AT4045/07	
	AT4046/07	H79
Luminance delay line	AT4045/08	
Delay line	AT4046/08	H83
Delay line	AT4080/01	H87

DEFLECTION ASSEMBLIES FOR CAMERA TUBES
Vidicon deflection unit AT1102 K3
Plumbicon deflection unit
Plumbicon deflection unit
Plumbicon deflection unit
AT1113/01 K5
AT1122 K9
AT1132 K13
A FM tuners
B Coils and resonators

C Audio and mains transformers

D Loudspeakers

E Electronic organ assemblies
F Television tuners
G Components
for black and white television
H Components for colour television
K Deflection assemblies for camera tubes

[^0]: 1) Measured with secondary i.f. filter 312210822850 (see Gain Measurement).
[^1]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^2]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^3]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^4]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^5]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^6]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^7]: ${ }^{1}$) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

[^8]: ${ }^{1}$) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

[^9]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^10]: ${ }^{1}$) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.

[^11]: ${ }^{1}$) Signal in conformity with DIN45573.

[^12]: 1) See data sheet "9 1 acoustic box for AD7065/W8 and AD5080/M4".
 2) In an acoustic box of 30 litres or smaller conforming to the recommendations of DIN 45573, page 2.
 3) For bulk packing the catalog number is 242225737721 , for single-unit packing the catalog number is 242225737761.
[^13]: ${ }^{1}$) Signal in conformity with DIN45573.
 ${ }^{2}$) When ordering bulk packing add 20 to the last two digits; when ordering singleunit packing add 60 to the last two digits.

[^14]: 1) When ordering, the last but one digit should be 2 for bulk packing and 6 for singleunit packing.
[^15]: $\overline{4) \text { Measured without correction magnets . }}$

[^16]: 1) A beam current increase of $200 \mu \mathrm{~A}$ results in an amplitude increase of maximum 2%.
 2) Internal resistance of power supply $=180 \Omega$.
[^17]: 1) A beam current increase of $200 \mu \mathrm{~A}$ results in an amplitude increase of maximum 2%.
 2) Internal resistance of power supply $=180 \Omega$.
[^18]: 1) The picture width depends on this value.
 2) With low supply voltage, dissipation may exceed 1 W .
[^19]: * Hole only necessary for bottom adjustment.

[^20]: ${ }^{1}$) future type

[^21]: 1) future type
[^22]: *) NTC-thermistor value is such that right compensation for temperature depen-

[^23]: *) red/green and blue move in opposite direction (see Fig. 3)

[^24]: 1) future type
[^25]: * Hole only necessary for bottom adjustment.

[^26]: 1) Resistance drift between 25 and $60^{\circ} \mathrm{C}$ is $<0.75 \%$
