PHILIPS

 HANDBOOK
COMPONENTS AND MATERIALS

PART 2

Resistors

Capacitors

COMPONENTS AND MATERIALS

December 1970
Fixed resistors

Variable resistors
Non-linear resistors

Ceramic capacitors

Polyester, polycarbonate, polystyrene, paper capacitors

Electrolytic capacitors

Variable capacitors

Comprehensive contents list at the back

DATA HANDBOOK SYSTEM

To provide you with a comprehensive source of information on electronic components, subassemblies and materials, our Data Handbook System is made up of three series of handbooks, each comprising several parts. The three series, identified by the colours noted, are:

> ELECTRON TUBES (9 parts)

SEMICONDUCTORS AND INTEGRATED CIRCUITS (5 parts) RED

COMPONENTS AND MATERIALS (5 parts)
GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued annually; the contents of each series are summarized on the following pages.
We have made every effort to ensure that each series is as accurate, comprehensive and up-to-date as possible, and we hope you will find it to be a valuable source of reference. Where ratings or specifications quoted differ from those published in the preceding edition theywill be pointed out by arrows. You will understand that we can not guarantee that all products listed in any one edition of the handbook will remain available, or that their specifications will not be changed, before the next edition is published. If you need confirmation that the pusblished data about any of our products are the latest available, may we ask that you contact our representative. He is at your service and will be glad to answer your inquiries.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1

Transmitting tubes (Tetrodes, Pentodes)

Part 2

Tubes for microwave equipment

Part 3

Special Quality tubes

Part 4

Receiving tubes

Part 5

Cathode-ray tubes
Photo tubes
Camera tubes

Part 6

Photomultiplier tubes
Scintillators
Photoscintillators

Part 7

Voltage stabilizing and reference tubes
Counter, selector, and indicator tubes
Trigger tubes
Switching diodes

Part 8

T.V. Picture tubes

Part 9

Transmitting tubes (Triodes)
Tubes for R.F. heating (Triodes)

January 1970
Associated accessories

February 1970

March 1970
Miscellaneous devices

April 1970

May 1970
Photoconductive devices
Associated accessories

June 1970
Radiation counter tubes
Semiconductor radiation detectors
Neutron generator tubes
Associated accessories
July 1970
Thyratrons
Ignitrons
Industrial rectifying tubes
High-voltage rectifying tubes
August 1970

December 1969

Associated accessories

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Diodes and Thyristors

General
Signal diodes
Tunnel diodes
Variable capacitance diodes
Voltage regulator diodes

Part 2 Low frequency; Deflection

General
Low frequency transistors (low power)
Low frequency power transistors

Part 3 High frequency; Switching

General
High frequency transistors

Part 4 Special types

General
Transmitting transistors
Microwave devices
Field effect transistors
Dual transistors
Microminiature devices for thick- and thin-film circuits

Part 5 Integrated Circuits

General
Digital integrated circuits
FC family; standard temperature range
FC family; extended temperature range
FD family
FJ family; standard temperature range

September 1970
Rectifier diodes
Thyristors, diacs, triacs
Rectifier stacks
Accessories
Heatsinks
October 1970
Deflection transistors
Accessories

November 1970
Switching transistors
Accessories
December 1970
Beam lead devices for
thick- and thin-film circuits
Photo devices
Accessories

February 1970
Linear integrated circuits

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1 Circuit Blocks, Input/Output Devices

September 1970

Circuit blocks 100 kHz Series
Circuit blocks 1-Series
Circuit blocks 10-Series
Circuit blocks 20-Series
Circuit blocks 40 -Series
Counter modules 50-Series
Norbits 60-Series, 61-Series

Part 2 Resistors, Capacitors

Fixed resistors
Variable resistors
Non-linear resistors
Ceramic capacitors

Circuit blocks 90-Series
Circuit blocks for ferrite core memory drive
Input/output devices

Part 3 Radio, Audio, Television
FM tuners
Coils
Piezoelectric ceramic resonators and filters
Loudspeakers
Electronic organ assemblies

December 1970
Polyester, polycarbonate, polystyrene, paper capacitors
Electrolytic capacitors
Variable capacitors

January 1970
Television tuners
Components for black and white television Components for colour television Deflection assemblies for camera tubes Audio and mains transformers

Part 4 Magnetic Materials, White Ceramics

March 1970

Ferrites for radio, audio and television
Ferroxcube potcores and square cores Microchokes

Ferroxcube transformer cores
Piezoxide
Permanent magnet materials

Part 5 Memory Products, Magnetic Heads, Quartz Crystals, June 1970 Microwave Devices, Variable Transformers, Electro-mechanical Components

Ferrite memory cores
Matrix planes, matrix stacks
Complete memories
Magnetic heads

Quartz crystal units, crystal filters
Isolators, circulators
Variable mains transformers
Electro-mechanical components

Technology relating to the products described in this publication is shared by the following firms.

Argentina

FAPESA I.y.C.
Córdoba $1351-2^{\circ}$ piso
Tel. 41-0084
BUENOS AIRES

Australia

Philips Electrical Pty. Ltd.
Miniwatt Electronics Division
20, Herbert St.
Tel. 43-2171
ARTARMON, N.S.W.
Austria
WIVEG
Prinz Eugenstrasse 32
Tel. 651621
1041 WIEN

Belgium

M.B.L.E.

80, rue des Deux Gares
tel. 230000
BRUXELLES 7

Brazil

IBRAPE S.A.
Rua Manoel Ramos Paiva 506
Tel. 93-5141
SAO PAULO

Canada

Philips Electron Devices
116 Vanderhoof Ave.
Tel. 425-5161
TORONTO 17, Ontario

Chile

Philips Chilena S.A.
Av. Santa Maria 0760
Tel. 394001
SANTIAGO

Columbia

SADAPE S.A.
Calle 19, No. 5-51, Offs. 302/306
Tel. 422-175
BOGOTA D.E. 1
Denmark
Miniwatt A/S
Emdrupvej 115
Tel. 691622
K \varnothing BENHAVNNV

Finland

Oy Philips A.B.
Elcoma Division
Kaivokatu 8
Tel. 10915
HELSINKI 10

France

R.T.C.

La Radiotechnique-Compelec Avenue Ledru Rollin 130
Tel. 797-99-30
PARIS 11

Germany
VALVO G.m.b.H.
Valvo Haus
Burchardstrasse 19
Tel. (0411) 339131
2 HAMBURG 1

Greece

Philips S.A. Hellénique
Service Division
54, Av. Syngrou
ATHENES

Hongkong

I.D.C.C. ELCOMA
c/c Philips Hongkong Ltd.
Tel. 241018
HONGKONG

India

INBELEC Div. of
Philips India Ltd.
Band Box Building
254-D, Dr. Annie Besant Road
Tel. $453386,456420,452986$
Worli, BOMBAY 18 (WB)

Ireland

Philips Electrical (Ireland) Pty.
Newstead, Clonskeagh
Tel. 693355
DUBLIN 6

Italy

Philips S.p.A.
Sezione Elcoma
Piazza IV Novembre 3
Tel. 69.94
MILANO

Japan

I.D.C.C. Ltd.

Kokusai Building, 7th floor
Marunouchi
Tel. (213) 6751.7
TOKYO
Mexico
Electronica S.A. de C.V.
Varsovia 36
Tel. 14-33-29, 25-71-29
MEXICO 6, D.F.

Netherlands

Philips Nederland N.V.
Afd. Elonco
Boschdijk, VB
Tel. (040) 433333
EINDHOVEN
New Zealand
EDAC Ltd.
70-72 Kingsfort Smith Street
Tel. 73-159
WELLINGTON
Norway
Electronica A/S
Middelthunsgate 27
Tei. 463970
OSLO 3

Peru
CADESA
Av. Abancay 1176
Offs. 606-607
Tel. 77317
LIMA

Portugal

Philips Portuguesa S.A.R.L.
Rua Joaquim Antonio de Aguiar 66
Tel. $683121 / 9$
LISBOA

South Africa

EDAC (Pty) Ltd.
South Park Lane
New Doornfontein
Tel. 24-2047
JOHANNESBURG

Spain

COPRESA S.A.
Balmes 22
Tel. 2320300
BARCELONA 7

Sweden

ELCOMA A.B.
Lidingövägen 50
Tel. 08/679780
Fack STOCKHOLM 27

Switzerland

Philips A.G.
Edenstrasse 20,
Tel. 051/44 2211
CH-8027 ZUERICH

Turkey

Türk Philips Ticaret A.S.
EMET Department
Gümüssuyu Cad. 78-80
Tel. 447480
Beyoglü, ISTANBUL

United Kingdom

Mullard Ltd
Mullard House
Torrington Place
Tel. 01-580 6633
LONDON W.C. 1

United States

Amperex Electronic Corp.
Electron Tubes Div.
Tel. 516 WE 1-6200
HICKSVILLE N.Y.
Sem. and Microcircuits Div.
Tel. 401-762-9000
SLATERSVILIE R.I. 02876
Electronic Components Div.
Tel. 516-234-7000
HAUPPAGE N.Y.

Venezuela

C.A. Philips Venezolana

Elcoma Department
Colinas de Belio Monte
Tel. 72.01.51
CARACAS

Fixed resistors

INTRODUCTION

Two basic versions of film resistors are available, namely carbon film resistors and metal film resistors.
Carbon film resistors are used if moderate demands are made on stability, temperature coefficient and tolerance. To meet higher demands on one or more of these parameters metal-film resistors are used.
The specification of these resistors is based primarily on I.E.C. publication 115,
"Recommendations for fixed non-wire-wound resistors type 1 for use in electronic equipment".
A different way of specifying power ratings has been adopted, however, to give the circuit designer better guidance in selecting the proper resistor for a given application.
Before going into detail on this point some remarks have to be made about the basic behaviour of film resistors.

BASIC BEHAVIOUR

Power dissipation in a resistor causes the temperature of the resistor body to increase. The temperature rise is determined by the laws of heat conduction, convection and radiation and will be maximum at the so-called hot spot (usually the middle of the resistor body).
Theoretically in the temperature range where radiation plays only a minor part - and this is the normal temperature range of film resistors - the maximum temperature rise $\Delta \mathrm{T}$ is proportional to the power dissipated: $\Delta \mathrm{T}=\mathrm{A} . \mathrm{P} . ;$ experiments confirm this.
The proportionality constant A gives the temperature rise at the hot spot per watt of dissipated power and can be interpreted as a heat resistance with dimensions $\operatorname{deg} \mathrm{C} / \mathrm{W}$. This heat resistance is a function of the dimensions of the resistor, the heat conductivity of the materials used and, to a lesser degree, of the way of mounting.
The sum of the temperature increase and the ambient temperature $\mathrm{T}_{\text {amb }}$ is the maximum temperature (hot spot temperature) of the resistor.

$$
\mathrm{T}_{\mathrm{m}}=\mathrm{T}_{\mathrm{amb}}+\Delta \mathrm{T}
$$

The stability of a film resistor under endurance tests is mainly determined by the hot spot temperature and the resistance value. The lower the resistance value with the other conditions kept constant the higher the stability due to the greater film thickness for these lower resistance values.

The above relations can be summarised schematically in the following way:

dimensions determine		heat resistance
heat resistance x dissipation	$=$	temperature rise
temperature rise + ambient temperature	$=$	hot spot temperature
hot spot temperature and resistance value determine	stability	

NEW WAY OF SPECIFYING THE PERFORMANCE

Formerly a resistor was characterised by a wattage rating hardly any attention being paid to the above mentioned relations apart from giving a derating line.
In the adopted system the relation between the several variables is given for a certain heat resistance, or, in other words, for certain resistor dimensions; the materials used and the test mounting are in general the same for different resistor types. The resistor is thus characterised by its dimensions.
The dissipation is given as a function of the hot spot temperature with the ambient temperature as a parameter.

$$
\text { From } \begin{aligned}
\Delta \mathrm{T} & =\mathrm{A} . \mathrm{P} . \text { and } \mathrm{T}_{\mathrm{m}}=\mathrm{T}_{\mathrm{amb}}+\Delta \mathrm{T} \text { it follows that: } \\
\mathrm{P} & =\frac{\mathrm{Tm}_{\mathrm{m}}-\mathrm{T}_{\mathrm{amb}}}{\mathrm{~A}}
\end{aligned}
$$

If P is plotted against T_{m} for a constant value of A, parallel straight lines are obtained for different values of the ambient temperature. The slope of these lines, $\frac{d P}{d T_{m}}=\frac{1}{A}$, is the reciprocal of the heat resistance and is characteristic for the resistor.
The stability $\frac{\Delta R}{R}$ can be determined experimentally, for instance after 1000 hrs , as a function of the hot spot temperature with the resistance value as a parameter. It has been found that the resistance changes exponentially with temperature, giving a straight line when $\log \frac{\Delta R}{R}$ is plotted against T_{m}.
A combination of the graphs of P and $\frac{\Delta R}{R}$ against T_{m} gives a nomogram from which the values of several variables can be determined for a resistor of a given size under different working conditions. An example of such a nomogram with fictitious values is given in Fig.1. The intersection of the dash-dot line with the horizontal axis gives the hot spot temperature under the chosen conditions.

Example 1

Assume that a $10 \mathrm{k} \Omega$ resistor whose characteristics are described by the nomogram is to be operated at a power dissipation of 0.4 W and an ambient temperature of $60^{\circ} \mathrm{C}$. To find out whether this dissipation is allowable at this ambient temperature and, if so, what the expected stability of the resistor will be, draw in the upper half of the nomogram a horizontal line through A (power dissipation of 0.4 W). This line intersects the $60^{\circ} \mathrm{C}$ ambient temperature line at point B , corresponding to a hot spot temperature of $128^{\circ} \mathrm{C}$ (point C). This is safely below the maximum indicated by the dashed line at $155^{\circ} \mathrm{C}$; therefore a dissipation of 0.4 W at an ambient temperature of $60^{\circ} \mathrm{C}$ is well within the allowable limit.

Extend line BC into the lower half of the nomogram until it intersects the $10 \mathrm{k} \Omega$ line at point D . This means that at a hot spot temperature of $128^{\circ} \mathrm{C}$ a resistance change of about 2.5% (point E) can be expected after 1000 hours of operation.

Fig.1. Performance nomogram (for a fictitious resistor) illustrating the new way of specifying the performance of film resistors.

Example 2

Assume that a 100Ω resistor, whose characteristics are described by the nomogram, is to be operated at an ambient temperature of $70^{\circ} \mathrm{C}$ with a required stability after 1000 h of 0.5%. It is desired to find the maximum permissible power dissipation. In the lower half of the nomogram, a line that corresponds to a stability of 0.5% intersects the 100Ω resistance line at point b, corresponding to a hot spot temperature of $112{ }^{\circ} \mathrm{C}$ (point c).
Extending the line $\mathrm{d}-\mathrm{c}$ into the upper half of the nomogram, it intersects the line indicating an ambient temperature of $70^{\circ} \mathrm{C}$ at point d , corresponding to a maximum permissible power dissipation of 0.25 W .

If the power to be dissipated exceeds the value found, a bigger type of resistor should be used.

CARBON FILM RESISTORS

RZ 16737.1

QUICK REFERENCE DATA	
Resistance ranges	from 1Ω to $22 \mathrm{M} \Omega$; E12 or E24 series
Resistance tolerance	1, 2, 5, 10%
$\mathrm{T}_{\text {max }}$ hot spot	$155{ }^{\circ} \mathrm{C}$
Typ. dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C} *$)	$\mathrm{CR16}=0.2 \mathrm{~W}, \mathrm{CR} 52=0.67 \mathrm{~W}$
	$\mathrm{CR} 25=0.33 \mathrm{~W}, \mathrm{CR} 68=1.15 \mathrm{~W}$
	CR37 $=0.5 \mathrm{~W}, \mathrm{CR} 93=2 \mathrm{~W}$
Basic specification	I. E. C. publication 115
Category	55/155/56
Stability after:	
load	see nomogram
climatic tests	$\Delta \mathrm{R} \begin{aligned} & \max \cdot 1.5 \% \text { for } \mathrm{R} \leq 220 \mathrm{k} \Omega \\ & \max \cdot 3 \% \text { for } \mathrm{R}>220 \mathrm{k} \Omega \end{aligned}$
soldering	$\Delta \mathrm{R}$ max. 0.5% or 0.5Ω
short time overload	$\Delta \mathrm{R}$ max. 1 \%

*) Dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ which causes the maximum permissible hot-spot temperature of $155^{\circ} \mathrm{C}$ to occur, irrespective of the resistance drift provoked by this condition.

APPLICATION

In a great variety of electronic circuits, from hearing aids to computers, from telecommunication equipment to portable radios.

DESCRIPTION

On a high grade ceramic body a homogeneous film of pure carbon is deposited by pyrolysis of a hydrocarbon gas *). Contact caps of special alloy are then pressed onto the ends of the resistor body, and next tinned electrolytic copper connecting wires are welded to these caps.
As a rule the required resistance value is not obtained by pyrolysis only; helixing. that is, cutting a helical groove in the carbon film is necessary. in which the desired resistance value is arrived at by regulating the pitch of the helix.
The thinner the carbon layer and the finer the pitch of the helix, the higher the resistance value.
Finally the resistors are coated with three or more layers of a special lacquer for electrical and climatical protection.

MECHANICAL DATA
Dimensions in mm

Fig.1a

style	$\mathrm{D}_{\max }$	$\mathrm{I}_{\max }$	$\mathrm{a}_{\max }$	d
CR16	1.6	4.5	1.0	0.4
CR25	2.5	7.5	1.0	0.6
CR37	3.7	10	1.0	0.7
CR52	5.2	18	1.2	0.8
CR68	6.8	18	1.2	0.8
CR93(5\%)**)	9.3	32	1.2	0.8
CR93(1\%)	9.3	38.5	3.2	1

Fig. 1b. Style CR25A
The bent lead is partly covered with an insulating lacquer having a breakdown voltage of at least $50 \mathrm{~V}_{\mathrm{dc}}$.

*) Resistors with resistance values lower than 10 ohms have an electroless nickel film instead of a carbon film. The further processing, however, is the same.
$\rightarrow{ }^{* *}$) Lead length $36 . \mathrm{mm}$

The length of the body is measured by inserting the leads into the holes of two identical gauge plates and by moving these plates parallel to each other until the resistor body is clamped without deformation (see I.E.C. publication: Measurement of the dimensions of a cylindrical component having two axial terminations).

nominal lead diameter (mm)	width of hole in gauge plate (mm)
0.4	0.8
$0.6 / 0.7$	1.0
0.8	1.2

Weights (per 100 pcs)

CR16	8 g	CR52	96 g
CR25	23 g	CR68	148 g
CR37	42 g	CR93 (5\%)	552 g
		CR93 (1\%)	650 g

Mounting

$$
\text { CR93 (1\%) } 650 \mathrm{~g}
$$

The resistors must be mounted stress free so as to allow thermal expansion over the wide permissible temperature range.

Marking

The nominal resistance value and the tolerance are marked on the resistors by means of four coloured bands according to I.E.C. publication 62: "Colour code for fixed resistors"

colour	significant figures	multiplier	tolerance
black	0	1 x	
brown	1	10 x	$\pm 1 \%$
red	2	100 x	$\pm 2 \%$
orange	3	1000 x	
yellow	4	10000 x	
green blue violet grey white	5	100000 x	
silver gold	6	1000000 x	

ELECTRICAL DATA

style	limiting voltage $\mathrm{V}_{\mathrm{rms}}{ }^{1}$)	resistance range	tolerance \pm	series ${ }^{2}$)	catalog number
CR16	150	10 Ω -220 $k \Omega$ 270 $k \Omega$ - 1 $\mathrm{M} \Omega$	$\begin{array}{r} 5 \% \\ 10 \% \end{array}$	$\begin{aligned} & \mathrm{E} 24 \\ & \text { E12 } \end{aligned}$	$\begin{array}{ll} 2322 & 210 \\ 2322 & 210 \\ \hline \end{array}$
CR25	250	$\begin{array}{ccrl} \hline 1 & \Omega & -1 & \mathrm{M} \Omega \\ 10 & \Omega & -220 & \mathrm{k} \Omega \\ 1.2 \mathrm{M} \Omega-10 & \mathrm{M} \Omega \\ \hline \end{array}$	$\begin{array}{r} 5 \% \\ 2 \% \\ 10 \% \\ \hline \end{array}$	$\begin{aligned} & \text { E24 } \\ & \text { E24 } \\ & \text { E12 } \end{aligned}$	$\begin{aligned} & 232210133 . . \\ & 232210134 . . \\ & 232210132 . . \end{aligned}$
CR25A	250	$\begin{array}{ccrl} \hline 1 & \Omega & - & 1 \\ \mathrm{M} \Omega \\ 10 & \Omega & -220 & \mathrm{k} \Omega \\ 1.2 \mathrm{M} \Omega & -10 & \mathrm{M} \Omega \\ \hline \end{array}$	$\begin{array}{r} 5 \% \\ 2 \% \\ 10 \% \\ \hline \end{array}$	$\begin{aligned} & \text { E24 } \\ & \text { E24 } \\ & \text { E12 } \end{aligned}$	$\begin{aligned} & 232210633 \ldots \\ & 232210634 \ldots \\ & 232210632 \ldots \end{aligned}$
CR37	350	$\begin{array}{\|rrrr\|} \hline 1 & \Omega & - & 1 \\ \mathrm{M} \Omega \\ 10 & \Omega & - & 1 \\ \mathrm{M} \Omega \\ 10 & \Omega & - & 1 \\ \mathrm{M} \Omega \\ 1.2 & \mathrm{M} \Omega- & 10 & \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 5 \% \\ 2 \% \\ 1 \% \\ 10 \% \end{array}$	$\begin{aligned} & \text { E24 } \\ & \text { E24 } \\ & \text { E24 } \\ & \text { E12 } \end{aligned}$	$\begin{array}{lll} 2322 & 212 & 13 \ldots \\ 2322 & 212 & 14 \ldots \\ 2322 & 222 & 0 . . \\ 2322 & 212 & 12 \ldots \end{array}$
CR52	500	1 Ω - 1 $\mathrm{M} \Omega$ 10 Ω - 1 $\mathrm{M} \Omega$ 1.2 $\mathrm{M} \Omega$ - 22 $\mathrm{M} \Omega$	$\begin{array}{r} 5 \% \\ 1 \% \\ 10 \% \end{array}$	$\begin{aligned} & \mathrm{E} 24 \\ & \text { E24 } \\ & \text { E12 } \end{aligned}$	$\begin{aligned} & 232210163 \ldots \\ & 23222238 \ldots 0 \\ & 232210162 \ldots \end{aligned}$
CR68	750	$\begin{array}{rrr} 1 & \Omega & -1.6 \mathrm{M} \Omega \\ 10 & \Omega & -1.6 \mathrm{M} \Omega \\ 1.8 \mathrm{M} \Omega-22 & \mathrm{M} \Omega \end{array}$	$\begin{array}{r} 5 \% \\ 1 \% \\ 10 \% \end{array}$	$\begin{aligned} & \mathrm{E} 24 \\ & \mathrm{E} 24 \\ & \mathrm{E} 12 \end{aligned}$	$\begin{aligned} & 2322214 \text { 13... } \\ & 23222240 . .0 . \\ & 2322 \\ & 214 \\ & 12 \ldots \end{aligned}$
\longrightarrow CR93	1000	10 Ω - 22 $\mathrm{M} \Omega$ 10 Ω - 1.6 $\mathrm{M} \Omega$	$\begin{aligned} & 5 \% \\ & 1 \% \end{aligned}$	$\begin{aligned} & \mathrm{E} 24 \\ & \mathrm{E} 24 \end{aligned}$	$\begin{aligned} & 2322215 \text { 13... } \\ & 2322225 \text { 8...0. } \end{aligned}$

Composition of the catalog number

In the above mentioned catalog number replace the first two dots by the first two digits of the resistance value. Replace the third dot by a figure according to the fol lowing table:

$1-9.1 \Omega$	8	
$10-91$	Ω	9
$100-910$	Ω	1
$1-9.1 \mathrm{k} \Omega$	2	

$10-91$	$\mathrm{k} \Omega$	3	
$100-910$	$\mathrm{k} \Omega$	4	
$1-$	9.1	$\mathrm{M} \Omega$	5
$10-$	22	$\mathrm{M} \Omega$	6

${ }^{1}$) Limiting voltage (element and insulation)
This is the maximum voltage which may be applied continuously to the resistor element (see I.E.C. publication 115 clause 1.3.5.). This voltage is also the maximum voltage which may be applied continuously to the insulation of the resistor.
${ }^{2}$) See the table "Standard series of values in a decade" at the back of this book.

Fig. 2
Performance nomogram for different styles of resistor showing the relationship between power dissipation P, ambient temperature $T_{a m b}$, hot-spot temperature T_{m}, resistance value R, and maximum resistance drift $\Delta R / R$ after 1000 h of operation. For continuous operation longer or shorter than $1000 \mathrm{~h}, \mathrm{t}_{\mathrm{x}}$, the stability can be approximated by multiplying the drift $\Delta R / R$ after 1000 h with the square root of the time ratio, so $(\Delta R / R$ after $\times h)=(\Delta R / R$ after $1000 h) \cdot\left(t_{X} / 1000\right)^{\frac{1}{2}}$
See also remarks below.

Remarks to nomogram

1. The nomogram should not be extended beyond the maximum allowable hot spot temperature of $155^{\circ} \mathrm{C}$.
2. The resistance change given by the nomogram for $\mathrm{P}=0$ at a particular ambient temperature is indicative of the shelf life stability of a resistor at that temperature.
3. The stability lines do not give exact values for $\Delta R / R$, but represent a probability of 95% that the real values will be smaller than those obtained from the nomogram.
4. In the nomogram the limiting voltage of the resistors has not been taken into consideration.
5. I.E.C. publication 115 is still based on the conventional method of rating resistors by a fixed "rated dissipation" at $70{ }^{\circ} \mathrm{C}$ requiring at that dissipation a fixed maximum permissible drift.
In our new specification, however, the rated dissipation is no longer specified and also the guaranteed resistance drift is made dependant on the working condi tions. To bridge the gap between the system of I.E.C. 115 and our new system, Fig. 3 is added. In this figure the permissible dissipation at $70{ }^{\circ} \mathrm{C}$ for a resistance drift of max. 1.5% after 1000 hours is given, taking into consideration that the hot spot temperature should not rise above $155^{\circ} \mathrm{C}$ (horizontal part of the curves). In our specification the curves of Fig. 3 replace the rated dissipation.

Fig.3. Maximum permissible dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ as a function of the resistance value for a resistance drift of 1.5% after 1000 hours or for a maximum temperature of $155^{\circ} \mathrm{C}$ without reaching the resistance drift of 1.5%, limiting voltage being taken into account.

Fig.4. Temperature coefficient as a function of the resistance value, applicable to all resistor styles.
For values $<10 \Omega$ the temperature coefficient is $\leq+200 \times 10^{-6} / \mathrm{deg} \mathrm{C}$.

Fig. 5. Noise as a function of the resistance value.

High frequency behaviour
The behaviour of a resistor at high frequencies is influenced not only by its construction but also by external factors such as length of leads, environmental stray capacitances and the measuring apparatus. Thus, these factors have to be considered when measuring. The following table gives typical values under test conditions at 250 MHz using the measuring arrangement shown below. An RX-meter type 250 A of Boonton Radio Corporation is used.

Frequency: 250 MHz

	CR16		CR25		CR37		CR52		CR68		CR 93	
$\mathrm{R}_{\text {nom }}(\Omega)$	$\frac{\|\mathrm{Z}\|}{\mathrm{R}_{\text {nom }}}$	φ°	$\frac{\mid \mathrm{Z} \mathrm{\mid}}{\mathrm{R}_{\text {nom }}}$	φ°	$\frac{\mid \mathrm{Z} \mathrm{\mid}}{\text { R nom }}$	φ°	$\frac{\mid \mathrm{Z} \mathrm{\mid}}{\text { R }{ }_{\text {nom }}}$	φ°	$\frac{\mid \mathrm{Z} \mathrm{\mid}}{\text { R nom }}$	φ^{0}	$\frac{\mid \mathrm{Z} \mathrm{\mid}}{\mathrm{R}_{\text {nom }}}$	φ°
10	3.47	70	2.97	70	2.35	61	2.26	61	2.46	63	3.95	71
22	1.72	52	1.61	51	1.43	45	1.40	46	1.37	43	2.42	60
56	1.11	31	1.07	28	1.02	26	1.08	27	1.07	25	1.54	34
100	1.03	23	1.02	22	1.02	17	1.01	18	1.09	20	1.40	32
220	0.99	10	0.99	9	1	6	0.98	4	1	4	0.98	5
560	0.98	0	0.97	-5	0.94	-16	0.97	-5	0.90	-18	0.83	-31
1000	0.96	-9	0.92	-15	0.88	-25	0.86	-24	0.79	-31	0.48	-56
2200	0.84	-32	0.82	-35	0.69	-47	0.64	-50	0.49	-59	0.25	-71
5600	0.50	-60	0.41	-66	0.35	-69	0.31	-72	0.22	-77	0.10	-83

Measuring arrangement: (a) for CR16 to CR68, (b) for CR93

TESTS AND REQUIREMENTS
Essentially all tests mentioned in the schedule of I.E.C. publication 115, category $55 / 155 / 56$ (rated temperature range -55 to $+155^{\circ} \mathrm{C}$; damp heat, long term, 56 days) are carried out along the lines of I.E.C. publication 68. "Recommended basic climatic and mechanical robustness testing procedure for electronic components". In the table below the tests are listed with reference to the relevant clauses of I.E.C. publications 115 and 68; a short description is also given of the test procedure and requirements.
In some instances deviations from the I.E.C. specification were necessary for the new method of specifying.

IEC 115 clause	$\begin{gathered} \text { IEC } 68 \\ \text { test } \\ \text { method } \end{gathered}$	Test	Procedure	Requirements
2.5.1	Ua Ub Uc	$\frac{\text { Robustness of }}{\text { terminations }}$b. Tensile all sampleshalf num- ber ofc. Tomplesother half number of samples	$\begin{aligned} & \text { dia }<0.5 \mathrm{~mm}: \text { load } 5 \\ & 0.5 \mathrm{~N}(0.5 \mathrm{~kg}) ; 10 \mathrm{~s} \\ & 0.5 \mathrm{~mm}<\text { dia } \leq 0.8 \mathrm{~mm}: \text { load } 10 \mathrm{~N}(1 \mathrm{~kg}) ; 10 \mathrm{~s} \\ & \text { dia }>0.8 \mathrm{~mm} \text { : load } 20 \mathrm{~N}(2 \mathrm{~kg}) ; 10 \mathrm{~s} \\ & \text { dia }<0.5 \mathrm{~mm}: \text { load } 2.5 \mathrm{~N}(0.25 \mathrm{~kg}) ; 4 \times 90^{\circ} \\ & 0.5 \mathrm{~mm}<\text { dia } \leq 0.8 \mathrm{~mm}: \text { load } 5 \mathrm{~N}(0.5 \mathrm{~kg}) ; 4 \times 90^{\circ} \\ & \text { dia }>0.8 \mathrm{~mm}: \text { load } 10 \mathrm{~N}(1 \mathrm{~kg}) ; 4 \times 90^{\circ} \end{aligned}$ $2 \times 360^{\circ}$ in opposite directions	no damage, $\Delta \mathrm{R} \max .0 .5 \% \text { or } 0.5 \Omega$
2.5 .2	T. 2	Soldering	solderability: $2 \mathrm{~s} \quad 230{ }^{\circ} \mathrm{C}$ (clas II) thermal shock: $3 \mathrm{~s} 350^{\circ} \mathrm{C}, 6 \mathrm{~mm}$ from body	good tinning, no damage, $\Delta \mathrm{R}$ max. 0.5% or 0.5Ω
-	Na	$\frac{\text { Rapid change }}{\text { of tempera- }}$	3 hours $-55^{\circ} \mathrm{C} / 3$ hours $+155^{\circ} \mathrm{C}, 5$ cycles	$\Delta \mathrm{R} \max .0 .5 \%$ or 0.5Ω
2.5 .3	FB IV	Vibration	frequency: $10-500 \mathrm{~Hz}$: displacement 1.5 mm or acceleration 10 g : three directions: total 9 h	no damage, $\Delta \mathrm{R} \max .0 .5 \%$ or 0.5Ω
-	-	Bumping	3×1500 bumps in three directions; 50 g	no damage, $\Delta R \max .0 .5 \%$ or 0.5Ω

IEC 115 clause	IEC 68 test method	Test	Procedure	Requirements
2.9	-	Endurance	1000 hours; $70{ }^{\circ} \mathrm{C}$; dissipation taken from Fig. 3	$\Delta \mathrm{R}$ max. $: 1.5 \%$
2.4.3	-	$\frac{\text { Temperature }}{\text { coefficient }}$	between $-55^{\circ} \mathrm{C}$ and $+155^{\circ} \mathrm{C}$	see Fig. 4
2.4 .5	-	$\frac{\text { Voltage proof }}{\text { on insulation }}$	$2 \times$ limiting voltage, a.c., $1 \mathrm{~min} . ;$ for CR68 and CR93 $\sqrt{2} \times$ limiting voltage, a.c., 1 min .	no breakdown
2.4 .6	-	Noise	IEC publication 195	see Fig. 5
2.4.2	-	$\frac{\text { Insulation }}{\text { resistance }}$	-	$\min \cdot 10^{4} \mathrm{M} \Omega$
-	-	$\begin{aligned} & \text { Short time } \\ & \text { overload } \end{aligned}$	room temperature, dissipation 6.25 x value taken from Fig. 3 (voltage not more than 2 x limiting voltage) 10 cycles 5 s on, $45 \mathrm{~s}^{\prime}$ off	$\Delta \mathrm{R} \max .1 \%$
-	-	$\frac{\text { Voltage }}{\text { coefficient }}$	-	$<5 \mathrm{ppm}$

STANDARD PACKAGING

Resistors with a tolerance of 2,5 and 10%

Style CR16	bulk packing	100 per box
CR25	tape packing	1000 per box
CR25A	bulk packing	1000 per box
CR37	tape packing	1000 per box
CR52	tape packing	1000 per box
CR68	tape packing	1000 per box
CR93	tape packing	250 per box

Configuration of tape (dimensions in mm)

style	S	T for number (n) of resistors		
			$\mathrm{n}<50$	$50<\mathrm{n}<100$
CR25	53 ± 2	5 ± 0.3	$5(\mathrm{n}-1) \pm 2$	$5(\mathrm{n}-1) \pm 4$
CR37	56 ± 2	5 ± 0.3	$5(\mathrm{n}-1) \pm 2$	$5(\mathrm{n}-1) \pm 4$
CR52	64 ± 2	10 ± 0.3	$10(\mathrm{n}-1) \pm 2$	$10(\mathrm{n}-1) \pm 4$
CR68	64 ± 2	10 ± 0.3	$10(\mathrm{n}-1) \pm 2$	$10(\mathrm{n}-1) \pm 4$
CR93	92 ± 2	10 ± 0.3	$10(\mathrm{n}-1) \pm 2$	$10(\mathrm{n}-1) \pm 4$

*) for CR93: $6+0.3$
**) for CR93: 30.5 ± 1

METAL FILM RESISTORS

RZ 24108-1

QUICK REFERENCE DATA				
Resistance ranges	from 4.99Ω to $1 \mathrm{M} \Omega$			
Resistance tolerance	2, 1, 0.5, $0.25,0.1 \%$			
$\mathrm{T}_{\text {max }}$ hot spot	$175{ }^{\circ} \mathrm{C}$			
Typical dissipation at	MR 25	0.4 W	MR30	0.5 W
$\mathrm{T}_{\mathrm{amb}}=70{ }^{\circ} \mathrm{C} \quad{ }^{*}$)	MR31	0.5 W	MR 39	0.65 W
	MR58	0.85 W	MR81	1.3 W
Basic specification				
lacquered resistors	I.E.C. 115, type 1C			
moulded resistors	MIL R 10509F			
Category	55/175/56			
Stability after:				
load	see nomogram			
climatic tests	$\mathrm{R} \max .0 .5 \%+0.05 \Omega$			
soldering	$\mathrm{R} \max .0 .1 \%$ or 0.1Ω			
short time overload	$\mathrm{R} \max .0 .25 \%+0.05 \Omega$			

*) This is the dissipation at $\mathrm{T}_{\mathrm{amb}}=70{ }^{\circ} \mathrm{C}$ which causes the max permissible hotspot temperature of $175^{\circ} \mathrm{C}$ to occur, irrespective of the resistance drift provoked by this condition.

APPLICATION

These resistors have been developed for applications in which precision, stability, and a low temperature coefficient are required, e.g. in computers, telecommunication equipment, measuring apparatus, etc.

DESCRIPTION

A homogeneous film of nickel-chromium ${ }^{1}$) is vacuum deposited on a high grade ceramic body. Contact caps of special alloy are then pressed onto the ends of the resistor body, and next the tinned electrolytic copper connecting wires are welded to the caps.
As a rule the required resistance value is not obtained directly by deposition of the film; helixing, that is, cutting a helical groove in the metal film, is also needed. The range of lacquered resistors is produced by coating the finished body with four or more layers of a special lacquer, the range of moulded resistors by moulding in a suitable thermo-setting resin. In both cases the resistors are fully protected against the commonly used cleaning solvents.

MECHANICAL DATA
Dimensions in mm

Fig. 1

Fig. 2

Table I

	style	Fig	$\mathrm{D}_{\max }$	$\mathrm{L}_{\max }$	d
lacquered	MR25	1	2.5	7.0	0.6
	MR30	1	3.0	10.0	0.6
moulded	MR31	2	3.1	7.0	0.6
	MR39	2	3.9	11.1	0.6
	MR58	2	5.8	16.6	0.6
	MR81	2	8.1	20.6	0.8

1) Resistors with the lowest resistance values may have an electroless nickel film instead of a vacuum deposited nickel-chromium film. The further processing, however, is the same.

The length of the body is measured by inserting the leads into the holes of two identical gauge plates and by moving these plates parallel to each other until the resistor body is clamped without deformation. (See I.E.C. publication "Measurement of the dimensions of a cylindrical component having two axial terminations").

nominal lead diameter (mm)	width of hole in gauge plate (mm)
0.6	1.0
0.8	1.2

Weight (per 100 pcs)

MR25	25 g	MR31	30 g	MR58	123 g
MR30	32 g	MR39	47 g	MR81	284 g

Mounting

The resistors must be mounted stress free so as to allow thermal expansion over the wide permissible temperature range.

Marking

a. Lacquered resistors

The nominal resistance value and the tolerance are marked on these resistors by means of four or five coloured bands according to I.E.C. publication 62 "Colour code for fixed resistors" (see also I.E.C. publication 115 clause 1.5).

b. Moulded resistors

Moulded resistors are marked according to the MIL specification MIL-R-10509F with additional marking of the value and tolerance in I.E.C. code (see I.E.C. publication 63). This means that the following information is printed on the resistor:

> MIL style
> Value and tolerance in MIL code
> Manufacturers' identification symbol

In the MIL code for value and tolerance the value is indicated by four figures and a letter: first the three significant figures according to the E192 or E96 series,a fourth figure indicating the number of zeros to follow and then a letter indicating the tolerance as follows:

$$
B= \pm 0.1 \% ; C= \pm 0.25 \% ; D= \pm 0.5 \% \text { and } F= \pm 1 \% .
$$

Example: $22.1 \mathrm{k} \Omega \pm 1 \%$ is written as 2212 F

ELECTRICAL DATA

Standard values of rated resistance and tolerance
Standard values of rated resistance (nominal resistance) are taken from the E24 series for resistors with a tolerance of $\pm 2 \%$, from the E96 series for resistors with a tolerance of $\pm 1 \%$, from the E192 series for resistors with a tolerance of $\pm 0.5 \%, \pm 0.25 \%$ or $\pm 0.1 \%$ (I.E.C. 63 , also MIL-R-10509F para 1.2.1.3). Resistors with a tolerance of $\pm 0.1 \%$ and 0.25% may also be requested with resistance values deviating from the E192 series, provided the value can be indicated with no more than three significant figures.
The values of the E96 and E192 series are given in a table at the back of this book.

Standard range

Table II

style	maximum temp. coeff. ($10^{-6} / \mathrm{deg} \mathrm{C}$)	resistance range	tolerance $\pm \%$	series 1)	$\begin{aligned} & \text { cat. number } \\ & 2322 \\ & \text { followed by } \end{aligned}$	limiting voltage**) (V)
MR25	$+100$	$4.99 \Omega-100 \mathrm{k} \Omega$	1	E 96	1515.	250
MR25	+100	$5.1 \Omega-100 \mathrm{k} \Omega$	2	E 24	1514.	250
MR30	+100	$4.99 \Omega-301 \mathrm{k} \Omega$	1	E 96	1525.	350
MR30	+100	$5.1 \Omega-300 \mathrm{k} \Omega$	2	E 24	1524.	350
MR31E	+ 25	$49.9 \Omega-100 \mathrm{k} \Omega$	0.1/0.25/0.5/1	E192*	123	250
MR31C	+ 50	$49.9 \Omega-100 \mathrm{k} \Omega$	0.1/0.25/0.5/1	E192*	124	250
MR31D	+100	$4.99 \Omega-100 \mathrm{k} \Omega$	1	E 96	1255.	250
MR39E	+ 25	$49.9 \Omega-499 \mathrm{k} \Omega$	0.1/0.25/0.5/1	E192*	126	350
MR39C	+ 50	$49.9 \Omega-499 \mathrm{k} \Omega$	0.1/0.25/0.5/1	E192*	127	350
MR39D	+100	$4.99 \Omega-301 \mathrm{k} \Omega$	1	E 96	1285.	350
MR58E	+ 25	$49.9 \Omega-1 \mathrm{M} \Omega$	0.1/0.25/0.5/1	E192*	129	500
MR58C	+ 50	$49.9 \Omega-1 \mathrm{M} \Omega$	0.1/0.25/0.5/1	E192*	130	500
MR58D	+ 100	$4.99 \Omega-681 \mathrm{k} \Omega$	1	E 96	1315.	500
MR81E	+ 25	$24.9 \Omega-1 \mathrm{M} \Omega$	0.1/0.25/0.5/1	E192*	132	750
MR81C	+ 50	$24.9 \Omega-1{ }^{*} \mathrm{M} \Omega$	0.1/0.25/0.5/1	E192*	133	750
MR81D	$+100$	$4.99 \Omega-1 \mathrm{M} \Omega$	1	E 96	$1345 \ldots$	750

*) For 1% tolerance E96 values only.
**) Limiting voltage (element and insulation).
This is the maximum voltage which may be applied continuously to the resistor element (see I.E.C. publication 115 clause 1.3.5). This voltage is also the maximum voltage which may be applied continuously to the insulation of the resistor.

Composition of the catalog number

Resistance value code first three significant figures of the resistance value (in Ω) followed by
8 for R of 4.99 to 9.88Ω
4 for $\pm 2 \%$
5 for $\pm 1 \quad \%$
6 for $\pm 0.5 \%$
7 for $\pm 0.25 \%$
8 for $\pm 0.1 \%$

9 for R of 10 to 98.8Ω
1 for R of 100 to 988Ω
2 for R of 1 to $9.88 \mathrm{k} \Omega$
3 for R of 10 to $98.8 \mathrm{k} \Omega$
4 for R of 100 to $988 \mathrm{k} \Omega$
5 for R of $1 \mathrm{M} \Omega$
$\overline{1)}$ See the table "Standard series of values in a decade" at the back of this book.

Dissipation

The moulded range is designed to meet the military specification MIL-R-10509F and consequently in Table III a nominal dissipation has been stated. This however does not constitute a real limitation for non-military applications, as the resistors may be used at a higher dissipation.
The stability as a function of dissipation and ambient temperature is indicated in the performance nomogram of Fig.3. The nomogram applies also to lacquered resistors, which are not identified by any nominal dissipation but by style number only.

Fig. 3
Performance nomogram for different styles of resistor, showing the relationship between power dissipation P, ambient temperature $T_{a m b}$, hot-spot temperature (T_{m}) and max. resistance drift $\Delta R / R$ after 1000 hours of operation. The limiting voltage should still be taken into account.
For continuous operation longer or smaller than $1000 \mathrm{~h}, \mathrm{t}_{\mathrm{x}}$, the stability can be approximated by multiplying the drift $\Delta R / R$ after 1000 h with the square root of the time ratio, so $(\Delta R / R$ after $x h)=(\Delta R / R$ after $1000 h) \cdot(t x / 1000)^{\frac{1}{2}}$

See also remarks below.

Remarks to nomogram
The nomogram should not be extended beyond the maximum allowable hot spot temperature of $175{ }^{\circ} \mathrm{C}$.

The resistance change given by the nomogram for $\mathrm{P}=0$ at a particular ambient temperature is indicative of the shelf life stability of a resistor at that temperature.
The stability lines do not give extact values $\Delta R / R$, but represent a probability of 95% that the real values will be smaller than those obtained from the nomogram.
In the nomogram the limiting voltage of the resistors has not been taken into consideration.

CONFORMITY WITH MIL-R-10509F STYLES

Table III

style	MIL-R-10509F		max. voltage (V)
	style	dissipation	
MR31E	RN55E	0.1 W at $125^{\circ}{ }^{\circ} \mathrm{C}$	200
MR31C	RN55C	0.1 W at $125^{\circ} \mathrm{C}$	200
MR31D	RN55D	$1 / 8 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$	250
MR39E	RN60E	$1 / 8 \mathrm{~W}$ at $125^{\circ}{ }^{\circ} \mathrm{C}$	250
MR39C	RN60C	$1 / 8 \mathrm{~W}$ at $125^{\circ} \mathrm{C}$	300
MR39D	RN60D	$1 / 4 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$	300
MR58E	RN65E	$1 / 4 \mathrm{~W}$ at $125^{\circ} \mathrm{C}$	300
MR58C	RN65C	$1 / 4 \mathrm{~W}$ at $125^{\circ} \mathrm{C}$	350
MR58D	RN65D	$1 / 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$	350
MR81E	RN70E	$1 / 2 \mathrm{~W}$ at $125^{\circ}{ }^{\circ} \mathrm{C}$	350
MR81C	RN70C	$1 / 2 \mathrm{~W}$ at $125^{\circ} \mathrm{C}$	300
MR81D	RN70D	$3 / 4 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$	50

TESTS AND REQUIREMENTS

Lacquered resistors
Essentially all tests are carried out according to the schedule of I.E.C. publication 115 , clause 2.1 .3 for severity 424 . This means: rated temperature range -55 to $+155^{\circ} \mathrm{C}$; damp heat (long term) 56 days. (See I.E.C. publication 115 , clause 1.4). The tests are carried out along the lines of I.E.C. publication 68. "Recommended basic climatic and mechanical robustness testing procedure for electronic components".
In table V the tests and requirements are listed with reference to the relevant clauses of I.E.C. publications 115 and 68; a short description of the test procedure is also given. In some instances deviations from the I.E.C. specifications were necessary for the new method of specifying.

Moulded resistors
All tests are carried out according to the schedule of MIL-R-10509F para. 4.4.2. In the table below the tests and requirements are listed with reference to the relevant paragraphs of this specification.

Table IV

MIL method			requirement	
R 10509F paragraph	STD 202 method	procedure	MIL-R-10509F paragraph	requirement ${ }^{1}$)
4.6 .4	102	Temperature cycling	3.9	$\Delta \mathrm{R} \leq 0.25 \%+0.05 \Omega$
4.6 .5	-	Low-temperature operation	3.10	$\Delta \mathrm{R} \leq 0.25 \%+0.05 \Omega$
4.6 .6	-	Short-time overload	3.11	$\Delta \mathrm{R} \leq 0.25 \%+0.05 \Omega$
4.6 .7	211	Terminal strength	3.12	$\Delta \mathrm{R} \leq 0.2 \%+0.05 \Omega$
4.6 .8	301/105	Dielectric withstanding voltage	3.13	$\Delta \mathrm{R} \leq 0.25 \%+0.05 \Omega$
4.6 .9	302	Insulation resistance	3.14	$\mathrm{R}_{\text {ins }} \geq 10000 \mathrm{M} \Omega$
4.6.10	210	Resistance to soldering heat	3.15	$\Delta \mathrm{R} \leq 0.1 \%+0.05 \Omega$
4.6 .11	106	Moisture resistance	3.16	$\begin{aligned} & \Delta \mathrm{R} \leq 0.5 \%+0.05 \Omega \\ & \mathrm{R}_{\mathrm{ins}} \geq 100 \mathrm{M} \Omega \end{aligned}$
4.6 .13	108	Life	3.18	$\Delta \mathrm{R} \leq 0.5 \%+0.05 \Omega$
4.6 .15	205	Shock, medium impact	3.20	$\Delta \mathrm{R} \leq 0.25 \%+0.05 \Omega$
4.6 .16	204	Vibration	3.21	$\Delta \mathrm{R} \leq 0.25 \%+0.05 \Omega$

1) Though our resistors with a temperature coefficient of $100.10^{-6} / \mathrm{deg}$ C correspond with characteristic D resistors of MIL-R-10509F, they meet the more severe test requirements of characteristic C and E resistors.
Table V

IEC 115 clause	IEC 68 test method	Test	Procedure	Requirements
2.5.1	Ua Ub Uc	Robustness of terminations a. Tensile all samples b. Bending half number of samples c. Torsion other half number of samples	$\begin{aligned} \text { dia } & <0.5 \mathrm{~mm}: \text { load } 5 \mathrm{~N}(0.5 \mathrm{~kg}) ; 10 \mathrm{~s} \\ 0.5 \mathrm{~mm}<\text { dia } & \leq 0.8 \mathrm{~mm}: \text { load } 10 \mathrm{~N}(1 \mathrm{~kg}) ; 10 \mathrm{~s} \\ \text { dia } & >0.8 \mathrm{~mm}: \text { load } 20 \mathrm{~N}(2 \mathrm{~kg}) ; 10 \mathrm{~s} \\ \text { dia } & <0.5 \mathrm{~mm}: \text { load } 2.5 \mathrm{~N}(0.25 \mathrm{~kg}) ; 4 \times 90^{\circ} \\ 0.5 \mathrm{~mm}<\text { dia } & \leq 0.8 \mathrm{~mm}: \text { load } 5 \mathrm{~N}(0.5 \mathrm{~kg}) ; 4 \times 90^{\circ} \\ \text { dia } & >0.8 \mathrm{~mm}: \text { load } 10 \mathrm{~N}(1 \mathrm{~kg}) \end{aligned} ; 4 \times 90^{\circ} .$	no damage $\Delta \mathrm{R} \max .0 .1 \%$ or 0.1Ω
2.5 .2	$\mathrm{T} .2$ Na	Soldering Rapid change $\frac{\text { of tempera- }}{\text { ture }}$	solderability: $2 \mathrm{~s} \quad 230^{\circ} \mathrm{C}$ (class II) thermal shock: $3 \mathrm{~s} \quad 350^{\circ} \mathrm{C}, 6 \mathrm{~mm}$ from body 3 hours $-55^{\circ} \mathrm{C} / 3$ hours $+155^{\circ} \mathrm{C}, 5$ cycles	good timing, no damage, $\Delta \mathrm{R} \max .0 .1 \%$ or 0.1Ω $\Delta \mathrm{R} \max .0 .1 \%$ or 0.1Ω
2.5 .3	FB IV	Vibration	frequency: $10-500 \mathrm{~Hz}$: displacement 1.5 mm or acceleration 10 g : three directions: total 9 h	no damage, $\Delta \mathrm{R} \max .0 .1 \%$ or 0.1Ω
-	-	Bumping	3×1500 bumps in three direction; 50 g	no damage, $\Delta \mathrm{R} \max .0 .1 \%$ or 0.1Ω

Table V (continued)

IEC 115 clause	$\begin{gathered} \text { IEC } 68 \\ \text { test } \\ \text { method } \end{gathered}$	Test	Procedure	Requirements
		$\frac{\text { Climatic }}{\text { Sequence }}$		
2.6.1	B II	Dry heat	16 hours $155{ }^{\circ} \mathrm{C}$	
2.6.2	D IV	$\frac{\text { Damp heat }}{\frac{\text { (accel) }}{\text { lst cycle }}}$	1 day; $55^{\circ} \mathrm{C} ; 95-100 \%$ R.H.	
2.6.3	A IV	Cold	2 hours; $-55^{\circ} \mathrm{C}$	
2.6.4	M IV	$\frac{\text { Low air }}{\text { pressure }}$	1 hour; 85 mbar: $15-35{ }^{\circ} \mathrm{C}$	
2.6 .5	D IV	$\frac{\text { Damp heat }}{\frac{\text { (accel) re- }}{\text { maining }}}$cycles	5 days; $55^{\circ} \mathrm{C}$; 95-100\% R.H.	$\begin{aligned} & \mathrm{R}_{\mathrm{ins}}=\min .1000 \mathrm{M} \Omega, \\ & \begin{array}{r} \mathrm{R} \max \cdot 0.5 \% \\ \\ \quad+0.05 \Omega \end{array} \end{aligned}$
2.6.6.2	-	Load	24 hours; room temp.; dissipation $\left\{\begin{array}{l}0.25 \mathrm{~W} \text { for MR25 } \\ 0.3 \mathrm{~W} \text { for MR30 }\end{array}\right.$	$\Delta \mathrm{R}$ as above
2.7	C IV	$\begin{aligned} & \frac{\text { Damp heat }}{\text { (longterm }} \\ & \text { exposure) } \end{aligned}$	56 days; $40{ }^{\circ} \mathrm{C} ; 90-95 \%$ R.H.; $5 \mathrm{~V}_{\mathrm{dc}}$ on half the number of specimens, but the dissipation should not exceed 2.5 mW for MR25 and 3.0 mW for MR30	$\begin{aligned} & \mathrm{R}_{\text {ins }}: \min .1000 \mathrm{M} \Omega \\ & \Delta \mathrm{R} \max .: \\ & 0.5 \%+0.05 \Omega \end{aligned}$
2.7 .5	-	$\underline{\text { Load }}$	24 hours; room temp.; dissipation 0.25 W for MR25 and 0.30 W for MR30	$\Delta \mathrm{R}$ as above

Table V (continued)

IEC 115 clause	IEC 68 test method	Test	Procedure	Requirements
2.9	-	Endurance	1000 hours; $70^{\circ} \mathrm{C}$: dissipation 0.25 W for MR25 0.3 W for MR30	$\Delta \mathrm{R}$ max.: see Fig. 3
2.4 .3	-	$\begin{aligned} & \text { Temperature } \\ & \hline \text { coefficient } \end{aligned}$	between $-55^{\circ} \mathrm{C}$ and $+155{ }^{\circ} \mathrm{C}$	$\leq 100 \cdot 10^{-6} / \mathrm{deg} \mathrm{C}$
2.4 .5	-	Voltage proof	$2 \times$ limiting voltage with d.c. voltage and with a maximum of $1500 \mathrm{~V}_{\mathrm{dc}}$	no breakdown
2.4 .6	-	Noise	IEC publication 195	$\leq 0.25 \mu \mathrm{~V} / \mathrm{V}$
2.4 .2	-	$\frac{\text { Insulation }}{\text { resistance }}$	-	min. $10^{4} \mathrm{M} \Omega$

STANDARD PACKAGING

The styles MR25 and MR30 are supplied on tape.
Configuration of tape (dimensions in mm)

T : for $\mathrm{n} \leq 50$
for $50>\mathrm{n} \leq 100$
$5(n-1) \pm 2$
$5(n-1) \pm 4$

INSULATED PIN-HEAD CARBON RESISTORS

APP LICATION

In hearing aids, small-distance communication sets, weather radio probes.

CONSTRUCTION

The resistors consist of a pellet of carbon composition between the parallel connection leads. The pellet is coated with synthetic resin.

Dimensions in mm

Mounting
Do not solder or bend the leads less than 0.5 mm from the resistor body.

Colour code, for resistance values in Ω;

colour	band I, first digit	band II, second digit	band III, multi- plier	
black	-	0	x	1
brown	1	1	x	10
red	2	2	x	100
orange	3	3	x	1000
yellow	4	4	x	10000
green	5	5		
blue	6	6		
violet	7	7		
grey	8	8		
white	9	9		

TECHNICAL PERFORMANCE

For tests and measuring methods see IEC publications 109 and 115
Max. dissipation at $70^{\circ} \mathrm{C}\left(=\mathrm{P}_{\text {nom }}\right) \quad 0.05 \mathrm{~W}$
at other temperatures
Limiting voltage, peak value
Resistance values, measured
at $\mathrm{P} \leq 0.1 \mathrm{P}_{\text {nom }}$
Tolerances
Temperature coefficient (from +25 to $+70^{\circ} \mathrm{C}$)
Voltage dependence $\frac{\Delta R}{R}=f(V) \quad<0.3 \% / V$
Ambient temperature range $\quad-10$ to $+100{ }^{\circ} \mathrm{C}$
Noise
$<10 \mu \mathrm{~V} / \mathrm{V}$
Change in resistance after:

- mechanical force of $1 \mathrm{~N}(100 \mathrm{~g})$ along axis of connection $<1 \%$
- mechanical force of $0.5 \mathrm{~N}(50 \mathrm{~g})$ normal to axis of connection $<1 \%$
- damp-heat test C, 21 days (IEC 68) $<20 \%$
- endurance test, $\mathrm{P}_{\text {nom }}$ at $70^{\circ} \mathrm{C}<10 \%$
- 10000 hrs storage

1) See "Composition of the catalog number".

COMPOSITION OF THE CATALOG NUMBER (for ordering)
For tolerance $+10 \%$: 232212022 ...
For tolerance $+20 \%$: $232212021 \ldots$
Tresistance code, see table

resistance (Ω)	code
47	479
56	569
68	689
82	829
100	101
120	121
150	151
180	181
220	221
270	271
330	331
390	391
470	471
560	561
680	681
820	821

resistance (Ω)	code
1000	1.02
1200	122
1500	152
1800	182
2200	222
2700	272
3300	332
3900	392
4700	472
5600	562
6800	682
8200	822

resistance $(\mathrm{k} \Omega)$	code
10	103
12	123
15	153
18	183
22	223
27	273
33	333
39	393
47	473
56	563
68	683
82	823
100	104
120	124

PRECISION WIRE-WOUND RESISTORS

RZ 16737-1B
Max. dissipation at $40^{\circ} \mathrm{C}$
0.4 to 1.8 W

Resistance values
Tolerance
1Ω to $57 \mathrm{k} \Omega$, E192 series
$\pm 0.5 \%$ and $\pm 0.25 \%$
Temperature coefficient (\pm)
$<20.10^{-6} /$ deg C

APPLICATION

In telecommunication installations, measuring apparatus and other professional equipment. They are particularly suited for use in low-frequency filters. The resistors are tropic proof.

CONSTRUCTION

The resistors consist of a layer of resistance wire on a ceramic bar and two caps with tinned leads. The body is coated with red lacquer against mechanical damage.

Dimensions in mm

$0.4,0.6,0.7,1.2$ and 1.8 W see respective graph
see Schedule
$\pm 0.5 \%$ and $\pm 0.25 \%$
$<20.10^{-6} / \mathrm{deg} \mathrm{C}$
$<0.25 \%$
-55 to $+110{ }^{\circ} \mathrm{C}$
the lacquer is non-insulating

SCHEDULE

$\mathrm{P}_{\text {nom }}$ (W)	nominal resistances	$\mathrm{D}_{\max } \times \mathrm{L}_{\max }$ (Ω)	max. $(\mathrm{mm} \times \mathrm{mm})$	catalog series number
	1		4×13	260
0.6	3	7	5×19	261
0.7	6	12.5	5×28	262
1.2	17	33	7×43	263
1.8	25	57	7×67	264

For standard resistance values within the range see column E192 of the table at the back of this handbook. Available tolerances $\pm 0.5 \%$ and $\pm 0.25 \%$.

Composition of the catalog number, for ordering:

The first three figures of the resistance value, neglecting a decimal point

Examples:

resistance		code
5.11Ω	5118	
59	Ω	5909
100	Ω	1001
1	$\mathrm{k} \Omega$	1002
11.3	$\mathrm{k} \Omega$	1133

LOW-OHMIC GLASS-SEALED WIRE RESISTORS

```
Maximum dissipation at 40 }\mp@subsup{}{}{\circ}\textrm{C
1 W
```

Resistance values
Tolerance

RZ 20704-9
1 W
0.1 to 6.8Ω, E12 series ± 10 \%

APPLICATION

In transistor circuits

CONSTRUCTION

The resistors consist of a glass-sealed resistance wire provided with tinned leads.

Dimensions in mm

TECHNICAL PERFORMANCE

The resistances (nominal value and tolerance) are measured at $\mathrm{P}=0.1 \mathrm{~W}$ and between points 30 mm apart.

Tolerance
Resistance change remaining after climatic tests.

Temperature coefficient
Operating body temperature
Max. dissipation at $40^{\circ} \mathrm{C}$ ($\mathrm{P}_{\text {nom }}$)
Climatic robustness
$\pm 10 \%$
< 5 \%
$(-50$ to +150$) 10^{-6} /$ deg C
-25 to $+275{ }^{\circ} \mathrm{C}$
1 W
category 25/155/56 (IEC 68)

Maximum dissipation as a function of the ambient temperature

Rise of body temperature as a function of the dissipation
SCHEDULE
Composition of the catalog number, for ordering:

$$
232232761 \underset{\square}{\text { 6.. }} \text { resistance code, see table }
$$

resistance (Ω)	resistance code	resistance (Ω)	resistance code
0.1	107	1	108
0.12	127	1.2	128
0.15	157	1.5	158
0.18	187	1.8	188
0.22	227	2.2	228
0.27	277	2.7	278
0.33	337	3.3	338
0.39	397	3.9	398
0.47	477	4.7	478
0.56	567	5.6	568
0.68	687	6.8	688
0.82	827		

LOW-OHMIC WIRE-WOUND RESISTORS

APPLICATION

In transistor circuits

CONSTRUCTION

The resistors consist of a layer of resistance wire on a ceramic bar and two caps with tinned leads. The body is coated with a green lacquer

Dimension in mm

TECHNICAL PERFORMANCE

Max. dissipation at $\leq 40^{\circ} \mathrm{C}$
at other temperatures
Operating body temperature
Resistance values, measured
at $\mathrm{P} \leq 0.2 \mathrm{~W}$
Resistance tolerance
Temperature coefficient
for 0.1 to 1Ω resistors
for 1.1 to 10Ω resistors
Change in resistance remaining after load tests and after climatic tests
Climatic category conforming to
NT-14-2-4
2.6 W
see relevant graph
-40 to $+190^{\circ} \mathrm{C}$
0.1 to 10Ω, E24 series
$\pm 10 \%$
(0 to +600) $10^{-6} / \mathrm{deg} \mathrm{C}$
$(-50$ to +25$) 10^{-6} / \operatorname{deg} C$
$\leq 1.5 \%$
505

Maximum dissipation as a function of the ambient temperature

Rise of body temperature as a function of the dissipation

COMPOSITION OF THE CATALOG NUMBER

$$
2322326 \text { 51... } \square
$$

The resistance code consists of the two significant figures of the resistance value (in Ω) followed by a figure for the multiplier, the multiplier code being:

$$
\begin{aligned}
& \times 0.01=7 \\
& \times 0.1=8 \\
& \times 1=9
\end{aligned}
$$

Examples: 107 for $0.1 \Omega ; 917$ for $0.91 \Omega ; 438$ for $4.3 \Omega ; 109$ for 10Ω

CEMENTED WIREWOUND RESISTORS

QUICK REFERENCE DATA	
Resistance ranges	from 5.6Ω to $27 \mathrm{k} \Omega, \mathrm{E}-12$ or E-24 series
Resistance tolerance	10 or 5%
Max. body temperature	$400{ }^{\circ} \mathrm{C}$
Rated dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	WR0617 4 W WR0825 7 W WR0842 9.5 W WR0865 15 W
Basic specification	I. E. C. publication 266
Category (I.E.C.68)	40/200/21 or $40 / 200 / 56$
Stability after:	
load	$\Delta R / R \max .5 \%$
climatic tests	$\Delta R / R \max .5 \%$
short time overload	$\Delta R / R$ max. 2%

RZ 19806-1

APPLICATION

These wirewound load resistors are specifically designed to dissipate high loads in a small volume.

DESCRIPTION

On a ceramic rod with metal caps pressed over the ends a resistor element is wound in a single layer. The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copperclad leads with a low heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting.
The resistor is coated with a green-coloured cement which is noninflammable and cannot drip even at very high overloads.
The resistor is not electrically insulated.
MECHANICAL DATA
Dimensions in mm

Fig. 1

Table I

Style	$D_{\max }$	$L_{\max }$	d
WR0617	6	19	0.6
WR0825	8	27	0.8
WR0842	8	44	0.8
WR0865	8	67	0.8

The length of the resistor body is measured by inserting the leads into the holes of two identical gauge plates and by moving these plates parallel to each other until the resistor body is clamped without deformation (see I.E.C. publication 294: Measurement of the dimensions of a cylindrical component having two axial terminations).

nominal lead diameter 0.6 mm	dia of hole in gauge plate 1.0 mm
0.8 mm	1.2 mm

Weight (per 100 pcs)

WR0617	100 g
WR0825	225 g
WR0842	530 g
WR0865	730 g

Mounting

The resistors must be mounted in such a way that:

- no stress is exerted on the leads so as to allow thermal expansion over the wide permissible temperature range.
- nearby components and materials are not affected by the dissipated heat.
- the temperature at the soldering spots of the leads does not reach the melting point of the solder.

The temperature rise of the resistor body and of the leads at various distances from the body is given as a function of the dissipation for the different resistor styles in Figs 2. 3a, 3b, 3c and 3d.

Marking

Each resistor is marked with:

- resistance value (R for Ω, K for $\mathrm{k} \Omega$)
e.g. $27 \Omega=27 \mathrm{R}$
$27 \mathrm{k} \Omega=27 \mathrm{~K}$
- tolerance on resistance in \pm \%
- style
- date of manufacture

ELECTRICAL DATA
Standard range, Table II

Climatic category according to I. E. C. 68
for resistors withstanding 21 days'
damp heat test (Table III) 40/200/21
for resistors withstanding 56 days' damp heat test (Table III)

40/200/56
Table III

style	resistance range	
	21 days' damp heat test	56 days' damp heat test
WR0617	$160-4700 \Omega$	$5.6-150 \Omega$
WR0825	$430-10000 \Omega$	$6.8-390 \Omega$
WR0842	$620-15000 \Omega$	$10-560 \Omega$
WR0865	$910-16000 \Omega$	$16-820 \Omega$

Composition of the catalogue number

In the above mentioned catalogue number replace the first two dots by the first two digits of the resistance value. Replace the third dot by a figure according to the following table:

$$
\begin{array}{rrr}
5.6- & 9.1 \Omega: 8 \\
10 & - & 91 \\
\Omega: & 9 \\
100 & - & 910 \\
\Omega: & 1 \\
1000 & -9100 & \Omega: \\
10000 & -27000 & \Omega:
\end{array}
$$

1) See the table "Standard series of values in a decade" at the back of this book.

Fig. 2. Temperature rise of the resistor body as a function of the dissipation.

Fig. 3a. Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as parameter, for style WR0617.

Fig. 3b. Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as parameter, for style WR0825.

Fig. 3c. Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as parameter, for style WR0842.

Fig. 3d. Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as parameter, for style WR0865.

TESTS AND REQUIREMENTS (in accordance with I.E.C. publ. 266)
Table IV

$\begin{aligned} & \text { I. E.C. } 266 \\ & \text { clause } \end{aligned}$	$\begin{aligned} & \text { I.E.C. } 68 \\ & \text { test } \\ & \text { method } \end{aligned}$	Test	Procedure	Requirements
14		robustness of resistor body	Corer $_{\text {R } 6 \mathrm{~mm}}^{1000}$ load $200 \pm 10 \mathrm{~N}$	no visible damage $\Delta R \leq 0.5 \%$ or 0.05Ω
15	U Ua Ub Uc	robustness of terminations: tensile, all samples bending, half number of samples torsion, other half number of samples	load $10 \mathrm{~N}, 10 \mathrm{~s}$ load $5 \mathrm{~N}, 4 \times 90^{\circ}$ $2 \times 180^{\circ}$ in opposite directions	no visible damage $\Delta R \leq 0.5 \% \text { or } 0.05 \Omega$
16	T	soldering: solderability thermal shock	2s $2300^{\circ} \mathrm{C}$ (class II) $3 \mathrm{~s} 350{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~mm}$ from body	good tinning, no damage no damage. $\Delta R \leq 0.5 \% \text { or } 0.05 \Omega$
17	Na	rapid change of temperature	$3 \mathrm{~h}-40^{\circ} \mathrm{C} / 3 \mathrm{~h}+200^{\circ} \mathrm{C}, 5$ cycles	no visible damage $\Delta \mathrm{R} \leq 1 \%$
18	Fc	vibration	$10-500 \mathrm{Ilz}, 0.75 \mathrm{~mm}$ or 10 g , whichever is the less, for 0 h	no visible damage $\Delta \mathrm{R} \leq 0.5 \%$ or 0.05Ω
19	Eb	bumping	$390) \mathrm{m} / \mathrm{s}^{2} .4000 \pm 10 \mathrm{bumps}$	no visible damage $\Delta R \leq 0.5 \%$ or 0.05Ω
$\begin{aligned} & 20 \\ & 20.2 \\ & 20.3 \\ & 20.4 \\ & 20.5 \\ & 20.6 \end{aligned}$	$\begin{aligned} & \mathrm{Ba} \\ & \mathrm{Aa} \\ & \mathrm{M} \\ & \mathrm{D} \end{aligned}$	climatic sequence: dry heat damp heat (aceclerated) 1st cycle cold low air pressure damp heat (aceclerated) remaining cycles	$\begin{aligned} & 16 \mathrm{~h} 200^{\circ} \mathrm{C} \\ & 1 \text { day } 55^{\circ} \mathrm{C}, 45-100 \% \mathrm{R} \cdot \mathrm{H} . \\ & 2 \mathrm{~h}-40^{\circ} \mathrm{C} \\ & 1 \mathrm{~h} 8.5 \mathrm{kN} / \mathrm{m}^{2}, \quad 15-35^{\circ} \mathrm{C} \\ & 5 \text { days } 55^{\circ} \mathrm{C}, \quad 45-100 \% \mathrm{R} . \mathrm{H} . \end{aligned}$	final measurements: $\Delta R \leq 5 \%$, category $-/-/ 21$ after 24 h at rated diss. $\Delta \mathrm{R} \leq 5 \%$
21	Ca	damp heat long term	21 or 56 days (see Table III) $40^{\circ} \mathrm{C}, 90-95 \%$ R.H., 0.01 Prated	$\Delta \mathrm{R} \leq 5$ "), after 24 h at rated diss. $\mathrm{R} \leq 5 \%$
$\begin{aligned} & 13.6 \\ & 22 \\ & 23 \end{aligned}$		overload endurance endurance	10 times rated dissipation, 5 s 1000 h at room temperature 1000 h at upper eategory temperature	$\begin{aligned} \Delta R & \leq 2 \% \\ \Delta R & \leq 5 \% \\ \Delta R & \leq 5 \% \end{aligned}$

WR0617	100 pieces per box
WR0825	
WR0842	50 pieces per box
WR0865	

ENAMELLED WIRE-WOUND RESISTORS

C 29153-1

Max. dissipation at $40^{\circ} \mathrm{C}\left(\mathrm{P}_{\mathrm{nom}}\right)$
Resistance values
Tolerances
Climatic robustness
$5.5,8,10$ and 16 W
$4.7 \Omega-100 \mathrm{k} \Omega$, E12 series
$\pm 10 \%$ and $\pm 5 \%$
category 55/155/56

CONSTRUCTION

The resistors consist of one layer of resistance wire wound on a ceramic bar, terminated by caps with tinned leads and coated with brown enamel.

Dimensions in mm

TECHNICAL PERFORMANCE

Max. dissipation at $40^{\circ} \mathrm{C}\left(=\mathrm{P}_{\text {nom }}\right)$

$$
\text { at }>40^{\circ} \mathrm{C}
$$

Resistance values measured at $\mathrm{P} \leq \mathrm{P}_{\text {nom }}$
Tolerances
Temperature coefficient
Change in resistance remaining after

- load tests
- climatic tests

Max. overload at $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$

Insulation

Min. ambient temperature
Max. ambient temperature (soldered)
Climatic robustness

$5.5,8,10$ and 16 W
see relevant graph
see Schedule
$\pm 5 \%$ and $\pm 10 \%$
(-50 to +140) $10^{-6} / \operatorname{deg~C}$
< 5 \%
< 1 \%
$2 \mathrm{P}_{\text {nom }}$ during 10 minutes $10 \mathrm{P}_{\text {nom }}$ during 5 seconds the coating is non-insulating $-55^{\circ} \mathrm{C}$
$+155^{\circ} \mathrm{C}$
category 55/155/56 (IEC 68)

SCHEDULE

$P_{\text {nom }}$ (W)	resistance values			$\begin{gathered} \mathrm{D}_{\max } \times \mathrm{L}_{\max } \\ (\operatorname{mm} \times \mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { catalog number: } \\ 2322320 \\ \text { followed by } \\ \hline \end{gathered}$
	tolerance $(\pm \ldots \%)$	min. (Ω)	max. (Ω)		
5.5	10	4.7	180	8×20	31...
5.5	5	220	15000	8×20	32...
8	10	4.7	47	8×29	21...
8	5	56	33000	8×29	22...
10	5	10	56000	8×44	12...
16	5	15	100000	8×67	02...

Standard resistance values within the given range can be chosen from the E12 series: 10-12-15-18-22-27-33-39-47-56-68-82
Resistance of the E24 series, tolerance $\pm 5 \%$, are available on request.
Composition of the catalog number, for ordering
2322320
See table
The first two digits of the $\quad \rightarrow$ Multiplier code: $\begin{aligned} & 8=x 0.1 \Omega \\ & 9 \\ & \text { resistance value, neglecting } \\ & \text { a decimal point } 1=x 10 \Omega \\ &=x 10 \Omega \\ & 2=x 10^{2} \Omega \\ & 3=x 10^{3} \Omega \\ & 4=x 10^{4} \Omega\end{aligned}$

WIRE-WOUND RESISTORS WITH SIDE TERMINATIONS

RZ 14250-1A

$$
\leq 40 \mathrm{~W}
$$

$\geq 60 \mathrm{~W}$

CONSTRUCTION

The resistors consist of one layer of resistance wire on a ceramic cylinder with side terminations. The 323 -resistors are coated with cement, the 321 -resistors with enamel for mechanical protection.
Dimensions in mm

$P_{\text {nom }}$ (W)	$D_{\max }$	$\mathrm{d}_{\min }$	K	L	H
8	11.5	5	2.5	26^{-2}	14
10	11.5	5	4	41^{-2}	14
16	11.5	5	4	62.5^{-2}	14
25	16	8	4	64^{-2}	20
40	16	8	4	103^{-5}	20

Resistors with $\mathrm{P}_{\text {nom }} \leq 40 \mathrm{~W}$

Resistors with $\mathrm{P}_{\text {nom }} \geq 60 \mathrm{~W}$								
$\mathrm{P}_{\text {nom }}$ (W)	$\mathrm{D}_{\max }$ (mm)	$\mathrm{d}_{\text {min }}$ (mm)	E (mm)	H (mm)	K (mm)	L (mm)	Thr (mm)	
60	32	12.5	8.5	33	6	103^{-5}	M 4	
100	32	12.5	8.5	33	6	165^{-8}	M 4	
160	44	20	10	40	8	165^{-8}	M5	
250	44	20	10	40	8	256^{-10}	M5	

TECHNICAL PERFORMANCE

Max. dissipation at $40^{\circ} \mathrm{C}\left(=\mathrm{P}_{\text {nom }}\right)$ at $>40^{\circ} \mathrm{C}$

Max. dissipation, mounted, with a bolt through the cylinder, against a metal plate

Max. overload at $40^{\circ} \mathrm{C}$

Resistance values (see Schedule)
Tolerance
Temperature coefficient
Change in resistance after load tests after climatic tests

Insulation
Ambient temperature range
Climatic robustness
see Schedule
see relevant graph
1.2 x max. dissipations given above
$2 \mathrm{P}_{\text {nom }}$ during 10 minutes, $10 \mathrm{P}_{\text {nom }}$ during 5 seconds measured at $\mathrm{P}=0.1 \mathrm{P}_{\mathrm{nom}}$
$\pm 5 \%(\pm 10 \%)$
$(-50$ to +140$) 10^{-6} / \operatorname{deg} \mathrm{C}$
< 5 \%
$<3 \%$
the coating is non-insulating
-55 to $+155^{\circ} \mathrm{C}$
category 55/155/56 (IEC 68)

Max. dissipation as a function of the ambient temperature. With a bolt through the resistor, mounted against a metal plate, $\mathrm{P}_{\max }$ can be multiplied by 1.2.

Max. temperature rise as a function of the dissipation. The broken line applies to mounting with bolt and plate.

SCHEDULE

coating	$\mathrm{P}_{\mathrm{nom}}$ (W)	resistance values			$\begin{gathered} \mathrm{D}_{\max } \times \mathrm{L}_{\max } \\ (\operatorname{mm} \times \mathrm{mm}) \end{gathered}$	catalog number: 2322 followed by
		$\begin{aligned} & \text { tol. } \\ & (\pm . . \%) \end{aligned}$	min. (Ω)	max. (Ω)		
cement enamel	8	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{array}{r} 1 \\ 110 \\ 160 \end{array}$	$\begin{array}{r} 100 \\ 150 \\ 6800 \\ \hline \end{array}$	11.5×26	$\begin{aligned} & 32314 \ldots \\ & 32334 \ldots \\ & 32134 \ldots \end{aligned}$
cement enamel	10	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{gathered} 1.2 \\ 30 \\ 330 \end{gathered}$	$\begin{array}{r} 27 \\ 300 \\ 12000 \end{array}$	11.5×41	$\begin{aligned} & 32312 \ldots \\ & 32332 \ldots \\ & 32132 \ldots \end{aligned}$
cement enamel	16	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	1.5 3 680	$\begin{array}{r} 2.7 \\ 620 \\ 24000 \end{array}$	11.5×62.5	$\begin{aligned} & 32310 \ldots \\ & 32330 \ldots \\ & 32130 \ldots \end{aligned}$
cement enamel	25	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	$\begin{array}{\|r\|} \hline 2.7 \\ 16 \\ 1000 \end{array}$	$\begin{array}{r} 15 \\ 820 \\ 39000 \end{array}$	16×64	$\begin{aligned} & 323 \quad 08 \ldots \\ & 323 \\ & 321 \\ & 321 \end{aligned} 28 .$
cement enamel	40	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|c\|} \hline 4.7 \\ 1800 \end{array}$	$\begin{array}{r} 1600 \\ 75000 \end{array}$	16×103	$\begin{aligned} & 32326 \ldots \\ & 32126 \ldots \end{aligned}$
cement enamel	60	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 3 \\ 2400 \end{array}$	$\begin{array}{r} 2200 \\ 68000 \end{array}$	32×103	$\begin{aligned} & 32324 \ldots \\ & 32124 \ldots \end{aligned}$
cement enamel	100	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|r\|} \hline 6.8 \\ 4700 \end{array}$	$\begin{array}{r} 4300 \\ 120000 \end{array}$	32×165	$\begin{aligned} & 32323 \ldots \\ & 32123 \ldots \end{aligned}$
cement cement	$\begin{aligned} & 160 \\ & 250 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{array}{r} 6800 \\ 11000 \end{array}$	$\begin{array}{ll} 44 & \times 165 \\ 44 & \times 256 \end{array}$	$\begin{aligned} & 32322 \ldots \\ & 323 \\ & 21 \ldots \end{aligned}$

Standard resistance values within the given range can be chosen from the E12 series: 10-12-15-18-22-27-33-39-47-56-68-82. Resistance values of the E24 series are available on request, see table at the back of this handbook.

Composition of the catalog number, for ordering
2322

See table

The first two digits of the Multiplier code: $8=\mathrm{x} 0.1 \Omega$ resistance value, neglecting a decimal point.
$9=\mathrm{x} 1 \Omega$
$1=\times 10 \Omega$
$2=x 10^{2} \Omega$
$3=\times 10^{3} \Omega$
$4=\times 10^{4} \Omega$

ADJUSTABLE WIRE-WOUND RESISTORS

RZ 14250-1D
$\geq 60 \mathrm{~W}$

	$\frac{\text { cemented }}{}$	$\frac{\text { enamelled }}{}$	
Max. dissipation at $40{ }^{\circ} \mathrm{C}$ ($\mathrm{P}_{\mathrm{nom}}$)	$10-250 \mathrm{~W}$		$10-100 \mathrm{~W}$
Resistance values (E12 series)	$1.2 \Omega-11 \mathrm{k} \Omega$	$330 \Omega-47 \mathrm{k} \Omega$	
Tolerance	$\pm 5 \%(10 \%)$	$\pm 5 \%$	

CONSTRUCTION

The resistors consist of one layer of resistance wire on a ceramic cylinder with side terminations. A strap, fitted with a silver contact, may be adjusted to any point along an uncoated strip of the resistor. The 324 -resistors are coated with cement, the 322 -resistors with enamel for mechanical protection.

Dimensions in mm

Resistors with $\mathrm{P}_{\text {nom }} \leq 40 \mathrm{~W}$

Resistors with $\mathrm{P}_{\text {nom }} \geq 60 \mathrm{~W}$

$\mathrm{P}_{\mathrm{nom}}$ (W)	dimensions in mm								
	$\mathrm{D}_{\text {max }}$	$\mathrm{d}_{\text {min }}$	H	K	E	L	B	A	Thr
10	11.5	4.2	14	4	3.3	41-2	5	2.8	-
16	11.5	4.2	14	4	3.3	62.5^{-2}	5	2.8	-
25	16	7.2	20	4	3.3	64-2	6	3.2	-
40	16	7.2	20	4	3.3	103-5	6	3.2	-
60	32	12.5	33	6	8.5	103-5	6	-	M4
100	32	12.5	33	6	8.5	165^{-8}	6	-	M4
160	44	20	40	8	10	165-8	8	-	M5
250	44	20	40	8	10	256-10	8	-	M5

TECHNICAL PERFORMANCE

Identical to that of the non-adjustable wire-wound resistors with side terminations, see 323 and 321 series.

SCHEDULE

coating	$\mathrm{P}_{\text {nom }}^{1)}$ (W) (W)	$\begin{aligned} & \text { resistance values } \\ & \left.\left(\mathrm{R}_{\text {nom }}\right)^{1}\right) \end{aligned}$			$\begin{gathered} \text { short } \\ \text { circuit } 1) \\ \left(\% \mathrm{R}_{\text {nom }}\right) \end{gathered}$	${\underset{(\max }{ } \times L_{\max }}_{\mathrm{D}_{\max }}$	$\begin{aligned} & \text { cat. number } \\ & 2322 \\ & \text { followed by } \end{aligned}$
		$\begin{gathered} \text { tol. } \\ (\pm . . \%) \end{gathered}$	min. (Ω)	max. (Ω)			
cement enamel	10	10 5 5	1.2 30 330	$\begin{array}{r} 27 \\ 300 \\ 3300 \\ \hline \end{array}$	9	11.5×41	$\begin{aligned} & 324 \text { 12... } \\ & 32432 \ldots \\ & 32232 \ldots \end{aligned}$
cement enamel	16	10 5 5	1.5 3 680	2.7 620 6800	5	11.5×62.5	$\begin{aligned} & 324 \quad 10 \ldots \\ & 32430 \ldots \\ & 32230 \ldots \end{aligned}$
cement enamel	25	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$	2.7 16 1000	$\begin{array}{r} 15 \\ 820 \\ 9100 \end{array}$	4	16×64	$\begin{aligned} & 32408 \ldots \\ & 32428 \ldots \\ & 322 \ldots \ldots \end{aligned}$
cement enamel	40	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|c} 4.7 \\ 1800 \end{array}$	$\begin{array}{r} 1600 \\ 18000 \end{array}$	2.5	16×103	$\begin{aligned} & 32426 \ldots \\ & 32226 \ldots \end{aligned}$
cement enamel	60	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 3 \\ 2400 \end{array}$	$\begin{array}{r} 2200 \\ 24000 \end{array}$	3	32×103	$\begin{aligned} & 32424 \ldots \\ & 32224 \ldots \end{aligned}$
cement enamel	100	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|c\|} \hline 6.8 \\ 4700 \end{array}$	$\begin{array}{r} 4300 \\ 47000 \end{array}$	1.5	32×165	$\begin{aligned} & 32423 \ldots \\ & 322 \ldots \ldots \end{aligned}$
cement cement	$\begin{aligned} & 160 \\ & 250 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{array}{r} 6800 \\ 11000 \end{array}$	$\begin{aligned} & 1.5 \\ & 1 \end{aligned}$	$\begin{array}{ll} 44 & \times 165 \\ 44 & \times 256 \end{array}$	$\begin{aligned} & 32422 \ldots \\ & 32421 . . \end{aligned}$

Standard resistance values within the given range can be chosen from the E12 series: 10-12-15-18-22-27-33-39-47-56-68-82. Resistance values of the E24 series are available on request, see table at the back of this handbook.

Composition of the catalog number, for ordering 2322
 nominal resistance value, neglecting a decimal point.
$2=\times 10^{2} \Omega$
$3=\times 10^{3} \Omega$
$4=\times 10^{4} \Omega$

1) The adjustable contact short-circuits a number of windings. The maximum resistance loss has been given as a percentage of the nominal resistance. Nominal dissipation and nominal resistance values apply if no contact strap were connected.

Variable resistors

WIRE-WOUND TRIMMING POTENTIOMETERS

RK 9030-2

$$
\begin{array}{ll}
\text { Linear resistance law } & \\
\text { Resistance range } & 47-3300 \Omega \\
\text { Maximum permissible dissipation at } 40^{\circ} \mathrm{C} & 3 \mathrm{~W} \\
& \text { at } 70^{\circ} \mathrm{C}
\end{array} 2 \mathrm{~W}
$$

APPLICATION

In professional electric and electronic equipment where accurate and gradual resistance adjustment and very high stability are required.
The application of precious metals for a.o. resistance wire and sliding contact guarantee a life of at least 500 cycles.

CONSTRUCTION

The potentiometer consists of a single layer of silver paladium resistance wire wound on a strip of resin-bonded paper and housed in a nickel-plated brass case with a bottom of black synthetic resin.
The soldering tags S_{1} and S_{2} (see the figures on the next page) are connected to the ends of the resistance element; soldering tag S3 is connected via a central bush to the sliding contact which is insulated from the steel spindle. The contact surfaces of the sliding contact and of the central bush are gold-plated.
The case is attached onto a support of moulded zinc, which is equipped with a location pip, an end stop, and a threaded spindle bush.
The whole is sealed dust-proof.

Dimensions in mm

Potentiometers with a spindle suited for knob adjustment. The spindle length L is 15 or 20 mm .

Potentiometers with a spindle suited for screwdriver adjustment.

Mounting holes

With the supplied nickel-plated brass mounting nut, catalog number 432204700390 , the potentiometers can be fixed on the chassis .

TECHNICAL PERFORMANCE

Nominal resistance values (R_{n}), measured between the tags S_{1} and S_{2} (see the figures above)
Tolerance on the nominal resistance
Temperature coefficient of the resistance
Resistance law
Tolerance on the resistance law
Contact resistance
Change of contact resistance Minimum resistance at both ends
see Table 1
$\pm 5 \%$
$+100.10^{-6} / \mathrm{deg} \mathrm{C}$
linear
$\pm 2 \%$ of R_{n}
$\leq 50 \mathrm{~m} \Omega$
$\leq 10 \mathrm{~m} \Omega$
$\leq 50 \mathrm{~m} \Omega$

Change of minimum resistance
Resistance between resistance element and end contacts
Dissipation as a function of the ambient temperature, the full length of the resistance element being used Insulation resistance
Test voltage for 1 min Maximum working voltage
Working-temperature range
Number of windings
Effective angle of rotation
Mechanical angle of rotation
Operating torque
End stop torque
Maximum axial spindle load
Life

$$
\begin{aligned}
& \leq 10 \mathrm{~m} \Omega \\
& \leq 5 \% \text { of } \mathrm{R}_{\mathrm{n}}
\end{aligned}
$$

see the figures below
$>1000 \mathrm{M} \Omega$
$1000 \mathrm{~V}_{\text {ac }}$
$500 \mathrm{~V}_{\mathrm{p}}$
-40 to $+100^{\circ} \mathrm{C}$
see Table 1
$290 \pm 5^{\circ}$
$300 \pm 5^{\circ}$
2-5 Ncm
$\leq 80 \mathrm{Ncm}$
50 N
in excess of 500 cycles

Dissipation as a function of the ambient temperature for potentiometers mounted on a metal chassis of $100 \times 100 \times 1 \mathrm{~mm}$.

Dissipation as a function of the ambient temperature for potentiometers mounted on an insulating panel.

TYPES

Composition of the catalog number

2322000 .

code for resistance value, see Table 1
indicating the tolerance of $\pm 5 \%$
figure indicating the spindle type
$0=$ spindle suited for screwdriver adjustment; length 9 mm
2 = spindle suited for knob adjustment; length 15 mm
3 = spindle suited for knob adjustment; length 20 mm

Example: for a potentiometer with a nominal resistance value of 330Ω, for screwdriver adjustment, the catalog number is 232200002331.

Table 1

resistance value (Ω)	number of windings $\pm 25 \%$	code in catalog number
47	74	479
50	79	509
68	107	689
75	118	759
100	102	101
150	151	151
200	163	201
220	179	221
250	195	251
330	269	331
470	189	471
500	200	501
680	273	681
750	190	751
1000	253	102
1500	378	152
2000	319	202
2200	349	222
2500	253	252
3300	334	332

WIRE-WOUND POTENTIOMETERS

RK 9030-3

Linear resistance law
Resistance range
2.2-22000 Ω

Maximum permissible dissipation at $40{ }^{\circ} \mathrm{C}$
3 W
at 70 oc
Potentiometers 2322003
Potentiometers 2322010

RZ 24052-3
provided with soldering tags at the side provided with soldering tags at the bottom ${ }^{1}$)

APPLICATION

In professional electric and electronic equipment where accurate and gradual resistance regulation and high stability are required.

CONSTRUCTION

The potentiometer consists of a single layer of resistance wire wound on a strip of resin-bonded paper and housed in a nickel-plated brass case with a bottom of black synthetic resin.
The soldering tags S_{1} and S_{2} (see the figures on the next page) are connected to the ends of the resistance element; soldering tag S_{3} is connected, via a central bush, to the sliding contact which is insulated from the steel spindlel).
The case is attached onto a support of moulded zinc, which is equipped with a location pip, an end stop, and a threaded spindle bush.
The whole is sealed dust-proof.

[^0]Dimensions in mm
The spindle length L is $17,20,30$ or 60 mm .

Potentiometers 2322003 with a spindle suited for knob adjustment.

Potentiometers 2322003 with a spindle suited for screwdriver adjustment.

Potentiometers 2322010 with a spindle suited for knob adjustment.

Potentiometers 2322010 with a spindle suited for screwdriver adjustment.

With the supplied cadmium-plated steel mounting nut, catalogue number 432204700380 , the potentiometers can be fixed on the chassis.
The minimum thickness of the chassis is 1 mm .
Mounting holes

Potentiometer 2322010 90013; available on request.

Hole pattern of the printed-wiring board for mounting potentiometer 232201090013

TECHNICAL PERFORMANCE

Nominal resistance values (R_{n}), measured between the tags S_{1} and S_{2} (see the figures on the preceding page)
Tolerance on the nominal resistance

$$
\text { for } R_{n} \leq 47 \Omega
$$

for $\mathrm{R}_{\mathrm{n}}>47 \Omega$
Resistance law
Tolerance on the resistance law
Dissipation as a function of the ambient
temperature, the full length of the resistance element being used
Temperature coefficient of the resistance Insulation resistance
Test voltage between spindle and contacts for 1 min
Maximum working voltage between
resistance element and case
Working-temperature range
Number of windings

see Table 1
$\pm 10 \%$
$\pm 5 \%$ and $\pm 10 \%$
linear
$\pm 2 \%$ of R_{n}
see the figures on the next page see Table 1
$>1000 \mathrm{M} \Omega$
1000 Vac
$500 \mathrm{~V}_{\mathrm{p}}$
-10 to $+85{ }^{\circ} \mathrm{C}$
see Table 1

Effective angle of rotation
Mechanical angle of rotation
Operating torque
End stop torque
Maximum axial spindle load
Life, for $R_{n} \leq 6.8 \mathrm{k} \Omega$
for $R_{n}>6.8 \mathrm{k} \Omega$

Dissipation as a function of the ambient temperature for potentiometers mounted on a metal chassis of $100 \times 100 \times 1 \mathrm{~mm}$.
TYPES
$290 \pm 5^{\circ}$
$300 \pm 10^{\circ}$
$0.75-2 \mathrm{Ncm}$
$\leq 80 \mathrm{Ncm}$
50 N
in excess of 25000 cycles
in excess of 10000 cycles

Dissipation as a function of the ambient temperature for potentiometers mounted on an insulating panel.

Composition of the catalogue number
figure indicating the type
$03=$ potentiometer with soldering tags at the side
$10=$ potentiometer with soldering tags at the bottom
figure indicating the spindle type \qquad
0 = spindle suited for screwdriver adjustment; length 14 mm
2 = spindle suited for knob adjustment; length 17 mm
3 = spindle suited for knob adjustment; length 20 mm
4 = spindle suited for knob adjustment; length 30 mm
5 = spindle suited for knob adjustment; length 60 mm

For example: for a potentiometer with soldering tags at the bottom, a nominal resistance value of $3.3 \mathrm{k} \Omega$, tolerance $\pm 10 \%$, for screwdriver adjust ment, the catalogue number is 232200201332 .

[^1]Table 1

resistance value in Ω	temperature coefficient in $10^{-6} /$ deg C	number of windings $\pm 25 \%$	code in catalogue number
2.2		60	228
3.3		55	338
4.7	0 to +600	79	478
6.8		71	688
10		105	109
25		150	159
$7.5+7.5$	-25 to +600	102	229
33		141	$1)$
47		103	339
68		96	479
100		142	689
150		128	101
220		188	151
330		182	221
470		191	331
680		172	471
1000		155	681
1500		234	102
2200		227	152
300		342	222
4700		302	332
6800		438	472
10000		413	682
2000		497	103
22000		448	153

[^2]
WIRE-WOUND POTENTIOMETERS

RZ 22358-2
Linear resistance
Resistance range
10-50 000Ω
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$

APPLICATION

In professional electric and electronic equipment where accurate and gradual resistance regulation and high stability are required.
Thanks to the large outer diameter compared with some other types a very good res olution has been obtained.

CONSTRUCTION

The potentiometer consists of a single layer of resistance wire wound on a strip of resin-bonded paper and housed in a case of black synthetic resin, which is dustproof closed by a metal bottom.
The soldering tags S_{1} and S_{3} (see the figures on the next page) are connected to the ends of the resistance element.
A resilient slider, which is insulated from the steel spindle, slides over the flat top of the winding when the spindle is turned. The slider makes a sliding contact with the soldering tag S_{2} by means of a slip ring. A stop prevents the slider from overrunning the resistance element.

Dimensions in mm

The spindle length L is $20,25,30,35$ or 80 mm .

Potentiometers with a spindle suited for knob adjustment.

Potentiometers with a spindle suited for screwdriver adjustment.

The potentiometers can be fixed on the chassis with the hexagonal steel nut.

Mounting holes
Weight

spindle length (mm)	weight (g)
14	36
20	38
25	39
30	40
35	42
80	56

TECHNICAL PERFORMANCE

Nominal resistance values (R_{n}), measured between the tags S_{1} and S_{3} (see the figures on the preceding page)
Tolerance on the nominal resistance

$$
\begin{aligned}
& \text { for } \mathrm{R}_{\mathrm{n}} \leq 75 \Omega \\
& \text { for } \mathrm{R}_{\mathrm{n}}>75 \Omega
\end{aligned}
$$

Resistance law
Tolerance on the resistance law
Maximum permissible dissipation

$$
\begin{aligned}
& \text { at } \mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}\left(\mathrm{P}_{\mathrm{n}}\right) \\
& \text { at } \mathrm{T}_{\mathrm{amb}}>40^{\circ} \mathrm{C}(\mathrm{P})
\end{aligned}
$$

Temperature coefficient of the resistance Insulation resistance
Test voltage between spindle and contacts for 1 min
Maximum working voltage between
resistance element and case
Working-temperature range
Number of windings
Effective angle of rotation
Mechanical angle of rotation
Operating torque
End stop torque
Maximum axial spindle load
Life, for $\mathrm{R}_{\mathrm{n}} \leq 10 \mathrm{k} \Omega$
for $\mathrm{R}_{\mathrm{n}}>10 \mathrm{k} \Omega$
see Table 1
$\pm 10 \%$
$\pm 5 \%$ and $\pm 10 \%$
linear
$\pm 2 \%$ of R_{n}
3 W
see figure, below
see Table 1
$>100 \mathrm{M} \Omega$
$2000 \mathrm{~V}_{\mathrm{rms}}$
$750 \mathrm{~V}_{\mathrm{p}}$
-55 to $+100^{\circ} \mathrm{C}$
see Table 1
$280 \pm 4^{\circ}$
$300 \pm 2^{\circ}$
1-3 Ncm
$\leq 80 \mathrm{Ncm}$
50 N
in excess of 25000 cycles in excess of 10000 cycles

Dissipation as a function of the ambient temperature

TYPES

Composition of the catalog number

2322004
figure indicating the spindle type \qquad L
code for resistance value, see Table 1
figure indicating the tolerance
$1= \pm 10 \%$
$2= \pm 5 \% \quad\left(R_{n}>75 \Omega\right)$
2 = spindle suited for screwdriver adjustment; length 14 mm
3 = spindle suited for knob adjustment;
length 20 mm
4 = spindle suited for knob adjustment;
length 25 mm
5 = spindle suited for knob adjustment;
length 30 mm
6 = spindle suited for knob adjustment;
length 35 mm
7 = spindle suited for knob adjustment; length 80 mm

Example: for a potentiometer with a nominal resistance value of $3.5 \mathrm{k} \Omega$, tolerance $\pm 5 \%$, for screwdriver adjustment, the catalog number is 232200422352.

Table 1

resistance value in Ω	temperature coefficient in $10^{-6} / \mathrm{deg} \mathrm{C}$	number of windings $\pm 25 \%$	code in catalog number
10		200	109
15		300	159
20	0 to +600	250	209
25	- $10+600$	320	259
35		275	359
50		400	509
75		375	759
100		250	101
150		240	151
200		320	201
250	-25 to +25	390	251
350	-25 to +25	350	351
500		500	501
750		475	751
1000		625	102
1500		450	152
2000		600	202
2500		375	252
3500		620	352
5000		625	502
7500	0 to +140	900	752
10000		750	103
15000		700	153
20000		950	203
25000		1200	253
35000		1300	353
50000	-20 to +20	1500	503

WIRE-WOUND TRIMMING POTENTIOMETERS

RZ 26449-3
Linear resistance law
Resistance range
2.2-1000 Ω

Maximum permissible dissipation

$$
\begin{array}{ll}
\text { at } 40^{\circ} \mathrm{C} & 2 \mathrm{~W} \\
\text { at } 70^{\circ} \mathrm{C} & 1 \mathrm{~W}
\end{array}
$$

Intended for mounting on printed-wiring boards

APPLICATION

In a wide variety of electronic equipment, e.g. for pre-setting of the horizontal and vertical convergence in colour television receivers.

CONSTRUCTION

The potentiometers consist of a single layer of resistance wire housed in a metal case. The resistance zlement and its terminal pins (S1 and S2) are insulated from the case; the slider is zonnected to the case (pins S3).
Four potentiometer types are available: with or without a tap (pin S4) in the middle of the resistance element and with or without a plastic knob.

Dimensions in mm

Fig. 1. Non-tapped potentiometer without knob

Fig. 2. Tapped potentiometer with knob

Fig. 3.
Mounting holes for nontapped potentiometers

Fig. 4.
Mounting holes for tapped potentiometers

TECHNICAL PERFORMANCE

Nominal resistance value (R_{n}) between S_{1} and S_{2}
Resistance law
Tolerance on R_{n}
Resistance at beginning and end
Resistance at 50% of effective angle of rotation
Contact resistance between
resistance element and slider
Change of contact resistance between resistance element and slider
Temperature coefficient
Maximum dissipation between S_{1} and S_{2}, potentiometer mounted on printed-wi ring board (Fig. 7) at $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$
Working temperature range
Mechanical angle of rotation
Effective angle of rotation
Operating torque
Maximum end stop torque
Life

Fig. 5.
Resistance variation with the angle of rotation for non-tapped potentiometers
2.2Ω to $1 \mathrm{k} \Omega$, see Table linear, see Figs. 5 and 6 $\pm 10 \%$
$\leq 5 \%$ of $R_{\text {total }}$
$50 \% \pm 2 \%$ of $R_{\text {total }}$
$\leq 500 \mathrm{~m} \Omega$
$\leq 300 \mathrm{~m} \Omega$
see Table

2 W
1 W
-10 to $+100^{\circ} \mathrm{C}$
$255 \pm 10^{\circ}$
$240 \pm 10^{\circ}$
1-3 Ncm
15 Ncm
250 cycles

Fig. 6.
Resistance variation with the angle of rotation for tapped potentiometers

Fig.7. Dissipation as a function of the ambient temperature; potentiometers mounted on a printedwiring board.

Table

resistance value in Ω	temperature coefficient in $10^{-6} / \mathrm{degC}$	number of windings	code in catalogue number
2.2		110	228
3.3	0 to +600	108	338
4.7		136	478
6.8		126	688
10		194	109
15		113	159
22	-25 to +25	134	229
33		172	339
47		160	479
68		138	689
100		178	101
120		165	121
150		155	151
180		222	181
220		200	221
330		297	331
470		113	471
680		160	681
1000		150	102
$11+11$	-25 to +25		229
$50+50$			101
$150+150$			301

TYPES
Composition of the catalogue number
without tap or knob $\quad 1$) $=02$
with tap, without knob^{1}) $=03$
without tap, with knob $=22$
with tap and knob $=23$

1) Knobs are available under catalogue number 432204820550 .

WIRE-WOUND POTENTIOMETERS

RZ 26297-1
Linear resistance law
Resistance range
Maximum permissible dissipation at $70^{\circ} \mathrm{C}$
2.2-22 000Ω

Potentiometers 2322 012.....
Potentiometers 2322 013.....

1 W
providedwitha plastic spindle \longleftarrow provided with a steel spindle

APPLICATION

In professional electric and electronic equipment where accurate and gradual resistance regulation and high stability are required.

CONSTRUCTION

The potentiometer consists of a single layer of resistance wire wound on a strip of resin-bonded paper and housed in a dust-proof case of black plastic material. The resilient slider is affixed to the spindle; a stop prevents the slider from overrunning the resistance element, and the contact between resistance wire and slider is preserved over the entire angle of rotation, so as ensure minimum wear.

Dimensions in mm

a. Potentiometer with a spindle suited for knob adjustment.

For spindle length L, see section "TYPES".
b. Spindle with
screwdriver slot
(spindle fully
 counter clockwise)

Fig.1. Potentiometers $2322012 \ldots$... and $2322013 . \ldots$. and their spindle types. S_{1} and S_{2} are connected to the ends of the resistance wire; S_{3} is connected to the slider contact.

With the supplied cadmium-plated steel mounting nut, catalog number 2522500 02011, the potentiometers can be fixed on the chassis.

Fig.2. Mounting holes

TECHNICAL PERFORMANCE

Nominal resistance values (R_{n}), measured between the tags S_{1} and S_{2} (see figure above)
Tolerance on the nominal resistance

$$
\text { for } R_{n} \leq 47 \Omega
$$

for $R_{n}>47 \Omega$
Resistance law
\rightarrow Tolerance on the resistance law
Contact resistance
Change of contact resistance
Maximum permissible dissipation at an ambient temperature of $70^{\circ} \mathrm{C}\left(\mathrm{P}_{\mathrm{n}}\right)$ at an other ambient temperature (P)
Temperature coefficient of the resistance Insulation resistance between bushing and contacts
see Table
$\pm 10 \%$
$\pm 5 \%$ and $\pm 10 \%$
linear
$\pm 2 \%$ of R_{n}
see Fig. 3
$\leq 300 \mathrm{~m} \Omega$
1 W
see Fig. 4
see Table 1
$>1000 \mathrm{M} \Omega$

Test voltage between bushing and contacts
for 1 min

Maximum working voltage between bushing and contacts
Working-temperature range
Climatic robustness
Number of windings
Effective angle of rotation
Mechanical angle of rotation
Operating torque
End stop torque
Maximum axial spindle load
Life, for $\mathrm{R}_{\mathrm{n}} \leq 3.3 \mathrm{k} \Omega$ for $R_{n}>3.3 \mathrm{k} \Omega$
$2000 \mathrm{~V}, 50 \mathrm{~Hz}$
$1000 \mathrm{~V}_{\mathrm{p}}$
-10 to $+100^{\circ} \mathrm{C}$
category 10/100/21 (I.E.C. 68)
see Table
245 ± 5^{0}
$270 \pm 5^{\circ}$
0.3-2 Ncm
$\leq 80 \mathrm{Ncm}$
100 N
in excess of 25000 cycles
in excess of 10000 cycles

Fig. 3 Contact resistance as a function of the nominal resistance.

Fig. 4 Dissipation as a function of the ambient temperature

TYPES

Composition of the catalog number 232201.
figure indicating the .spindle material

2 = plastic
3 = steel
figure indicating the spindle type
$0=$ spindle suited for screwdriver adjustment;
lenght 14 mm
2 = length 17 mm
3 = length 25 mm
4 = length 50 mm
$5=$ length 60 mm
$6=$ length 20 mm
spindle
suited for knob
adjustment
code for resistance value, see Table
figure indicating the tolerance
$1= \pm 10 \%$
$2= \pm 5 \%\left(R_{n}>47 \Omega\right)$

7 = length 30 mm
Example: for a potentiometer with a nominal resistance value of 10Ω, tolerance $\pm 10 \%$ for screwdriver adjustment, with a plastic spindle, the catalog number is 232201201109.

Table

resistance value in Ω	temperature coefficient in $10^{-6} /$ deg C	number of windings $\pm 25 \%$	code in catalog number
2.2		47	228
3.3		70	338
4.7	0 to +600	63	478
6.8		90	688
10		85	109
15		127	159
22		62	229
33		94	339
47		120	479
68		106	689
100		103	101
150		109	151
220		104	221
330		148	331
470		131	471
680		193	681
1000		187	102
1500		275	152
2200		260	222
3300		369	332
4700		342	472
6800		405	682
10000		375	103
15000		550	153
22000			223

LOAD POTENTIOMETERS

RZ 25706-9

Resistance range

Maximum permissible dissipation at $60^{\circ} \mathrm{C}$
0.5Ω to $10 \mathrm{k} \Omega$
$25,40,100 \mathrm{~W}$

APPLICATION

In electric and electronic equipment where current or voltage must be regulated continuously, e.g. control of motor speeds and control of charging current of batteries.

CONSTRUCTION

The potentiometers consist of a ceramic ring A (see figures on next pages) around which a resistance wire or ribbon (consult the Table) has been wound in a single layer - over about 280° in the case of 100 W items, and over about 250° for the other ratings. A terminal B is fitted at each end of the wire or ribbon. With the exception of the top side of the coil, the resistance element is coated with a protective layer of cement which prevents the windings from shifting. The cement is non-inflammable (melting point about $2000{ }^{\circ} \mathrm{C}$).

A carbon brush C is affixed in a double spring-type runner E , the brush being connected to a terminal F through the intermediary of a double sliding-contact.
The spring-pressures of the sliding contact and of the carbon brush are independent of each other. In the case of resistance ribbon, the runner of the 40 W and 100 W potentiometers is equipped with an extra spring having a height of 2 and 3 mm , res pectively.
By means of an insulating piece G and a central screw H, the runner is affixed to the top of a spindle J which is supported in a sturdy bracket K. A stop prevents the runner from overrunning the track, whereby the runner is not exposed to torsion.
The protrusion N prevents the potentiometers from turning.
All the metal parts are non-corrosive.
The potentiometers are suitable to be ganged (see section "Ganging").

Dimensions in mm

The spindle length L is 17 or 36 mm .

Fig.1. Potentiometers 2322095
1Ω to $7.5 \mathrm{k} \Omega, 25 \mathrm{~W}$

Fig.2. Potentiometers 2322096;
0.5Ω to $10 \mathrm{k} \Omega, 40 \mathrm{~W}$

Fig. 3. Potentiometers 2322097;
0.75Ω to $10 \mathrm{k} \Omega, 100 \mathrm{~W}$
Mounting and weight

type	a	b	c	panel thickness maximum	weight g
2322095	10.5	3.5	13.5	5	60
096	10.5	4.8	20	5	95
097	10.5	4.8	20	5	240

Fig.4. Holes for mounting with supplied nut

TECHNICAL PERFOR MANCE
Nominal resistance values (R_{n}) measured between end tags

$$
\text { at } \mathrm{P} \leq 0.1 \mathrm{P}_{\mathrm{n}}
$$

Tolerance on R_{n}
Resistance law
Temperature coefficient of the resistance
Maximum permissible dissipation

$$
\text { at } \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}\left(\mathrm{P}_{\mathrm{n}}\right)
$$

see Table

$\pm 10 \%$
linear
$(-140$ to +140$) 10^{-6} / \mathrm{deg} \mathrm{C}$
see Table

Maximum permissible current $\sqrt{P_{n}}$
at $\mathrm{T}_{\text {amb }}=60^{\circ} \mathrm{C}\left(\mathrm{I}_{\max }=\sqrt{\left.\frac{\mathrm{P}_{\mathrm{n}}}{\mathrm{R}}\right)}\right.$
at other temperatures
Temperature rise ΔT as $f(P)$
Working-temperature range
Insulation resistance
Effective angle of rotation
$25 \mathrm{~W}, 40 \mathrm{~W}$ types
100 W type
Mechanical angle of rotation
$25 \mathrm{~W}, 40 \mathrm{~W}$ types
100 W type
Operating torque
$25 \mathrm{~W}, 40 \mathrm{~W}$ types
100 W type
End stop torque
Maximum axial spindle load Life at maximum current
see Table
see Fig. 5
see Fig. 6
-55 to $+100^{\circ} \mathrm{C}$
$>100 \mathrm{M} \Omega$
$250 \pm 10^{\circ}$
$280 \pm 10^{\circ}$
$270 \pm 5^{\circ}$
$300 \pm 5^{\circ}$
1-4.5 Ncm
8 - 13 Ncm
$\leq 200 \mathrm{Ncm}$
100 Ncm
>50000 cycles

Fig. 5

Fig. 6

TYPES
Only the types for which $I_{\max }$ is listed in the table are available. If $I_{\max }$ is stated above the dashed line, the potentiometer is equipped with resistance ribbon.

Table

$\begin{aligned} & \mathrm{R}_{\mathrm{n}} \\ & (\Omega) \end{aligned}$	$\mathrm{P}_{\mathrm{n}}=25 \mathrm{~W}$		$\mathrm{P}_{\mathrm{n}}=40 \mathrm{~W}$		$\mathrm{P}_{\mathrm{n}}=100 \mathrm{~W}$		code in catalog number
	$I_{\text {max }}$ (A)	$\begin{gathered} \text { number } \\ \text { of } \\ \text { windings } \\ \hline \end{gathered}$	$I_{\text {max }}$ (A)		$I_{\text {max }}$ (A)	$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { windings } \end{aligned}$	
0.5			8.9	14			507
0.75			7.3	13	11.5	23	757
1	5.0	23	6.3	14	10.0	24	108
1.5	4.0	22	5.15	21	8.15	23	158
2	3.5	23	4.45	28	7.05	24	208
2.5	3.15	22	4.0	23	6.3	32	258
3.5	2.65	23	3.35	28	5.35	42	358
5	2.2	20	2.8	25	4.45	47	508
7.5	1.8	30	2.3	23	3.65	45	758
10	1.55	41	2.0	24	3.15	43	109
15	1.3	39	1.6	27	2.55	40	159
20	1.1	37	1.4	50	2.2	43	209
25	1.0	46	1.25	49	2.0	44	259
35	0.84	60	1.07	49	1.7	75	359
50	0.70	86	0.89	105	1.4	86	509
75	0.58	82	0.73	99	1.15	75	759
100	0.50	109	0.63	132	1.0	143	101
150	0.40	103	0.51	125	0.81	135	151
200	0.35	137	0.44	105	0.70	180	201
250	0.31	108	0.40	132	0.63	142	251
350	0.26	151	0.33	184	0.53	199	351
500	0.22	136	0.28	165	0.44	179	501
750	0.18	204	0.23	157	0.36	268	751
1000	0.15	172	0.20	210	0.31	226	102
1500	0.13	258	0.16	214	0.25	340	152
2000	0.11	345	0.14	286	0.22	286	202
2500	0.10	272	0.12	357	0.20	357	252
3500	0.08	380	0.10	392	0.17	316	352
5000	0.07	343	0.09	417	0.14	450	502
7500	0.06	513	0.07	395	0.11	428	752
10000			0.06	528	0.10	570	103

Note - Spare carbon brushes can be supplied under catalog number
432204803670 for 25 W types,
432204801710 for 40 W types, $\mathrm{R}_{\mathrm{n}} \leq 10 \Omega$, 432204803530 for 40 W types, $\mathrm{R}_{\mathrm{n}}>10 \Omega$, 432204803540 for 100 W types.

COMPOSITION OF THE CATALOG NUMBER

095 for 25 W type
096 for 40 W type
097 for 100 W type

GANGING

For ganging two load potentiometers, sets are available for the coupling of two items and comprising the following parts (see Fig.7), packed in a plastic bag:
1 bracket D,
1 threaded spindle B,
1 cross pin C,
1 coupling E,
2 set screws K, retaining rings

The catalog numbers for ordering these sets and the dimensions are:

	potentiometers	catalog number coupling set	$I_{\text {max }}$ (mm)	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$
25 W	$\begin{gathered} 2322095 \\ + \\ 2322095 \ldots \end{gathered}$	432204806480	83	22
40 W	$\begin{gathered} 2322096 \\ + \\ 2322 \\ 296 \end{gathered} \ldots .$	432204806490	95.5	29.5
100 W	$\begin{gathered} 2322097 \\ + \\ 2322 \\ \\ \hline \end{gathered}$	432204806500	129.5	40

Ganging procedure (see Fig. 7)

The central screw H (Figs.1-3) is removed from the potentiometer A and replaced by spindle B having a threaded end that is firmly tightened; the other extremity of B is provided with the round cross-pin C. Thereupon, potentiometer A is attached to the bracket D by means of the hexogonal nut, and coupling E is slipped over the extruding end of B .
The second potentiometer (G) having a spindle (F) with standard length $L=17 \mathrm{~mm}$, is now attached to the bracket as well. After placing the runners of both potentiometers in the same position, the coupling is affixed to F by means of the two radial set screws K in the coupling.
When the spindle of potentiometer A is rotated, potentiometer G rotates simultaneously through the intermediary of cross pin C and a V-shaped groove in the coupling. The potentiometers and the coupling should be adjusted so as to obtain a smoothly running assembly.

Mounting

The front face of bracket D is equipped with two 4 mm threaded holes, which allow of fitting two screws through the mounting panel to prevent the ganged assembly from turning when being attached. In this connection, the panel should be provided with apertures according to Fig. 8.

	dimensions in mm			
	a	b	c	panel thickness
25 W	18	20	10.5	≤ 3
40 W	18	30	10.5	≤ 3
100 W	22	30	10.5	≤ 2

Fig. 8

CIRCUIT AND CONNECTIONS OF THE SWITCHES

description	circuit in "off" -position of spindle 1)	position of terminals	
Single-pole, single throw (s.p.s.t.) rotary switch	$\\|_{\mathrm{P}_{2}}^{\mathrm{P}_{1}}$		
Single-pole, double throw (s.p.d.t.) rotary switch	${ }_{P_{3}}^{P_{4}} \int_{P_{P 2}}^{P_{1}}$		
Double-pole, single throw (d.p.s.t.) rotary or pushpull switch	$\left.\left.\right\|_{P_{3}} ^{P_{4}}\right\|_{Q_{P 2}} ^{D_{1}^{P 1}}$		
Double-pole, double throw (d.p.d.t.) push-pull switch	$q_{P 8}^{P_{P 7}} d^{P 5} d_{P 4}^{P 3} d^{P 1}$		

${ }^{1}$) Spindle turned fully counter clockwise for rotary switches or pushed in for pushpull switches.

23 mm SINGLE CARBON POTENTIOMETERS

RZ 27317-12
Resistance range
linear resistance law
logarithmic resistance law
Maximum permissible dissipation
linear resistance law, at $40^{\circ} \mathrm{C}$
0.25 W
at $70^{\circ} \mathrm{C}$
0.125 W
logarithmic resistance law, at $40^{\circ} \mathrm{C}$
0.125 W
at $70^{\circ} \mathrm{C}$
$220 \Omega-4.7 \mathrm{M} \Omega$
$300 \Omega-2.2 \mathrm{M} \Omega$
0.0625 W

Potentiometers 2322350 without switch
2322352 with s.p.d.t. rotary switch
2322353 with s.p.s.t. rotary switch
2322354 with d.p.s.t. push-pull switch, 1A
2322355 with d.p.s.t. push-pull switch, 2A
2322356 with d.p.d.t. push-pull switch
2322357 with d.p.s.t. rotary switch

APPLICATION

For use in a wide variety of electronic equipment.

CONSTRUCTION

An annular carbon track is fitted on to a base plate of resin bonded paper and housed in a metal case.
The terminals S_{1} and S_{3} (see Figs. 1 and 2) are connected to the ends of the carbon track; S_{2} is connected via a contact ring to the slider contact.
The potentiometers can be supplied with a tap $\left(\mathrm{S}_{4}\right)$ at 40% of the total mechanical angle of rotation, that is to say 40% of the nominal resistance value for potentiometers with linear resistance law and at 20% or at 10% of the nominal resistance value for potentiometers with logarithmic resistance law.
The material of the spindle may be poly-acetal resin(preferred types) or steel; the terminals of the potentiometer may be pins for vertical mounting on printed-wiring boards or soldering tags.
The potentiometers are provided with a mounting bushing; types with twist tags are available on request.

Dimensions in mm (plastic spindles)

The Figs la to lf show the potentiometer types with a plain plastic spindle and with soldering tags. For the dimensions L and d see Table 1 .

Fig. 1b. With single-pole, double throw rotary switch (2322 352)

Fig. 1c. With single-pole, single throw rotary switch (2322 353)

Fig. 1d. With double-pole, single throw push-pull switch (2322 354, 2322 355)

Fig. 1e. With double-pole, double throw push-pull switch (2322 356)

Fig. 1f. With double-pole, single throw rotary switch (2322 357)

Fig. 2. Detail showing pins for printed-wiring (applicable to all types) Potentiometers with a distance between S_{1} and S_{3} of 15.2 mm (6e) instead of 20.3 mm (8e) are available on request ($\mathrm{e}=0.1$ inch).
Spindle types (type b is not applicable with a push-pull switch):
(a) Plain spindle, see Fig. 1 and Table 1
(b) Spindle with screwdriver slot

(c) Short spindle with flat face

(d) Long spindle with flat face For L see Table 1.

(e) Knurled spindle

For L see Table 1.

Fig. 3. Plastic spindles in fully counter clockwise position ("off" position for rotary switches)

CHASSIS MOUNTING

The potentiometers can be fixed to a chassis with the supplied mounting nut; for mounting holes, see Fig. 4. The minimum thickness of the chassis is 1.5 mm . The maximum torque for tightening the nut is 350 Ncm .
Potentiometers with twist tags for mounting, which are available on request, are fixed by twisting the tags; for mounting holes, see Fig. 5.

TYPES

Fig. 4

Fig. 5

Composition of the catalogue number

$$
232235
$$

figure indicating the type \qquad
$0=$ without switch
$2=$ with s.p.d.t. rotary switch
$3=$ with s.p.s.t. rotary switch
$4=$ with d.p.s.t. push-pull switch 1A
5 = with d.p.s.t. push-pull switch, 2A
6 = with d.p.d.t. push-pull switch
7 = with d.p.s.t. rotary switch

$\ddot{\square}$code for resistance law and resistance value, see Tables 2 and 3

Table 1

plastic spindle type (Fig. 3)	8th to 10th figure of catalogue number	
	tags (Fig. 1)	pins (Fig. 2)
(a) plain, $\mathrm{d}=6 \mathrm{~mm}, \mathrm{~L}=18 \mathrm{~mm}$	706	756
$\mathrm{L}=30 \mathrm{~mm}$	703	753
$\mathrm{L}=60 \mathrm{~mm}$	707	757
(a) plain, $\mathrm{d}=1 / 4^{\prime \prime}, \quad \mathrm{L}=30 \mathrm{~mm}$	723	773
$\mathrm{L}=60 \mathrm{~mm}$	727	777
(b) with screwdriver slot ${ }^{1}$)	710	760
(c) short spindle with flat face	740	790
(d) long spindle with flat face		
$\mathrm{L}=30 \mathrm{~mm}$	743	793
$\mathrm{L}=60 \mathrm{~mm}$	747	797
(e) knurled spindle, $L=30 \mathrm{~mm}$	to be established to be established	
$\mathrm{L}=60 \mathrm{~mm}$		

${ }^{1}$) Not for potentiometers with a push-pull switch

TECHNICAL PERFORMANCE

Potentiometers (Data applicable to all types)
Table 2 - Linear resistance law

nom. resistance value $\left(\mathrm{R}_{\mathrm{n}}\right)^{*}$	curve Fig.6	Imax through slider contact (mA)	code in catalogue number
220	Ω	a	40
300	Ω	a	30
470	Ω	a	22
1	$\mathrm{k} \Omega$	a	16
2.2	$\mathrm{k} \Omega$	a	11
$4.7 \mathrm{k} \Omega$	a	7	19
10	$\mathrm{k} \Omega$	a	5
22	$\mathrm{k} \Omega$	a	3.5
47	$\mathrm{k} \Omega$	a	2
100	$\mathrm{k} \Omega$	a	1.4
220	$\mathrm{k} \Omega$	a	1
470	$\mathrm{k} \Omega$	a	0.65
1	$\mathrm{M} \Omega$	a	0.45
$2.2 \mathrm{M} \Omega$	a	0.32	04
$4.7 \mathrm{M} \Omega$	a	0.22	06
$400+600 \mathrm{k} \Omega$	e	0.45	07

Fig.6. Resistance variation with the angle of rotation, measured between S_{1} and S_{2}

[^3]Table 3 - Logarithmic resistance law

```nom. resistance value ( }\mp@subsup{\textrm{R}}{n}{}\mathrm{ ) 1)```	curve   Fig. 6	$\mathrm{I}_{\text {max }}$ through slider contact (mA)	min. resistance at the beginning $(\Omega)$	code in catalogue number
$1 \mathrm{k} \Omega$	b	10	$\leq 5$	24
$2.2 \mathrm{k} \Omega$	b	7	$\leq 5$	25
$4.7 \mathrm{k} \Omega$	b	4.5	$\leq 5$	26
$10 \mathrm{k} \Omega$	b	3.2	$\leq 10$	27
$22 \mathrm{k} \Omega$	b	2.2	$\leq 22$	28
$47 \mathrm{k} \Omega$	b	1.4	$\leq 35$	29
$100 \mathrm{k} \Omega$	b	1	$\leq 50$	31
$220 \mathrm{k} \Omega$	b	0.7	$\leq 50$	32
$470 \mathrm{k} \Omega$	b	0.45	$\leq 100$	33
$1 \mathrm{M} \Omega$	b	0.32	$\leq 500$	34
$2.2 \mathrm{M} \Omega$	b	0.22	$\leq 2200$	35
$300 \Omega$	f 2 )	20	$\leq 5$	59
$470 \Omega$	f 2 )	14	$\leq 5$	43
$1 \mathrm{k} \Omega$	$\mathrm{f}^{2}$ )	10	$\leq 5$	44
$2.2 \mathrm{k} \Omega$	$\mathrm{f}^{2}$ )	7	$\leq 5$	45
$4.7 \mathrm{k} \Omega$	f 2 )	4.5	$\leq 5$	46
$10 \mathrm{k} \Omega$	$\mathrm{f}^{2}$ )	3.2	$\leq 10$	47
$22 \mathrm{k} \Omega$	$\mathrm{f}^{2}$ )	2.2	$\leq 22$ 3)	48
$47 \mathrm{k} \Omega$	f 2)	1.4	$\leq 35$	49
$100 \mathrm{k} \Omega$	f 2 )	1	$\leq 50$	51
$220 \mathrm{k} \Omega$	f 2 )	0.7	$\leq 50$	52
$470 \mathrm{k} \Omega$	f 2 )	0.45	$\leq 100$	53
$1 \mathrm{M} \Omega$	f 2 )	0.32	$\leq 500$	54
$2.2 \mathrm{M} \Omega$	$\mathrm{f}^{2}$ )	0.22	$\leq 2200$	55
$20+200 \mathrm{k} \Omega$	c	0.7	$\leq 220$	67
$50+420 \mathrm{k} \Omega$	c	0.45	$\leq 470$	73
$100+900 \mathrm{k} \Omega$	c	0.32	$\leq 1000$	64
$0.2+2 \mathrm{M} \Omega$	c	0.22	$\leq 2200$	68
$0.5+1.7 \mathrm{k} \Omega$	d	7	$\leq 5$	81
$5+17 \mathrm{k} \Omega$	d	2.2	$\leq 22$	82
$10+37 \mathrm{k} \Omega$	d	1.4	$\leq 50$	86
$20+80 \mathrm{k} \Omega$	d	1	$\leq 100$	77
$50+170 \mathrm{k} \Omega$	d	0.7	$\leq 220$	83
$100+370 \mathrm{k} \Omega$	d	0.45	$\leq 500$	87
$200+800 \mathrm{k} \Omega$	d	0.32	$\leq 1000$	78
$0.5+1.7 \mathrm{M} \Omega$	d	0.22	$\leq 2200$	84

1) Measured between $S_{1}$ and $S_{3}$; for potentiometers with a tap, between $S_{1}$ and $S_{4}$ and between $S_{4}$ and $S_{3}$.
2) Negative logarithmic.
3) Minimum resistance values (in $\Omega$ ) at the end.

Tolerance on the nominal resistance
Resistance law
Minimum resistance at the tap
Contact resistance between carbon track and slider contact
linear resistance law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{n}}>4.7 \mathrm{k} \Omega$
linear resistance law, tap at 40\%
logarithmic resistance law
negative logarithmic resistance
law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{n}}>4.7 \mathrm{k} \Omega$
logarithmic resistance law, with tap
Insulation resistance between case and inter-
connected terminals, after damp heat test
(21 days, $\mathrm{T}_{\mathrm{amb}}=40{ }^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .=90-95 \%$ )
Maximum permissible dissipation
linear resistance law, at $40^{\circ} \mathrm{C}$

$$
\text { at } 70^{\circ} \mathrm{C}
$$

logarithmic resistance law, at $40^{\circ} \mathrm{C}$

$$
\text { at } 70^{\circ} \mathrm{C}
$$

Test voltage for 1 min between case and interconnected terminals
Limiting voltage
Working-temperature range
Category (I.E.C.68)
Effective angle of rotation
Operating torque
Permissible torque with slider at end stop
Potentiometers without switch (2322 350)
Mechanical angle of rotation
Permissible axial spindle load
See also section "Potentiometers".
$\pm 20 \%$
linear and logarithmic, see Fig. 6
$\leq 1 \%$ of $\mathrm{R}_{\mathrm{n}}$

$$
\begin{aligned}
& \leq 3 \% \text { of } R_{n} \\
& \leq 2.5 \% \text { of } R_{n} \\
& \leq 3 \% \text { of } R_{n} \\
& \leq 4 \% \text { of } R_{n} \\
& \leq 6 \% \text { of } R_{n} \\
& \leq 4 \% \text { of } R_{n} \\
& \leq 4 \% \text { of } R_{n}
\end{aligned}
$$

$$
>100 \mathrm{M} \Omega
$$

0.25 W
0.125 W
0.125 W
0.0625 W
$1000 \mathrm{~V}, 50 \mathrm{~Hz}$
500 Vp
500 V dc
-10 to $+70^{\circ} \mathrm{C}$
10/070/21
250-265 ${ }^{\circ}$
0.3-2 Ncm
$<80 \mathrm{Ncm}$
$300 \pm 5^{\circ}$
$\leq 100 \mathrm{~N}$

Potentiometers with single-pole rotary switch (2322 352 and 2322 353)

Breaking capacity
Test voltage for 1 min *, initially after damp heat test ( 21 days, $\left.\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .=90-95 \%\right)$
Contact resistance with a load of 250 Vac ,
0.5 A , initially after 10000 on-off switching operations with a load of $125 \mathrm{~V}_{\mathrm{ac}}, 1 \mathrm{~A}$

Insulation resistance *, initially
after damp heat test ( 21 days,
$\left.\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .=90-95 \%\right)$
Permissible axial spindle load
Switching torque
Switching angle
Total angle of rotation
$250 \mathrm{~V}_{\mathrm{ac}}, 0.5 \mathrm{~A}, \cos \varphi=0.9$
$125 \mathrm{~V}_{\mathrm{ac}}, 1 \mathrm{~A}, \cos \varphi=0.9$
2000 V, 50 Hz
$500 \mathrm{~V}, 50 \mathrm{~Hz}$
$<25 \mathrm{~m} \Omega$
$\leq 200 \mathrm{~m} \Omega$
(average value: $\leq 100 \mathrm{~m} \Omega$ )
$>100 \mathrm{M} \Omega$
$>2 \mathrm{M} \Omega$
$\leq 100 \mathrm{~N}$
4-8 Ncm
$20 \pm 20$
$300 \pm 5^{\circ}$

See also section "Potentiometers".
Potentiometers with double-pole rotary switch (2322 357)

Breaking capacity
Test voltage for 1 min *
Contact resistance, initially
after 10000 on-off switching operations
Insulation resistance*, initially after damp heat test (21 days, $\left.\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .=90-95 \%\right)$
Permissible axial spindle load
Switching torque
Switching angle
Total angle of rotation
Creepage paths and clearances
$250 \mathrm{~V}_{\mathrm{ac}}, 1.5 \mathrm{~A}, \cos \varphi=0.8$
$250 \mathrm{~V}_{\mathrm{dc}}, 1.5 \mathrm{~A}$
2000 V, 50 Hz
$<10 \mathrm{~m} \Omega$
$<200 \mathrm{~m} \Omega$
$>100 \mathrm{M} \Omega$
$>2 \mathrm{M} \Omega$
$\leq 100 \mathrm{~N}$
$4-8 \mathrm{Ncm}$
25-35
$300 \pm 5^{\circ}$
$\geq 4 \mathrm{~mm}$

See also section "Potentiometers".

[^4]Potentiometers with single throw push-pull switch (2322 354, 2322 355)
Breaking capacity
potentiometers 2322354 ....
potentiometers 2322355 .....
Test voltage for 1 min*
Contact resistance, initially
after 10000 on-off switching operations
Insulation resistance *, initially
after damp heat test ( 21 days,
$\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $\left.=90-95 \%\right)$
Permissible axial spindle load
Switching force
potentiometers 2322354 .....
potentiometers 2322355 .....
Switching stroke
Mechanical angle of rotation
Tangential backlash

$$
\begin{aligned}
& 250 \mathrm{~V}_{\mathrm{ac}}, 1 \mathrm{~A}, \cos \varphi=0.8 \\
& 250 \mathrm{~V}_{\mathrm{dc}}, 1 \mathrm{~A} \\
& 250 \mathrm{~V}, 2 \mathrm{~A}, \cos \varphi=0.8 \\
& 250 \mathrm{~V}, 2 \mathrm{dc} \\
& 2200 \mathrm{~V}, 50 \mathrm{~Hz} \\
& <10 \mathrm{~m} \Omega \\
& <200 \mathrm{~m} \Omega \\
& >100 \mathrm{M} \Omega \\
& >2 \mathrm{M} \Omega \\
& \leq 100 \mathrm{~N} \\
& 1.6-2.3 \mathrm{~N} \\
& 3.5-4.5 \mathrm{~N} \\
& 3.5 \mathrm{~mm} \\
& 302 \pm 5^{\circ} \\
& \leq 90
\end{aligned}
$$

See also section "Potentiometers".
Potentiometers with double throw push-pull switch (2322 356)

## Breaking capacity

Terminal to case test voltage for 1 min
Contact resistance, initially
after 10000 on-off switching operations
Insulation resistance *, initially
after damp heat test ( 21 days,
$\mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}$, R.H. $\left.=90-95 \%\right)$
Permissible axial spindle load
Switching force
Switching stroke
Mechanical angle of rotation
Tangential backlash

$$
\begin{aligned}
& 250 \mathrm{Vac}, 0.5 \mathrm{~A}, \cos \varphi=0.9 \\
& 125 \mathrm{Vac}, 1 \mathrm{~A}, \cos \varphi=0.9 \\
& 500 \mathrm{~V}, \\
& <10 \mathrm{~m} \Omega \\
& <200 \mathrm{~m} \Omega \\
& >100 \mathrm{M} \Omega \\
& >2 \mathrm{M} \Omega \\
& \leq 50 \mathrm{~N} \\
& 2-3.5 \mathrm{~N} \\
& 3.5 \mathrm{~mm} \\
& 302 \pm 5^{\circ} \\
& \leq 9^{\circ}
\end{aligned}
$$

See also section "Potentiometers".

[^5]
## 23 mm TANDEM CARBON POTENTIOMETERS



RZ 27317-13
Resistance range
linear resistance law
logarithmic resistance law
Maximum permissible dissipation

- linear resistance law, at $40^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$
logarithmic resistance law, at $40{ }^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$
Potentiometers 2322360 .....
$2322362 \ldots$
2322364 ....
$2322365 \ldots$.
$2322366 \ldots$

$$
\begin{aligned}
& 1 \mathrm{k} \Omega-4.7 \mathrm{M} \Omega \\
& 1 \mathrm{k} \Omega-2.2 \mathrm{M} \Omega \\
& 0.25 \mathrm{~W} \\
& 0.125 \mathrm{~W} \\
& 0.125 \mathrm{~W} \\
& 0.0625 \mathrm{~W} \\
& \text { without switch } \\
& \text { with s.p.s.t. rotary switch } \\
& \text { with d.p.s.t. push-pull switch, 1A } \\
& \text { with d.p.s.t. push-pull switch, 2A } \\
& \text { with d.p.s.t. rotary switch }
\end{aligned}
$$

## APPLICATION

For use in a wide variety of electronic equipment, especially for stereophonic applications

## CONSTRUCTION

The tandem potentiometers are composed of two single potentiometers which are ganged; their resistance values and gradings are as identical as possible. Both potentiometers consist of an annular carbon track, which is fitted on to a base plate of resin bonded paper and housed in a metal case.
The terminals $S_{1}$ and $S_{3}$ (see Figs 1 and 2) are connected to the ends of the carbon track; $\mathrm{S}_{2}$ is connected, via a contact ring, to the slider contact.
The potentiometers can be supplied with a tap $\left(\mathrm{S}_{4}\right)$ at $40 \%$ of the total mechanical angle of rotation, that is to say at $40 \%$ of the nominal resistance value for potentiometers with linear resistance law and at $20 \%$ or at $10 \%$ of the nominal resistance value for potentiometers with logarithmic resistance law.
The material of the spindle may be poly-acetal resin (preferred types) or steel; the terminals of the potentiometer may be pins for vertical mounting on printedwiring boards or soldering tags.
The potentiometers are provided with a mounting bushing; types with twist tags are available on request.

Dimensions in mm (plastic spindles)
For the dimensions $L$ and $d$, see Table 1.


Fig. 1a. Potentiometers without switch, plain spindle, soldering tags (2322 360)


Fig. lb. Potentiometers with s.p.s.t. rotary switch, plain spindle, soldering tags (2322 362)


Fig.1c. Potentiometers with d.p.s.t. push-pull switch, plain spindle, soldering tags (2322 364, 2322 365)


Fig. 1d. Potentiometers with d.p.s.t. rotary switch, plain spindle, soldering tags (2322 366)


Fig.2. Detail showing pins for printed-wiring (applicable to all types). Potentiometers with a distance between $\mathrm{S}_{1}$ and $\mathrm{S}_{3}$ of 15.2 mm (6e) instead of 20.3 $\mathrm{mm}(8 \mathrm{e})$ are available on request ( $\mathrm{e}=0.1$ inch ).

## Spindle types

(a) Plain spindle, see Fig. 1 and Table 1
(b) Spindle with screwdriver slot

(c) Short spindle with flat face

(d) Long spindle with flat face For L see Table 1

(e) Knurled spindle

For L see Table 1


Fig. 3. Spindles in fully counter clockwise position ('off" position)

## CHASSIS MOUNTING

The potentiometers can be fixed to a chassis with the supplied mounting nut; for mounting holes, see Fig. 4. The minimum thickness of the chassis is 1.5 mm . The maximum torque for tightening the nut is 350 Ncm .
Potentiometers with twist tags for mounting, which are available on request, are fixed by twisting the tags; for mounting holes, see Fig. 5.


Fig. 4


Fig. 5

TYPES
Composition of the catalogue number

$$
232236
$$

figure indicating the type $\qquad$
$0=$ without switch
$2=$ with s.p.s.t. rotary switch
4 = with d.p.s.t. push-pull switch, 1A
code for resistance law and resistance value, see Tables 2 and 3

5 = with d.p.s.t. push-pull switch, 2 A
$6=$ with d.p.s.t. rotary switch

Table 1

$\left.{ }^{1}\right)$ Not applicable to types 2322 364, 2322365 and 2322366 .

## TECHNICAL PERFORMANCE

Potentiometers (data applicable to all types)
Table 2 - Linear resistance law

$\begin{aligned} & \text { nom. resistance } \\ & \text { value } \\ & \left.\left(\mathrm{R}_{1_{n}} \text { and } \mathrm{R}_{2_{n}}\right)^{*}\right) \end{aligned}$	curve,   Fig. 6a and 6 b	Imax through slider contact (mA)	code in catalogue number
$1 \mathrm{k} \Omega$	a	16	04
$2.2 \mathrm{k} \Omega$	a	11	05
$4.7 \mathrm{k} \Omega$	a	7	06
$10 \mathrm{k} \Omega$	a	5	07
$22 \mathrm{k} \Omega$	a	3.5	08
$47 \mathrm{k} \Omega$	a	2.2	09
$100 \mathrm{k} \Omega$	a	1.4	11
$220 \mathrm{k} \Omega$	a	1	12
$470 \mathrm{k} \Omega$	a	0.65	13
$1 \mathrm{M} \Omega$	a	0.45	14
$2.2 \mathrm{M} \Omega$	a	0.32	15
$4.7 \mathrm{M} \Omega$	a	0.22	16
$400+600 \mathrm{k} \Omega$	e	0.45	89
$22 \mathrm{k} \Omega^{* *}$ )	g	3.5	92
$47 \mathrm{k} \Omega{ }^{* *}$ )	g	2.2	93
$100 \mathrm{k} \Omega{ }^{* *}$ )	g	1.4	94
220 k $\Omega^{* *}$ )	g	1	95
$470 \mathrm{k} \Omega^{* *}$ )	g	0.65	96
$1 \mathrm{M} \Omega^{* *}$ )	$g$	0.45	97



Fig. 6a

[^6]Table 3 - Logarithmic resistance law

$\begin{gathered} \text { nom. resistance } \\ \text { value } \\ \left.\left(\mathrm{R}_{\mathrm{n}} \text { and } \mathrm{R}_{2_{n}}\right)^{*}\right) \end{gathered}$	curve   Fig. 6a	$I_{\text {max }}$ through slider contact	min. resistance at the beginning   ( $\Omega$ )	code in catalogue number
$1 \mathrm{k} \Omega$	b	10	$\leq 5$	24
$2.2 \mathrm{k} \Omega$	b	7	$\leq 5$	25
$4.7 \mathrm{k} \Omega$	b	4.5	$\leq 5$	26
$10 \mathrm{k} \Omega$	b	3.2	$\leq 10$	27
$22 \mathrm{k} \Omega$	b	2.2	$\leq 22$	28
$47 \mathrm{k} \Omega$	b	1.4	$\leq 35$	29
$100 \mathrm{k} \Omega$	b	1	$\leq 50$	31
$220 \mathrm{k} \Omega$	b	0.7	$\leq 50$	32
$470 \mathrm{k} \Omega$	b	0.45	$\leq 100$	33
$1 \mathrm{M} \Omega$	b	0.32	$\leq 500$	34
$2.2 \mathrm{M} \Omega$	b	0.22	$\leq 2200$	35
$20+200 \mathrm{k} \Omega$	c	0.7	$\leq 220$	67
$50+420 \mathrm{k} \Omega$	c	0.45	$\leq 470$	73
$100+900 \mathrm{k} \Omega$	c	0.32	$\leq 1000$	64
$0.2+2 \mathrm{M} \Omega$	c	0.22	$\leq 2200$	68
$5+17 \mathrm{k} \Omega$	d	2.2	$\leq 22$	82
$10+37 \mathrm{k} \Omega$	d	1.4	$\leq 50$	86
$20+80 \mathrm{k} \Omega$	d	1	$\leq 100$	77
$50+170 \mathrm{k} \Omega$	d	0.7	$\leq 220$	83
$200+800 \mathrm{k} \Omega$	d	0.32	$\leq 1000$	78
$0.5+1.7 \mathrm{M} \Omega$	d	0.22	$\leq 2200$	84



Fig. 6b

[^7]Tolerance on the nominal resistance
Resistance law
Ganging tolerance
linear resistance law
at values between 10 and $90 \%$ of $R_{n}$
with a tap at $40 \%$ and
at attenuations between 0 and -20 dB
at attenuations between - 20 and -28 dB
logarithmic resistance law
at attenuations between 0 and -20 dB
at attenuations between -20 and -30 dB
at attenuations between - 30 and -40 dB
with a tap at $10 \%$ or $20 \%$ and
at attenuations between 0 and -20 dB
at attenuations between - 20 and -30 dB
at attenuations between - 30 and -34 dB
Minimum resistance at the tap
Contact resistance between carbon track and slider contact
linear resistance law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{n}}>4.7 \mathrm{k} \Omega$
with a tap at $40 \%$
logarithmic resistance law
with a tap
balance potentiometers
Insulation resistance between case and interconnected terminals after damp heat test
(21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .=90-95 \%$ )
Maximum permissible dissipation
linear resistance law, at $40^{\circ} \mathrm{C}$
at $70^{\circ} \mathrm{C}$
logarithmic resistance law, at $40^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$
Test voltage for 1 min between case and interconnected terminals
Limiting voltage
Working-temperature range
Category (I.E.C.68)
Effective angle of rotation
Operating torque
Permissible torque with slider at end stop
$\pm 20 \%$
linear and logarithmic, see Fig. 6
$<2 \mathrm{~dB}$
$<2 \mathrm{~dB}$
$<3 \mathrm{~dB}$
$<2 \mathrm{~dB}$
$<3 \mathrm{~dB}$
$<4 \mathrm{~dB}$
$<2 \mathrm{~dB}$
$<3 \mathrm{~dB}$
$<4 \mathrm{~dB}$
$\leq 1 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 3 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 2.5 \%$ of $R_{n}$
$\leq 3 \%$ of $R_{n}$
$\leq 4 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 4 \%$ of $R_{n}$
$\leq 4 \%$ of $\mathrm{R}_{\mathrm{n}}$
$>100 \mathrm{M} \Omega$
0.25 W
0.125 W
0.125 W
0.0625 W
$1000 \mathrm{~V}, 50 \mathrm{~Hz}$
500 Vp
$500 \mathrm{~V}_{\mathrm{dc}}$

- 10 to $+70{ }^{\circ} \mathrm{C}$

10/070/21
250-265 ${ }^{\circ}$
$0.7-3.5 \mathrm{Ncm}$
$\leq 80 \mathrm{Ncm}$

Potentiometers without switch (2322 360)

Mechanical angle of rotation
Permissible axial spindle load
$300 \pm 5^{\circ}$
$\leq 100 \mathrm{~N}$

See also section "Potentiometers".
Potentiometers with single-pole rotary switch (2322 362)

Breaking capacity
Test voltage for 1 min *, initially
after damp heat test ( 21 days,
$\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $\left.=90-95 \%\right)$
Contact resistance with a load of
$250 \mathrm{~V}_{\mathrm{ac}}, 0.5 \mathrm{~A}$, initially
after 10000 on-off switching operations
with a load of $125 \mathrm{~V}_{\mathrm{ac}}, 1 \mathrm{~A}$
Insulation resistance*, initially
after damp heat test ( 21 days,
$\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $\left.=90-95 \%\right)$
Permissible axial spindle load
Switching torque
Switching angle
Total angle of rotation
$250 \mathrm{~V}_{\mathrm{ac}}, 0.5 \mathrm{~A}, \cos \varphi=0.9$
$125 \mathrm{~V}_{\mathrm{ac}}, 1 \mathrm{~A}, \cos \varphi=0.9$
$2000 \mathrm{~V}, 50 \mathrm{~Hz}$
500 V, 50 Hz
$<25 \mathrm{~m} \Omega$
$\leq 200 \mathrm{~m} \Omega$
(average value: $\leq 100 \mathrm{~m} \Omega$ )
$>100 \mathrm{M} \Omega$
$>2 \mathrm{M} \Omega$
$\leq 100 \mathrm{~N}$
$4.5-9.5 \mathrm{Ncm}$
$20 \pm 2^{0}$
$300 \pm 5^{\circ}$

See also section "Potentiometers".

[^8]Potentiometers with single throw push-pull switch (2322 364, 2322 365)
Breaking capacity
potentiometers 2322364 ....
potentiometers 2322365 .....
Test voltage for $1 \mathrm{~min}^{*}$
Contact resistance, initially
after 100000 n -off switching operations
Insulation.resistance*, initially after damp heat test (21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $=90-95 \%$ )
Permissible axial spindle load
Switching force
potentiometers 2322364 .....
potentiometers 2322365 .....
Switching stroke
Mechanical angle of rotation
Tangential backlash
See also section "Potentiometers".
$250 \mathrm{~V}_{\mathrm{ac}}, 1 \mathrm{~A}, \cos \varphi=0.8$ $250 \mathrm{~V}_{\mathrm{dc}}, 1 \mathrm{~A}$
$250 \mathrm{~V}_{\mathrm{ac}}, 2 \mathrm{~A}, \cos \varphi=0.8$
$250 \mathrm{~V}_{\mathrm{dc}}, 2 \mathrm{~A}$
$2200 \mathrm{~V}, 50 \mathrm{~Hz}$
$<10 \mathrm{~m} \Omega$
$<200 \mathrm{~m} \Omega$
$>100 \mathrm{M} \Omega$
$>2 \mathrm{M} \Omega$
$\leq 100 \mathrm{~N}$
$1.6-2.3 \mathrm{~N}$
$3.5-4.5 \mathrm{~N}$
3.5 mm
$302 \pm 5^{0}$
$\leq 90$

Potentiometers with double-pole rotary switch (2322 366)

Breaking capacity
Test voltage for 1 min *
Contact resistance, initially
after 10000 on-off switching operations
Insulation resistance *, initially
after damp heat test ( 21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$,
R.H. $=90-95 \%$ )

Switching torque
Switching angle
Total angle of rotation
Creepage paths and clearances
See also section "Potentiometers".

$$
\begin{aligned}
& 250 \mathrm{Vac}, 1.5 \mathrm{~A}, \cos \varphi=0.8 \\
& 250 \mathrm{~V}, 1.5 \mathrm{~A} \\
& 2000 \mathrm{~V}, 50 \mathrm{~Hz} \\
& <10 \mathrm{~m} \Omega \\
& <200 \mathrm{~m} \Omega \\
& >100 \mathrm{M} \Omega \\
& >2 \mathrm{M} \Omega \\
& 4-8 \mathrm{Ncm} \\
& 25-35^{\circ} \\
& 300 \pm 5^{\circ} \\
& \geq 4 \mathrm{~mm}
\end{aligned}
$$

[^9]
## 16 mm SINGLE CARBON POTENTIOMETERS



RZ 27512-4

## Resistance law

Resistance range
linear resistance law
logarithmic resistance law
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
Potentiometers 2322380 .....
$2322387 \ldots$
$2322388 \ldots$.

2322389 .....
linear and logarithmic
$1 \mathrm{k} \Omega-2.2 \mathrm{M} \Omega$
$1 \mathrm{k} \Omega-1 \mathrm{M} \Omega$
0.1 W
0.05 W
without switch, with soldering tags or printed-wiring pins, with mounting bushing
with s.p.s.t. rotary switch, with soldering tags or printed-wiring pins, with mounting bushing
with s.p.s.t. rotary switch, with soldering tags or printed-wiring pins, with twist tags for mounting
without switch, with bent printed-wiring pins, with mounting bushing

## APPLICATION

For use in a wide variety of electronic equipment, especially in smalltransistor portable and car radio receivers.

## CONSTRUCTION

An annular carbon track is fitted on to a base plate of resin bonded paper and housed in a metal case. The terminals $\mathrm{S}_{1}$ and $\mathrm{S}_{3}$ (see Fig.1) are connected to the ends of the carbon track; terminal $S_{2}$ is connected to the slider contact.
The potentiometers with logarithmic resistance law can be supplied with a tap (terminal $\S_{4}$ ) at $10 \%$ or at $20 \%$ of the nominal resistance value.

The potentiometers are provided with plastic spindles of poly-acetal resin or with steel spindles ${ }^{1}$ ). The plastic spindle forms one part with the rotor inside the potentiometer.
The potentiometers 2322 380, 2322387 and 2322388 are available with soldering tags suited for use in conventional wiring, as well as with pins suited for printedwiring connection. The potentiometers 2322389 are provided with bent pins for printed-wiring connection.

1) Potentiometers with plastic spindles are preferred types.

Dimensions in mm (plastic spindles)
For the dimensions L, see Table I


Fig. lb. Potentiometers 2322389 .....; plain spindle


Fig.1c. Potentiometers 2322387 ..... with soldering tags;
plain spindle


Hole pattern for mounting on a printed-wiring board.

Fig.ld. Potentiometers $2322388 \ldots$. with pins for printed-wiring; plain spindle Spindle types
(a) Plain spindle, see Fig. 1
(b) spindle with screwdriver slot
(c) spindle with flat face


Fig.2. Plastic spindles in fully counter clockwise position ("off" position)

## CHASSIS MOUNTING

The required mounting holes in the chassis are given below:

- Fig. 3 for potentiometers with twist tags. The potentiometers can be fixed by twisting the tags.
- Fig. 4 for potentiometers with mounting bushings. The potentiometers can be fixed with the supplied mounting nut. The maximum torque for tightening the nut is 100 Ncm .


Fig. 3. Mounting holes for potentiometers with twist tags.


Fig.4. Mounting holes for potentiometers with mounting bushings.

TYPES
Composition of the catalogue number
232238.
figure indicating the type
$0=$ without switch
7 = with s.p.s.t. rotary switch, with mounting bushing
$8=$ with s.p.s.t. rotary switch, with twist tags.
9 = without switch, with bent p.w. pins

Table I

spindle type (Fig. 2)	8th to l0th figure of   catalogue number 1 )	
	potentiometers   with tags	potentiometers   with pins
(b) with screwdriver slot	710	760
(a) plain, $\mathrm{L}=10 \mathrm{~mm}$	711	761
$\mathrm{~L}=15 \mathrm{~mm}$	712	762
$\mathrm{~L}=20 \mathrm{~mm}$	715	765
$\mathrm{~L}=30 \mathrm{~mm}$	703	753
(c) with flat face, $\mathrm{L}_{1}=10 \mathrm{~mm}, \mathrm{~L}_{2}=3.5 \mathrm{~mm}$	742	792
$\mathrm{~L}_{1}=15 \mathrm{~mm}, \mathrm{~L}_{2}=8.5 \mathrm{~mm}$	744	794
$\mathrm{~L}_{1}=20 \mathrm{~mm}, \mathrm{~L}_{2}=8.5 \mathrm{~mm}$	745	795
$\mathrm{~L}_{1}=20 \mathrm{~mm}, \mathrm{~L}_{2}=13.5 \mathrm{~mm}$	746	796

1) For the preferred types (plastic spindle); for potentiometers with a steel spindle the 8 th figure is 0 instead of 7 .

TECHNICAL PERFORMANCE

## Potentiometers

Table II - Linear resistance law

nom. resistance   value $\left.\left(\mathrm{R}_{\mathrm{n}}\right)^{1}\right)$	curve,   Fig.5	Imax through   slider contact   $(\mathrm{mA})$	code in   catalogue number
$1 \mathrm{k} \Omega$	a	10	04
$2.2 \mathrm{k} \Omega$	a	7	05
$4.7 \mathrm{k} \Omega$	a	5	06
$10 \mathrm{k} \Omega$	a	3.2	07
$22 \mathrm{k} \Omega$	a	2.2	08
$47 \mathrm{k} \Omega$	a	1.5	09
$100 \mathrm{k} \Omega$	a	1	11
$220 \mathrm{k} \Omega$	a	0.7	12
$470 \mathrm{k} \Omega$	a	0.5	13
$1 \mathrm{M} \Omega$	a	0.32	14
$2.2 \mathrm{M} \Omega$	a	0.22	15



Fig. 5. Resistance variations with the angle of rotation
${ }^{1}$ ) Measured between the terminals $S_{1}$ and $S_{3}$.

Table III - Logarithmic resistance law

nom. resistance   value $\left.\left(\mathrm{R}_{\mathrm{n}}\right)^{1}\right)$	curve,   Fig.	$\mathrm{I}_{\text {max }}$ through   slider contact   $(\mathrm{mA})$	min. resistance   at the beginning   $(\Omega)$	code in   catalogue   number
$1 \mathrm{k} \Omega$	b	7	$\leq 5$	24
$2.2 \mathrm{k} \Omega$	b	5	$\leq$	5
$4.7 \mathrm{k} \Omega$	b	3.2	$\leq$	5
$10 \mathrm{k} \Omega$	b	2.2	$\leq 10$	26
$22 \mathrm{k} \Omega$	b	1.5	$\leq 20$	27
$47 \mathrm{k} \Omega$	b	1	$\leq 35$	28
$100 \mathrm{k} \Omega$	b	0.7	$\leq 50$	29
$220 \mathrm{k} \Omega$	b	0.5	$\leq 50$	31
$470 \mathrm{k} \Omega$	b	0.32	$\leq 100$	32
$1 \mathrm{M} \Omega$	b	0.22	$\leq 200$	33
$2+8 \mathrm{k} \Omega$	c	2.2	$\leq 10$	34
$5+17 \mathrm{k} \Omega$	c	1.5	$\leq 20$	76
$50+170 \mathrm{k} \Omega$	c	0.5	$\leq 50$	82
$5+42 \mathrm{k} \Omega$		1	$\leq 35$	83
$10+37 \mathrm{k} \Omega$	c	1	$\leq 35$	72
$20+80 \mathrm{k} \Omega$	c	0.7	$\leq 50$	86
$0.5+1.7 \mathrm{M} \Omega$	c	0.15		77

1) Measured between the terminals $S_{1}$ and $S_{3}$; for potentiometers with a tap, between the terminals $S_{1}$ and $S_{4}$ and between $S_{4}$ and $S_{3}$

Tolerance on the nominal resistance
Resistance law
Minimum resistance at the tap
Contact resistance between carbon track and slider contact
linear resistance law
logarithmic resistance law
Insulation resistance between case and interconnected terminals, after damp heat test ( 21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$,
R.H. $=90$ - $95 \%$ )
potentiometers with steel spindles $\quad>10 \mathrm{M} \Omega$
potentiometers with plastic spindles
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
0.1 W
0.05 W

Test voltage for 1 min between case and interconnected terminals $500 \mathrm{~V}, 50 \mathrm{~Hz}$

Working-temperature range
potentiometers with steel spindles
potentiometers with plastic spindles

## Climatic robustness

potentiometers with steel spindles
potentiometers with plastic spindles
Effective angle of rotation
Mechanical angle of rotation
Operating torque
Permissible torque with slider at end stop plastic spindles with flat face other spindles

Permissible axial spindle load
Axial spindle play
Radial spindle play, measured at a distance of 1 cm from the mounting panel with a load of 2.5 N

Life

Switches
Breaking capacity
Test voltage for $1 \min ^{1}$ ), initially after damp heat test ( 21 days,
$\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $\left.=90-95 \%\right)$
Contact resistance, initially after 10000 on-off switching operations
Insulation resistance ${ }^{1}$ ), initially after damp heat test ( 21 days, $\mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}$, R.H. $\left.=90-95 \%\right)$
Switching torque
Switching angle
Total angle of rotation
-10 to $+70^{\circ} \mathrm{C}$
-20 to $+70^{\circ} \mathrm{C}$
category 10/070/21 (I.E.C.68)
category 20/070/21 (I.E.C.68)
245-260
$270 \pm 5^{\circ}$
0.3-1.5 Ncm
$\leq 40 \mathrm{Ncm}$
$\leq 60 \mathrm{Ncm}$
$\leq 100 \mathrm{~N}$
$<0.5 \mathrm{~mm}$
$<0.2 \mathrm{~mm}$
in excess of 10000 cycles
$12 \mathrm{~V}_{\mathrm{dc}}, 2 \mathrm{~A}$
$500 \mathrm{~V}_{\mathrm{dc}}$
$100 \mathrm{~V}_{\mathrm{dc}}$
$<10 \mathrm{~m} \Omega$
$<50 \mathrm{~m} \Omega$ (average value $<25 \mathrm{~m} \Omega$ )
$>10 \mathrm{M} \Omega$
$>2 \mathrm{M} \Omega$

1. 5-4 Ncm
$20 \pm 2^{\circ}$
$292 \pm 5^{\circ}$
[^10]
## TANDEM CARBON POTENTIOMETERS



## RZ 23963-3

Resistance law
linear and logarithmic
Resistance range
linear resistance law
$1 \mathrm{k} \Omega-2.2 \mathrm{M} \Omega$
logarithmic resistance law
$1 \mathrm{k} \Omega-1 \mathrm{M} \Omega$
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
0.1 W
logarithmic resistance law 0.05 W

## APPLICATION

For use in a wide variety of electronic equipment, especially where small dimensions are required, e.g. transistorised apparatus for stereophonic purposes.

## CONSTRUCTION

The tandem potentiometers are composed of two annular carbon tracks, fitted on base plates of resin bonded paper, which are situated in one housing. The base plates are placed in such a way that the tracks are opposite each other.
The soldering tags $S_{1}$ and $S_{3}$ (see Fig.1) are connected to the ends of the carbon track; soldering tag $S_{2}$ is connected, via a contact ring, to the slider contact.
Potentiometers with logarithmic resistance law can be supplied with a tap (terminal $S_{4}$ ) at $20 \%$ of the nominal resistance value.
The potentiometers are available with soldering tags suited for use in conventional wiring, as well as with pins suited for printed-wiring connection.

## Dimensions in mm

For the dimensions L, see Table I

a. Potentiometers with soldering tags; plain spindle

b. Potentiometers with pins for printed-wiring connection; plain spindle
c. spindle with flat face


Fig.1. Potentiometers $2322390 \ldots$ and their various spindle types. Spindles in fully counter clockwise position.

## AVAILABLE TYPES

Table I

spindle type		code in catalog number	
		potentiometers   with tags	potentiometers   with pins
plain, $\mathrm{L}=10 \mathrm{~mm}$	a, b	711	
$\mathrm{~L}=15 \mathrm{~mm}$	a, b	712	761
$\mathrm{~L}=20 \mathrm{~mm}$	a, b	715	762
$\mathrm{~L}=30 \mathrm{~mm}$	a, b	703	765
with flat face, L $=10 \mathrm{~mm}$	c	742	753
$\mathrm{~L}=15 \mathrm{~mm}$	c	744	792
$\mathrm{~L}=20 \mathrm{~mm}$	c	746	794

TECHNICAL PERFORMANCE
Table II - Linear resistance law

nom. resistance   value $\left.\left(R_{\mathrm{n}}\right)^{1}\right)$	curve,   Fig.2	Imax through   slider contact   $(\mathrm{mA})$	code in   catalog number
$1 \mathrm{k} \Omega$	a	10	04
$2.2 \mathrm{k} \Omega$	a	7	05
$4.7 \mathrm{k} \Omega$	a	5	06
$10 \mathrm{k} \Omega$	a	3.2	07
$22 \mathrm{k} \Omega$	a	2.2	08
$47 \mathrm{k} \Omega$	a	1.5	09
$100 \mathrm{k} \Omega$	a	1	11
$220 \mathrm{k} \Omega$	a	0.7	12
$470 \mathrm{k} \Omega$	a	0.5	13
$1 \mathrm{M} \Omega$	a	0.32	14
$2.2 \mathrm{M} \Omega$	a	0.22	15
$10 \mathrm{k} \Omega 2)$	g	3.2	91
$22 \mathrm{k} \Omega 2)$	g	2.2	92
$47 \mathrm{k} \Omega 2)$	g	1.5	93
$100 \mathrm{k} \Omega 2)$	g	1	94
$220 \mathrm{k} \Omega 2)$	g	0.7	95
$470 \mathrm{k} \Omega 2)$	g	0.5	96

[^11]Table III - Logarithmic resistance law

nom. resistance   value $\left.\left(\mathrm{R}_{\mathrm{n}}\right)^{1}\right)$	curve,   Fig.2	$\mathrm{I}_{\text {max through }}$   slider contact   $(\mathrm{mA})$	min. resistance   at the beginning   $(\Omega)$	code in   catalog   number
$1 \mathrm{k} \Omega$	b	7	5	24
$2.2 \mathrm{k} \Omega$	b	5	5	25
$4.7 \mathrm{k} \Omega$	b	3.2	5	26
$10 \mathrm{k} \Omega$	b	2.2	10	27
$22 \mathrm{k} \Omega$	b	1.5	20	28
$47 \mathrm{k} \Omega$	b	1	35	29
$100 \mathrm{k} \Omega$	b	0.7	50	31
$220 \mathrm{k} \Omega$	b	0.5	50	32
$470 \mathrm{k} \Omega$	b	0.32	100	33
$1 \mathrm{M} \Omega$	b	0.22	200	34
$2+8 \mathrm{k} \Omega$	c	2.2	10	76
$5+17 \mathrm{k} \Omega$	c	1.5	22	82
$50+170 \mathrm{k} \Omega$	c	0.5	50	83



Fig.2. Resistance variations with the angle of rotation

[^12]Tolerance on the nominal resistance
Resistance law
Ganging tolerance
linear resistance law
at values between 10 and $90 \%$ of $R_{n}$
logarithmic resistance law
at attenuations between 0 and -20 dB
at attenuations between -20 and -30 dB
at attenuations between -30 and -40 dB
with a tap at $20 \%$ and
at attenuations between 0 and -20 dB
at attenuations between -20 and -30 dB
at attenuations between -30 and -34 dB
Minimum resistance at the tap
Contact resistance between carbon track
and slider contact
linear resistance law
logarithmic resistance law
logarithmic resistance law, tap at 20\%
balance potentiometers
Insulation resistance between case and interconnected terminals after damp heat test
(21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $=90-95 \%$ )
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
Test voltage for 1 min between case and interconnected terminals
Working-temperature range
Climatic robustness
Effective angle of rotation
Mechanical angle of rotation
Operating torque
Permissible torque with slider at end stop
Permissible axial spindle load
Axial spindle play
$\pm 20 \%$
linear and logarithmic, see Fig. 2
$<2 \mathrm{~dB}$
$<2 \mathrm{~dB}$
$<3 \mathrm{~dB}$
$<4 \mathrm{~dB}$
$<2 \mathrm{~dB}$
$<3 \mathrm{~dB}$
$<4 \mathrm{~dB}$
$\leq 1.5 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 4 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 6 \%$ of $R_{n}$
$\leq 6 \%$ of $R_{n}$
$\leq 6 \%$ of $R_{n}$
$>10 \mathrm{M} \Omega$
0.1 W
0.05 W
$500 \mathrm{~V}, 50 \mathrm{~Hz}$
-10 to $+70{ }^{\circ} \mathrm{C}$
category 10/070/21 (I.E.C. 68)
245-260 ${ }^{\circ}$
$285 \pm 50$
0.5-2 Ncm
$\leq 50 \mathrm{Ncm}$
$\leq 30 \mathrm{~N}$
$<0.8 \mathrm{~mm}$

Radial spindle play, measured at a distance of 1 cm from the mounting panel with a load of 2.5 N
$<0.2 \mathrm{~mm}$
Life
in excess of 10000 cycles

## MOUNTING



The potentiometers with soldering tags can be fixed on a chassis with the supplied mounting nut. The maximum torque for tightening the nut is 100 Ncm .

The potentiometers with pins can be mounted on printed-wiring boards with a pitch of 2.54 mm .

Fig.3. Mounting holes in the chassis

## COMPOSITION OF THE CATALOG NUMBER

2322390

code for resistance law and resistance value, see Tables II and III

## MINIATURE CARBON TRIMMING POTENTIOMETERS



RZ 25706-4

Linear resistance law
Resistance range

## APPLICATION

These potentiometers are destined for pre-set resistance controls with provision for re-adjustments. Due to their miniature size these high-reliable potentiometers are very suitable for use in transistorised equipment.

## CONSTRUCTION

The annular carbon track is riveted on to a base plate of resin bonded paper. The stop is formed by the tag for the slider. For adjustment the slider has been provided with a central screw-driver slot and notches on the outer edge, or with a knob with central screw-driver slot.
Versions for vertical mounting as well as for horizontal mounting on printed-wiring boards are available. The tags will fit printed-wiring boards with a pitch of 2.54 mm .

The potentiometers are marked with the nominal resistance value.

## Dimensions in mm

Potentiometers for vertical mounting; without knob.


Potentiometers for horizontal mounting; without knob.



Potentiometers for vertical mounting; with knob.


TECHNICAL PERFORMANCE

resistance   value $R_{\text {nom }}$	min. resistance   at both ends   $(\Omega)$	$V_{\max }(\mathrm{d} . \mathrm{c}$. or rms)   at $\mathrm{T}_{\text {amb }}=40{ }^{\circ} \mathrm{C}$   $(\mathrm{V})$	$\mathrm{I}_{\text {max }}$ through   slider contact   (mA)	code in   catalog number		
100	$\Omega$	$\leq$	10	3.2	10	01
220	$\Omega$	$\leq$	10	4.5	7	02
470	$\Omega$	$\leq$	10	7	4.5	03
1	$\mathrm{k} \Omega$	$\leq$	20	10	3.2	04
$2.2 \mathrm{k} \Omega$	$\leq$	40	14	2.2	05	
4.7	$\mathrm{k} \Omega$	$\leq$	100	22	1.4	06
10	$\mathrm{k} \Omega$	$\leq$	200	32	1.0	07
22	$\mathrm{k} \Omega$	$\leq$	400	45	0.7	08
47	$\mathrm{k} \Omega$	$\leq$	1000	70	0.45	09
100	$\mathrm{k} \Omega$	$\leq$	2000	70	0.32	11
220	$\mathrm{k} \Omega$	$\leq$	4000	70	0.22	12
470	$\mathrm{k} \Omega$	$\leq 10000$	70	0.22	13	
1	$\mathrm{M} \Omega$	$\leq 20000$	70	0.22	14	
$2.2 \mathrm{M} \Omega$	$\leq 40000$	70	0.22	15		
$4.7 \mathrm{M} \Omega$	$\leq 100000$	70	0.14	16		

Resistance tolerance
$\pm 20 \%$
Resistance value as a function of the rotation angle
Effective angle of rotation
Maximum permissible power dissipation (of total resistance)
at an ambient temperature of $40^{\circ} \mathrm{C}$
at an ambient temperature of $70^{\circ} \mathrm{C}$
Permissible ambient-temperature range
Resistance change after humidity test ( 0.1 Pnom, 21 days, $\mathrm{T}_{\text {amb }}=40^{\circ} \mathrm{C}$ R.H. $=90-95 \%$ ) for $R_{n o m} \leq 2.2 \mathrm{k} \Omega$ for $\mathrm{R}_{\mathrm{nom}} \geq 4.7 \mathrm{k} \Omega$
Torque
Maximum permissible torque with slider at end stop
linear
$240 \pm 5^{0}$
0.1 W
0.05 W
-25 to $+70^{\circ} \mathrm{C}$

COMPOSITION OF THE CATALOG NUMBER


## CARBON TRIMMING POTENTIOMETERS



RZ 28692-1
Linear resistance law
Resistance range $100 \Omega-10 \mathrm{M} \Omega$

## APPLICATION

These potentiometers are destined for pre-set resistance controls with provision for re-adjustments. They are particularly suitable for use in radio and television receivers.

## CONSTRUCTION

The annular carbon track is riveted onto a base plate of resin bonded paper. For adjustment the slider has been provided with a central screwdriver slot, a plastic knob or a knurled wheel.
The material of the soldering tags and pins is tinplated brass.
There are six versions available:
Potentiometers 2322411 .00.., provided with soldering tags, which are perpendicular on the base plate. They are suited for direct mounting in the wiring; if necessary they can be fitted with a screw in the mounting hole.

Potentiometers 2322411 .22.., provided with pins, for vertical mounting on printedwiring boards.
Potentiometers 2322411 .72. .', ) provided with pins, for vertical mounting on printedwiring boards according to DIN 44150.

Potentiometers 2322411 .33.., provided with pins, for horizontal mounting on printed-wiring boards.
Potentiometers 2322411 .83. .. ${ }^{*}$ ) provided with pins, for horizontal mounting on printed-wiring boards according to DIN 44150.
$\longrightarrow$ Potentiometers 2322411 .84.., provided with pins, for horizontal mounting on printed-wiring boards according to DIN 44151.

All versions mentioned above are available with an adjustment wheel (Fig.7), an adjustment knob (two types, Figs. 8 and 9) or with a slot for screwdriver adjustment.

## Dimensions in mm



Fig.1. Potentiometers 2322411 000..


Fig. 2. Potentiometers 2322411022.

[^13]

Fig.3. Potentiometers 2322411 072..


Fig. 5.
Potentiometers 2322411 083. .



Fig. 4.
Potentiometers 2322411033 . .

Fig. 6.
Potentiometers 2322411084 .


Fig. 7.
Potentiometers 2322411 433..
(with adjustment wheel)


Fig. 8.
Potentiometers 2322411 133. . (adjustment knob at the side of the base plate)


Fig. 9.
Potentiometers 2322411 233. . (adjustment knob at the side of the carbon track)

TECHNICAL PERFORMANCE

resistance value $R_{\text {nom }}$	min. resistance at both ends $(\Omega)$	$V_{\text {max }}$ (d.c. or rms) at $\mathrm{Tamb}=40^{\circ} \mathrm{C}$ (V)	Imax through slider contact (mA)	code in catalog number
$100 \Omega$	$\leq 20$	5	32	01
$220 \Omega$	$\leq 20$	7	22	02
$470 \Omega$	$\leq \quad 50$	11	14	03
$1 \mathrm{k} \Omega$	$\leq 50$	16	10	04
$2.2 \mathrm{k} \Omega$	$\leq 50$	22	7	05
$4.7 \mathrm{k} \Omega$	$\leq 100$	35	4.5	06
$10 \mathrm{k} \Omega$	$\leq 200$	50	3.2	07
$22 \mathrm{k} \Omega$	$\leq \quad 400$	70	2.2	08
$47 \mathrm{k} \Omega$	$\leq 1000$	110	1.4	09
$100 \mathrm{k} \Omega$	$\leq 2000$	160	1.0	11
$220 \mathrm{k} \Omega$	$\leq 4000$	220	0.7	12
$470 \mathrm{k} \Omega$	$\leq 10000$	370	0.45	13
$1 \mathrm{M} \Omega$	$\leq 20000$	500	0.32	14
$2.2 \mathrm{M} \Omega$	$\leq 40000$	500	0.22	15
$4.7 \mathrm{M} \Omega$	$\leq 100000$	500	0.14	16
$10 \mathrm{M} \Omega$	$\leq 200000$	500	0.10	17

Resistance tolerance
Resistance value as a function of the rotation angle

## Effective angle of rotation

Maximum permissible power dissipation (of total resistance)
at an ambient temperature of $40^{\circ} \mathrm{C}$
at an ambient temperature of $70^{\circ} \mathrm{C}$
Limiting voltage

Permissible ambient-temperature range
Resistance change after humidity test ( $0.1 \mathrm{P}_{\text {nom }}, 21$ days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $=90-95 \%$ ) for $R_{\text {nom }} \leq 2.2 \mathrm{k} \Omega$

$$
\text { for } R_{\text {nom }} \geq 4.7 \mathrm{k} \Omega
$$

Torque
Maximum permissible torque with slider at end stop
$\pm 20 \%$
linear
$220 \pm 5^{\circ}$
0.25 W
0.15 W
$500 \mathrm{~V}_{\mathrm{dc}}$
$500 \mathrm{~V}_{\mathrm{rms}}$
-25 to $+70{ }^{\circ} \mathrm{C}$
$<5 \%$
< $25 \%$
$0.5-5 \mathrm{Ncm}$

10 Ncm

COMPOSITION OF THE CATALOG NUMBER
$0=$ without knob $\quad 2322411 \ddot{\square}$
1 = with knob at the side of the base plate
2 = with knob at the side of the carbon track
4 = with adjustment wheel
$00=$ with soldering tags
$22=$ with pins for vertical mounting
33 = with pins for horizontal mounting
72 = with pins for vertical mounting (according to DIN 44 150)
83 = with pins for horizontal mounting (according to DIN 44150 )
$84=$ with pins for horizontal mounting (according to DIN 44151 )

## MULTITURN CARBON PRE-SET POTENTIOMETERS

QUICK REFERENCE DATA	
Nominal resistance values	
linear resistance law	$220 \Omega-4.7 \mathrm{M} \Omega$
logarithmic resistance law	$1 \mathrm{k} \Omega-2.2 \mathrm{M} \Omega$
special resistance law	$100 \mathrm{k} \Omega$
Maximum dissipation at $40^{\circ} \mathrm{C}$	0.4 W
linear resistance law	0.3 W
logarithmic and special resistance law	
Number of turns of spindle	20
potentiometers $2322412 \ldots .$.	10
potentiometers $2322413 \ldots$	



These potentiometers have been designed for pre-set resistance adjustment in capacitance diode television tuners. However they can also be applied for capacitance diode tuning of other apparatus, e.g. radio receivers, or for any other fine resistance adjustment.

## DESCRIPTION

A straight carbon track is fitted on to a base plate of resin bonded paper, which is mounted in a housing of black synthetic resin. The terminals are suited for mounting on printed-wiring boards.
The slider is activated by a silvered threaded spindle. No damage occurs when one continues to turn the spindle after the slider has reached an extreme position.
The potentiometers can bedelivered with various adjustment provisions and with or without a scale indicator.
All these versions are available with linear or logarithmic resistance law; besides the $100 \mathrm{k} \Omega$ versions are available with special resistance law.

## Dimensions of the housing (mm)

The housing has been drawn without adjustment provision and scale indicator; these parts are given in the paragraphs below.


7299677

| code in |
| :---: | :---: | :---: |
| * |

*) See section "Composition of the catalogue number".
type

(dimensions in mm ) $\quad$| code in |
| :---: |
| catalogue number ${ }^{*}$ ) |

Indicators

type (dimensions in mm )	with/without dust cover on the housing	code in catalogue number *)
	without	1
	without	2
	without	3

*) See section "Composition of the catalogue number".

type   (dimensions in mm)	with/without   dust cover on   the housing
catalogue number *)	

*) See section "Composition of the catalogue number".

TECHNICAL DATA
Unless stated otherwise, all electrical values have been determined at ambient temperature of 15 to $35^{\circ} \mathrm{C}$, an air pressure of 860 to 1060 mbar and a relative humidity of 45 to $75 \%$.

nom. resistance value ( $\mathrm{R}_{\mathrm{n}}$ )	$\begin{aligned} & \text { resistance } \\ & \text { law } \end{aligned}$	min. resistance at the beginning	max. current through slider contact (mA),	code in catalogue number *)
220,		$\leq 10 \Omega$	42	02
$470 \Omega$		$\leq 15 \Omega$	29	03
$1 \mathrm{k} \Omega$		$\leq 25 \Omega$	20	04
$2.2 \mathrm{k} \Omega$		$\leq 40 \Omega$	13	05
$4.7 \mathrm{k} \Omega$		$\leq 80 \Omega$	9.2	06
$10 \mathrm{k} \Omega$		$\leq 150 \Omega$	6.3	07
$22 \mathrm{k} \Omega$	linear	$\leq 250 \Omega$	4.2	08
$47 \mathrm{k} \Omega$	linear	$\leq 500 \Omega$	2.9	09
$100 \mathrm{k} \Omega$		$\leq 1 \mathrm{k} \Omega$	2.0	11
$220 \mathrm{k} \Omega$		$\leq 2 \mathrm{k} \Omega$	1.3	12
$470 \mathrm{k} \Omega$		$\leq 5 \mathrm{k} \Omega$	0.92	13
$1 \mathrm{M} \Omega$		$\leq 10 \mathrm{k} \Omega$	0.63	14
$2.2 \mathrm{M} \Omega$		$\leq 20 \mathrm{k} \Omega$	0.42	15
$4.7 \mathrm{M} \Omega$		$\leq 50 \mathrm{k} \Omega$	0.29	16
$1 \mathrm{k} \Omega$		$\leq 5 \Omega$	4.0	24
$2.2 \mathrm{k} \Omega$		$\leq 8 \Omega$	2.7	25
$4.7 \mathrm{k} \Omega$		$\leq 15 \Omega$	1.9	26
$10 \mathrm{k} \Omega$		$\leq 20 \Omega$	1.3	27
$22 \mathrm{k} \Omega$		$\leq 35 \Omega$	0.86	28
$47 \mathrm{k} \Omega$	logarithmic	$\leq 65 \Omega$	0.59	29
$100 \mathrm{k} \Omega$		$\leq 125 \Omega$	0.40	31
$220 \mathrm{k} \Omega$		$\leq 220 \Omega$	0.27	32
$470 \mathrm{k} \Omega$		$\leq 400 \Omega$	0.19	33
$1 \mathrm{M} \Omega$		$\leq 750 \Omega$	0.13	34
$2.2 \mathrm{M} \Omega$		$\leq 1.5 \mathrm{k} \Omega$	0.086	35
$100 \mathrm{k} \Omega$	special	$\leq 125 \Omega$	0.40	38

[^14]Tolerance on nominal resistance
Resistance law and tolerance
Maximum permissible dissipation
linear resistance law, at $40^{\circ} \mathrm{C}$ at $70^{\circ} \mathrm{C}$
logarithmic and special resistance law, at $40^{\circ} \mathrm{C}$ at $70{ }^{\circ} \mathrm{C}$
Limiting voltage
Contact resistance between carbon
track and slider contact, the slider
being moved $1 \mathrm{~mm} / \mathrm{s}$ (see also paragraph
"Measurement of the contact resistance")
linear resistance law
logarithmic and special resistance law, for $0-60 \%$ of effective travel for $60-100 \%$ of effective travel

Operating temperature range
Category (IEC68)
Resistance change with temperature
Change of pre-set voltage with temperature
Change of pre-set voltage after vibration test (IEC68, test F VI) and shock test (IEC68, test Ea)
$\pm 20 \%$ of $R_{n}$
see Fig. 2
0.4 W
0.125 W
0.3 W
0.10 W

200 V
$\leq 3 \%$ of $R_{\text {total }}$
$\leq 3 \%$ of $R_{\text {total }}$
$\leq 6 \%$ of $R_{\text {total }}$
-30 to $+70^{\circ} \mathrm{C}$
30/070/21
see Figs. 3 and $4^{*}$ )
see Figs. 5 and 6 *)
$\leq 0.1 \%$ of pre-set
voltage

[^15]

Fig. 2. Resistance as a function of slider displacement

curve	resistance law	tolerance on resistance law	
		displacement	resistance
		(\% of effective travel)	(\% of R ${ }_{\text {total }}$ )
a	linear	between 36.5 and 38.5 between 61.5 and 63.5	$\begin{aligned} & 33.5-41.5 \\ & 58.5-66.5 \end{aligned}$
b	logarithmic	between 36.5 and 38.5 between 61.5 and 63.5	$\begin{gathered} 3.5-8.5 \\ 12-26 \end{gathered}$
c	special	between 36.5 and 38.5 between 61.5 and 63.5 between 86.5 and 88.5	$\begin{array}{ll} 15 & -21 \\ 28 & -38 \\ 60 & -75 \end{array}$

Resistance change as a function of the temperature; relative humidity 40 to $80 \%$ at $25^{\circ} \mathrm{C}$.


Fig. 3. Linear resistance law


Fig. 4. Special resistance law

Change of pre-set voltage as a function of the temperature, $\mathrm{V}_{1-3}$ being $30 \%$ of $\mathrm{V}_{1-2}$; relative humidity 40 to $80 \%$ at $25^{\circ} \mathrm{C}$.


Fig. 5. Linear law


Fig. 6. Special law

Operating torque
Effective number of turns of spindle potentiometers 2322412 ....
potentiometers 2322413 ....
Maximum axial run-out including radial
play of spindle
Maximum allowable axial force on spindle (push and pull)

Mechanical travel of slider contact
Effective travel of slider contact
Solderability (to IEC 68-2, test T)
Thermal shock test (to IEC 68-2, test T)
Life (at a rate of $20 \mathrm{rev} / \mathrm{min}$ )

$$
\begin{aligned}
& 0.3-1 \mathrm{Ncm}(30-100 \mathrm{gcm}) \\
& 19 \pm \frac{1}{2} \\
& 10 \pm \frac{1}{2} \\
& 0.15 \mathrm{~mm} \\
& \leq 250 \mathrm{~g} \\
& 25.6 \pm 0.15 \mathrm{~mm} \\
& 24.0 \pm 0.5 \mathrm{~mm} \\
& 230 \pm 10{ }^{\circ} \mathrm{C} \text {, for } 2 \pm 0.5 \mathrm{~s} \\
& 350 \pm 10{ }^{\circ} \mathrm{C} \text {, for } 2 \pm 0.5 \mathrm{~s} \\
& 50 \mathrm{x} \text { in both directions }+3 \text { rotations } \\
& \text { at both ends }
\end{aligned}
$$

Measurement of the contact resistance


Ad.c. current source which supplies a constant direct current (I) of e.g. 1 mA , is connected to the pins 1 and 3 of the potentiometer.
For the diagram of the d.c. current source, see Fig. 8. The d.c. voltage (V) resulting from the contact resistance ( $\mathrm{R}_{\mathrm{C}}$ ) and the d.c. current is measured between the pins 2 and $3\left(V=I . R_{C}\right)$.
During the measurement the slider contact is moved with a constant speed of $1 \mathrm{~mm} / \mathrm{s}$.
The input resistance of the d.c. voltmeter must be at least $10 \mathrm{M} \Omega$.

Fig. 7

Note - Circuit diagram of the direct current source used for measuring the contact resistance. Open-circuit output voltage is 380 V .


Fig. 8

## MOUNTING

The terminals may be dip soldered over a length of 2 mm max. in a solder bath of $260^{\circ} \mathrm{C}$ max. for 4 s max.
When a soldering bit is used, its temperature must not exceed $360^{\circ} \mathrm{C}$ for 1.5 s and neither axial nor radial stress must be exerted on the terminals.

## MARKING

The potentiometers are marked with the nominal resistance value, resistance law, quarter and year of manufacture.

COMPOSITION OF THE CATALOGUE NUMBER
2322 41......


## MINIATURE CARBON POTENTIOMETERS



RZ27512.2
Nominal resistance values
Resistance law
$4.7,10$ and $22 \mathrm{k} \Omega$
linear and logarithmic

## GENERAL

These potentiometers are destined for use in miniaturised electronic equipment such as hearing aids, small radio sets, etc.
On account of their application a special construction has been applied, which makes mounting of a control knob superfluous.

The potentiometers can be fixed on a chassis with the supplied mounting nut, catalogue number 432204709530.

## Dimensions in mm


$S_{1}, S_{2}, S_{3}=$ potentiometer terminals ( $S_{1}$ and $S_{3}$ are connected to the ends of the carbon track; $\mathrm{S}_{2}$ is connected to the slider contact)

## TECHNICAL PERFORMANCE

Nominal resistance values
Tolerance on the nominal resistance Resistance law
Contact resistance between carbon track and slider
linear resistance law logarithmic resistance law
Minimum resistance
spindle turned fully counter-clockwise
spindle turned fully clockwise
Maximum attenuation
Maximum voltage over the resistance
element
Current through slider
Working-temperature range
Effective angle of rotation
Mechanical angle of rotation
Operating torque
Maximum permissible torque with slider at end stop Life


Variation of resistance with the angle of rotation

## COMPOSITION OF THE CATALOGUE NUMBER



# SINGLE CARBON POTENTIOMETERS conforming to MIL-R94-A and CCTU-05-01 



RZ 27512 -3

Resistance law
Resistance range
linear resistance law logarithmic resistance law
Maximum permissible dissipation at $40{ }^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
linear and logarithmic
$100 \Omega-4.7 \mathrm{M} \Omega$
$470 \Omega-2.2 \mathrm{M} \Omega$
1 W
0.5 W

## APPLICATION

For use in professional electronic equipment.

## CONSTRUCTION

An annular carbon track is fitted onto a ceramic base plate and housed in a metal case.
The soldering tags $S_{1}$ and $S_{3}$ (see Fig.1) are connected to the ends of the carbon track, soldering tag $\mathrm{S}_{2}$ is connected to the slider contact.

Material of the soldering tags
Material of the slider contact and of the centre contact
Material of other metal parts
tinplated brass
silverplated brass nickelplated brass

## Dimensions in mm

For L, see Table 1


Fig. 1

Table 1

spindle type	code in   catalog number
plain, $\mathrm{L}=17 \mathrm{~mm}$	013
$\mathrm{~L}=30 \mathrm{~mm}$	003
$\mathrm{~L}=60 \mathrm{~mm}$	007
with screwdriver slot	
$\mathrm{L}=12.7 \mathrm{~mm}$	904
$\mathrm{~L}=22.2 \mathrm{~mm}$	907
$\mathrm{~L}=31.8 \mathrm{~mm}$	910
$\mathrm{~L}=63.5 \mathrm{~mm}$	920

## MOUNTING

The potentiometer can be fixed on a chassis with the supplied mounting nut. The minimum thickness of the chassis is 1.5 mm . The maximum torque for tightening the nut is 350 Ncm .


Fig. 2 Mounting holes

COMPOSITION OF THE CATALOG NUMBER

code for resistance law and resistance value, see Tables 2 and 3

## TECHNICAL PERFORMANCE

Table 2 - Linear resistance law, Fig. 3 curve a, 1 W

nom. resistance   value $\left(\mathrm{R}_{\mathrm{n}}\right)$	Imax through   slider contact   $(\mathrm{mA})$	minimum resistance   at both ends   $(\Omega)$	code in   catalog number	
100	$\Omega$	50	$\leq 5$	01
220	$\Omega$	30	$\leq 5$	02
470	$\Omega$	22	$\leq 5$	03
1	$\mathrm{k} \Omega$	16	$\leq 25$	04
$2.2 \mathrm{k} \Omega$	11	$\leq 25$	05	
$4.7 \mathrm{k} \Omega$	7	$\leq 25$	06	
10	$\mathrm{k} \Omega$	5	$\leq 25$	07
22	$\mathrm{k} \Omega$	3	$\leq 35$	08
47	$\mathrm{k} \Omega$	2.2	$\leq 55$	11
100	$\mathrm{k} \Omega$	1.4	$\leq 50$	12
220	$\mathrm{k} \Omega$	0.9	$\leq 250$	13
470	$\mathrm{k} \Omega$	0.65	$\leq 500$	14
$1 \mathrm{M} \Omega$	0.45	$\leq 1000$	15	
$2.2 \mathrm{M} \Omega$	0.22	$\leq 2000$	16	
$4.7 \mathrm{M} \Omega$	0.15			

Table 3 - Logarithmic resistance law, Fig. 3 curve b, 0.5 W

nom. resistance   value $\left(R_{\mathrm{n}}\right)$	$I_{\text {max through }}$   slider contact   $(\mathrm{mA})$	min. resistance   at the beginning   $(\Omega)$	min. resistance   at the end   $(\Omega)$	code in   catalog number	
470	$\Omega$	22	$\leq 5$	$\leq$	20
1	$\mathrm{k} \Omega$	10	$\leq 25$	$\leq$	100
$2.2 \mathrm{k} \Omega$	7	$\leq 25$	$\leq$	100	24
4.7	$\mathrm{k} \Omega$	4.5	$\leq 25$	$\leq$	100
10	$\mathrm{k} \Omega$	3.2	$\leq 25$	$\leq$	20
22	$\mathrm{k} \Omega$	2.5	$\leq 35$	$\leq$	26
47	$\mathrm{k} \Omega$	1.4	$\leq 35$	$\leq$	27
100	$\mathrm{k} \Omega$	1.0	$\leq 35$	$\leq 1000$	28
220	$\mathrm{k} \Omega$	0.7	$\leq 50$	$\leq 2500$	29
470	$\mathrm{k} \Omega$	0.45	$\leq 100$	$\leq 5000$	31
$1 \mathrm{M} \Omega$	0.32	$\leq 200$	$\leq 10000$	32	
$2.2 \mathrm{M} \Omega$	0.22	$\leq 500$	$\leq 25000$	34	



Fig.3. Resistance variation with the angle of rotation

Tolerance on the nominal resistance Resistance law

Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
Test voltage for 1 min between interconnected tags and bearing bushing at turning rotor at low pressure
Resistance change after soldering after 15000 cycles
after loading during 1000 hours
after vibration test
after humidity test
after cold test, unloaded
loaded
after change of temperature test
Effective angle of rotation
Mechanical angle of rotation Operating torque
Permissible torque with slider at end stop
Permissible axial spindle load
$\pm 20 \%$
linear and logarithmic, see Fig. 3

1 W
0.5 W
$900 \mathrm{~V}_{\mathrm{rms}}$
$450 \mathrm{~V}_{\mathrm{rms}}$
$\leq 2 \%$
$\leq 10 \%$
$\leq 10 \%$
$\leq 2.5 \%$
$\leq 20 \%$
$\leq 2 \%$
$\leq 3 \%$
$\leq 6 \%$
$250-265^{\circ}$
$300^{\circ}$
$0.75-4.3 \mathrm{Ncm}$
$\leq 95 \mathrm{Ncm}$
$\leq 100 \mathrm{~N}$

## 23 mm SINGLE CARBON POTENTIOMETERS



RZ 24108-4

Resistance law
Resistance range
linear resistance law
logarithmic resistance law
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
linear and logarithmic
$220 \Omega-4.7 \mathrm{M} \Omega$
$1 \mathrm{k} \Omega-2.2 \mathrm{M} \Omega$

1 W
0.5 W

## APPLICATION

These potentiometers are destined for use in radio and television sets, where a dissipation of 0.5 W (potentiometers with logarithmic resistance law) or 1 W (potentiometers with linear resistance law) is required, or where a non-inflammable potentiometer has to be applied.

## CONSTRUCTION

An annular carbon track is fitted onto a ceramic base plate and housed in a metal case.
The soldering tags $S_{1}$ and $S_{3}$ (see Fig.1) are connected to the ends of the carbon track; soldering tag $S_{2}$ is connected via a contact ring to the slider contact.
The preferred types of potentiometer have a plastic spindle (poly-acetal resin); potentiometers with a steel spindle are also available.

Dimensions in mm (plastic spindles)
For L and d, see Table I
a. Plain spindle

b. Spindle with screwdriver slot

c. Short spindle with flat face

d. Long spindle with flat face


Fig.1. Potentiometers 2322460 ..... and their various spindle types. Spindles c and d in fully counter-clockwise position.


Fig. 2. Mounting holes

## MOUNTING

The potentiometer can be fixed on a chassis with the supplied mounting nut. The minimum thickness of the chassis is 1.5 mm .
The maximum torque for tightening the nut is 350 Ncm .

## TYPES

Composition of the catalog number
code for indicating the spindle $\qquad$ code for resistance law and resistance value, see Tables 2 and 3

Table 1

		Fig. 1	8th to 10th figure   of catalog number 1)
plain, $\mathrm{d}=6 \mathrm{~mm}$	$\mathrm{~L}=18 \mathrm{~mm}$	a	706
	$\mathrm{~L}=30 \mathrm{~mm}$	a	703
plain, $\mathrm{d}=1 / 4^{\prime \prime}$,	$\mathrm{L}=60 \mathrm{~mm}$	a	707
	$\mathrm{~L}=30 \mathrm{~mm}$	a	723
with screwdriver slot	$\mathrm{L}=60 \mathrm{~mm}$	a	727
short spindle with flat face		b	710
long spindle with flat face	$\mathrm{L}=30 \mathrm{~mm}$	d	740
	$\mathrm{~L}=60 \mathrm{~mm}$	d	743

1) Preferred types (with plastic spindle), for potentiometers with a steel spindle the 8th figure is 0 instead of 7.


Fig.3. Resistance variation with the angle of rotation

TECHNICAL PERFORMANCE
Table 2 - Linear resistance law

nom. resistance   value $\left(R_{\mathrm{n}}\right)$	curve   Fig. 3	$\mathrm{I}_{\text {max }}$ through   slider contact   $(\mathrm{mA})$	code in   catalog number	
220	$\Omega$	a	67	02
300	$\Omega$	a	57	19
470	$\Omega$	a	46	03
$1 \mathrm{k} \Omega$	a	31	04	
$2.2 \mathrm{k} \Omega$	a	21	05	
$4.7 \mathrm{~K} \Omega$	a	14	06	
10	$\mathrm{k} \Omega$	a	10	07
$22 \mathrm{k} \Omega$	a	6.7	08	
47	$\mathrm{k} \Omega$	a	4.6	09
100	$\mathrm{k} \Omega$	a	3.1	11
220	$\mathrm{k} \Omega$	a	2.1	12
470	$\mathrm{k} \Omega$	a	1.0	13
$1 \mathrm{M} \Omega$	a	0.5	14	
$2.2 \mathrm{M} \Omega$	a	0.28	15	
$4.7 \mathrm{M} \Omega$	a	0.10	16	

Table 3 - Logarithmic resistance law

nom. resistance value $\left(\mathrm{R}_{\mathrm{n}}\right)$	curve   Fig. 3	$I_{\text {max }}$ through slider contact	min. attenuation at the beginning (dB)	code in catalog number
$1 \mathrm{k} \Omega$	b	22	50	24
$2.2 \mathrm{k} \Omega$	b	15	60	25
$4.7 \mathrm{k} \Omega$	b	10	60	26
$10 \mathrm{k} \Omega$	b	7	60	27
$22 \mathrm{k} \Omega$	b	4.8	60	28
$47 \mathrm{k} \Omega$	b	3.2	70	29
$100 \mathrm{k} \Omega$	b	2.2	70	3.1
$220 \mathrm{k} \Omega$	b	1.5	80	32
$470 \mathrm{k} \Omega$	b	1	80	33
$1 \mathrm{M} \Omega$	b	0.5	80	34
$2.2 \mathrm{M} \Omega$	b	0.23	80	35

Tolerance on the nominal resistance Resistance law
Minimum resistance at the beginning
linear resistance law, $\mathrm{R}_{\mathrm{n}} \leq 47 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{n}}>47 \mathrm{k} \Omega$
logarithmic resistance law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$

$$
\mathrm{R}_{\mathrm{n}}^{11}>4.7 \mathrm{k} \Omega
$$

Minimum resistance at the end
linear resistance law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$

$$
\mathrm{R}_{\mathrm{n}}>4.7 \mathrm{k} \Omega
$$

logarithmic resistance law, $\mathrm{R}_{\mathrm{n}} \leq 2.2 \mathrm{k} \Omega$ $\mathrm{R}_{\mathrm{n}}>2.2 \mathrm{k} \Omega$
Contact resistance between carbon track
and slider contact
linear resistance law
logarithmic resistance law
Insulation resistance between case and
interconnected tags, after damp heat test
( 21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .=90-95 \%$ )
Maximum permissible dissipation at $40^{\circ} \mathrm{C}$
linear resistance law
logarithmic resistance law
Test voltage for 1 min between case and interconnected tags
Limiting voltage

Working-temperature range
Climatic robustness
Effective angle of rotation
Operating torque
Permissible torque with slider at end stop
Mechanical angle of rotation
Permissible axial spindle load
$\pm 20 \%$
linear and logarithmic, see Fig. 3
$\leq 50 \Omega$
$\leq 0.1 \%$ of $R_{n}$
$\leq 5 \Omega$
$\leq 0.1 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 50 \Omega$
$\leq 1 \%$ of $R_{n}$
$\leq 50 \Omega$
$\leq 2 \%$ of $R_{n}$
$\leq 3 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 6 \%$ of $\mathrm{R}_{\mathrm{n}}$
$>100 \mathrm{M} \Omega$

1 W
0.5 W
$1000 \mathrm{~V}, 50 \mathrm{~Hz}$
500 Vp
500 V dc
-10 to $+70^{\circ} \mathrm{C}$
category $10 / 070 / 21$ (I.E.C. 68)
250-265 o
$0.3-2 \mathrm{Ncm}$
$\leq 80 \mathrm{Ncm}$
$300 \pm 5^{0}$
$\leq 50 \mathrm{~N}$

## 23 mm TWIN CARBON POTENTIOMETERS



Resistance law
Resistance range
linear resistance law
logarithmic resistance law
Maximum permissible dissipation
linear resistance law, at $40^{\circ} \mathrm{C}$
0.25 W
at $70^{\circ} \mathrm{C}$
0.125 W
logarithmic resistance law, at $40^{\circ} \mathrm{C}$
0.125 W at $70^{\circ} \mathrm{C}$
0.0625 W

Potentiometers 2322470 .....

$$
2322476 \text {..... }
$$

without switch
with double-pole rotary switch, 23 mm diameter

## APPLICATION

For use in a wide variety of electronic equipment.

## CONSTRUCTION

The twin potentiometers are composed of two single potentiometers $R_{1}$ and $R_{2}$ (see Figs. 1 and 2). Potentiometer $\mathrm{R}_{1}$ is operated by means of a hollow plastic spindle of poly-acetal resin, through which a steel spindle protrudes for the operation of potentiometer $\mathrm{R}_{2}$.

Both potentiometers consist of an annular carbon track, which is fitted onto a base plate of resin bonded paper and housed in a metal case.

The soldering tags $S_{1}$ and $S_{3}$ (see Figs. 1 and 2) are connected to the ends of the carbon track; soldering tag $\mathrm{S}_{2}$ is connected, via a contact ring, to the slider contact.

The potentiometers can be supplied with a $\operatorname{tap}\left(\operatorname{tag} \mathrm{S}_{4}\right)$ at $40 \%$ of the total mechanical angle of rotation, that is to say at $40 \%$ of the nominal resistance value for potentiometers with linear resistance law and at $20 \%$ or at $10 \%$ of the nominal resistance value for potentiometers with logarithmic resistance law.

## Dimensions in mm

For the dimensions $L_{1}$ and $L_{2}$, see Table I.


Fig.1. Potentiometers without switch.


Fig.2. Potentiometers with double-pole rotary switch, 23 mm diameter.

## MOUNTING



Fig.3. Mounting holes

The potentiometers can be fixed on a chas sis with the supplied mounting nut.
The minimum thickness of the chassis is 1.5 mm .

The maximum torque for tightening the nut is 350 Ncm .

## TYPES

Composition of the catalog number
232247.
figure indicating the type

code for resistance law and resistance value of potentiometer $R_{2}$, see Tables II and III.
6 = with double-pole rotary switch, 23 mm diameter
code for resistance law and resistance value of potentiometer $R_{1}$, see Tables II and III.
code for spindle length, see Table I.
Table I

spindle length	Fig.	code in   catalog number
$\mathrm{L}_{1}=18 \mathrm{~mm}, \mathrm{~L}_{2}=30.5 \mathrm{~mm}$		0
$\mathrm{~L}_{1}=30 \mathrm{~mm}, \mathrm{~L}_{2}=42.5 \mathrm{~mm}$	1 and 2	1   $\mathrm{~L}_{1}=60 \mathrm{~mm}, \mathrm{~L}_{2}=72.5 \mathrm{~mm}$

TECHNICAL PERFORMANCE
Potentiometers (Data applicable to all types)
Table II - Linear resistance law

nom. resistance   value $\left(\mathrm{R}_{1 \mathrm{n}}, \mathrm{R}_{2 \mathrm{n}}\right)^{1}$ )	curve,   Fig.4	$\mathrm{I}_{\text {max }}$ through   slider contact   $(\mathrm{mA})$	code in   catalog number
$220 \Omega$	a	34	02
$300 \Omega$	a	30	19
$470 \Omega$	a	22	03
$1 \mathrm{k} \Omega$	a	16	04
$2.2 \mathrm{k} \Omega$	a	11	05
$4.7 \mathrm{k} \Omega$	a	7	06
$10 \mathrm{k} \Omega$	a	5	07
$22 \mathrm{k} \Omega$	a	3.5	08
$47 \mathrm{k} \Omega$	a	2.2	09
$100 \mathrm{k} \Omega$	a	1.4	11
$220 \mathrm{k} \Omega$	a	1	12
$470 \mathrm{k} \Omega$	a	0.65	13
$1 \mathrm{M} \Omega$	a	0.45	14
$2.2 \mathrm{M} \Omega$	a	0.32	15
$4.7 \mathrm{M} \Omega$	a	0.22	16
$400+600 \mathrm{k} \Omega$	e	0.45	89



Fig.4. Resistance variation with the angle of rotation, measured between $S_{1}$ and $S_{2}$.

1) Measured between the tags $S_{1}$ and $S_{3}$; for potentiometers with a tap, between the tags $S_{1}$ and $S_{4}$ and between $S_{4}$ and $S_{3}$.

Table III - Logarithmic resistance law

nom. resistance   value $\left.\left(R_{1 n}, R_{2 n}\right)^{1}\right)$	curve,   Fig. 4	$\mathrm{I}_{\text {max }}$ through slider contact (mA)	min. resistance at the beginning   $(\Omega)$	code in catalog number
$300 \Omega$	f	20	$\leq 5$	59
$1 \mathrm{k} \Omega$	b	10	$\leq 5$	24
$2.2 \mathrm{k} \Omega$	b	7	$\leq 5$	25
$4.7 \mathrm{k} \Omega$	b	4.5	$\leq 5$	26
$10 \mathrm{k} \Omega$	b	3.2	$\leq 10$	27
$22 \mathrm{k} \Omega$	b	2.2	$\leq 22$	28
$47 \mathrm{k} \Omega$	b	1.4	$\leq 35$	29
$100 \mathrm{k} \Omega$	b	1	$\leq 50$	31
$220 \mathrm{k} \Omega$	b	0.7	$\leq 50$	32
$470 \mathrm{k} \Omega$	b	0.45	$\leq 100$	33
$1 \mathrm{M} \Omega$	b	0.32	$\leq 500$	34
$2.2 \mathrm{M} \Omega$	b	0.22	$\leq 2200$	35
$1 \mathrm{M} \Omega$	f	0.32	$\leq 500{ }_{2}{ }_{2}$	54
$2.2 \mathrm{M} \Omega$	$f$	0.22	$\leq 2200)^{2}$ )	55
$100+900 \mathrm{k} \Omega$	c	0.32	$\leq 1000$	64
$0.2+2 \mathrm{M} \Omega$	c	0.22	$\leq 2200$	68
$50+420 \mathrm{k} \Omega$	c	0.45	$\leq 470$	73
$200+800 \mathrm{k} \Omega$	d	0.32	$\leq 1000$	78
$5+17 \mathrm{k} \Omega$	d	2.2	$\leq 22$	82
$50+170 \mathrm{k} \Omega$	d	0.7	$\leq 220$	83
$0.5+1.7 \mathrm{M} \Omega$	d	0.22	$\leq 2200$	84

Tolerance on the nominal resistance
Resistance law
Contact resistance between carbon track and slider contact
linear resistance law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$

$$
\mathrm{R}_{\mathrm{n}}>4.7 \mathrm{k} \Omega
$$

linear resistance law, tap at $40 \%$
logarithmic resistance law
negative logarithmic resistance
law, $\mathrm{R}_{\mathrm{n}} \leq 4.7 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{n}}>4.7 \mathrm{k} \Omega$
$\pm 20 \%$
linear and logarithmic, see Fig. 4.
$\leq 3 \%$ of $\mathrm{R}_{\mathrm{n}}$ $\leq 2.5 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 3 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 4 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 6 \%$ of $\mathrm{R}_{\mathrm{n}}$
$\leq 4 \%$ of $\mathrm{R}_{\mathrm{n}}$

[^16]logarithmic resistance law, with tap
Insulation resistance between case and interconnected tags, after damp heat test ( 21 days, $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$, R.H. $=90-95 \%$ )

Maximum permissible dissipation linear resistance law,

$$
\begin{array}{ll}
\text { at } 40^{\circ} \mathrm{C} & 0.25 \mathrm{~W} \\
\text { at } 70^{\circ} \mathrm{C} & 0.125 \mathrm{~W} \\
\text { at } 40^{\circ} \mathrm{C} & 0.125 \mathrm{~W} \\
\text { at } 70^{\circ} \mathrm{C} & 0.0625 \mathrm{~W}
\end{array}
$$

logarithmic resistance law, at $40^{\circ} \mathrm{C}$
est voltage for 1 min between case and interconnected tags

Limiting voltage

Working-temperature range
Climatic robustness
Effective angle of rotation
Operating torque
Permissible torque with slider at end stop
$\leq 4 \%$ of $\mathrm{R}_{\mathrm{n}}$
$>100 \mathrm{M} \Omega$

1000 V, 50 Hz
$500 \mathrm{~V}_{\mathrm{p}}$
$500 \mathrm{~V}_{\mathrm{dc}}$
-10 to $+70^{\circ} \mathrm{C}$
category 10/070/21 (I.E.C.68)
250-265 ${ }^{\circ}$
0.3-2 Ncm
$\leq 80 \mathrm{Ncm}$

## Potentiometers without switch

Mechanical angle of rotation
Permissible axial load on hollow spindle
on protruding spindle $\leq 50 \mathrm{~N}$

See also section "Potentiometers".

Potentiometers with double-pole rotary switch, 23 mm diameter
Breaking capacity $\quad 250 \mathrm{~V}_{\mathrm{ac}}, 1.5 \mathrm{~A}, \cos \varphi=0.8$
$250 \mathrm{~V}_{\mathrm{dc}}, 1.5 \mathrm{~A}$
Test voltage for $1 \mathrm{~min}^{1}$ )
Contact resistance, initially
2000 V, 50 Hz
after 10000 on-off switching operations
Insulation resistance ${ }^{1}$ ), initially
$<10 \mathrm{~m} \Omega$
$<100 \mathrm{~m} \Omega$
after test ( 500 hours, $\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$,
R.H. $=95 \%$ )

Switching torque
$>100 \mathrm{M} \Omega$

Switching angle
8-12 Ncm

Total angle of rotation
20-30 ${ }^{\circ}$

Backlash
$308 \pm 5^{\circ}$
$\leq 5^{\circ}$
See also section "Potentiometers".

[^17]
## Non-linear resistors

NTC thermistors
page C3
PTC thermistors
page C87
Voltage-dependent resistors
page C159
Light-dependent resistors


## NTC THERMISTORS

## INTRODUCTION

NTC thermistors are resistors with a high negative temperature coefficient of resistance. They are prepared from oxides of the iron group of transition elements e.g. Cr, Mn, Fe, Co or Ni. These oxides have a high resistivity in the pure state, but can be transformed into semiconductors by adding small amounts of foreign ions which have a different valency.
Examples are:
a) iron oxide $\mathrm{Fe}_{2} \mathrm{O}_{3}$, where a small part of the $\mathrm{Fe}^{3+}$-ions are replaced by
 in order to maintain electroneutrality. At low temperatures the extra electrons of the $\mathrm{Fe}^{2+}$-ions are situated on Fe -ions next to the $\mathrm{Ti}^{4+}{ }^{4+}$-ions, but at higher temperatures they are gradually loosened from these sites and contribute to the conductivity. In this case we have obtained an electron- or n-type semiconductor.
b) Nickel oxide NiO , or cobalt oxide CoO , with a partial substitution of $\mathrm{Li}{ }^{1+}$ ions for the $\mathrm{Ni}^{2+}$ - or $\mathrm{Co}^{2+}$-ions. In this case the $\mathrm{Li}^{1+}{ }^{1+\text { ions are compensated }}$ by an equal amount of $\mathrm{Ni}^{3+}$ - or $\mathrm{Co}^{3+}$-ions. At low temperatures the so-called electron-holes (missing electrons) of the trivalent ions are situated near the foreign ions and again free to move through the crystals at higher temperatures. In this case virtually a positively charged particle is the mobile charge carrier and therefore these materials are called p-type semiconductors.

Stabilizing oxides are sometimes added to obtain a better reproducibility and stability of the characteristics. Which of these compositions is used entirely depends on the required temperature coefficient and the specific resistance.

In both cases a) and b) the conductivity $\sigma$ of the materials can be generally described by

$$
\sigma=\mathrm{ne} \mu
$$

where e represents the unit of electric charge and n and $\mu$ the concentration and the mobility of the charge carriers respectively.
Both n and $\mu$ depend on temperature. For n this dependence is an exponential one, according to a Boltzmann law.

$$
n \propto e^{-q_{1} / k T}
$$

where $q_{1}$ is related to the electrostatic binding energy of the carriers to the foreign ions. For the mobility it is not certain whether the temperature depend-
ence is comparable to that of charge carriers in germanium-type semiconductors ( $\mu \propto \mathrm{T}^{-\mathrm{b}}$ ) or comparable to that of ionic conductors where the ions need a thermal activation energy $\mathrm{q}_{2}$ for each jump to a neighbour site (hopping process). In the latter case the temperature dependence is described by

$$
\mu \propto \frac{\mathrm{e}^{-\mathrm{q}_{2} / \mathrm{kT}}}{\mathrm{~T}}
$$

The total temperature dependence of the conductivity is generally proportional to:

$$
\sigma \propto \mathrm{T}^{-\mathrm{c}} \cdot \mathrm{e}^{-\left(\mathrm{q}_{1}+\mathrm{q}_{2}\right) / \mathrm{kT}}
$$

where $\mathrm{q}_{2}$ may be zero. In practice the exponential factor is the most important one, so that the resistance variation of these thermistors in a broad temperature region can be represented by the simple formula

$$
\mathrm{R}=\mathrm{A} \mathrm{e}^{\mathrm{B} / \mathrm{T}}
$$

## MANUFACTURING PROCESS

The manufacturing process can be compared with that used in ceramic industry. After intensive mixing and after addition of a plastic binder the mass is shaped into the appropriate forms by extrusion (rods) or hydraulic pressing (discs). The parts are then fired at a temperature high enough to sinter the constituent oxide. The final step is the making of the electrical contacts. This is done in the usual way by burning in with silver paste or by other methods e.g. electroplating or metal spraying.
Miniature NTC thermistors are made by applying a drop of oxide paste between two parallel platinum alloy wires, followed by drying and sintering. The platinum alloy wires are $60 \mu \mathrm{~m}$ in diameter and 0.25 mm apart. By the sintering process the bead is shrunk onto the wires, thus establishing a solid and reliable contact. For most applications the miniature NTC thermistors are mounted in glass for protection against influence by aggressive gases and fluids.
$\alpha=$ direct proportional with

## ELECTRICAL PROPERTIES

## RESISTANCE VERSUS TEMPERATURE CHARACTERISTICS

As is shown in the introduction the relation between resistance and temperature of an NTC thermistor can be approximated by:

$$
\begin{equation*}
\mathrm{R}=\mathrm{Ae} \mathrm{e} / \mathrm{T}, \tag{1}
\end{equation*}
$$

where $R$ is the resistance value at an absolute temperature $T, A$ and $B$ being constants for a given resistor and e the base of the natural logarithm $(e=2.718)$. This equation is illustrated in Fig. 1 where R has been plotted against the temperature in ${ }^{\circ} \mathrm{C}$.
This is quite in contrast with the behaviour of metals, with which in first approximation the resistance increases proportionally to the absolute temperature.


Fig. 1.
Resistance $R$ as a function of temperature drawn for three different values of $A$ and $B$.


Fig. 2.
$\mathrm{R}_{25} / \mathrm{R}_{\mathrm{T}}$ as a function of the B-value with the temperature as a parameter. Temperatures above $25^{\circ} \mathrm{C}$.


Fig. 3.
$\mathrm{R}_{\mathrm{T}} / \mathrm{R}_{25}$ as a function of the B -value with the temperature as a parameter. Temperatures below $25^{\circ} \mathrm{C}$.

For a given NTC thermistor the value of B may be found in the following way. The resistance value is measured at two temperatures, $T_{1}$ and $T_{2}$,

$$
R_{1}=A e^{B / T} T_{1} \text { and } R_{2}=A e^{B / T} T_{2} ;
$$

dividing these two, yields:

$$
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\mathrm{e}^{\left(\mathrm{B} / \mathrm{T}_{1}-\mathrm{B} / \mathrm{T}_{2}\right)}
$$

or:

$$
\log R_{1}-\log R_{2}=B\left(1 / T_{1}-1 / T_{2}\right) \log e,
$$

which gives:

$$
\begin{equation*}
B=\frac{1}{\log e} \cdot \frac{\log R_{1}-\log R_{2}}{1 / T_{1}-1 / T_{2}} \tag{2}
\end{equation*}
$$

In practice $B$ is found not to be a true constant; with increasing temperature there are small deviations.
A better formula for the resistance value is:

$$
\mathrm{R}=\mathrm{ATC} \mathrm{C}_{\mathrm{e}} \mathrm{~B} / \mathrm{T}
$$

where C is a small positive or negative number and in some cases is zero. From eq. (1) the temperature coefficient of an NTC may be derived:

$$
\begin{equation*}
\alpha=\frac{1}{\mathrm{R}} \cdot \frac{\mathrm{dR}}{\mathrm{dT}}=-\frac{\mathrm{B}}{\mathrm{~T}^{2}} \tag{3}
\end{equation*}
$$

For the different materials the constant B may vary between 2000 and $5500{ }^{\circ} \mathrm{K}$. A value of e.g. 3600 yields $\alpha=-4 \%$ per degree at a temperature of $300^{\circ} \mathrm{K}$. For calculating the resistance of an NTC at a given temperature, when $R_{25}$ and $B$ are given in the data, the graphs of Fig. 2 and 3 may be used, where for different $B$-values $R_{25} / R_{T}$ and $R_{T} / R_{25}$ are plotted against the $B$-value with the temperature of the NTC thermistor as parameter.

## VOLTAGE VERSUS CURRENT CHARACTERISTICS

It is interesting to investigate the relation between current and voltage drop over the NTC thermistor when the latter is heated by this current to a temperature much higher than the ambient temperature. Fig. 4 shows this relation for an arbitrary sample. This so-called static characteristic, plotted on a double logarithmic scale, was measured at a constant ambient temperature and the readings of V were taken after equilibrium had been reached. For very small currents, the power consumption is too small to register a distinct rise in temperature or


Fig.4. Voltage versus current characteristics of an NTC thermistor.
a decrease in resistance. In that part of the characteristic the relationship between voltage and current is linear. For the sample chosen this linearity ends at approximately 0.01 W .
At a certain value of I the voltage reaches a maximum value and will decrease as the current increases still further.

## THERMISTORS

Assuming:
(a) a constant temperature throughout the body of the thermistor;
(b) the heat transfer to be proportional to the difference in temperature between thermistor and surrounding medium (which is true for low temperatures);
(c) the resistance to be defined by eq. (1)

$$
\mathrm{R}=\mathrm{Ae} \mathrm{e}^{\mathrm{B} / \mathrm{T} ;}
$$

the following may be written:

$$
\begin{equation*}
\log _{e} R=\log _{e} A+B / T \tag{4}
\end{equation*}
$$

In case of equilibrium

$$
\begin{equation*}
\mathrm{W}=\mathrm{D}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{O}}\right), \tag{5}
\end{equation*}
$$

in which $\mathrm{T}_{\mathrm{O}}$ is the ambient temperature and D the dissipation factor, i.e. the power needed for a rise in temperature of one degree centigrade.
From eqs (5) and (4) follows:

$$
\begin{align*}
& \log _{e} V+\log _{e} I=\log _{e} D+\log _{e}\left(T-T_{O}\right)  \tag{6}\\
& \log _{e} V-\log _{e} I=\log _{e} A+B / T \tag{7}
\end{align*}
$$

Combination of these two yields:

$$
\begin{equation*}
\log _{\mathrm{e}} \mathrm{~V}=\frac{1}{2} \log _{\mathrm{e}} \mathrm{AD}+\frac{1}{2} \log _{\mathrm{e}}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{o}}\right)+\mathrm{B} / 2 \mathrm{~T} \tag{8}
\end{equation*}
$$

This form has an extreme as a function of $T$ if:

$$
\begin{equation*}
\frac{\mathrm{d} \log _{e} V}{\mathrm{dT}}=0 \tag{9}
\end{equation*}
$$

In that case

$$
\begin{equation*}
\frac{1}{2\left(T-T_{0}\right)}-\frac{B}{2 T^{2}}=0 \tag{10}
\end{equation*}
$$

which is true only for those values of T which answer to the equation:

$$
\begin{align*}
& \mathrm{T}^{2}-\mathrm{BT}+\mathrm{BT}_{\mathrm{O}}=0,  \tag{11}\\
& \mathrm{~T}_{\max }=\frac{1}{2} \mathrm{~B} \pm \sqrt{\frac{1}{4} \mathrm{~B}^{2}-\mathrm{BT}_{\mathrm{O}}} \tag{12}
\end{align*}
$$

(The value with the minus sign gives the temperature corresponding to the max imum value of the voltage). Only if $\mathrm{B}>4 \mathrm{~T}_{\mathrm{O}}$ will this maximum be present. For the practical values of $\mathrm{B}\left(2000-4000{ }^{\circ} \mathrm{K}\right)$ the temperature $\mathrm{T}_{\text {max }}$ lies between $85^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$.
From these considerations, which are valid for stationary circumstances only, it follows that the temperature corresponding to the maximum voltage only depends on the $B$-value of the material and not the actual resistance value.

THERMAL TIME CONSTANT OF NTC THERMISTORS
If the thermistor has a uniform temperature during cooling, the following equation is valid for the cooling of an NTC in the time interval dt :

$$
\begin{equation*}
-\mathrm{HdT}=\mathrm{D}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{o}}\right) \mathrm{dt} \tag{13}
\end{equation*}
$$

in which $\mathrm{T}_{\mathrm{O}}$ is the ambient temperature and H the heat capacity of the resistor in joules per degree C.

Eq. (13) yields:

$$
\begin{equation*}
\left(\mathrm{T}-\mathrm{T}_{0}\right)=\left(\mathrm{T}_{1}-\mathrm{T}_{0}\right) \mathrm{e}^{-\mathrm{t} / \tau} \tag{14}
\end{equation*}
$$

The value $\tau=H / D$ is termed the thermal time constant, and represents the time required for a thermistor to change $63.2 \%$ of the total difference between its initial and final body temperatures when subjected to a step function change in temperature under zero-power conditions.

Fig. 5.
Variation of resistance with time under normal cooling conditions of a rod type NTC. Ambient temperature $25^{\circ} \mathrm{C}$.


## HOW TO MEASURE NTC THERMISTORS

(1) The published $\mathrm{R}_{\mathrm{T}}$ values are measured at the temperature T .
(2) The published B-value at $25^{\circ} \mathrm{C}$ is the result of a measurement at $25^{\circ} \mathrm{C}$ and one at $50^{\circ} \mathrm{C}$. So please use these two temperatures for checking.

The following general precautions have to be taken when measuring NTC thermistors:
(1) Never measure thermistors in air as this is quite inaccurate and easily gives deviations of 1 or $2^{\circ} \mathrm{C}$. For measurement at room temperature or below, use petrol or some other non-conductive and non-agressive fluid. For higher temperatures use oil, preferably silicon oil.
(2) Use a thermostat with a precision of at least $0.1^{\circ} \mathrm{C}$.

Even if the liquid is well stirred, there is still a temperature gradient in the fluid.
So measure the temperature as close to the NTC as possible.
(3) After placing the NTC in the thermostat wait until temperature equilibrium between the NTC and the fluid is obtained. For some types this may take more than 1 minute.
(4) Keep the measuring voltage as low as possible otherwise the NTC will be heated by the measuring current. Miniature NTC thermistors are specially sensitive to measuring voltages. Voltages of less than 0.5 V are recommended.
(5) For high temperature measurements it is recommended to apply stem correction. See also "How to measure PTC thermistors".

## SPREAD

The $R_{25}$ and $B$-value are specified with a certain spread. The tolerance on $25{ }^{\circ} \mathrm{C}$ resistance is normally $\pm 20 \%$. The B-value has in most cases a tolerance of $\pm 5 \%$. Due to the spread in B-value, the deviation from the nominal curve at other temperatures than $25^{\circ} \mathrm{C}$ can be greater than the specified tolerance at $25^{\circ} \mathrm{C}$. Fig. 6


Fig. 6.
The influence of the tolerance on the B-value.
shows this for a resistor of $10 \mathrm{k} \Omega$.
Starting from $25^{\circ} \mathrm{C}$ the upper curves give the limit resistance values for combinations of:
(a) +B and $+\mathrm{R}_{25}$ tolerance going from $25^{\circ} \mathrm{C}$ to lower temperatures;
(b) -B and $+\mathrm{R}_{25}$ tolerance going from $25^{\circ} \mathrm{C}$ to higher temperatures.

The lower curves give the limit resistance values for combinations of
(c) -B and $-\mathrm{R}_{25}$ tolerance going from $25^{\circ} \mathrm{C}$ to lower temperatures;
(d) +B and $-\mathrm{R}_{25}$ tolerance going from $25^{\circ} \mathrm{C}$ to higher temperatures.

The resistance value will thus always bebetween the upper and the lower curves, although the unfavourable combinations will obviously seldom occur in practice. For some applications a close tolerance at a given temperature is required. In these cases special selections can be made.

## CHOICE OF TYPE

When an NTC thermistor has to be selected for a certain purpose, the following questions have to be considered:
(1) Which form is best suited for the purpose?

The normal types are cylindrical rods, discs or beads.
(2) What is the resistance value and temperature coefficient required?
(3) What is the power to be dissipated
(a) without perceptible change in resistance value due to heating-up
(b) with maximum change in resistance value?
(4) What is the required thermal time constant?

Whenever it is impossible to find an NTC thermistor to fulfil all requirements, it is often more economical to adapt the values of other circuit components to the value of a series-manufactured NTC. Sometimes, with simple parallel and series resistors, a standard NTC can be used where otherwise a special type would have been necessary.
If no suitable combination can be found the development of a special type can be considered. In this case a specification of the requirements is necessary. In addition a description of the circuit in which the NTC has to be used is most useful.

## DEVIATING CHARACTERISTICS

The following example explains the resistance values resulting from combinations of NTC's with normal resistors.
Suppose for compensation purposes an NTC is wanted with a resistance value of $50 \Omega$ at $30^{\circ} \mathrm{C}$ and $10 \Omega$ at $100^{\circ} \mathrm{C}$. A standard type having this characteristic is not included in our program. The problem may, however, be solved by using a standard NTC and two fixed resistors. If an NTC disc with a cold resistance of $130 \Omega$ is mounted in a series and parallel arrangement with two fixed resistors of $6 \Omega$ and $95 \Omega$ as illustrated in Fig. 7, the resistance of the combination at $30^{\circ} \mathrm{C}$ and at $100^{\circ} \mathrm{C}$ will meet the requirements. Fig. 8 shows the new resistance versus temperature graph. together with that of the NTC thermistor.

An adaption of this kind should be calculated for every individual case. It should be remembered of course that the temperature-coefficient of the combination will always be lower than that of the NTC thermistor alone. This is clearly illus trated by Fig. 9, where the change in the resistance/temperature graph is shown for different values of series and parallel resistors.


Fig. 7.
NTC thermistor connected in series and parallel with two fixed resistors to obtain deviating characteristics.



Fig. 8.
Resistance versus temperature graph of the circuit of Fig. 13.

Fig. 9.
Resistance versus temperature graphs of an NTC in combination with different series or parallel resistors.

## SOLDERING DISC NTC THERMISTORS

It is often necessary to solder mounting brackets or connecting leads to disc NTC's either to provide efficient thermal contact or to facilitate their mounting. Owing to the ceramic nature of the thermistor and its silver coating, special precautions must be taken to ensure a satisfactory joint.
The iron, its temperature, the solder and flux as well as the material of the bracket all affect the result.

The soldering iron
This should have a wedge shaped copper bit with an angle of $30^{\circ}$ to $45^{\circ}$. Before use, and when necessary during use, it should be cleaned and tinned with the solder recommended below. It is most important that the bit temperature is maintained between $275^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$. A means of measuring and controlling this temperature is considered necessary.

## The solder

To prevent migration of the silver coating of the thermistor into the solder and eventual failure of the joint, a silver rich solder should be used. A satisfactory composition is $56 \%$ tin, $37 \%$ lead and $7 \%$ silver, without a resin core ${ }^{1}$ ).

## The flux

The correct iron temperature and an approved flux are the two most important factors in this process. It is recommended to use a flux of the following composition:

1 kg colofonium
10 g ureum
500 ml aethylalcohol $98 \%{ }^{2}$ ).
The bracket or wire
Tinned copper wire is satisfactory but the end should be bent into a loop. It is best to avoid sizes heavier than 0.5 mm . Brackets should be electro-tinned copper not more than 3 mm thick. A hole, preferably star shaped and about 3 mm diameter, in the bracket should coincide with the centre of the thermistor disc.

[^18]The whole face of the thermistor should be coated with special flux and the bracket or wire held in position. About a 6 mm length of solder is melted onto the iron and transferred to the joint so that the solder flows over the bracket onto the thermistor. The soldering time should be kept as short as possible. Preheating of the thermistor on a hot plate at $80^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ helps to ensure rapid and reliable soldering. The soldering must be completed before the flux hardens.
Unless this process is followed, it is not possible to ensure entirely satisfactory results (and no responsibility can be taken for failures).

## APPLICATIONS

According to the essential properties of the NTC their applications may be classified into three main groups:
(I) Applications in which advantage is taken of the dependence of the resistance on the temperature:

$$
R=f(T)
$$

This group is split into two subsections:
(a) The temperature of the NTC thermistor is determined only by the temperature of the ambient medium (or by the current in a separate heater winding).
(b) The temperature of the NTC thermistor is also determined by the dissipation in the NTC thermistor itself.
(II) Applications in which the time dependence is decisive.

In that case the temperature is considered as a parameter, and is written:

$$
R=f(t)
$$

This group comprises all applications which make use of the thermal inertia of NTC thermistors.
(III) The third group of applications uses mainly the property of the temperature coefficient being highly negative:

$$
\alpha<0
$$

Also in this group applications are listed which take advantage of the fact that the absolute value of the temperature coefficient is so high, that a part of the $V=f(I)$ curve shows a negative slope.

## REMARKS ON THE USE OF NTC THERMISTORS

Do not use thermistors in parallel to obtain a higher dissipation as one of the thermistors may heat up and take all the current while the others remain cold.

Do not use unprotected thermistors in conducting fluids or aggressive and reducing gases as they may cause a change in characteristics.

For temperature measurements do not use a too high voltage on the NTC thermistor as it may heat-up the thermistor, thus giving incorrect readings.
The dissipation constant is an indication for the maximum permissible measuring power.

Do not solder-on NTC discs without consulting the soldering instructions.

Some of the more familiar application circuits in the entertainment and industrial field are given on the following pages.

## APPLICATION EXAMPLES

Temperature measurement.
Industrial and medical the rmometers.

Temperature measurement in cars.
Cooling water measurements with bimetal or differential milliamp. meters.

Temperature control.
The bridge incorporating an NTC and a relay can be used for a number of applications where control of temperature with a relay is acceptable.


Flow measurement of liquids. The temperature difference between $\mathrm{T}_{1}$ and $T_{0}$ is a measure for the velocity of the fluid.

Compensation of frame deflection coils. The positive temperature coefficient of the copper windings is compensated by means of an NTC thermistor.

Heat chain protection.
Protection against current surges in TV and radio circuits.

Protection of Si -diode and switch. Protection in TV circuits using Sidiodes as rectifiers.

Shunt of dial lamps.
In case of breakdown of dial lamp the NTC becomes low ohmic and the heater chain is not disconnected.



## Model trains.

As soon as the train comes on the isolated supply strip it stops. The NTC heats up and gradually the train starts again.


Delaying action of relays.
Due to the thermal inertia of the NTC it takes some time before the relay is activated. If necessary the NTC can be short-circuited after the relay is activated thus leaving the NTC time for cooling.

Temperature compensation in transistor circuits

Push-pull compensation



Gain compensation

Pnp-npn compensation


## NTC THERMISTORS <br> standard disc types



RZ 19269-6

These disc type NTC thermistors are available in three versions:

$$
\begin{array}{ll}
\text { without leads } & \text { Fig.A } \\
\text { with leads } & \text { Fig.B } \\
\text { soldered on a metal strip } & \text { Fig.C }
\end{array}
$$

Catalog number 2322610 ..... For the suffix of this number see table.

Dimensions in mm


A
B
C

$\mathrm{R}_{25}$   ( $\Omega$ )	$\begin{gathered} \text { B-value } \\ \text { at } 25^{\circ} \mathrm{C} \\ \left({ }^{\circ} \mathrm{K}\right) \end{gathered}$	colour code   for version with leads			suffix of catalog number		
		I	II	III	leads	leads	metal strip
2.2	2650	red	red	gold	01228	11228	
4	2800	yellow	black	gold	01408	11408	90012
6	2800	blue	black	gold	01608	11608	
8	2900	grey	black	gold	01808	11808	90015
10	2950	brown	black	black	01109	11109	
12	2950	brown	red	black	01129	11129	
15	3000	brown	green	black	01159	11159	
33	3250	orange	orange	black	01339	$11339{ }^{1}$ )	
50	3300	green	black	black	01509	11509	90016
82	4400	grey	red	black	01829	11829	
130	4600	brown	orange	brown	01131	11131	90004
500	5200	green	black	brown	01501	11501	90017
1300	5450	brown	orange	red	01132	11132	90018

Tolerance on $\mathrm{R}_{25}$
Tolerance on the B-value
Maximum dissipation
Maximum temperature
Dissipation factor
Thermal time constant

$$
\begin{aligned}
& \left. \pm 20 \%{ }^{2}\right) \\
& \pm 5 \% \\
& 1 \mathrm{~W} \\
& 120^{\circ} \mathrm{C} \\
& 10 \mathrm{~mW} / \mathrm{deg} \mathrm{C} \\
& 60 \mathrm{~s}
\end{aligned}
$$

[^19]

Resistance/temperature characteristics


Cooling characteristics


Voltage/current characteristics


Disc type NTC thermistor soldered on a metal strip for simple mounting with nut and bolt

## NTC THERMISTORS <br> for radio and television



RZ 19269-2

application	$\mathrm{R}_{25}$   ( $\Omega$ )	$\begin{gathered} \text { B at } \\ 25^{\circ} \mathrm{C} \\ \text { approx. } \\ \left({ }^{\circ} \mathrm{K}\right) \end{gathered}$	$\mathrm{W}_{\text {max }}$ (W)	normal operating conditions		dissipation factor approx. (mW/deg C)	catalogue number
				(mA)	$(\Omega)$		
compensation positive temperature coeff. of deflection coils	$1.1 \pm 20 \%$	2650	1	2200	0.15-0.25	14	232261990002
	$32+30 \% /-20 \%$	4200	1	1000	0.7-1.1	14	61990003
	$6 \pm 20 \%$	2800	1	1000	$\sim 1$	10	2322610
	$10 \pm 20 \%$	2950	1	900	$\sim 1.1$	10	610
	$12 \pm 20 \%$	2950	1	800	$\sim 1.2$	10	610
	$15 \pm 20 \%$	3000	1	800	$\sim 1.2$	10	610
	$33 \pm 20 \%$	3250	1	700	$\sim 1.4$	10	610
shunt dial   lamp	3870-7750	3000	3	200	60-90	10	232262090001
heater chain protection	800-1315	3800	2	200	36-52	16	232262190004
	6700-12600	3000	3	100	200-280	10	62190003
	300-500	3700	2.5	300	25-32	30	62290005
	645-1210	3600	5	300	35-48	60	62290004
	1750-3250	3000	3	100	200-250	20	62290002
	2470-5370	4000	4	300	38-50	24	62290001

For dimensions and characteristics see following pages
*For more information see standard disc thermistors 2322610 (page C27)

232261990002



Voltage/current characteristics


Resistance/temperature characteristic


Cooling characteristic

232261990003



Voltage/current characteristic


Resistance/temperature characteristic


Cooling characteristic


Voltage/current characteristic


Resistance/temperature characteristic



Voltage/current characteristic


Resistance/temperature characteristic


Voltage/current characteristic


Resistance/temperature characteristic


Cooling characteristic


Voltage/current characteristic


Resistance/temperature characteristic


Voltage/current characteristic


Resistance/temperature characteristic

232262290004



Voltage/current characteristic


Resistance/temperature characteristic


Cooling characteristic

232262290005



Voltage/current characteristics


Resi stance/temperature characteristic


Cooling characteristic

## NTC THERMISTORS <br> for motor cars

This range of discs has been developed for temperature sensors for the cooling water in motor cars. The NTC's are specified at a medium temperature (40$50^{\circ} \mathrm{C}$ ) and a higher temperature ( 96.5 to $100^{\circ} \mathrm{C}$ ), so that a high accuracy at the working temperature is obtained.
They are also suitable for temperature control in household appliances, such as washing machines.

$\mathrm{R}_{25}$	$\mathrm{R}_{40}$	$\mathrm{R}_{50}$   $(\Omega)$	$\mathrm{R}_{96} .5$   $(\Omega)$	$\mathrm{R}_{100}$   $(\Omega)$	diameter   $(\mathrm{mm})$	catalog   number
2200	$1030-1310$			$147-173$		$7.0 \pm 0.3$
500		175	-215		-43	$6.9 \pm 0.2$
500		$92.5-134$		-15	$6.9 \pm 0.2$	90003
1000		$221.5-318.5$		36	$6.9 \pm 0.2$	90001
270		97	-143		$30.5-36.5$	$6.9 \pm 0.2$

Resistance/temperature characteristics


## NTC THERMISTORS <br> miniałure types

Miniature NTC thermistors are available in 7 versions all built around the same NTC-bead. The range of resistance values and the resistance temperature characteristics for all versions are the same.

$\mathrm{R}_{25}$	B-value at $25^{\circ} \mathrm{C}$		olour cod		catalog number
$(\Omega)$	( $\left.{ }^{\circ} \mathrm{K}\right)$	I	II	III	suffix
1000	2350	brown	black	red	102
1500	2450	brown	green	red	152
2200	2600	red	red	red	222
3300	2775	orange	orange	red	332
4700	3650	yellow	violet	red	472
6800	3725	blue	grey	red	682
10000	3800	brown	black	orange	103
15000	3750	brown	green	orange	153
22000	3800	red	red	orange	223
33000	3750	orange	orange	orange	333
47000	3800	yellow	violet	orange	473
68000	3850	blue	grey	orange	683
100000	3900	brown	black	yellow	104
150000	3975	brown	green	yellow	154
220000	4075	red	red	yellow	224
330000	4175	orange	orange	yellow	334
470000	4225	yellow	violet	yellow	474
680000	4300	blue	grey	yellow	684
Tolerance on $\mathrm{R}_{25}$			$\pm 20 \%\left( \pm 10 \%\right.$ on request ${ }^{1}$ )		
Tolerance on B -value			$\pm 5 \%$		
Maximum dissipation			60 mW		
Maximum temperature ( $\mathrm{T}_{\max }$ )			$200{ }^{\circ} \mathrm{C}$		
Dissipation factor			approximately $0.4 \mathrm{~mW} /$ deg C		
Stability after 1000 hrs at $\mathrm{T}_{\max }$			$<1 \%$		

[^20]Resistance/temperature characteristics



VERSIONS
2322634 01... Naked bead


2322634 11... Naked bead

$232263421 \ldots$ Glass encapsulated bead



RZ 19323-3


NTC THERMISTORS
Miniature types
$\underline{232263431 . .}$ Vacuum mounted


Dissipation constant
$0.11 \mathrm{~mW} / \operatorname{deg} \mathrm{C}$


RK 8616-2

Voltage/current characteristics



$\underline{232263441 \ldots \text { Vacuum gauge }}$



RZ 21384-1

2322627 11... Thermometer


RZ 17758-4
2322627 21... Thermometer

$B$-value tolerance for values lower than $4.7 \mathrm{k} \Omega$ is $\pm 10 \%$ instead of $5 \%$.


## NTC THERMISTORS <br> indirectly heated

Two versions are available, vacuum mounted in glass and mounted in air-filled metal casing. The latter has a much higher heater power due to the higher dissipation factor; therefore, the thermal time constant is lower.

232262801332 vacuum mounted in glass
232262801334


232262801332
$3.3 \mathrm{k} \Omega \pm 20 \%$
2775 OK $\pm 10 \%$
orange orange red

R25
B -value
Colour code

232262801334
$330 \mathrm{k} \Omega \pm 20 \%$
RZ 20946-2
$4175^{\circ} \mathrm{K} \pm 10 \%$ orange orange yellow
$W_{\text {max }}$ heater
30 mW
$T_{\text {max }}$
Resistance heater
$\mathrm{W}_{\text {max }}$ NTC
Dissipation factor
Heater efficiency ${ }^{1}$ )
Time constant ${ }^{1}$ )
Capacitance heater/bead
Dielectric strength heater/bead
Insulation resistance heater/bead at 50 V Dimensions in mm


1) Defined according to CCTU 11-01


Resistance/temperature characteristic


Voltage/current characteristics



Resistance/power characteristic


Response time characteristic
$\left(W_{\text {heater }}=30 \mathrm{~mW}\right)$
$\underline{232262801334}$


Resistance / temperature characteristic


Voltage / current characteristics


Resistance / power characteristic

Cooling characteristic


232262811332 mounted in air-filled metal casing
232262811334


RZ 20932-1
232262811332
232262811334
$3.3 \mathrm{k} \Omega \pm 20 \%$
$330 \mathrm{k} \Omega \pm 20 \%$
2775 OK $\pm 5 \%$
orange orange red
$4175 \mathrm{OK} \pm 5 \%$
orange orange yellow
$W_{\text {max }}$ heater
$\mathrm{T}_{\text {max }}$
Resistance heater
$\mathrm{W}_{\text {max }}$ NTC
Dissipation factor
Heater efficiency ${ }^{1}$ )
Time constant ${ }^{1}$ )
Capacitance heater/bead
Dielectric strength heater/bead
Insulation resistance heater/bead
Dimensions in mm

80 mW
$125^{\circ} \mathrm{C}$
$100 \Omega \pm 10 \%$
60 mW
$0.50 \mathrm{~mW} / \operatorname{deg} \mathrm{C}$
$90 \%$
1.2 s
1.1 pF
$\geq 200 \mathrm{~V}$
$10 \mathrm{M} \Omega$


[^21]

Resistance/temperature characteristic


Voltage/current characteristics



Resistance/power characteristic


Response time characteristic (Wheater $=80 \mathrm{~mW}$ )


Resistance / temperature characteristic


Voltage / current characteristics


Resistance / power characteristic


## NTC THERMISTORS

## standard rod types



These rods are extremely stable and can be used for critical professional and industrial applications.

## Dimensions in mm

series	A	B	C
2322635	$3.2 \pm 0.5$	$11 \pm 1$	0.4
2322636	$4.7 \pm 0.5$	$21 \pm 1$	0.8
2322637	$6.2 \pm 0.5$	$31 \pm 1$	0.8



$\begin{aligned} & R_{25} \\ & (k \Omega) \end{aligned}$	$B$-value at $25^{\circ} \mathrm{C}$   ( ${ }^{\circ} \mathrm{K}$ )	$\mathrm{W}_{\text {max }}$ at $25^{\circ} \mathrm{C}$ amb   (W)	$\begin{aligned} & \text { dissipation } \\ & \text { factor } \\ & \text { (mW/deg C) } \end{aligned}$	thermal time constant (s)	colour   code	catalog   number
4.7	3250	0.6	5.5	28	orange   green   blue   white   yellow/   blue	232263501472
15	3550					153
47	3925					473
150	4075					154
330	4200					334
4.7	3250	1.5	12	55	orange   green blue white	232263601472
15	3550					153
47	4000					473
150	4150					154
4.7	3250				orange	232263701472
15	3650	2.3	17	105	green	153
47	4050	2.3	17	105	blue	473
150	4200				white	154

Tolerance on $\mathrm{R}_{25}$
Tolerance on B-value
Maximum temperature
Stability $\Delta R_{25}$ after 1000 hrs at $W_{\max }$
< $5 \%$
< 3 \%

[^22]Resistance / temperature characteristics

2322635
2322636
2322637


Voltage / current characteristics

2322635




## NTC THERMISTORS standard disc type



QUICK REFERENCE DATA	
Resistance values at $25^{\circ} \mathrm{C}$	$\begin{aligned} & 3.3 \Omega \text { to } 330 \mathrm{k} \Omega \\ & \text { according to } 66 \text {-series } \end{aligned}$
B-values	between 2650 and $4650{ }^{\circ} \mathrm{K}$
Max. dissipation at $\mathrm{T}_{\mathrm{amb}}=55{ }^{\circ} \mathrm{C}$	0.5 W
Operating temperature range at zero power	-25 to $+125^{\circ} \mathrm{C}$
Dissipation factor	8 to $9 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$
Thermal time constant	20 to 30 s

## APPLICATION

Suitable for all kinds of applications.

## DESCRIPTION

These thermistors have a negative temperature coefficient. They consist of a disc provided with two solid tinned copper wires. They are not insulated nor lacquered. The thermistors are colour coded.

## MECHANICAL DATA

## Dimensions in mm

Fig. 1


## Marking

The thermistors are marked with three bands showing their resistance value ( $\mathrm{R}_{25}$ ) in colour code; the types with a tolerance on $\mathrm{R}_{25}$ of $10 \%$ also have a silver band, those with a tolerance on $\mathrm{R}_{25}$ of $5 \%$ a gold band (see Fig. 1).

Weight $\quad 0.5 \mathrm{~g}$ approximately
Mounting In any position by soldering

[^23]ELECTRICAL DATA

$\mathrm{R}_{25}$   ( $\Omega$ )	$\begin{gathered} \mathrm{B}_{25 / 85} \\ \text { 1) } \end{gathered}$   ( ${ }^{\circ} \mathrm{K}$ )	dissipation factor approx.(mW/degC)	thermal time constant approx.   (s)	colour code (see Marking)			catalogue$\text { number } \quad \text { 2) }$
				I	II	III	
3.3	2650	9	30	orange	orange	gold	23226421.338
4.7	2650	9	30	yellow	violet	gold	1.478
6.8	2675	9	30	blue	grey	gold	1.688
10	2775	9	30	brown	black	black	1.109
15	2875	9	30	brown	green	black	1.159
22	2950	9	25	red	red	black	1.229
33	3050	9	25	orange	orange	black	1.339
47	3200	9	25	yellow	violet	black	1.479
68	3225	8	25	blue	grey	black	1.689
100	3250	8	25	brown	black	brown	1.101
150	3275	8	25	brown	green	brown	1.151
220	3325	8	25	red	red	brown	1.221
330	3375	8	25	orange	orange	brown	1.331
470	3425	8	25	yellow	violet	brown	1.471
680	3575	8	25	blue	grey	brown	1.681
1000	3650	8	25	brown	black	red	1.102
1500	3700	8	25	brown	green	red	1.152
2200	3750	8	25	red	red	red	1.222
3300	4000	8	25	orange	orange	red	1.332
4700	4225	8	25	yellow	violet	red	1.472
6800	4225	8	25	blue	grey	red	1.682
10000	4250	8	25	brown	black	orange	1.103
15000	4250	8.5	25	brown	green	orange	1.153
22000	4300	8.5	25	red	red	orange	1.223
33000	4325	8.5	25	orange	orange	orange	1.333
47000	4350	8.5	25	yellow	violet	orange	1.473
68000	4350	8.5	25	blue	grey	orange	1.683
100000	4350	8.5	25	brown	black	yellow	1.104
150000	4350	8.5	25	brown	green	yellow	1.154
220000	-	8.5	25	red	red	yellow	1.224
330000	-	8.5	25	orange	orange	yellow	1.334

Tolerance on resistance value
at $25^{\circ} \mathrm{C}\left(\mathrm{R}_{25}\right)$
Tolerance on B-value
Max. dissipation at $55^{\circ} \mathrm{C}$
Operating temperature range

$$
\text { at zero power } \quad-25 \text { to }+125^{\circ} \mathrm{C}
$$

$\pm 20, \pm 10$ and $\pm 5 \%{ }^{2}$ )
$\pm 5 \%$
0.5 W
$\overline{\text { For notes see opposite }}$



Fig. 3 a and b. Voltage/current characteristics



23226421 1...


## TESTS AND REQUIREMENTS

According to I.E.C. publication 68

*) Leads should neither come loose nor break
**) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVE L

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. 1 \%, major defects-Electrical
A.Q.L. $1.5 \%$, major defects-Mechanical
A.Q.L. 4 \%, minor defects-Physical

## PACKAGING

250 pieces per box (cardboard)

# NTC THERMISTORS standard disc type with mounting stud 



QUICK REFERENCE DATA	
Resistance value(s) at $25^{\circ} \mathrm{C}$	$3.3 \Omega$ to $68 \mathrm{k} \Omega$   acc. to $\mathrm{E} 6-\mathrm{series}$
B-values	between 2650 and 4450 o K   Max. dissipation at $55{ }^{\circ} \mathrm{C}$   Operating temperature range at zero power
Dissipation factor -25 W   Thermal time constant $9.5 \mathrm{~mW} / \mathrm{deg} \mathrm{C} \mathrm{approx}.{ }^{\circ} \mathrm{C}$    $80 \mathrm{~s} \quad$ approx.	

## APPLICATION

Suitable for all kinds of applications, especially when a good insulation and/or a good thermal contact with the chassis is required.

## DESCRIPTION

The same as for the standard disc type without mounting stud (2322 642 1....), but encapsulated in a metal stud.

## MECHANICAL DATA

Dimensions in mm


Fig. 1


Marking The resistance value is printed on the stud in code.
Weight
Mounting 2 g approximately. By means of an M4 nut and ring supplied for the purpose.

ELECTRICAL DATA

$\mathrm{R}_{25}$   ( $\Omega$ )	$\begin{gathered} \mathrm{B}_{25 / 85} \\ 1) \\ \left({ }^{\circ} \mathrm{K}\right) \\ \hline \end{gathered}$	catalogue number 2)	$\mathrm{R}_{25}$   ( $\Omega$ )	$\begin{gathered} \mathrm{B}_{25 / 85} \\ 1) \\ \left({ }^{\circ} \mathrm{K}\right) \\ \hline \end{gathered}$	catalogue number 2)
3.3	2650	23226422.338	1500	3700	23226422.152
4.7	2650	2.478	2200	3750	2.222
6.8	2675	2.688	3300	4000	2.332
10	2775	2.109	4700	4225	2.472
15	2875	2.159	6800	4225	2.682
22	2950	2.229	10000	4250	2.103
33	3050	2.339	15000	4250	2.153
47	3200	2.479	22000	4300	2.223
68	3225	2.689	33000	4325	2.333
100	3250	2.101	47000	4350	2.473
150	3275	2.151	68000	4350	2.683
220	3325	2.221	100000	4350	2.104
330	3375	2.331	150000	4350	2.154
470	3425	2.471	220000	-	2.224
680	3575	2.681	330000	-	2.334
1000	3650	2.102			

Tolerance on resistance value
at $25^{\circ} \mathrm{C}\left(\mathrm{R}_{25}\right)$.
Tolerance on B-value
Dissipation factor
without heatsink
mounted on a heatsink
of $1 \mathrm{dm}^{2}$, thickness 1.5 mm
Thermal time constant
without heatsink
mounted on a heatsink
of $1 \mathrm{dm}^{2}$, thickness 1.5 mm
Max. dissipation at $55^{\circ} \mathrm{C}$
Operating temperature range at zero power

Dielectric withstanding voltage

Insulation resistance
$\pm 20$ and $\pm 10 \% \quad 2$ )
$\pm 5 \%$
$9.5 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$ approx.
$19 \mathrm{~mW} /$ deg C approx.

80 s approx.
15 s approx.
0.5 W
-25 to $+100^{\circ} \mathrm{C}$
$>100 \mathrm{~V}$
$>100 \mathrm{M} \Omega$
$\overline{1) B \text {-value is subject to change }}$
2) Replace dot in catalogue number(9th digit) by

1 for a tolerance of $20 \%$ on $\mathrm{R}_{25}$
2 for a tolerance of $10 \%$ on $\mathrm{R}_{25}$



## PACKAGING

100 pieces per box (cardboard) together with the necessary rings and nuts.

## NTC THERMISTORS <br> standard disc types



QUICK REFERENCE DATA			
Resistance values at $25^{\circ} \mathrm{C}$	$150 \Omega, 470 \Omega, 1.5 \mathrm{k} \Omega, 4.7 \Omega$		
$B$-values	between 3400 and $4200{ }^{\circ} \mathrm{K}$		
Operating temperature range			
	type 2322643	type	2322
Max. dissipation at $25^{\circ} \mathrm{C}$	1 W	1.5	
Dissipation factor	$10 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$	13	mW
Thermal time constant	55 s	120	s

## APPLICATION

These discs are suitable for all kinds of applications.

## DESCRIPTION

The thermistors have a negative temperature coefficient. They consist of a disc provided with two solid tinned copper wires. They are not insulated nor lacquered. The thermistors are colour coded.

## MECHANICAL DATA

Dimensions in mm


Fig. 1

series	D	$H_{\max }$	d
2322643	$9 \pm 0.5$	6	0.6
2322644	$16 \pm 0.5$	7	0.8

## Marking

The thermistors are marked with three bands showing their resistance value ( $\mathrm{R}_{25}$ ) in colour code (see Fig. 1); the types with a tolerance on $\mathrm{R}_{25}$ of $10 \%$ also have a silver band.

Weight
Type $2322643 \quad 0.9 \mathrm{~g}$ approximately
Type $2322644 \quad 2$ g approximately

## Mounting

In any position by soldering.

## ELECTRICAL DATA



Tolerance on resistance value
at $25{ }^{\circ} \mathrm{C}\left(\mathrm{R}_{25}\right)$
$\pm 20$ and $\pm 10 \%$
2)

Tolerance on B-value
$\pm 5 \%$
Operating temperature range

$$
\text { at zero power } \quad-25 \text { to }+125^{\circ} \mathrm{C}
$$

## PACKAGING

Type 2322643
Type 2322644

250 pieces per box (cardboard)
100 pieces per box (cardboard)

1) B-value is subject to change
2) Replace dot in catalogue number (9th digit)
by: 1 for a tolerance of $20 \%$ on $\mathrm{R}_{25}$
2 for a tolerance of $10 \%$ on $\mathrm{R}_{25}$
$\square$

## NTC THERMISTORS disc type



QUICK REFERENCE DATA		
	232264490004	232264490005
Resistance value at $+25^{\circ} \mathrm{C}$	$82 \Omega \pm 20 \%$	min. $15 \Omega$
Resistance at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$, and $\mathrm{I}_{\mathrm{rms}}=1.7 \mathrm{~A}$ and 2.2 A respectively	max. $0.85 \Omega$	max. $1 \Omega$
B25/85-value	$4650{ }^{\circ} \mathrm{K}$	$3350{ }^{\circ} \mathrm{K}$
Maximum current (r.m.s.)	1.7 A	2.2 A
Dissipation factor	$19 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$	$17 \mathrm{~mW} / \mathrm{degC}$
Thermal time constant	115 s	148 s
Operating temperature range		
at zero power	-25 to $+155^{\circ} \mathrm{C}$	-25 to $+155^{\circ} \mathrm{C}$
at maximum power	0 to $+55^{\circ} \mathrm{C}$	0 to $+55^{\circ} \mathrm{C}$

## APPLICATION

For limiting surge current, e.g. diode and switch protection.

## DESCRIPTION

This thermistor has a negative temperature coefficient. It consists of a disc provided with two solid tinned copper wires. The thermistor body is neither lacquered nor in sulated.

MECHANICAL DATA
Dimensions in mm


Marking
The thermistors are not marked.

## Weight

Type 232264490004
approx. 3.2 g
Type 232264490005
approx. 4 g

Mounting
In any position by soldering. Soldering should be done at least 10 mm from the thermistor body.

Robustness of terminations

Tensile strength
Bending

Soldering

## ELECTRICAL DATA

R at $25^{\circ} \mathrm{C}$
$\underline{232264490004} \underline{232264490005}$ unit

R at $\mathrm{Tamb}_{\mathrm{am}}=55^{\circ} \mathrm{C}, \mathrm{Irms}^{\circ}=1.7 \mathrm{~A}$
$82 \pm 20 \% \quad \min .15$
$\Omega$

Re
R at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{rms}}=2.2 \mathrm{~A}$
B25/85-value, approx.
4650
Max. current (r.m.s.) at $\mathrm{T}_{\mathrm{amb}}=+55^{\circ} \mathrm{C}$
1.7

Dissipation factor, approx.
19
Thermal time constant, approx.
115
Heat capacity, approx.
2.2

148
2.5

J/degC
Operating temperature range
at zero power
at maximum power
-25 to +155
-25 to +155
${ }^{\circ} \mathrm{C}$
() to +55
max. 1
3350
${ }^{\circ} \mathrm{K}$
2.2

17
() to +55
${ }^{\circ} \mathrm{C}$
Max. repetitive peak voltage

$$
50-60 \mathrm{~Hz} \text { I) } 345
$$

380
V


Fig. 2. (Values between brackets apply to thermistor 2322644 90005)
${ }^{1}$ ) Measured in the circuit shown in Fig. 2.


Fig. 3. Typical voltage/current characteristics


Fig. 4. Typical voltage/current characteristics


Fig. 5. Typical resistance/temperature characteristics


TESTS AND REQUIREMENTS
According to IEC 68 recommendations, unless otherwise specified.

test	test method	duration	$\Delta \mathrm{R} / \mathrm{R}_{2} 5$ (\%)
Cold at $-25{ }^{\circ} \mathrm{C}$	A	1000 h	$\pm 10$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 10$
Dry heat at $+155^{\circ} \mathrm{C}$	B	1000 h	$\pm 20$
Thermal shock -25 to $+155{ }^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 20$
Damp heat at $+{ }^{\circ} \mathrm{C}$	Ca	1000 h	$\pm 15$
Maximum current at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		1000 h	$\pm 20$
Jycling 3) Quick Slow		250 cycles   5 s on/ 5 s off 2000 cycles $1 \mathrm{~min} \mathrm{on} / 9 \mathrm{~min}$ off	$\pm 20$ $\pm 20$
Robustness of terminations   Tensile strength 20 N   Bending   10 N	U   Ua   Ub	10 s 2 times	1) $1)$
Soldering Solderability at $230 \pm 10^{\circ} \mathrm{C}$ Resistance to heat at $230 \pm 10^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T} \\ & \text { par.3.2.3 } \\ & \text { par.3.2.4 } \end{aligned}$	$\begin{aligned} & 3 \text { to } 4 \mathrm{~s} \\ & 3 \text { to } 4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { 2) } \\ & \pm 2 \end{aligned}$

${ }^{1}$ ) Leads should neither come loose nor break.
${ }^{2}$ ) Leads must be solderable initially and after 6 months storage with solder containing resin flux.
${ }^{3}$ ) Measured in the circuit shown in Fig. 2.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. 1 \%, major defects - Electrical
A.Q.L. 1.5\%, major defects - Mechanical
A.Q.L. $4 \%$, minor defects - Physical

## PACKAGING

Cardboard boxes containing 50 items.

## PTC THERMISTORS

## INTRODUCTION

P (ositive) T (emperature) C(oefficient) thermistors are resistors with a high pos itive temperature coefficient of resistance. In several aspects they differ from NTC thermistors described in this booklet:
(1) The temperature coefficient of a PTC thermistor is positive only between certain temperatures, outside these temperatures the temperature coefficient is zero or negative.
(2) The absolute value of the temperature coefficient of PTC thermistors is in most cases much higher than that of NTC thermistors.

PTC thermistors are applied as excess current limiters, temperature sensors and protection devices against overheating in all kind of apparatus such as electric motors, washing machines, alarm installations etc. They are also used as level indicators, time delay devices, thermostats, compensation resistors etc.

PTC thermistors are prepared from $\mathrm{BaTiO}_{3}$, or solid solutions of $\mathrm{BaTiO}_{3}$ and $\mathrm{SrTiO}_{3}$ in a way which is analogous to the method for preparing NTC thermistors. A certain amount of extra electrons on the Ti -ions are created by the introduction of foreign ions having a different valency. In these compounds there are two possibilities: substitution of trivalent ions like La or Bi for Ba or substitution of pentavalent ions like $\mathrm{Sb} 5+$ or $\mathrm{Nb} 5+$ for Ti . Both methods lead to identical results. If carefully prepared, in the absence of oxygen, these semiconductors have a normal, weakly negative temperature coefficient. The interesting PTC effect is obtained by firing the ceramic samples in the presence of oxygen. It is caused by the penetration of oxygen from the atmosphere along pores and crystal boundaries during the cooling part of the firing process. The oxygen atoms, adsorbed on the crystal surfaces attract electrons from a thin zone of the semiconducting crystals. In this way electrical potential barriers are formed consisting of a negative surface charge with on both sides thin layers having a positive space charge resulting from the now uncompensated foreign ions. These barriers cause an extra resistance of the thermistor.

$$
\mathrm{R}_{\mathrm{b}} \propto \frac{1}{\mathrm{a}} \quad \mathrm{e}^{\mathrm{eV} / \mathrm{b} / \mathrm{k}}
$$

Here a represents the size of the crystallites, thus $\frac{1}{a}$ the number of barriers per unit length of the thermistor. $\mathrm{V}_{\mathrm{b}}$ represents the electrical potential of the barriers. As $\mathrm{V}_{\mathrm{b}}$ is inversily proportional to the value of the dielectric constant of the crystals it is clear that $\mathrm{R}_{\mathrm{b}}$ is extremely sensitive to variations of the dielectric constant. Such a variability of the dielectric constant is a special property of materials with a ferro-electric nature like $\mathrm{BaTiO}_{3}$ and its solid solu-
tions. Above their ferro-electric Curie temperature $\Theta$ the relative dielectric constant decreases with temperature according to

$$
\varepsilon_{r}=\frac{C}{T-\theta}
$$

where $C$ has a value of roughly $10^{5} \mathrm{~K}$. As a result the resistivity increases sleeply just above the Curie temperature.
Below the Curie temperature the barriers are weak or absent, partly as a result of the high effective dielectric constant of $\mathrm{BaTiO}_{3}$ in strong fields and partly as a result of the spontaneous polarization of the crystals which may compensate the boundary charges.
At very high temperatures, above 160 to $200^{\circ} \mathrm{C}$, the electrons captured at the boundaries are gradually liberated. As a result the potential barriers decrease in strength, so that the PTC temperature region is followed by an NTC region. Therefore the applications of PTC thermistors are restricted by a certain temperature limit.
As the PTC effect is caused by crystal boundary barriers the extra resistance $R_{b}$ is shunted by a high parallel capacitance $C_{b}$. This leads to a frequency dependence of $\mathrm{R}_{\mathrm{b}}$, or better of the extra impedance $\mathrm{Z}_{\mathrm{b}}$. Above 1 to $5 \mathrm{MHz} \mathrm{Z}_{\mathrm{b}}$ has completely disappeared. The characteristic properties described in the following paragraphs are thus restricted to low frequencies.

## MANUFACTURING PROCESS

The manufacturing process can be compared with that of NTC thermistors. Mixtures of barium carbonate, strontium and titanium oxides and other materials depending on the required electrical characteristics are milled, mixed and pressed into a suitable form. After drying, the PTC's are sintered at a very high temperature. After the contacts have been applied with the utmost care on this n-type semiconductor, leads can be soldered on the contact surfaces. Most PTC types with leads are further protected by a special lacquer.
$\propto=$ directly proportional with

## ELECTRICAL PROPERTIES

## RESISTANCE VERSUS TEMPERATURE CHARACTERISTICS

The relation between resistance value and temperature is difficult to express in a compact formula (as was done for NTC). Being not simply the reverse of an NTC curve, the PTC characteristic is more complicated. In Fig. 1 a comparison is given of the general behaviour of NTC and PTC thermistors. Generally speak-

## Fig.1.

Resistance/temperature characteristics of an NTC and PTC thermistor.

ing, PTC thermistors have at the lower end of the temperature scale a zero or negative temperature coefficient of resistance. Going to higher temperatures the temperature coefficient of resistance changes to a high positive value up to a temperature of approximately $150{ }^{\circ} \mathrm{C}$. Above that temperature the temperature coefficient decreases and becomes negative.

In some cases the resistance/temperature relation can be expressed by the formula:

$$
\mathrm{R}_{\mathrm{T}}=\mathrm{A}+\mathrm{Ce}^{\mathrm{BT}}, \text { for } \mathrm{T}_{1}<\mathrm{T}<\mathrm{T}_{2}
$$

in which $\mathrm{R}_{\mathrm{T}}=$ resistance at the temperature T of the PTC
$\mathrm{T}=$ temperature of the PTC
A, C and B constants
$\mathrm{T}_{1}=\quad$ minimum temperature for which the formula applies.
$\mathrm{T}_{2}=\quad$ maximum temperature for which the formula applies.
From this formula we find after differention the temperature coefficient:

$$
\alpha=\frac{1}{\mathrm{R}} \cdot \frac{\mathrm{dR}}{\mathrm{dT}}=\frac{\mathrm{BC} \mathrm{e} \mathrm{e}^{\mathrm{BT}}}{\mathrm{~A}+\mathrm{Ce}^{\mathrm{BT}}}
$$

which yields to

$$
\alpha=100 \mathrm{~B} \% \text { per } \operatorname{deg} \mathrm{C}
$$

for that part of the characteristic where $\mathrm{R}_{\mathrm{T}} \gg \mathrm{A}$.

However, in practice it seldom occurs that the R/T characteristic can be described by the above or another simple formula, so calculations have to be based on graphical methods. As a practical indication of the temperature at which the PTC thermistor starts to have a usable temperature coefficient, the switch temperature $\mathrm{T}_{\text {switch }}$ has been introduced, being defined as the higher of the two temperatures at which the value of the resistance of the PTC is twice that of the minimum resistance ${ }^{1}$ ).

## VOLTAGE VERSUS CURRENT CHARACTERISTICS

The static voltage/current characteristics are very interesting as these curves clearly show the current limiting ability of the PTC thermistors. Up to a certain voltage the V/I characteristic is a straight line following ohm's law but as soon as the PTC is heated up by the current so much that its temperature reaches the switch temperature, the resistance value increases (Fig.2).
Of course the V/I characteristic depends on the ambient temperature and on the heat transfer coefficient to the ambience.
In Fig. 2 the characteristic is plotted on a linear scale, in practice, however, logarithmic scales are used more often (Fig.3). PTC thermistors show a certain degree of voltage dependency. At higher voltages the resistance value is somewhat lower than expected. This is the reason why a V/I characteristic is difficult to calculate from the R/T curve with the given dissipation constant. (see: Electrical properties of NTC thermistors, page C7).
It is, however, possible to calculate the top of the V/I characteristic with very good approximation if the $\mathrm{R} / \mathrm{T}$ characteristic and the dissipation constant is known.

The calculation goes as follows:
The power dissipation is: $\quad W=I^{2} R$
Thus a small increase in W: $\Delta \mathrm{W}=2 \mathrm{IR} \Delta \mathrm{I}+\mathrm{I}^{2} \Delta \mathrm{R}$
At the top of the V/I curve $\Delta \mathrm{I}_{\mathrm{p}}=0$ thus: $\Delta W_{p}=I_{p}^{2} \Delta R_{p}$ (p indicates that the values are taken at the top of the V/I characteristic).
Also

$$
\Delta \mathrm{W}_{\mathrm{p}}=\mathrm{D} \Delta \mathrm{~T}_{\mathrm{p}}=\mathrm{I}_{\mathrm{p}}^{2} \Delta \mathrm{R}_{\mathrm{p}}
$$

or

$$
\Delta \mathrm{W}=\mathrm{D} \Delta \mathrm{~T} \text { thus: }
$$

$$
\frac{\Delta \mathrm{T}_{\mathrm{p}}}{\Delta \mathrm{R}_{\mathrm{p}}} \cdot \mathrm{D}=\mathrm{I}_{\mathrm{p}} 2
$$

[^24]

Fig. 2.
Voltage/current characteristics of a PTC thermistor at different ambient temperatures on a linear scale.


Fig. 3.
Voltage/current characteristic on a logarithmic scale.

Fig. 4.
Part of the resistance/temperature characteristic on a linear scale.


In Fig.4, the R/T characteristic on linear scale, we see:
so

$$
\begin{aligned}
& \frac{\Delta T_{p}}{\Delta R_{p}}=\frac{T_{p}-T_{a m b}}{R_{p}} \\
& I_{p}=\sqrt{\frac{D\left(T_{p}-T_{a m b}\right)}{R_{p}}}
\end{aligned}
$$

With given ambient temperature ( $\mathrm{T}_{\mathrm{amb}}$ ) and D , the values $\mathrm{R}_{\mathrm{p}}$ and $\mathrm{T}_{\mathrm{p}}$ can easily be found (see Fig.4).
The calculation shows that if $D$ is increased $n$ times (e.g.by a heatsink, or ambience with better heat conductivity) $I_{p}$ increases $\sqrt{n}$ times.
Furthermore it can be seen that $R_{p}$ and $T_{p}$ are independent of the surrounding medium.

## PTC THERMISTOR IN SERIES WITH A LOAD

With the voltage/current characteristic it can be shown that due to the non-linearity of the PTC-curve three working points are possiole when a load R is connected in series with the PTC (Fig.5). The characteristic of the load is a straight line intersecting the voltage ordinate at $V_{a}$, the supply voltage. $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$ are stable working points, $\mathrm{P}_{3}$ is unstable.
When the voltage $\mathrm{V}_{\mathrm{a}}$ is applied to the series connection, equilibrium will be reached at $\mathrm{P}_{1}$, a point with a relatively high current. $\mathrm{P}_{2}$ can only be reached when the top of the V/I curve comes below the load characteristic. This may happen in the following cases:
(1) $\mathrm{V}_{\mathrm{a}}$ increases (Fig.6);
(2) the ambient temperature increases (Fig.7);
(3) the load resistance decreases (Fig.8).

The PTC is thus an excellent protective device as it limits the current through the load to a safe value if supply voltage, temperature or current surpass a critical value.

Fig. 5.
PTC thermistor in series with a load showing the possible working points.


Fig. 6.
PTC thermistor in series with a load showing the influence of the supply voltage $\mathrm{V}_{\mathrm{a}}$.


Fig. 7.
PTC thermistor in series with a load showing the influence of the ambient temperature.


Fig. 8.
PTC thermistor in series with a load showing the influence of the load resistance.



Fig.9. PTC thermistors in series with different resistors.


Fig.10. Current/time characteristics showing the influence of the value of the load.

## CURRENT/TIME CHARACTERISTICS

If a PTC thermistor is connected in series with a resistance of such a value that the top of the V/I curve lies under the load line, the PTC will heat up till the stable working point $\mathrm{P}_{2}$ is reached (Fig.9). The time it takes to reach this point depends very much on the value of the load $R$ (Fig.10) and the ambient temperature.


## EXPLANATION OF TERMS

## Switch temperature ( $\mathrm{T}_{\mathrm{S}}$ )

The switch temperature $T_{S}$ is the higher of the two temperatures at which the resistance $\mathrm{R}_{\mathrm{S}}$ is twice the minimum resistance $\mathrm{R}_{\min }$ (see Fig.1).
So, at $T_{S}>T_{R_{\min }}: R_{S}=2 R_{\text {min }}$


Temperature coefficient ( $\alpha$ )
The temperature coefficient $\alpha=\frac{1}{\mathrm{R}} \quad \frac{\mathrm{dR}}{\mathrm{dT}}$.
For $\mathrm{R}-\mathrm{T}$ curves plotted on a $\log \mathrm{R}$-lin T scale, as they practically all are, we can work out

$$
\alpha=\frac{\mathrm{d} \ln \mathrm{R}}{\mathrm{dT}}=\frac{1}{0.4343} \cdot \frac{\mathrm{~d} \mathrm{log} \mathrm{R}}{\mathrm{dT}}
$$

It can be seen that the tangent at a point of the $\mathrm{R}-\mathrm{T}$ characteristic (see Fig.2) is proportional to the $\alpha$ at that point.

$\alpha$ can be calculated from

$$
\alpha=\frac{100}{0.4343} \cdot \frac{\log \mathrm{R}_{2}-\log \mathrm{R}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \% / \mathrm{deg} \mathrm{C}
$$

where $R_{1}$ and $R_{2}$ are points on the tangent with $T_{1}$ and $T_{2}$ being the corresponding temperatures.
In the data sheets the maximum temperature coefficient is given, this is the $\alpha$ measured at the inflection point of the $\log \mathrm{R}-\operatorname{lin} \mathrm{T}$ characteristic (i.e. the point where $\frac{d^{2} \log R}{d T^{2}}=0$, see Fig. 3)


When one resistance decade is taken $\left(\mathrm{R}_{2}=10 \mathrm{R}_{1}\right)$ the formule reduces to

$$
\alpha=\frac{100}{0.4343} \cdot \frac{1}{\mathrm{~T}_{2}-\mathrm{T}_{1}} \% / \operatorname{deg} \mathrm{C}
$$

## Thermal time constant ( $T$ )

The thermal time constant represents the time required for a thermistor to change $63.2 \%$ of the total difference between its initial and final body temperatures when subjected to a step function change in temperature under zero-power conditions. The $T$ given in the data is found as follows (for $\mathrm{T}_{\mathrm{S}}>25^{\circ} \mathrm{C}$ ):
Measure $\mathrm{T}_{1}$, being the temperature of the PTC at $\mathrm{V}_{\max }$, at an ambient temperature of $\mathrm{T}_{\mathrm{O}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{S}}$ is known, then $\tau$ can be calculated from:

$$
\tau=\frac{\mathrm{t}}{\ln \left(\mathrm{~T}_{1}-\mathrm{T}_{\mathrm{O}}\right) /\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{O}}\right)},
$$

where $t$ is the time required for cooling the PTC from $T_{1}$ to $T_{S}$ in still air of $25^{\circ} \mathrm{C}$.

## Voltage dependence aspects

PTC thermistors show a voltage dependence. This effect can be explained with the aid of a parallel connection of an "ideal PTC" having no voltage dependence and an " ideal VDR" following exactly the formula $\mathrm{V}=\mathrm{C} . \mathrm{I} \beta$ (see Fig. 4).


Plotted on a $\log$ I-log V scale at an arbitrary cunstant temperature the ideal PTC and ideal VDR can be represented by 2 straight lines (see Fig. 5).


These lines can be seen to coincide with the PTC curve (measured under pulse conditions to avoid internal heating) at low voltages where the ohmic behaviour is the deciding factor, and at high voltages where the VDR effect becomes more important.
Two aspects of the voltage dependence are specified in the data sheets:
Balance voltage ( $\mathrm{V}_{\mathrm{b}}$ )
Where the two straight lines intersect the current through the ideal PTC is equal to the current through the ideal VDR. The voltage at which this occurs is called the balance voltage $\mathrm{V}_{\mathrm{b}}$ and is specified at a certain temperature.

## Voltage dependence $(\beta)$

The $\beta$-value of the ideal VDR, being a measure for the voltage dependence of the

## THERMISTORS

the PTC, can be calculated with the formula:

$$
\beta=\frac{\log V_{3} / V_{2}}{\log \left(I_{3}-V_{3} / R\right) /\left(I_{2}-V_{2} / R\right)}
$$

with $\mathrm{V}_{3}$ and $\mathrm{V}_{2}$ being pulse voltages $>\mathrm{V}_{\mathrm{b}}$ and $\mathrm{R}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}$, measured at $\mathrm{V}_{1} \leq 1.5 \mathrm{~V}_{\mathrm{dc}}$. The $\beta$-value is also specified at a certain temperature.

Vb and $\beta$-value are useful parameters for estimating the voltage dependence of a particular PTC.

## HOW TO MEASURE PTC THERMISTORS

For general information regarding measuring techniques and apparatus we refer to the section "How to measure NTC thermistors" on p.C15, which covers the same problems. As PTC thermistors often show a very high temperature coefficient especially at high temperatures, measurements at these high temperatures must be carried out with particular care. Even an error in temperature of 0.1 deg $C$ can give an error in resistance of a few percent. Specially calibrated thermometers have to be used. Stem correction has to be applied; this is often forgotten but deviations of more than 0.1 deg $C$ may result if it is not. (See e.g. "Handbook of Chemistry and Physics", 44th edition, page 2418.)
The stem correction formula for fluid thermometers is:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{C}}= & \mathrm{T}_{\mathrm{O}}+\mathrm{F} \cdot \mathrm{~L}\left(\mathrm{~T}_{\mathrm{O}}-\mathrm{T}_{\mathrm{m}}\right) \\
\mathrm{T}_{\mathrm{C}}= & \text { corrected temperature } \\
\mathrm{T}_{\mathrm{O}}= & \text { observed temperature } \\
\mathrm{T}_{\mathrm{m}}= & \text { mean temperature of exposed stem } \\
\mathrm{L}= & \text { length of the exposed column in degrees above the surface of the } \\
& \text { substance whose temperature is being determined. } \\
\mathrm{F}= & \text { correction factor. }
\end{aligned}
$$

For approximate work and when the liquid in the thermometer is mercury a value for $F$ of 0.00016 is generally used.
So e.g. with $\mathrm{T}_{\mathrm{O}}=110^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{m}}=70$ and $\mathrm{L}=50^{\circ} \mathrm{C}$ we find: $\mathrm{T}_{\mathrm{C}}=110.32$, thus without stem correction an error of more than 0.3 deg C would have been made. It is also necessary to measure the resistance with a voltage below 2 V in order not to heat the PTC and also to diminish voltage-dependent effects.

## TOLERANCES

The resistance values of standard PTC thermistors are specified at the following temperatures.
(1) $25^{\circ} \mathrm{C}$;
(2) A temperature above the switch temperature.

Further the switch temperature is given.
For each standard type tolerances are specified for the $\mathrm{R}_{25}$ and the high temperature resistance value. The tolerance on switch temperature is not specified; normally it is only a few degrees $C$.
Special types are often specified according to the requirements for the particular application. The PTC thermistors for motor control, for instance, can be specified at a high temperature with a rather close tolerance, while the tolerance below the switch temperature, being less important, is much wider. PTC thermistors for current limiting applications are in most cases specified in terms of voltage and current.
It will be clear that the specification and the tolerances of PTC thermistors depend on the application, and are not limited to the standard range published in this book.

## APPLICATIONS

The applications of PTC thermistors can be classified in two main groups:
(1) Applications where the temperature of the PTC is primary determined by the temperature of the ambient medium.
(2) Applications where the temperature of the PTC is primary determined by the current through the PTC thermistor.

The first group comprises applications such as temperature-measurement and control and circuits for protection against excessive temperatures (e.g. motor protection.)

The second group includes applications such as current stabilization and limiting of current relay retardation, fluid-level indication and circuits for protection against over-voltages and short circuits.
Principle circlits of the above mentioned applications are given in the following pages.

No details of component data are mentioned as these can be calculated on basis of available supply voltages and data of relays or other vital components. Details on more complicated circuits will be given on request.

## REMARKS ON THE USE OF PTC THERMISTORS

Do not apply a voltage above $V_{\max }$ to the PTC, since this may result in a breakdown of the thermistor.

Do not connect PTC thermistors in series in order to obtain higher permissible voltages or wattages: this may lead to a breakdown of the PTC which heats up a bit faster than the other(s) which results in too high voltage over this particular PTC.

If special PTC characteristics are required which cannot be found in this book please specify your requirements as they can perhaps be fulfilled by one of our non-listed types.

## PTC <br> THERMISTORS

## APPLICATION EXAMPLES

Protection against over-voltage and short circuit

As soon as the current increases the PTC limits the current to a safe value.


## Current stabilization

By applying a parallel resistor a current stabilization circuit is obtained which compensates slowly varying supply voltages.



## Spark suppression

A PTC across the switch acts as a spark suppressor. When the switch opens the low resistance of the cold PTC prevents sparking.


Delaying action relays
A certain time after applying the voltage the relay is activated.


## Temperature protection

 of electric motorsAs soon as one or more windings become too hot the motor is switchedoff.


## Alarm installation

The PTC reacts on ambient temperature (too low or too high).


Time delay circuit
When the button is pressed the relay is activated and the lamp lights up. After some time the relay falls off due to the increase in resistance value of the PTC.


## Liquid-level indication

The PTC thermistors above the fluidlevel will be heated to a temperature above $\mathrm{T}_{\text {switch }}$ while when immersed they are cooled so that their resistance value is low.


## THERMISTORS

## Thermal oscillator

With an NTC and a PTC thermistor in series a thermal oscillator can be obtained.


## PTC-NTC multivibrator

One of the PTC's will heat up, as its resistance value increases the NTC in parallel will heat up while leaving the first one time to cool etc.

## Thermostat circuits

Two principle circuits are possible. In the first circuit the PTC thermistors act as a control element and as a heater at the same time while in the second circuit they function only as a control element.


Temperature compensation of transistor circuits


Thermostat for washing machines
A thermostat for three temperatures.


## PTC THERMISTORS <br> standard dise type




RZ 19269-7

## APPLICATION

Suitable for all kinds of applications.

## DESCRIPTION

The thermistors have a positive temperature coefficient. They consist of a disc provided with two solid tinned copper wires. The thermistor body is lacquered but not insulated.

1) PTC thermistor 2322660 91009: -10 to $+150^{\circ} \mathrm{C}$.

## MECHANICAL DATA

Dimensions in mm

catalogue number	colour   band
232266091006	red
232266091007	orange
232266091008	yellow
232266091009	green



Fig. 1.

## Marking

The thermistors are marked with a colour band at the top of the body according to Fig.l.
Weight $\quad 0.4 \mathrm{~g}$ approximately

Mounting In any position by soldering
ELECTRICAL DATA

	catalogue number 2322660 followed by					unit
	91006	91007	91008	91009		
Resistance at $25^{\circ} \mathrm{C}^{1}$ )	60	50	50	50	$\Omega$	
Resistance at $125^{\circ} \mathrm{C}^{1}$ )	3 to 15	100 to 500	50 to 500		$\mathrm{k} \Omega$	
Resistance at $150{ }^{\circ} \mathrm{C}^{1}$ )				0.1 to 1.2	$\mathrm{M} \Omega$	
Switch temperature	30	50	80	105	${ }^{\circ} \mathrm{C}$	
Temperature coefficient	7	16	23	40	$\% /$ deg C	
Heat capacity 2)	0.13	0.13	0.13		$\mathrm{~J} / \mathrm{deg} \mathrm{C}$	
Thermal time constant 2)	20	18	18	s		
Voltage dependence $\beta$	0.19	0.17	0.18			
Balance voltage	35	12.5	23		$\mathrm{~V}_{\mathrm{dc}}$	

Tolerance on R25
Max. voltage
Dissipation factor
Operating temperature range at zero power
$\pm 30 \%$
25 Vd.c.
7 mW approx.

$$
\begin{gathered}
\left.-10 \text { to }+125^{\circ} \mathrm{C} 3^{3}\right) \\
0 \text { to }+55^{\circ} \mathrm{C}
\end{gathered}
$$

at $\mathrm{V}_{\text {max }}$

[^25]PTC THERMISTORS standard disc type

232266091006 to 232266091009



PTC THERMISTORS


Fig.4. Typical voltage/current characteristics




Fig. 7. Typical voltage/current characteristics




Fig. 10. Typical voltage/current characteristics

PTC THERMISTORS standard disc type


Fig.11. Typical resistance/temperature characteristic


Fig.12. Typical voltage/current characteristic

## TESTS AND REQUIREMENTS

According to I.E.C. 68, unless otherwise specified.

test	test method	duration	$\begin{array}{r} \Delta \mathrm{R} \\ \text { at } 25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \mathrm{R} \text { in \% } \\ & \text { at } 125^{\circ} \mathrm{C}{ }^{3} \text { ) } \end{aligned}$
Cold at $-10^{\circ} \mathrm{C}$	A	1000 h	$\pm 3$	$\pm 3$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 3$	$\pm 3$
Dry heat $+125^{\circ} \mathrm{C}$	B	1000 h	$\pm 5$	$\pm 5$
Thermal shock -10 to $+125^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 3$	$\pm 3$
Damp heat	C	1000 h	$\pm 5$	$\pm 5$
Dissipation at $\mathrm{V}=25 \mathrm{~V} \mathrm{rms}$ and $\mathrm{T}_{\mathrm{amb}}=+55^{\circ} \mathrm{C}$		1000 h	$\pm 5$	$\pm 5$
$\begin{aligned} & \text { Cycles test at } \mathrm{V}=25 \mathrm{~V}_{\mathrm{rms}} \\ & \text { and } \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \end{aligned}$		1000 cycles   1 min . on/   9 min . off	$\pm 10$	$\pm 10$
Robustness of terminations Tensile strength 10 N Bending 5 N	U   Ua   Ub	10 s   2 times	$\begin{aligned} & \text { 1) } \\ & \text { 1) } \end{aligned}$	
Soldering	T			
Solderability	par. 3.2.3	3 to 4 s	2)	
Resistance to heat	par. 3.2.4	3 to 4 s	$\pm 2$	$\pm 2$

1) Leads should neither come loose nor break.
2) Leads must be solderable initially and after 6 months storage with solder containing resin flux.
3) For thermistor 232266091009 at $150{ }^{\circ} \mathrm{C}$.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D.
A.Q.L. 1 \%, major defects - Electrical
A.Q.L. $1.5 \%$, major defects - Mechanical
A.Q.L. $4 \%$, minor defects - Physical

## PACKAGING

250 pieces per box (cardboard)

## PTC THERMISTORS standard disc type




RZ17758.7

## APPLICATION

Suitable for all kinds of applications.

## DESCRIPTION

The thermistors have a positive temperature coefficient.
They consist of a disc provided with two solid tinned copper wires. The thermistor body is lacquered but not insulated.

## MECHANICAL DATA

Dimensions in mm
Table 1

catalogue number	colour   band	$H_{\text {max }}$
232266191002	yellow	6.5
232266191003	green	6.5
232266191004	orange	6.5
232266191005	red	5.5



Fig. 1.

## Marking

The thermistors are marked with a colour band at the top of the body according to Fig. 1.

Weight
Mounting

1 g approximately
In any position by soldering
ELECTRICAL DATA

R25   2)   $(\Omega)$	$R$ at temper $\left\|\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)\right\|$	other atures ${ }^{3}$ )   R ( $\Omega$ )	switch temperature $\left({ }^{\circ} \mathrm{C}\right)$	temperature coefficient (\%/deg C)	$\left(\begin{array}{l} \mathrm{V}_{\max } \\ \text { (Vd.c. }) \end{array}\right.$	$\begin{gathered} \text { dissipation } \\ \text { factor } \\ 4) \\ (\mathrm{mW} / \operatorname{deg} \mathrm{C}) \end{gathered}$	thermal time constant 4) (s)	heat capacity $4)$ $(\mathrm{J} / \operatorname{deg} \mathrm{C})$	voltage dependence $\beta$	balance voltage   (V)	catalogue number
50	60 100	$\begin{array}{rrr}< & 100 \\ > & 1000\end{array}$	+ 80	18	50	8.5	50	0.425	0.48	110	232266191002
40	$\begin{array}{r} 95 \\ 130 \end{array}$	$\left\lvert\, \begin{array}{lr} < & 80 \\ > & 10 \end{array} 000\right.$	$+110$	75	50	8.5	50	0.425	0.48	25	232266191003
30	40 100	$\left\lvert\, \begin{array}{lr} < & 90 \\ >10 & 000 \end{array}\right.$	+ 45	16	50	8.5	50	0.425	0.25	65	232266191004
50	100	$\begin{aligned} & 3000- \\ & 20000 \end{aligned}$	+ 25	9	40	6	40	0.240	0.35	25	232266191005

Tolerance on resistance
at $25^{\circ} \mathrm{C}\left(\mathrm{R}_{25}\right)$
Operating temperature range
at zero power
2) Measuring voltage not exceeding $1.5 \mathrm{~V}_{\mathrm{dc}}$ to avoid internal heating.
${ }^{3}$ ) Measurements made without internal heating occurring.
4) Measurements made with specimen in phosphor-bronze clips, in still air.

Fig.2. Typical resistance/temperature characteristics Fig.3. Typical resistance/time (cooling) characteristics

PTC THERMISTORS


Fig. 4a. Voltage/current characteristics


Fig. 4b. Voltage/current characteristics

PTC THERMISTORS standard disc type


Fig. 4c. Voltage/current characteristics


Fig.4d. Voltage/current characteristics

## TESTS AND REQUIREMENTS

According to I.E.C. 68, unless otherwise specified.
Table 3

test	test method	duration	$\begin{aligned} & \Delta \mathrm{R} / \mathrm{R} \\ & \text { at } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { n \% } \\ & \text { at }{ }^{3} \text { ) } \end{aligned}$
Cold at $-10{ }^{\circ} \mathrm{C}$	A	1000 h	$\pm 3$	$\pm 3$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 3$	$\pm 3$
Dry heat $+125^{\circ} \mathrm{C}$	B	1000 h	$\pm 5$	$\pm$
Thermal shock -10 to $+125^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 3$	$\pm 3$
Damp heat	C	1000 h	$\pm 5$	$\pm 5$
$\begin{gathered} \text { Dissipation at } \left.V_{\max }{ }^{4}\right) \\ \text { and } T_{\text {amb }}=+55^{\circ} \mathrm{C} \end{gathered}$		1000 h	$\pm 5$	$\pm 5$
$\begin{aligned} & \text { Cycle test at } \mathrm{V}_{\max }{ }^{4} \text { ) } \\ & \text { and } \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \mathrm{C} \end{aligned}$		$\begin{gathered} 1000 \mathrm{~h} \\ 1 \mathrm{~min} \text { on } / 9 \mathrm{~min} \text { off } \end{gathered}$	$\pm 10$	$\pm 10$
Robustness of terminations	U			
Tensile strength 10 N	Ua	10 s	1)	
Bending 5 N	Ub	2 times	1)	
Soldering	T			
Solderability at $230{ }^{\circ} \mathrm{C}$	par.3.2.3	3 to 4 s	2)	
Resistance to heat at $230{ }^{\circ} \mathrm{C}$	par.3.2.4	3 to 4 s	$\pm 2$	$\pm 2$

1) Leads should neither come loose nor break.
2) Leads must be solderable initially and after six months storage with solder containing resin flux.
${ }^{3}$ ) At temperatures stated in table 2, second column.
3) $V_{\max }$ stated in table 2 .

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. $1 \%$, major defects - Electrical
A.Q.L. $1.5 \%$, major defects - Mechanical
A.Q.L. 4 \%, minor defects - Physical

PACKAGING 250 pieces per box (cardboard)

## PTC THERMISTOR

QUICK REFERENCE DATA	
Resistance value at $25^{\circ} \mathrm{C}$	36 to $50 \Omega$
Resistance value at $175^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {pulse }}=180 \mathrm{~V}$	$>25 \mathrm{k} \Omega$
Switch temperature	$115{ }^{\circ} \mathrm{C}$ approx.
Temperature coefficient	$46 \% / \mathrm{deg} \mathrm{C}$ approx.
Max. voltage	180 V dc
Dissipation factor	$11 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$ approx.
Operating temperature range    at zero power    at $\mathrm{V}_{\text {max }}$. 0 to $155{ }^{\circ} \mathrm{C}$    0 to $+55^{\circ} \mathrm{C}$	



RZ 19269.7

## APPLICATION

This PTC thermistor has been designed for the protection of telegraphy relay contacts.

## DESCRIPTION

This type has a positive temperature coefficient. It consists of a disc provided with two solid tinned brass wires. The thermistor body is lacquered but not insulated.

## MECHANICAL DATA

Dimensions in mm


Weight $\quad 0.5 \mathrm{~g}$ approximately
Mounting In any position by soldering

## ELECTRICAL DATA

Resistance at $+25^{\circ} \mathrm{C}$ ( $\mathrm{T}_{\text {ref }}$ )
Resistance at $+115{ }^{\circ} \mathrm{C}$
Resistance at $+175^{\circ} \mathrm{C}, \mathrm{V}_{\text {pulse }}=180 \mathrm{~V}$
Current at $+25{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dc}}=180 \mathrm{~V}$ continuously
Switch temperature
Temperature coefficient
Dissipation factor
Heat capacity
Thermal time constant
Operating temperature range
at zero power
0 to $+155^{\circ} \mathrm{C}$
at $V_{\text {max }}$
Voltage dependence $\beta$ at $+150^{\circ} \mathrm{C}$
Balance voltage
0 to $+55^{\circ} \mathrm{C}$
0.34 approx
$125 \mathrm{~V}_{\mathrm{dc}}$ approx
Maximum voltage ( $\mathrm{V}_{\text {max }}$ ) at $+55^{\circ} \mathrm{C}$
$180 \mathrm{~V}_{\mathrm{dc}}$
${ }^{1}$ ) Measuring voltage not exceeding $1.5 \mathrm{~V}_{\mathrm{dc}}$ to avoid internal heating
${ }^{2}$ ) Measurement made without internal heating occurring.
${ }^{3}$ ) Measurement made with specimen in phosphor bronze clips, in still air.






Fig.4. Typical voltage/current characteristic

## TESTS AND REQUIREMENTS

According to I.E.C. publication 68, unless otherwise specified.

Tests	test	duration	$\max . \Delta \mathrm{R} / \mathrm{R}$ in $\%$	
	method		at $25{ }^{\circ} \mathrm{C} \quad$ at $175^{\circ} \mathrm{C}$	
Robustness of terminations	U			
Tensile strength 5 N	$\mathrm{U}_{\mathrm{a}}$	10 S	$1)$	
Bending 2.5 N	$\mathrm{U}_{\mathrm{b}}$	2 times	1 )	
Soldering	T			
Solderability	par.3.2.3	3 to 4 S	2 )	
Resistance to heat	par.3.2.4	3 to 4 S	$\pm 2$	$\pm 2$
Non-flammability	CCTU01-01A			

1) Leads should neither come loose nor break
${ }^{2}$ ) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. 1 \%, major defects - Electrical
A.Q.L. $1.5 \%$, major defects - Mechanical
A.Q.L. $4 \%$, minor defects - Physical

## PACKAGING

50 pieces per box (cardboard)

## PTC THERMISTOR

QUICK REFERENCE DATA	
Resistance value at $+25^{\circ} \mathrm{C}$	45 to $60 \Omega$
Resistance value at $+150^{\circ} \mathrm{C}$	$>45 \mathrm{k} \Omega$
$\mathrm{V}_{\text {pulse }}=340 \mathrm{~V}$	$+75{ }^{\circ} \mathrm{C}$ approx
Switch temperature	$+23 \% / \mathrm{deg} \mathrm{C}$ approx.
Temperature coefficient	$245 \mathrm{~V}_{\mathrm{rms}}$
Max. voltage at T amb $\leq 60^{\circ} \mathrm{C}$	$17 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$ approx.
Dissipation factor	0 to $+155^{\circ} \mathrm{C}$
Operating temperature range	0 to $+60^{\circ} \mathrm{C}$
at zero power	
at $\mathrm{V}_{\text {max }}$	



## APPLICATION

Intended primarily to be used in the degaussing circuit of colour television sets.

## DESCRIPTION

This thermistor has a positive temperature coefficient. It consists of a disc provided with two solid tinned copperwires. The thermistor body is blue lacquered, but not insulated.

## MECHANICAL DATA

Dimensions in mm

Fig. 1

Weight 4.5 g approximately


Mounting In any position by soldering. Soldering should be done at least 15 mm from the thermistor body.

## ELECTRICAL DATA

Resistance at $+25^{\circ} \mathrm{C}$	45 to $60 \Omega^{\text {l }}$ )
Resistance at $+75{ }^{\circ} \mathrm{C}$	$<160 \Omega^{1}$ )
Resistance at $+150{ }^{\circ} \mathrm{C}, \mathrm{V}_{\text {pulse }}=340 \mathrm{~V}$	$>45 \mathrm{k} \Omega{ }^{2}$ )
Switch temperature	$+75{ }^{\circ} \mathrm{C}$ approx.
Temperature coefficient	+23\%/deg C approx.
Dissipation factor	$17 \mathrm{~mW} /$ deg C approx. ${ }^{3}$ )
Heat capacity	$2.3 \mathrm{~J} / \mathrm{deg} \mathrm{C}$ approx. ${ }^{3}$ )
Thermal time constant	130 s approx. ${ }^{3}$ )
Operating temperature range at zero power at $V_{\max }$	$\begin{aligned} & 0 \text { to }+155^{\circ} \mathrm{C} \\ & 0 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$
Voltage dependence $\beta$ at $+150{ }^{\circ} \mathrm{C}$	0.30 approx .
Balance voltage at $+150{ }^{\circ} \mathrm{C}$	$175 \mathrm{~V}_{\mathrm{dc}}$ approx.
Maximum voltage ( $\mathrm{V}_{\text {max }}$ ) at $+60^{\circ} \mathrm{C}$	$245 \mathrm{~V}_{\mathrm{rms}}$

${ }^{1}$ ) Measuring voltage not exceeding $1.5 \mathrm{~V}_{\mathrm{dc}}$ to avoid internal heating.
${ }^{2}$ ) Measurement made without internal heating occurring.
${ }^{3}$ ) Measurement made with specimen in phosphor bronze clips, in still air.




Fig.4. Typical voltage/current characteristics

## TESTS AND REQUIREMENTS

According to I.E.C. 68

test	test	duration	$\Delta \mathrm{R} / \mathrm{R}$ in $\%$	
at $25^{\circ} \mathrm{C}$	at $150{ }^{\circ} \mathrm{C}$			
Robustness of terminations	method	U		
Tensile strength 20 N	Ua	10 s	$1)$	
Bending $\quad 10 \mathrm{~N}$	Ub	2 times	$1)$	
Soldering	T			
Solderability at $230{ }^{\circ} \mathrm{C}$   Resistance to heat at $230{ }^{\circ} \mathrm{C}$	par. 3.2 .3	3 to 4 s	$2)$	

${ }^{1}$ ) Leads should neither come loose nor break.
${ }^{2}$ ) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. 1 \%, critical defects - Electrical
A.Q.L. $1.5 \%$, major defects - Mechanical
A.Q.L. 4 \%, minor defects - Physical

## PTC THERMISTOR

QUICK REFERENCE DATA	
Resistance value at $+25^{\circ} \mathrm{C}$	$100 \Omega \pm 20 \%$
Resistance value at $+150^{\circ} \mathrm{C}$   $\mathrm{V}_{\text {pulse }}=340 \mathrm{~V}$	$>40 \mathrm{k} \Omega$
Switch temperature	$80 \mathrm{o}^{\circ} \mathrm{C}$
Max. voltage at $\mathrm{T}_{\mathrm{amb}} \leq+60^{\circ} \mathrm{C}$	245 V rms
Dissipation factor	$15 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$ approx.
Operating temperature range   at zero power   at $\mathrm{V}_{\text {max }}$	0 to $150^{\circ} \mathrm{C}$



## APPLICATION

Intended primarily to be used in the degaussing circuit of colour television sets.

## DESCRIPTION

This thermistor has a positive temperature coefficient. It consists of a disc provided with two solid tinned brass wires. The thermistor body is blue lacquered, but not insulated.

## MECHANICAL DATA

Dimensions in mm

Fig. 1

Marking


The thermistor is marked with a red dot.
Weight $\quad 2 \mathrm{~g}$ approximately
Mounting In any position by soldering. Soldering should be done at least 15 mm from the thermistor body.

## ELECTRICAL DATA

Resistance at $+25^{\circ} \mathrm{C}$ ( $\mathrm{T}_{\text {ref }}$ )	$\left.100 \Omega \pm 20 \%^{1}\right)$
Resistance at $+72{ }^{\circ} \mathrm{C}$	$<2 \times \mathrm{R}_{25}{ }^{1}$ )
Resistance at $+85^{\circ} \mathrm{C}$	$>2 \times \mathrm{R} 25{ }^{\mathrm{l}}$ )
Resistance at $+150{ }^{\circ} \mathrm{C}, \mathrm{V}_{\text {pulse }}=340 \mathrm{~V}$	$>40 \mathrm{k} \Omega{ }^{2}$ )
Switch temperature	$80^{\circ} \mathrm{C}$ approx.
Dissipation factor	$15 \mathrm{~mW} /$ deg C approx. ${ }^{3}$ )
Operating temperature range at zero power at $\mathrm{V}_{\text {max }}$	$\begin{aligned} & 0 \text { to } 150{ }^{\circ} \mathrm{C} \\ & 0 \text { to } \quad 60^{\circ} \mathrm{C} \end{aligned}$
Maximum voltage ( $\mathrm{V}_{\text {max }}$ ) at $60{ }^{\circ} \mathrm{C}$	$245 \mathrm{~V}_{\mathrm{rms}}$

[^26]



Fig.4. Typical voltage/current characteristics


Fig.5. Typical characteristics of peak to peak current against the ambient temperature at different voltages.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D.

$$
\begin{array}{ll}
\text { A.Q.L. } & 1 \\
\text { \%, critical defects - Electrical } \\
\text { A.Q.L. } & 1.5 \\
\text { A.Q. major defects } & \text { - Mechanical } \\
\text { \%, Physical }
\end{array}
$$

## PTC THERMISTORS

## for motor protection

QUICK REFERENCE DATA	
Resistance value at -20 and $\mathrm{T}_{\text {ref }}-20{ }^{\circ} \mathrm{C}$	30 to $250 \Omega$
Resistance value at $\mathrm{T}_{\text {ref }}+15^{\circ} \mathrm{C}$	$>4000 \Omega$
$\mathrm{~V}_{\text {pulse }}=7.5 \mathrm{~V}$	see table
Switch temperature	see table
Temperature coefficient	$15 \mathrm{~V}_{\mathrm{dc}}$
Max. voltage	$7 \mathrm{~mW} / \mathrm{deg} \mathrm{C}$ approx.
Dissipation factor   Operating temperature range   at zero power   at $\mathrm{V}_{\text {max }}$	-20 to $\mathrm{T}_{\text {ref }}+30^{\circ} \mathrm{C}$

DIMENSIONS in mm


## APPLICATION

These thermistors have been designed for use in transistorized circuits for the protection of electric motors against overheating. They are to be built into the windings of the stator (one PTC thermistor per phase).

## DESCRIPTION

This type has a positive temperature coefficient. It consists of a disc provided with two tinned copper "Litze" wires with a cross-section not greater than $7 / .0076$ inch ( 0.194 mm ) and insulated with PTFE material complying with the requirements of the ministry of aviation specification EL 1930.

## MECHANICAL DATA

See outline drawing on previous page.
Marking The last five figures of the catalogue number are printed on the sleeve, e.g. PTC 92046

Weight $\quad 1.6 \mathrm{~g}$ approximately
Mounting In motor windings; connections to be soldered or clamped.

## $\rightarrow$ ELECTRICAL DATA

Table


[^27]PTC THERMISTORS
for motor protection
Typical resistance/temperature characteristics of the different types







Fig. 8

PTC THERMISTORS
for motor protection

Typical voltage/current characteristics


Fig. 9


Fig. 10

## TESTS AND REQUIREMENTS

According to I.E.C. 68, unless otherwise specified.

Test	$\begin{gathered} \text { test } \\ \text { method } \end{gathered}$	duration	at $25{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{R} / \mathrm{R} \text { in } \% \\ & \text { at } \mathrm{T}_{\text {ref }}+30^{\circ} \mathrm{C} \end{aligned}$
Cold at $-25^{\circ} \mathrm{C}$	A	1000 h	$\pm 5$	$\pm 5$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 5$	$\pm 5$
Dry heat at Tref $+25^{\circ} \mathrm{C}$	B	1000 h	$\pm 10$	$\pm 10$
Dry heat at $200{ }^{\circ} \mathrm{C}$	-	2 cycles ${ }^{3}$ )	$\pm 10$	$\pm 10$
$\begin{aligned} & \text { Thermal shock } \\ & -25 \text { to } \mathrm{T}_{\text {ref }}+30^{\circ} \mathrm{C} \end{aligned}$	Na	5 cycles	$\pm 10$	$\pm 10$
Max. peak temperature $\mathrm{T}_{\text {ref }}+90^{\circ} \mathrm{C}$	-	6 cycles 4 )	$\pm 20$	$\pm 20$
Damp heat	C	1000 h	$\pm 5$	$\pm 5$
Dissipation at $\mathrm{V}=15 \mathrm{~V} \mathrm{rms}$ and $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		1000 h	$\pm 5$	$\pm 5$
Robustness of terminations   Tensile strength 10 N   Bending   5 N	$\begin{aligned} & \text { U } \\ & \text { Ua } \\ & \text { Ub } \end{aligned}$	$\begin{gathered} 10 \mathrm{~s} \\ 2 \text { times } \end{gathered}$	1)	
Soldering   Solderability at $230{ }^{\circ} \mathrm{C}$ Resistance to heat at $230{ }^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T} \\ \text { par. } 3.2 .3 \\ \text { par. } 3.2 .4 \end{gathered}$	3 to 4 s   3 to 4 s	$\begin{gathered} 2) \\ \pm 2 \end{gathered}$	$\pm 2$

1) Leads should neither come loose nor break.
2) Leads must be solderable initially and after 6 months storage with solder containing resin flux.
3) One cycle $=16 \mathrm{~h}$ at $+200^{\circ} \mathrm{C}, 1 \mathrm{~h}$ at $+25^{\circ} \mathrm{C}$.
4) One cycle $=1 \mathrm{~h}$ at $\mathrm{T}_{\text {ref }}+90^{\circ} \mathrm{C}, 168 \mathrm{~h}$ at $\mathrm{T}_{\text {ref }}$, in silicon oil free of oxidation.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D.
A.Q.L. 1 \%, major defects - Electrical
A.Q.L. $1.5 \%$, major defects - Mechanical
A.Q.L. $4 \%$, minor defects - Physical.
ałose sua wecs


## VOLTAGE-DEPENDENT RESISTORS

## INTRODUCTION

$V$ (oltage) $D$ (ependent) $R$ (esistors), which are made of silicon carbide show a high degree of non-linearity between their resistance value and the applied voltage. The voltage dependency is caused by the contact resistance between the carbide crystals. The electrical characteristic of the pressed conglomeration is determined by a large number of crystal contacts which form a complicated network of series and parallel resistors. Simple stabilization circuits may be realized with the help of these resistors and they have found a diversity of applications in television and industrial circuits. Used as spark suppressors they offer a cheap and reliable solution for protection of relay contacts.

## MANUFACTURING PROCESS

Silicon carbide grains with the right electrical and dimensional properties are pressed together with a ceramic binder to the shape of discs or rods. The method of forming the VDR's is one of those usually employed in the ceramic industry.
After a drying period the VDR's are sintered at a high temperature. Firing time and temperature have an important influence on the electrical characteristics. The terminals are metallized with zinc or copper for making good electrical contact. After leads have been soldered to the contacts the VDR's are lacquered and impregnated. Some types, made for clamp contacts or other mounting methods, are delivered unlacquered and without leads.
During and after the manufacturing process the electrical properties are controlled not only to ensure that the VDR's are within the specification but also to control stability and reliability of the resistors.

## ELECTRICAL PROPERTIES

## DIRECT CURRENT

The relation between voltage and current of a VDR resistor can be approximated by:

$$
\begin{equation*}
\mathrm{V}=\mathrm{C} \cdot \mathrm{I} \beta \tag{1}
\end{equation*}
$$

where V is the voltage in volts, I the current in amperes and C and $\beta$ are constants. This equation is illustrated in Fig.1. In principle the same characteristic is plotted for a specific type on a double logarithmic scale in Fig. 2.
For not too small values of current this relation is a straight line which follows directly from the equation $\log \mathrm{V}=\log \mathrm{C}+\beta \log \mathrm{I}$. In this case $\beta$ is the directional coefficient of the straight line.

Fig. 1.
Shape of the voltage/current characteristic of a VDR when plotted on a linear scale.



Fig.2. Voltage/current characteristic of a VDR plotted on a logarithmic scale.

In order to determine the exact values of the constants $\mathbf{C}$ and $\beta$ it is necessary to measure three points of the characteristic. Only when these are on a straight line when plotted on a double logarithmic scale, extrapolation (only to higher values) is permitted. Equation (1) may also be written:

$$
\begin{equation*}
\mathrm{I}=\mathrm{k} V^{\alpha} \tag{2}
\end{equation*}
$$

in which:

$$
\alpha=1 / \beta
$$

and

$$
\begin{equation*}
\mathrm{K}=\frac{1}{\mathrm{C}^{1 / \beta}}=\frac{1}{\mathrm{C}^{\alpha}} \tag{3b}
\end{equation*}
$$

The VDR do not have a polar effect; this means that when the voltage is changed from positive to negative, the current changes its direction, but retains its value. Strictly speaking the eqs (1) and (2) are valid only when the absolute values are taken for I and V. In a.c. calculations this may be very important.
To avoid cumbersome calculations with broken exponents eq. (1) is elaborated into a nomogram, Fig.3, which gives by a simple construction the corresponding values of voltage and current for any given VDR.
When a straight line is drawn between the point for $\mathrm{I}=\mathrm{I}_{1} \mathrm{~mA}$ on the first scale and the point for $\mathrm{V}_{1}$ volts on the third scale, then the elongated line will inter sect the $\beta$-line in question at a certain point. All straight lines starting from this point will intersect the scales for voltage and current at points which give values of I and V that belong together. E.g. for a VDR measuring 10 mA at 100 V and having a $\beta$ of 0.20 it can easily be found that at 70 V the current will be 1.6 mA . The dissipated energy can be found on the second scale. In our example this is 0.11 W .


Fig. 3.

Nomogram giving the relation between voltage, current, power dissipation and $\beta$-value of any VDR.

Although the nomogram will be used in most cases, it is sometimes convenient to use a normal linear scale, for example when the voltage drop across a VDR has to be determined in a series circuit with an ordinary resistor. In that case a resistance line is drawn, which intersects the VDR-curve in a point which by its ordinate directly gives the voltage across the VDR. In Fig. 4 the characteristics of several standard types are drawn on a linear scale, this figure has been derived from the published voltage current relation on a double logarithmic scale. The broken lines correspond to the example shown in the insert. For a VDR 232255203401 the voltage drop will be 90 V , whilst for a VDR 2322552 02381 a drop of 140 V is found.


Fig. 4.
Voltage/current characteristics plotted on a linear scale.

Practical values and specification
The $C$ - and $\beta$-values of a VDR depend on the composition of the material and on the method used in the processing; the C-value depends furthermore on the shape and the dimensions of the VDR. Practical $\beta$-values range between 0.15 and 0.35 . It is inherent to the material properties that the $\beta$-value of VDR with a low C-value will always be higher than that of a VDR with a high C-value. Practical C-values range from 14 to a few thousand. As the method of fabrication compels a minimum thickness and, as will be seen further, enlarging of the surface area gives little change in the C-value, the latter has for practical reasons a limited lowest value.

According to formula (1) it is possible to specify the electrical characteristics of a VDR resistor by giving its C - and $\beta$-values. The advantage of this specification is that only two parameters are used. The disadvantage is, however, that due to the inevitable tolerances on the $\beta$-values, the spread in voltages at low currents (in the working area) becomes very large. It is for this reason that the method of specifying by the C-value defined at 1 A is abandoned and we now specify the voltage across the VDR at currents which lie in the working area ( 1,10 or $100 \mathrm{~mA}^{\text {i }}$ instead of 1 A ). In this way it is possible to supply VDR's which have much closer tolerances in the area where they are used, see Fig. 14. In theoretical calculations it is much easier, however to use the C-value. Therefore the formula $V=C I \beta$ is used. When a calculation leads to a certain C -value, the voltage at currents of 1,10 or 100 mA can be found with the aid of the nomogram (Fig.3).

VDR in series
For every VDR we can write the equation:

$$
\begin{equation*}
\mathrm{V}=\mathrm{CI} \beta \tag{1}
\end{equation*}
$$

When $n$ equal elements are connected in series and a voltage of $n$ times the original voltage is applied, the current will be the same as for V volts over one VDR. Consequently we may write for a series circuit of $n$ VDR:

$$
\begin{equation*}
\mathrm{nV}=\mathrm{C}^{\prime} . \mathrm{I} \beta \tag{4}
\end{equation*}
$$

Froms eqs (1) and (4) it is evident that,

$$
\begin{equation*}
C^{\prime}=n C, \tag{5}
\end{equation*}
$$

which means that the C -value of a VDR can be increased ad libitum by series connection.

## VDR in parallel

For one VDR again we have:

$$
\begin{equation*}
\mathrm{V}=\mathrm{CI}^{\beta} \beta \tag{1}
\end{equation*}
$$

Now when n of these VDR's are connected in parallel and the same voltage V is applied, the current in each VDR will still be the same. The total current in the circuit will be nI. This gives the following equation:

$$
\begin{equation*}
\mathrm{V}=\mathrm{C}^{\prime \prime}(\mathrm{nI})^{\beta} \tag{6}
\end{equation*}
$$

From eqs (1) and (6) it follows:

$$
\begin{equation*}
\mathrm{C}^{\prime \prime}=\frac{\mathrm{C}}{\mathrm{n} \beta} \tag{7}
\end{equation*}
$$

As VDR's have a $\beta$-value from $0.15-0.35$, it is clear that the $C$-value will decrease very little by connecting two or more elements in parallel.
When e.g. $\beta=0.20,32$ VDR's are needed for a $50 \%$ reduction of the $C$-value. It is important that in parallel circuits all VDR's have about the same $\beta$ - and C values. Otherwise the current division will very much depend on the voltage across the circuit.

Note: On no occasion may a VDR be connected in parallel with the aim of obtaining higher power dissipation.

## Resistance value

When defining $R$ as usual as the quotient of voltage and current, we find:

$$
\begin{equation*}
R=\frac{V}{I}=\frac{C I \beta}{I}=\frac{C}{I^{1-\beta}} \tag{8}
\end{equation*}
$$

or when starting from the form $\mathrm{I}=\mathrm{KV}^{\alpha}$ :

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{\mathrm{V}}{\mathrm{~K} \mathrm{~V}^{\alpha}}=\frac{1}{\mathrm{~K} \cdot \mathrm{~V}^{\alpha}-1} \tag{9}
\end{equation*}
$$

From these equations it is once more evident that the resistance value is not a constant one, but is very much dependent on the values of voltage and current.

## Dissipated power

The power dissipated in a VDR is equal to the product of voltage and current, so it may be written:

$$
\begin{equation*}
\mathrm{W}=\mathrm{I} \cdot \mathrm{~V}=\mathrm{K} \cdot \mathrm{~V}^{\alpha+1} \tag{10}
\end{equation*}
$$

When the coefficient $\alpha=5$, the power dissipated by the VDR is proportional to the 6th power of the voltage. A voltage increase of only $12 \%$ will in this case double the dissipated power. Consequently it is very important that the applied voltage does not rise above a certain maximum value, as otherwise the permis sible rating will be exceeded.
This is even more cogent, as the VDR have a negative temperature coefficient, which means that at higher dissipation (and accordingly higher temperature) the resistance value will decrease and the dissipated power will increase still more.

## Temperature coefficient

In the foregoing formulas no temperature effects have been taken into account. These, however, may not always be neglected, as the C-value has an appreciable negative temperature coefficient. The $\beta$-value is practically independent from the temperature. With good approximation it may be written:

$$
\begin{equation*}
C_{t}=C_{0}(1+a t) \tag{11}
\end{equation*}
$$

in which:
$C_{t}=C$-value of the VDR at $t^{\circ} \mathrm{C}$
$\mathrm{C}_{0}=\mathrm{C}$-value of the VDR at $0^{\circ} \mathrm{C}$
a $=$ temperature coefficient.
For different materials the value of a lies between -0.0010 and -0.0018 .
So for circuits where the current is constant the temperature coefficient on voltage lies between -0.10 and $-0.18 \%$ per degree $C$.

For circuits where the voltage is constant the temperature coefficient on current lies between +0.4 and $+0.8 \%$ per degree $C$, depending on the $\beta$-value.

## ALTERNATING CURRENT

If a sinusoidal voltage is applied to a VDR, the non-linear voltage current characteristic will cause the current to be non-sinusoidal, but the latter will for reasons of symmetry include only odd harmonics. Fig. 5 shows an oscillogram of this phenomenon. If a VDR is carrying a sinusoidal current, the voltage across the VDR will be non-sinusoidal.

## Sinusoidal voltage

## R.M.S. value of the current

This value is defined by

$$
\mathrm{I}_{\mathrm{rms}}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{I}^{2} \mathrm{dt}}
$$

As the momentary relation between voltage and current is given by $\mathrm{I}=\mathrm{K} \cdot \mathrm{V}^{\alpha}$ and $\mathrm{V}=\mathrm{v} \sin \omega \mathrm{t}$ in which $\mathrm{v}=\mathrm{V}_{\mathrm{rms}} \sqrt{2}$, it is found:

$$
\mathrm{I}_{\mathrm{rms}}=\mathrm{K} \cdot \mathrm{~V}_{\mathrm{rms}}^{\alpha} \cdot 2^{\alpha / 2} \sqrt{\frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{2 \alpha} \mathrm{dt}}
$$

A d.c. voltage of $\mathrm{V}=\mathrm{V}_{\mathrm{rms}}$ would cause a current in the VDR equal to:

$$
\mathrm{I}=\mathrm{K} \cdot \mathrm{~V}_{\mathrm{rms}}^{\alpha}
$$

The relation $\mathrm{r}=\mathrm{I}_{\mathrm{rms}} / \mathrm{I}$ between these two current values is given by:

$$
\begin{equation*}
\mathrm{r}=2^{\alpha / 2} \sqrt{\frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \cos )^{2 \alpha} \mathrm{dt}} . \tag{12}
\end{equation*}
$$

This factor $r$ has been calculated and is plotted as a function of $\alpha$ in Fig. 6.


Fig. 5.
Current as a function of time, when a sinusoidal voltage is applied to a VDR.

Fig. 6.
Relation between the currents caused by a d.c. voltage V and an a.c. voltage $\mathrm{V}_{\mathrm{rms}}=\mathrm{V}$.

$$
\mathrm{r}=\mathrm{I}_{\mathrm{rms}} / \mathrm{I}
$$

## Mean value of the current in a VDR during half a cycle

This value is defined by:

$$
\mathrm{I}_{\mathrm{m}}=\frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2} \mathrm{Idt} .
$$

Making the same assumption as for the $\mathrm{I}_{\mathrm{rms}}$-calculation it is found:

$$
\mathrm{I}_{\mathrm{m}}=\frac{2 \mathrm{~K} \cdot \mathrm{~V}_{\mathrm{rms}}^{\alpha} \cdot 2^{\alpha / 2}}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega t)^{\alpha} \mathrm{dt}
$$

Again a d.c. voltage of $V=V_{\mathrm{rms}}$ would cause a current of

$$
\mathrm{I}=\mathrm{K} \cdot \mathrm{~V}_{\mathrm{rms}}^{\alpha}
$$

The relation $\mathrm{m}=\mathrm{I}_{\mathrm{m}} / \mathrm{I}$ between these two currents is:

$$
\begin{equation*}
m=\frac{2^{(\alpha+2) / 2}}{T} \int_{0}^{T / 2}(\sin \omega t)^{\alpha} d t \tag{13}
\end{equation*}
$$

The factor $\underline{m}$ has been calculated for different $\underline{a}$ values and is plotted in Fig. 7.

When measuring the alternating current in a VDR erroneous readings will be obtained if a moving-coil instrument, operating with rectifiers, is used. Normally these instruments are calibrated in r.m.s. values and are correct only for sinusoidal alternating voltages or currents. Actually they indicate the mean values of these magnitudes. When a current according to Fig. 5 has to be meas ured with an assembly of this kind, the deflection of the instrument will be proportional to the mean value of the current. For obtaining the r.m.s. value the reading must be multiplied by a factor f which is given in Fig. 8 as a function of .

## Dissipated power with sinusoidal alternating voltage

Again the assumptions made in the foregoing paragraphs are used and it is found:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{ac}}=\frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2} \mathrm{~K} \cdot \mathrm{~V}^{\alpha+1}(\sin \omega \mathrm{t})^{\alpha+1} \mathrm{dt}= \\
& \frac{2 \mathrm{~K} \cdot \mathrm{~V}_{\mathrm{rms}}^{\alpha+1} \cdot 2^{(\alpha+1) / 2}}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{\alpha+1} \mathrm{dt}
\end{aligned}
$$

The power for a d.c. voltage of $\mathrm{V}=\mathrm{V}_{\mathrm{rms}}$ is $\mathrm{W}=\mathrm{KV}_{\mathrm{rms}}^{\alpha+1}$. The quotient of these power values is:

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{W}_{\mathrm{ac}}}{\mathrm{~W}}=\frac{2^{(\alpha+3) / 2}}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{\alpha+1} \mathrm{dt} . \tag{14}
\end{equation*}
$$

The value of $p$ has been plotted in Fig. 9 as a function of a.

## Sinusoidal current

R.M.S. value of the voltage

When a sinusoidal current flows in the VDR the r.m.s.-value of the voltage across it may be expressed as follows:

$$
\mathrm{V}_{\mathrm{rms}}=\mathrm{CII}_{\mathrm{rms}}^{\beta} \cdot 2^{\beta / 2} \sqrt{\frac{\mathrm{~T}}{2} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{2 \beta} \mathrm{dt}} .
$$




Fig. 7.
Relation between the mean values of the currents caused by a d.c. voltage V and an a.c. voltage $\mathrm{V}_{\mathrm{rms}}=\mathrm{V}$. $\mathrm{m}=\mathrm{I}_{\mathrm{m}} / \mathrm{I}$


Fig. 8.
Error in the reading of $\mathrm{I}_{\mathrm{rms}}$ on a moving coil ammeter with rectifiers.

Fig. 9.
Relation between the power dissipations caused by a d.c. voltage V and an a.c. voltage $\mathrm{V}_{\mathrm{rms}}=\mathrm{V}$. The dissipation caused by the a.c. voltage is $p$ times that caused by the d.c. voltage.

The d.c. voltage drop in a VDR when this carries a direct current $\mathrm{I}=\mathrm{I}_{\mathrm{rms}}$, is:

$$
\mathrm{V}=\mathrm{C} \mathrm{I}_{\mathrm{rms}}^{\beta}
$$

The relation $n=V_{\mathrm{rms}} / \mathrm{V}$ between these voltages has been calculated:

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{~V}}=2^{\beta / 2} \sqrt{\frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{2 \beta} \mathrm{dt}} \tag{15}
\end{equation*}
$$

This value is plotted in Fig. 10 as a function of $\beta$.

## Dissipated power

For a sinusoidal current the dissipated power can be calculated as:

$$
\mathrm{W}_{\mathrm{ac}}=\mathrm{CI}_{\mathrm{rms}}^{\beta+1} 2_{2}^{(\beta+1) / 2} \frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{\beta+1} \mathrm{dt}
$$

For a direct current $\mathrm{I}=\mathrm{I}_{\mathrm{rms}}$ the dissipated power is:

$$
\mathrm{W}=\mathrm{C} \mathrm{I}_{\mathrm{rms}}^{\beta+1}
$$

The relation $\mathrm{I}=\mathrm{W}_{\mathrm{ac}} / \mathrm{W}$ has been calculated:

$$
\begin{equation*}
\mathrm{I}=\frac{\mathrm{W}_{\mathrm{ac}}}{\mathrm{~W}}=2(\beta+1) / 2 \frac{2}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2}(\sin \omega \mathrm{t})^{\beta+1} \mathrm{dt} \tag{16}
\end{equation*}
$$

In Fig. 11 this value is plotted as a function of $\beta$. From this graph it is clear that variations in $\beta$ value have but little influence on the dissipated power, provided the current and the peak voltage are constant.
In practical use neither a sinusoidal voltage nor a sinusoidal current will generally occur. The first will only be the case if an inductance is shunted with a VDR for spark suppression. For those applications it is often required to know the power used by the VDR. The graph of Fig. 9 helps in answering this question. If an ordinary linear resistance is connected in series with a VDR the shape of the current oscillogram will gradually deviate from that of Fig.5. If the linear resistance value is very large compared to the resistance value of the VDR the current will take a sinusoidal form.

Higher harmonics of the alternating current in a VDR
The curve as shown in Fig. 5 can be developed into a Fourrier series. In that way the ratio of strength between the first, the third, and the fifth harmonic can be found. Harmonics of the seventh or higher order are very small and of no practical importance, Fig. 12 shows the relative strength of these harmonics including the fifth, as a function of $\alpha=1 / \beta$.

## High frequency alternating current

For low frequencies the small capacitance of the VDR does not affect the voltage dependency of the resistance. For high frequencies, however, this parallel capacitance may not be neglected. For low voltages and currents they may even determine the impedance of the VDR. At high voltages, the influence of the capacitance is less serious; because in that case the resistance over which this

Fig. 10.
Relation between the voltages across a VDR carrying a direct current I or a sinusoidal alternating current $\mathrm{I}_{\mathrm{rms}}=\mathrm{I}$. $\mathrm{n}=\mathrm{V}_{\mathrm{rms}} / \mathrm{V}$


Fig. 11.
Relation between the power dissipations caused by a direct current I and by a sinusoidal alternating current $\mathrm{I}_{\mathrm{rms}}=\mathrm{I}$. The dissipation caused by the alternating current is I times that caused by the direct current.


Fig. 12.
Relative strength of the harmonics of a current according to Fig. 5.

capacitance is shunted has decreased. In general the effect of the capacitance in h.f. circuits will be an apparent increase of $\beta$. Furthermore the voltage current graph on a logarithmic scale will no longer be a straight line.
A number of curves demonstrating this effect are given in Fig. 13.


Fig.13. Voltage/current relation for different frequencies.

## PERMISSIBLE DISSIPATION

The temperature which a VDR will reach is determined by the dissipated power, the heat conductivity of the material, the contact with and the nature of the surrounding medium and by the ambient temperature. As already explained the dissipated power will increase rapidly with increasing voltage.

The cooling per degree centigrade, though increasing slightly with temperature, depends mainly on the total surface area of the VDR; it can be improved by forced ventilation, by immersion in oil, or by using cooling fins or heatsinks. The permissible temperature of a VDR is generally limited by secondary effects, such as contact and insulation problems. For VDR's which are not lacquered or soldered, this limit is at about $150^{\circ} \mathrm{C}$. For lacquered VDR the permissible temperature is $120^{\circ} \mathrm{C}$.

For incidental surges, from which it may be assumed that they occur for such a short time that no heat is conducted to the surrounding medium, the rise in temperature is defined by the energy in this surge, the mass of the VDR and its heat capacity. In this case we find that a rise in temperature of $100^{\circ} \mathrm{C}$ is caused by a load of $60 \mathrm{watt} \mathrm{sec} / \mathrm{gram}$. For a VDR having a weight of 1 gram the load may be 60 W during 1 sec or 6 W during 10 sec , etc. The shorter the time the higher the permissible load during that time. This is limited, however, by the properties of the material, which are liable to change at too high current densities.

## HOW TO MEASURE VDR RESISTORS

The following points have to be considered when measuring VDR's.

1. Use only d.c. voltage.
2. Keep the measuring time as short as possible. Self-heating effects may influence the measurements due to the negative temperature coefficient of the VDR's.
3. In case the VDR's are specified at a voltage and current which is above the maximum dissipation, pulses should be used. For instance all 2322564 VDR types which are used in television circuits are measured under pulse-conditions. These types are measured with a rectangular current pulse with a duration of 10 ms .
4. The $\beta$-value measurement needs some explanation. As mentioned on page C164 the $\beta$-value is not always constant but depends on the voltage and current. The $\beta$-values of our discs are measured between 0.3 I and 3 I , those of our rods between I and 10 I (unless otherwise specified), where I is the current at which the VDR is specified.

$$
\text { E.g. } \beta=\log \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \text {; with } \begin{aligned}
\mathrm{V}_{2} & =\text { voltage at } 3 \mathrm{I} \\
\mathrm{~V}_{1} & =\text { voltage at } 0.3 \mathrm{I}
\end{aligned}
$$

## TOLERANCES

Standard VDR's are specified with a certain tolerance on voltage and a spread on $\beta$-value. It can be seen in Fig. 14 that due to the spread in $\beta$-value the tolerance on voltage may increase at other currents than the specified current at which the VDR is measured.
For some applications, where tolerances have to be kept as low as possible, the VDR's are measured at a current or voltage which lies near to its working point in the circuit, e.g. the standard rod types for TV series 2322564 are measured at 10 mA .
For other applications, specially spark suppression, it is often important to specify a maximum permissible current at a low voltage and a minimum permissible current at a higher voltage e.g. the series 2322577 .


Fig.14. Spread of voltage/current characteristic due to B-tolerance.

## CHOICE OF TYPE

The voltage/current characteristics will indicate which standard type comes nearest to the required specification. The power, to be dissipated will give the dimensions of the disc.
If the selected VDR has its specified values far from the working point in the circuit, it is recommended to calculate the tolerances in the working point (see section on tolerances). If necessary a $10 \%$ tolerance can be selected instead of a $20 \%$ type.
In case a specification is required in the form of

$$
\begin{aligned}
& \text { at } \mathrm{V}_{1} \text { volt } \mathrm{I}<\mathrm{I}_{1} \\
& \text { at } \mathrm{V}_{2} \text { volt } \mathrm{I}>\mathrm{I}_{2}
\end{aligned}
$$

it is recommended to select a type which fulfils the first requirement (including tolerances); with the aid of a nomogram or by graphical solution on double logarithmic paper the second requirement can be checked.
If no standard type is available it is often possible to create or select a special type for a particular application.
Thenty

## ASYMMETRIC VDR RESISTORS

In order to extend our VDR-range to lower C-values a new VDR has been developed based on a barrier layer effect. As this device shows different characteristics in the two different directions, it is called an asymmetric VDR.
In one direction (the conduction direction) the VDR has a low C -value and a very low $\beta$-value (in the order of 0.07 ). In the reverse direction the resistance value and so the C -value is considerably higher.
Although there is some correspondence with diode characteristics there are important differences e.g.:
the asymmetric VDR has a high capacitance (about $0.15 \mu \mathrm{~F}$ measured in the reverse direction);
the tolerances of the asymmetric VDR are closer;
the temperature coefficient of asymmetric VDR's is very low;
the characteristic of the asymmetric VDR is steeper (low $\beta$-value);
the asymmetric VDR is made for voltages from 1 to 1.35 V at 1 mA , so higher than most semiconductor diodes.

The present range is limited to two values, other types are in development. The asymmetric VDR is applied in radio and transistorized TV circuits.

## APPLICATIONS

In the following pages some of the most important application principles are given. Wellknown are the television applications where the VDR is applied as a rectifier of non-symmetrical pulses and for stabilization against supply voltage variations and aging of components. Also in TV sets the VDR is used across the primary of the frame output transformer for damping oscillations while in other parts of the circuits VDR fulfil the functions of a voltage stabilization device. Outside the entertainment field we find e.g. VDR's applied in telecommunication for use as a contact protector of relais. Besides the standard range a special range of VDR's has been developed for this purpose. A similar application can be found in small battery motors where the VDR increases the collector life considerably.
There are many more uses for VDR's and the following selection is by no means complete.

Contact-protection and
spark suppression
Two principle circuits are used. As soon as the contacts open, the energy stored in the inductance ( $\frac{1}{2} \mathrm{~L} \mathrm{I}^{2}$ ) is dissipated by the VDR and limits the voltage across the contacts to a safe value.


Protection of small battery motors
Sparking brush-contacts limit the collector life and give rise to interference with nearby radio or audio circuits. A small VDR in parallel to the rotor windings prevents the sparking and so increases the collector life considerably.


VDR for adapting meter sensitivity
A VDR in series with a voltmeter or parallel to a milliamperemeter will
 give increased sensitivity in a certain range.

Stabilization of a voltage without load when the supply voltage varies It can be shown that the VDR stabilizes varying supply voltages by a factor

$$
\mathrm{S}=\frac{\Delta \mathrm{V} / \mathrm{V}}{\Delta \mathrm{~V}_{2} / \mathrm{V}_{2}}=\frac{1}{\beta}-\frac{1-\beta}{\beta} \cdot \mathrm{x} \text { where } \mathrm{x}=\mathrm{V} / \mathrm{V}_{2} .
$$



## Stabilization of a voltage with load

In this case the stabilization factor also depends on the current through the load.

$$
S=\frac{1}{\beta}-\frac{1-\beta}{\beta} \cdot \frac{x+y}{1+y} \text { where } y=I_{2} / I_{1}
$$

In the nomogram $S$ can easily be found.


VDR for limiting the anode peak voltage and damping oscillations in vertical output stages of TV circuits
The VDR is shunted across the primary of the frame output transformer.


VDR as a rectifier for obtaining a negative voltage for stabilization of the picture width and the EHT against supply voltage variations and aging of tubes

The VDR acts as a diode when asymmetrical pulses of sufficient amplitude are applied to its terminals. The negative voltages can be used to regulate the lineoutput tube.


Stabilization of the operation current of transistors in an a.m. portable receiver.

It is known that due to decreasing battery voltage during life the sensitivity of a portable receiver decreases, so the number of stations that can be clearly received is reduced. Furthermore the distortion level increases and spurious effects, like "motorboating", caused by audio frequency instability occur. By stabilizing the operation currents of the transistors by means of an asymmetric VDR the above effects can be eliminated and the useful battery life will be much longer.
Extensive literature on this application and circuits are available on request.

## VOLTAGE DEPENDENT RESISTORS

## standard disc type with leads



RZ 19624-1

QUICK REFERENCE DATA	
Voltages at $\mathrm{I}_{\text {nom }}=100 \mathrm{~mA} \mathrm{d.c}$.	8 to 12 V
Voltages at $\mathrm{I}_{\text {nom }}=10 \mathrm{mAd} . c$.	8 to $68 . \mathrm{V}$
Voltages at $\mathrm{I}_{\text {nom }}=1 \mathrm{mAd} . \mathrm{c}$.	56 to 330 V
$\beta$ between $0.3 \mathrm{I}_{\text {nom }}$ and $3 \mathrm{I}_{\text {nom }}$	0.14 to 0.40
Maximum dissipation	0.8 W
Operating temperature range	-25 to $+125^{\circ} \mathrm{C}$
at zero power	0 to $+55^{\circ} \mathrm{C}$
at maximum power	

## APPLICATION

Very suitable for e.g. voltage stabilisation, contact protection and spark suppression.

## DESCRIPTION

This type consists of a disc provided with two solid tinned copper wires. The resistor body is tan lacquered and impregnated, but non insulated.

## MECHANICAL DATA

Dimensions in mm


Fig.1. For S see Table 1

## Marking

The resistors are marked with three colour bands according to Fig. 1 and Table 1.
Weight
See Table 1
Mounting
In any position by soldering.
Robustness of terminations
Tensile strength
20 N
Bending
10 N

Soldering

Solderability
Resistance to heat
$\max .240^{\circ} \mathrm{C}, \max .4 \mathrm{~s}$
$\max .240^{\circ} \mathrm{C}, \max .4 \mathrm{~s}$
ELECTRICAL DATA

$\begin{aligned} & \hat{N} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		O	
	$\begin{array}{lll}5 & 5 \\ 3 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$		
	$0.0 .$		－－－－－－～～～～
	in in in		
$0 \stackrel{\dot{x}}{\stackrel{\dot{0}}{\vdots}}$	$\pm \sim$ へ		
0		ípoó ó ó ó ó ó ó ó    o o o o o o o o o o o	io ó ó ó ó ó ó むむむむむむむむむむ －o o o o o o o o o
	$\infty \bigcirc$		
	$888$	으으으으응ㅇㅇㅡㅡㄴ	

1）For a voltage tolerance of $\pm 10 \%$ the last figure of the catalogue number is 2 instead of 1 ．
2）The $10 \%$ types have an extra silver band on the top．

Tolerance on voltage at $\mathrm{I}_{\text {nom }}$
Maximum dissipation
Asymmetry
Operating temperature range
at zero power
at maximum power

$$
\begin{aligned}
& \pm 20 \%{ }^{1} \text { ) } \\
& 0.8 \mathrm{~W} \\
& \max .2 \%
\end{aligned}
$$

$$
\begin{array}{r}
-25 \text { to }+125^{\circ} \mathrm{C} \\
0 \text { to }+55^{\circ} \mathrm{C}
\end{array}
$$



Fig. 2. Voltage/current characteristics

1) Also available with a tolerance of $10 \%$.

The voltage is so measured that the internal heat development is negligible.

## TESTS AND REQUIREMENTS

According to IEC 68 recommendations, unless otherwise specified.

test	$\begin{gathered} \text { test } \\ \text { method } \end{gathered}$	duration	$\Delta \mathrm{V} / \mathrm{V}$ (\%)	$\Delta \beta / \beta$ (\%)
Cold at $-25^{\circ} \mathrm{C}$	A	1000 h	$\pm 3$	$\pm 3$
Storage at $+25{ }^{\circ} \mathrm{C}$	H	1000 h	$\pm 2$	$\pm 3$
Dry heat at $+125^{\circ} \mathrm{C}$	B	1000 h	$\pm 3$	$\pm 5$
Thermal shock -25 to $+125{ }^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 3$	$\pm 5$
Damp heat at $+40{ }^{\circ} \mathrm{C}$	Ca	1000 h	$\pm 3$	$\pm 5$
Dissipation in damp heat		336 h	$\pm 3.5$	$\pm 7$
Max. dissipation at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		1000 h	$\pm 5$	$\pm 10$
Robustness of terminations   Tensile strength 20 N   Bending $\quad 10 \mathrm{~N}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{Ua} \\ & \mathrm{Ub} \end{aligned}$	10 s 2 times		
Soldering Solderability at $+230 \pm 10^{\circ} \mathrm{C}$ Resistance to heat $+230 \pm 10^{\circ} \mathrm{C}$	T   par 3.2.3   par 3.2.4	$\begin{aligned} & 3 \text { to } 4 \mathrm{~s} \\ & 3 \text { to } 4 \mathrm{~s} \end{aligned}$	$\pm 2$	$\pm 2$

1) Leads should neither come loose nor break.
2) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. 1 \%, major defects - Electrical
A.Q.L. 1.5\%, major defects - Mechanical
A.Q.L. 4 \%, minor defects - Physical

## PACKAGING

Cardboard boxes containing 100 items.

## VOLTAGE DEPENDENT RESISTORS standard disc type with leads



RZ 19624-1

QUICK REFERENCE DATA	
Voltages at $\mathrm{I}_{\text {nom }}=100 \mathrm{~mA}$	8 to 15 V
Voltages at $\mathrm{I}_{\text {nom }}=10 \mathrm{~mA}$	10 to 82 V
Voltages at $\mathrm{I}_{\text {nom }}=1 \mathrm{~mA}$	68 to 330 V
$\beta$ between $0.3 \mathrm{I}_{\text {nom }}$ and $3 \mathrm{I}_{\text {nom }}$	0.14 to 0.40
Maximum dissipation	1 W
Operating temperature range	
at zero power	-25 to $+125^{\circ} \mathrm{C}$
at maximum power	0 to $+55^{\circ} \mathrm{C}$

## APPLICATION

Very suitable fore.g. voltage stabilisation, contact protection and spark suppression.

## DESCRIPTION

This type consists of a disc provided with two solid tinned copper wires. The resistor body is $\tan$ lacquered and impregnated, but non insulated.

## MECHANICAL DATA

Dimensions in mm


Fig. 1. For S see Table 1
Marking
The resistors are marked with three colour bands according to Fig. 1 and Table 1.

## Weight

See Table 1
Mounting
In any position by soldering.
Robustness of terminations

Tensile strength
Bending
Soldering
Solderability
Resistance to heat

20 N
10 N
$\max .240^{\circ} \mathrm{C}$, max. 4 s
$\max .240^{\circ} \mathrm{C}$, max. 4 s
ELECTRICAL DATA

$\begin{aligned} & \text { d.c. } \\ & \text { current } \\ & \text { Inom }_{\text {nom }} \\ & (\mathrm{mA}) \end{aligned}$	voltage at $I_{\text {nom }}$ (V)	$\beta$	C approx.	S max.   Fig. 1   (mm)	weight approx.   (g)	colour code 2 )			catalogue number 1)
						I	II	III	
100	8	0.25-0.40	14	5	1.2	brown	brown	blue	232255301161
100	10	0.25-0.40	18	5	1.3	brown	brown	grey	232255301181
100	12	0.25-0.40	21	5	1.4	brown	red	black	232255301201
100	15	0.25-0.40	26	5	1.4	brown	red	red	232255301221
10	10	0.25-0.40	32	5	1.5	red	brown	grey	232255302181
10	12	0.25-0.40	40	5	1.5	red	red	black	232255302201
10	15	0.25-0.40	48	5	1.5	red	red	red	232255302221
10	18	0.21-0.35	57	5	1.5	red	red	yellow	232255302241
10	22	0.21-0.35	60	5	1.6	red	red	blue	232255302261
10	27	0.21-0.35	70	5	1.6	red	red	grey	232255302281
10	33	0.18-0.25	85	5	1.6	red	orange	black	232255302301
10	39	0.18-0.25	100	5	1.6	red	orange	red	232255302321
10	47	0.18-0.25	130	5	1.6	red	orange	yellow	232255302341
10	56	0.18-0.25	150	5	1.6	red	orange	blue	232255302361
10	68	0.18-0.25	180	5	1.6	red	orange	grey	232255302381
10	82	0.14-0.23	190	5	1.6	red	yellow	black	232255302401
1	68	0.14-0.23	230	5	1.6	orange	orange	grey	232255303381
1	82	(0.14-0.21	300	5	1.6	orange	yellow	black	232255303401
1	100	0.14-0.21	350	5,5	1.8	orange	ycllow	red	232255303421
1	120	0.14-0.21	400	6	1.9	orange	ycllow	yellow	232255303441
1	150	0.14-0.21	500	6.5	2.1	orange	ycllow	blue	232255303461
1	180	(0.14-0.21	600	7	2.4	orange	ycllow	grey	232255303481
1	220	().14-0.21	750	7.5	2.8	Orange	grecon	black	232255303501
1	270)	().14-().21	$9(0)$	8	3.2	orange	green	red	232255.303521
1	330	0.14-0.21	1100	9	3.7	orange	green	yellow	232255303541

1) For a voltage tolerance of $\pm 10 \%$ the last fignte of the catalogne number is 2 instead of 1 .
2) The $10 \%$ types have an extral silver band on the top

Tolerance on voltage at $\mathrm{I}_{\text {nom }}$
Maximum dissipation
Asymmetry
Operating temperature range
at zero power
at maximum power
$\pm 20 \%{ }^{1}$ )
1 W
max. 2\%
-25 to $+125^{\circ} \mathrm{C}$
0 to $+55^{\circ} \mathrm{C}$


Fig. 2. Voltage/current characteristics

1) Also available with a tolerance of $10 \%$.

The voltage is so measured that the internal heat development is negligible.

## TESTS AND REQUIREMENTS

According to IEC 68 recommendations, unless otherwise specified.

test	$\begin{gathered} \text { test } \\ \text { method } \end{gathered}$	duration	$\Delta \mathrm{V} / \mathrm{V}$ (\%)	$\Delta \beta / \beta$ (\%)
Cold at $-25^{\circ} \mathrm{C}$	A	1000 h	$\pm 3$	$\pm 3$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 2$	$\pm 3$
Dry heat at $+125^{\circ} \mathrm{C}$	B	1000 h	$\pm 3$	$\pm 5$
Thermal shock -25 to $+125{ }^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 3$	$\pm 5$
Damp heat at $+40^{\circ} \mathrm{C}$	Ca	1000 h	$\pm 3$	$\pm 5$
Dissipation in damp heat		336 h	$\pm 3.5$	$\pm 7$
Max. dissipation at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		1000 h	$\pm 5$	$\pm 10$
Robustness of terminations	U			
Tensile strength 20 N	Ua	10 s		
Bending $\quad 10 \mathrm{~N}$	Ub	2 times		
Soldering   Solderability at $230 \pm 10^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{T} \\ & \text { par 3.2.3 } \end{aligned}$	3 to 4 s		
Resistance to heat at $230 \pm 10^{\circ} \mathrm{C}$	par 3.2.4	3 to 4 s	$\pm 2$	$\pm 2$

${ }^{1}$ ) Leads should neither come loose nor break.
2) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D

> A.Q.L. $1 \%$, major defects - Electrical
> A.Q.L. $1.5 \%$, major defects - Mechanical
> A.Q.L. $4 \%$, minor defects - Physical

## PACKAGING

Cardboard boxes containing 100 items.

## VOLTAGE DEPENDENT RESISTORS standard disc type with leads



RZ 19624-1

QUICK REFERENCE DATA	
Voltages at $\mathrm{I}_{\text {nom }}=100 \mathrm{~mA}$	8 to 18 V
Voltages at $\mathrm{I}_{\text {nom }}=10 \mathrm{~mA}$	10 to 82 V
Voltages at $\mathrm{I}_{\text {nom }}=1 \mathrm{~mA}$	150 to 330 V
$\beta$ between $0.3 \mathrm{I}_{\text {nom }}$ and $3 \mathrm{I}_{\text {nom }}$	0.14 to 0.40
Maximum dissipation	2 W
Operating temperature range	-25 to $+125^{\circ} \mathrm{C}$
at zero power	0 to $+55^{\circ} \mathrm{C}$
at maximum power	

## APPLICATION

Very suitable fore.g. voltage stabilisation, contact protection and spark suppression.

## DESCRIPTION

This type consists of a disc provided with two solid tinned copper wires. The resistor body is tan lacquered and impregnated, but non insulated.

## MECHANICAL DATA

Dimensions in mm


Fig. 1. For S see Table 1
Marking
The resistors are marked with three colour bands according to Fig. 1 and Table 1.
Weight
See Table 1

Mounting
In any position by soldering.
Robustness of terminations

Tensile strength
20 N
Bending
Soldering
Solderability
Resistance to heat
$\max .240^{\circ} \mathrm{C}$, max. 4 s
$\max .240^{\circ} \mathrm{C}, \max .4 \mathrm{~s}$
ELECTRICAL DATA

d.c. current Inom (mA)	voltage at $I_{n o m}$ (V)	$\beta$	$\begin{gathered} \mathrm{C} \\ \text { approx. } \end{gathered}$	S max. Fig. 1 (mm)	weight approx.   (g)	colour code ${ }^{2}$ )			catalogue number 1)
						I	II	III	
100	8	0.25-0.40	14	5	1.9	brown	brown	blue	232255401161
100	10	0.25-0.40	18	5	1.95	brown	brown	grey	232255401181
100	12	0.25-0.40	21	5	2.0	brown	red	black	232255401201
100	15	0.25-0.40	26	5	2.0	brown	red	red	232255401221
100	18	0.25-0.40	32	5	2.05	brown	red	yellow	232255401241
10	12	0.25-0.40	38	5	2.05	red	red	black	232255402201
10	15	0.25-0.40	47	5	2.1	red	red	red	232255402221
10	18	0.21-0.35	57	5	2.1	red	red	yellow	232255402241
10	22	0.21-0.35	60	5	2.2	red	red	blue	232255402261
10	27	0.21-0.35	70	5	2.3	red	red	grey	232255402281
10	33	0.18-0.25	84	5	2.4	red	orange	black	232255402301
10	39	0.18-0.25	97	5	2.45	red	orange	red	232255402321
10	47	0.18-0.25	125	5	2.5	red	orange	yellow	232255402341
10	56	0.18-0.25	140	5	2.55	red	orange	blue	232255402361
10	68	0.18-0.25	175	5	2.6	red	orange	grey	232255402381
10	82	0.14-0.23	170	5	2.65	red	yellow	black	232255402401
10	100	0.14-0.23	210	5	2.7	red	ycllow	red	232255402421
10	120	0.14-0.21	250	5	2.75	red	yellow	yellow	232255402441
10	150	0.14-0.21	320	5.5	2.8	red	ycllow	blue	232255402461
10	180	0.14-0.21	380	6	3.2	red	ycllow	grey	232255402481
1	150	0.14-0.21	450	6.5	3.6	orange	yellow	blue	232255403461
1	180	0.14-0.21	540	7	4.2	orange	ycllow	grey	232255403481
1	220	0.14-0.21	060	7.5	4.8	orange	green	black	232255403501
1	270	0.14-0.21	810	8	5.7	orange	green	red	232255403521
1	330	0.14-0.21	980	${ }^{9}$	6.7	orange	green	ycllow	23225540.3541

[^28]| Tolerance on voltage at Inom | $\pm 20 \% \quad 1$ ) |
| :--- | :--- |
| Maximum dissipation | 2 W |
| Asymmetry <br> Operating temperature range | $\max .2 \%$ |
| at zero power | -25 to $+125^{\circ} \mathrm{C}$ |
| at maximum power | 0 to $+55^{\circ} \mathrm{C}$ |



Fig. 2. Voltage/current characteristics

[^29]
## TESTS AND REQUIREMENTS

According to IEC 68 recommendations, unless otherwise specified.

test	test method	duration	$\Delta \mathrm{V} / \mathrm{V}(\%)$	$\Delta \beta / \beta$ (\%)
Cold at $-25^{\circ} \mathrm{C}$	A	1000 h	$\pm 3$	$\pm 3$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 2$	$\pm 3$
Dry heat at $+125{ }^{\circ} \mathrm{C}$	B	1000 h	$\pm 3$	$\pm 5$
Thermal shock -25 to $+125{ }^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 3$	$\pm 5$
Damp heat at $+40^{\circ} \mathrm{C}$	Ca	1000 h	$\pm 3$	$\pm 5$
Dissipation in damp heat		336 h	$\pm 3.5$	$\pm 7$
Max. dissipation at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		1000 h	$\pm 5$	$\pm 10$
Robustness of terminations	U			
Tensile strength 20 N	Ua	10 s	1)	
Bending 10 N	Ub	2 times	1)	
Soldering   Solderability at $230 \pm 10^{\circ} \mathrm{C}$	T par 3.2.3	3 to 4 s	2) ${ }^{2}$	
Resistance to heat at $230 \pm 10^{\circ} \mathrm{C}$	par 3.2.4	3 to 4 s		

1) Leads should neither come loose nor break.
${ }^{2}$ ) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D

> A.Q.L. 1 \%, major defects - Electrical
> A.Q.L. $1.5 \%$, major defects - Mechanical
> A.Q.L. $4 \%$, minor defects - Physical

## PACKAGING

Cardboard boxes containing 50 items.

# VOLTAGE DEPENDENT RESISTORS standard disc type with leads 



RZ 19624-1

QUICK REFERENCE DATA	
Voltages at $\mathrm{I}_{\text {nom }}=100 \mathrm{~mA} \mathrm{d.c}$.	8 to 33 V
Voltages at $\mathrm{I}_{\text {nom }}=10 \mathrm{mAd.c}$.	22 to 270 V
Voltages at $\mathrm{I}_{\text {nom }}=1 \mathrm{mAd.c}$.	220 to 330 T
$\beta$ between $0.3 \mathrm{I}_{\text {nom }}$ and 3 Inom	0.14 to 0.40
Maximum dissipation	3 W
Operating temperature range at zero power at maximum power	$\begin{aligned} & -25 \text { to }+125^{\circ} \mathrm{C} \\ & 0 \text { to }+55^{\circ} \mathrm{C} \end{aligned}$

## APPLICATION

Very suitable fore.g. voltage stabilisation, contact protection and spark suppression.
DESCRIPTION
This type consists of a disc provicied with two solid tinned copper wires. The resistor body is tan lacquered and impregnated, but non insulated.

## MECHANICAL DATA

## Dimensions in mm



Fig. 1. For S see Table 1

## Marking

The resistors are marked with three colour bands according to Fig. 1 and Table 1.
Weight
See Table 1
Mounting
In any position by soldering.
Robustness of terminations
Tensile strength 20 N
Bending
10 N
Soldering
Solderability
Resistance to heat
$\max .240^{\circ} \mathrm{C}$, max. 4 s
$\max .240^{\circ} \mathrm{C}, \max .4 \mathrm{~s}$
ELECTRICAL DATA

$\begin{gathered} \text { d.c. } \\ \text { current } \\ \text { Inom }_{\text {nom }} \\ (\mathrm{mA}) \end{gathered}$	voltage at Inom (V)	$\beta$	C approx.	$\begin{gathered} \text { S max. } \\ \text { Fig. } .1 \\ (\mathrm{~mm}) \end{gathered}$	weight approx.   (g)	colour code 2 )			catalogue number 1)
						I	II	III	
100	8	0.25-0.40	14	5	2.2	brown	brown	blue	232255501161
100	10	0.25-0.40	18	5	2.3	brown	brown	grey	232255501181
100	12	0.25-0.40	21	5	2.4	brown	red	black	232255501201
100	15	0.25-0.40	26	5	2.5	brown	red	red	232255501221
100	18	0.25-0.40	32	5	2.7	brown	red	yellow	232255501241
100	22	0.25-0.40	39	5	2.9	brown	red	blue	232255501261
100	27	0.25-0.40	48	5	3.0	brown	red	grey	232255501281
100	33	0.21-0.35	53	5	3.6	brown	orange	black	232255501301
10	22	0.21-0.35	60	5	3.8	red	red	blue	232255502261
10	27	0.21-0.35	70	5	4.0	red	red	grey	232255502281
10	33	0.18-0.25	84	5	4.5	red	orange	black	232255502301
10	39	0.18-0.25	97	5	5.0	red	orange	red	232255502321
10	47	0.18-0.25	125	5	5.0	red	orange	yellow	232255502341
10	56	0.18-0.25	140	5	5.0	red	orange	blue	232255502361
10	68	0.18-0.25	175	5	5.0	red	orange	grey	232255502381
10	82	0.14-0.23	170	5	5.0	red	yellow	black	232255502401
10	100	0.14-0.23	210	5	5.0	red	yellow	red	232255502421
10	120	0.14-0.21	250	5	5.0	red	yellow	yellow	232255502441
10	150	0.14-().21	320	5.5	5.7	red	yellow	blue	232255502461
10	180	0.14-0.21	380	6	6.7	red	yellow	grey	232255502481
10	220	0.14-0.21	460	6.5	8.0	red	green	black	232255502501
10	270)	0.14-0.21	550	7	10	red	green	red	232255502521
1	220)	0.14-0.21	600	7.5	12	orange	green	black	232255503501
1	270)	0.14-().21	810	8	14	orange	green	red	2.32255503521
1	330	0.14-0.21	980	9	16	orange	green	yellow	232255503541

[^30]Tolerance on voltage at $\mathrm{I}_{\text {nom }}$
Maximum dissipation
Asymmetry
Operating temperature range
at zero power
at maximum power
$\pm 20 \%{ }^{1}$ )
3 W
max. 2\%
-25 to $+125^{\circ} \mathrm{C}$
0 to $+55^{\circ} \mathrm{C}$


Fig. 2. Voltage/current characteristics

1) Also available with a tolerance of $10 \%$. The voltage is so measured that the inter nal heat development is negligible.

TESTS AND REQUIREMENTS
According to IEC 68 recommendations, unless otherwise specified.

test	test method	duration	$\Delta \mathrm{V} / \mathrm{V}(\%)$	$\Delta \beta / \beta$ (\%)
Cold at $-25^{\circ} \mathrm{C}$	A	1000 h	$\pm 3$	$\pm 3$
Storage at $+25^{\circ} \mathrm{C}$	H	1000 h	$\pm 2$ 。	$\pm 3$
Dry heat at $+125{ }^{\circ} \mathrm{C}$	B	1000 h	$\pm 3$	$\pm 5$
Thermal shock -25 to $+125^{\circ} \mathrm{C}$	Na	5 cycles	$\pm 3$	$\pm 5$
Damp heat at +40 oC	Ca	1000 h	$\pm 3$	$\pm 5$
Dissipation in damp heat		336 h	$\pm 3.5$	$\pm 7$
Max. dissipation at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		1000 h	$\pm 5$	$\pm 10$
Robustness of terminations	U		1)	
Tensile strength 20 N	Ua	10 s		
Bending $\quad 10 \mathrm{~N}$	Ub	2 times	1)	
Soldering	T		2)	
Solderability at $230 \pm 10^{\circ} \mathrm{C}$	par 3.2.3			
Resistance to heat at $230 \pm 10^{\circ} \mathrm{C}$	par 3.2.4		$\pm 2$	$\pm 2$

1) Leads should neither come loose nor break.
2) Leads must be solderable initially and after six months storage with solder containing resin flux.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D

> A.Q.L. $1 \%$, major defects - Electrical
> A.Q.L. $1.5 \%$, major defects - Mechanical
> A.Q.L. $4 \%$, minor defects - Physical

## PACKAGING

Cardboard boxes containing 25 items.

## VOLTAGE DEPENDENT RESISTORS

## standard rod types

$\mathrm{W}_{\max } 0.7 \mathrm{~W}$
These types are lacquered


RZ 17758-5

I   $(\mathrm{mA})^{1}$	E   $(\mathrm{V})^{1}$	$\beta$	colour   code	catalog number
10	$470 \pm 10 \%$	$0.20-0.25$	green	232256402582
10	$560 \pm 10 \%$	$0.18-0.23$	blue	02602
10	$680 \pm 10 \%$	$0.18-0.23$	violet	02622
10	$910 \pm 10 \%$	$0.18-0.23$	white	90014
10	$1200 \pm 20 \%$	$0.17-0.22$	grey	02681
10	$1300 \pm 10 \%$	$0.16-0.21$	red	90015
1	$300 \pm 20 \%$	$0.18-0.25$	yellow	90016
2	$950 \pm 10 \%$	$0.16-0.21$	black/blue	90005

${ }^{1}$ ) Measured under pulse conditions

Voltage/current characteristics

The characteristic of the 232256490005 can be compared with that of the 232256490015.

The same holds for the 232256490016 and 232256402602.


## VOLTAGE DEPENDENT RESISTOR

QUICK REFERENCE DATA		
Current at $\mathrm{V}_{\mathrm{dc}}=7 \mathrm{kV}$ and $\mathrm{T}_{\text {amb }}=+50{ }^{\circ} \mathrm{C}$	100 to 150	$\mu \mathrm{A}$
Maximum current	$175 \mu \mathrm{~A}$	
$\beta$-value between 4 kV and 7 kV	0.17 to 0.25	
Operating temperature range at zero power	$-25 \text { to }+125$	${ }^{\circ} \mathrm{C}$
at max. power	0 to +50	${ }^{\circ} \mathrm{C}$

DIMENSIONS (in mm)

Fig. 1.


Maximum bow in the centre of the VDR rod is 1 mm .

## APPLICATION

For focus tracking in line time-base circuits of colour television sets.

## DESCRIPTION

The resistor consists of a rod of which the ends are tinned. It is neither lacquered nor insulated.

MECHANICAL DATA

Marking
Weight
Mounting
Solderability
none
approximately 4.5 g
in any position by soldering

$$
230 \pm 10^{\circ} \mathrm{C}, 3 \mathrm{~s}
$$

## ELECTRICAL DATA

Measurements and ratings are given at an ambient temperature of $+500^{\circ} \mathrm{C}+2{ }^{\circ} \mathrm{C}$ unless otherwise stated.

Current at $\mathrm{V}_{\mathrm{dc}}=7 \mathrm{kV} \pm 0.3 \%$
Maximum current (See Note below)
$\beta$-value between 4 kV and 7 kV
Dissipation factor
100 to $150 \mu \mathrm{~A}$

Temperature coefficient $(\alpha)$ between $+25^{\circ} \mathrm{C}$ and $+125{ }^{\circ} \mathrm{C}$ $175 \mu \mathrm{~A}$
0.17 to 0.25
$22 \mathrm{~mW} / \operatorname{deg} \mathrm{C}$

Symmetry
see Fig. 4

Operating temperature range
at zero power
at max. power
$<5 \%$
$\begin{array}{lll}-25 & \text { to }+125 & 0 \mathrm{C} \\ 0 & \text { to }+50 & \text { oC }\end{array}$


Fig. 2. Voltage/current characteristic

Note Absolute maximum, i.e. VDR may only be used in such applications, where under no circumstances (excessive voltage, temperature, aging, etc.) the current through the VDR exceeds $175 \mu \mathrm{~A}$.


Fig.3. $\beta$ as a function of the current at a body temperature of $25^{\circ} \mathrm{C}$ and of $125^{\circ} \mathrm{C}$.


Fig.4. Temperature coefficient $\alpha$ as a function of the current. Bodytemperature between 25 and $125^{\circ} \mathrm{C}$.


Fig. 5. Conversiongraph for the current at $50^{\circ} \mathrm{C}$ to the currents at 20,23 and $26^{\circ} \mathrm{C}$.

TESTS AND REQUIREMENTS
According to I.E.C. 68, unless otherwise specified

Test	Requirements		
		$\frac{\Delta \mathrm{I}}{\mathrm{I}}(\%)$	$\frac{\Delta \beta}{\beta}(\%)$
Storage at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	1000 h	$\pm 10$	$\pm 5$
Dry heat at $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$	1000 h	$\pm 20$	$\pm 10$
Thermal shock $-25^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	5 cycles	$\pm 20$	$\pm 10$
Damp heat	1000 h	$\pm 20$	$\pm 10$
Dissipation at $\mathrm{I}_{\mathrm{dc}}=175 \mu \mathrm{~A}$ and			$\pm 30$
$\mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$	1000 h	$\pm 15$	
Resistance to heat at $+2300^{\circ} \mathrm{C}$	$3-4$	$\pm 2$	$\pm 2$

All measurements must be performed with a voltage of $7 \mathrm{kV} \pm 0.3 \%$ at $\mathrm{T}_{\mathrm{amb}}=$ $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, without self-heating of the specimen and after a recovery at $+23^{\circ} \mathrm{C} \pm$ $3^{\circ} \mathrm{C}$ of minimum 60 minutes.

## QUALITY LEVEL

Sampling and data evaluation for quality level in accordance with MIL-STD-105D
A.Q.L. 1 \%, major defects - Electrical
A.Q.L. $1.5 \%$, major defects - Mechanical
A.Q.L. $4 \%$, minor defects - Physical

PACKAGING
250 pieces per box
trocsemat

## VOLTAGE DEPENDENT RESISTORS <br> small disc types for special purposes



RZ 19269-8

For use in e.g. small pattery motors (to protect the collector and to suppress interferences in radio and television) the 232256590001 has been developed, which can be mounted in the rotor.

$$
\begin{aligned}
& \text { current at } 5 \mathrm{~V}_{\mathrm{dc}} \leq 1 \mathrm{~mA} \\
& \text { current at } 28 \mathrm{~V}_{\mathrm{dc}} \geq 10 \mathrm{~mA} \\
& \mathrm{~W}_{\max }
\end{aligned}
$$

For use in colour television a special range of VDR discs has been developed:

I   $(\mathrm{mA})$	E   $(\mathrm{V})$	tolerance   on voltage	catalog number
1	6	$\pm 20 \%$	232256590002
1	9	$\pm 20 \%$	90003
1	12	$\pm 15 \%$	90004
1	15	$\pm 15 \%$	90005
1	18	$\pm 12 \%$	90006

## VOLTAGE DEPENDENT RESISTORS

## asymmetric types



RZ 19225-4
Based on a barrier-layer effect, the asymmetric voltage-dependent resistors differ in many aspects from the well-known voltage dependent resistors made of silicon carbide. Its characteristic is asymmetric; in the forward direction, the characteristic shows a very low $\beta$-value and $C$-value while in the reverse direction $\beta$ - and $C$-values are much higher. Its parallel capacitance in forward as well as in reverse direction is relatively high. (See also "General" page C131). They can be used for instance for stabilisation of the supply current in transistorised battery receivers.
For the time being two types are available.

at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		catalog number	
		232257490001	232257490002
forward direction	voltage at 1 mA temp: coeff.   $\beta$   capacitance at 0 mA   at 5 mA   max. permissible current	$\begin{aligned} & 1.0 \mathrm{~V} \pm 10 \% \\ & >-0.2 \% / \mathrm{deg} \mathrm{C} \\ & 0.05-0.08 \\ & \sim 0.15 \mu \mathrm{~F} \\ & \sim 10 \mu \mathrm{~F} \\ & \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.35 \mathrm{~V} \pm 10 \% \\ & >-0.2 \% / \mathrm{deg} \mathrm{C} \\ & 0.06-0.09 \\ & \sim 0.15 \mu \mathrm{~F} \\ & \sim 10 \mu \mathrm{~F} \\ & 20 \mathrm{~mA} \end{aligned}$
reverse direction	```current at 5 V capacitance at 0 V at 5 V max. permissible voltage```	$\begin{aligned} &<2 \mu \mathrm{~A} \\ & \sim 0.15 \mu \mathrm{~F} \\ & \sim 0.05 \mu \mathrm{~F} \\ & 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <2 \mu \mathrm{~A} \\ & \sim 0.15 \mu \mathrm{~F} \\ & \sim 0.05 \mu \mathrm{~F} \\ & \quad 5 \mathrm{~V} \end{aligned}$

Temperature range: -30 to $+70^{\circ} \mathrm{C}$
Cathode is indicated by a white dot.
Colour code

232257490001
232257490002
black and brown band black and red band

Voltage/current characteristics



## VOLTAGE DEPENDENT RESISTORS

## disc types for contact protection



RZ 25666-8

These VDR's are developed for contact protection of relays in telephone exchanges. They are extremely stable and can stand current surges of decimals of Amps without changing their characteristics perceivably.
Two series are available: the series without leads in a non-lacquered, fully impregnated version and the series with leads in a lacquered and also impregnated version. These resistors meet the severe specifications of official inspection offices for telephone equipment.

## Dimensions and marking



Colour code
0 = black

$$
4 \text { = yellow }
$$

1 = brown
$2=$ red
3 = orange

Discs without leads: white colour band, colour dot indicates $10^{\text {th }}$ digit of catalog number.

Discs with leads: body colour white, colour band indicates $10^{\text {th }}$ digit of catalog number

$W_{\max }$	L	Additional   marking	
0.25 W	58.5 mm		VAP3
0.4	W	62	mm
1	W	65	mm

VOLTAGE DEPENDENT RESISTORS disc types for contact protection

Vdc   (V)	$\begin{gathered} \mathrm{I} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \left.\mathrm{I}^{1}\right) \\ & (\mathrm{mA}) \end{aligned}$	$\left.\mathrm{V}_{\text {pulse }}{ }^{2}\right)$   (V)	$W_{\text {max }}$   (W)	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	catalog number suffix	
						without leads	with leads
48	$<1.7$	$>52$	150	0.25	9.5	30272	00272
48	$<3$	$>72$	150	0.25	9.5	30372	00372
48	$<5$	$>121$	150	0.25	9.5	30472	00472
48	$<0.5$	$>27$	150	0.4	12.5	30072	00072
48	$<0.9$	$>34$	150	0.4	12.5	30172	00172
48	$<1.7$	$>65$	150	0.4	12.5	30272	00272
48	$<3$	$>91$	150	0.4	12.5	30372	00372
48	$<5$	$>152$	150	0.4	12.5	30472	00472
48	$<0.5$	$>42$	150	1	17	30072	00072
48	$<0.9$	$>76$	150	1	17	30172	00172
48	$<1.7$	$>115$	150	1	17	30272	00272
48	$<3$	$>180$	150	1	17	30372	00372
48	$<5$	$>268$	150	1	17	30472	00472
48	$<9$	>430	150	1	17	30572	00572
48	$<15$	$>455$	150	1	17	30672	00672

## CATALOG NUMBER

for $W_{\max }=0.25 \mathrm{~W}$	$2322575 \ldots \ldots$
for $W_{\max }=0.4 \mathrm{~W}$	$2322576 \ldots$.
for $W_{\max }=1 \quad \mathrm{~W}$	$2322577 \ldots$.

[^31]

Measuring diagram

## LIGHT-DEPENDENT RESISTORS

## INTRODUCTION

L(ight) $D$ (ependent) $R$ (esistors) are made from cadmium sulphide, a material which, when prepared properly, contains no or very few free electrons when kept in complete darkness. Its resistance is therefore quite high. When it absorps light, electrons are liberated and thus the material becomes more conducting. Cadmium sulphide is therefore called a photoconductor. The electrons are free only for a limited time and when the light is switched off, they are captured again by those places where they originally came from and thus the conductor turns again to an insulator.
Let us consider a disk of cadmium sulphide provided with two electrodes (Fig.1). The distance between the electrodes is $d$ and the length is 1 . When the disk is exposed to an illumination L a number of electrons N are liberated per second in the disk between the two electrodes:


Fig. 1

$$
\begin{equation*}
\mathrm{N}=\eta \mathrm{L} 1 \mathrm{~d} \tag{1}
\end{equation*}
$$

where $\eta$ is a constant depending on the wave length of the light. When a voltage V is applied to the electrodes the electrons move with a velocity v which is proportional to the field strength E :

$$
\begin{equation*}
\mathrm{v}=\mu \mathrm{E}=\frac{\mu \mathrm{V}}{\mathrm{~d}} \tag{2}
\end{equation*}
$$

The proportionality constant $\mu$ is called the mobility. Not all electrons may reach the positive electrode but only those which are liberated within a distance $\mathrm{v} \tau$ from this electrode when $\tau=$ average life time of a free electron. The fraction of the electrons that contribute to the current is therefore $\frac{\mathrm{V} \tau}{\mathrm{d}}$
and the measured photocurrent i is from (1), (2) and (3) given by:

$$
\begin{equation*}
\mathrm{i}=\mathrm{Ne} \frac{\mathrm{v} \tau}{\mathrm{~d}}=\frac{\eta \mathrm{e} \mu \tau 1 \mathrm{LV}}{\mathrm{~d}} \tag{4}
\end{equation*}
$$

where $\mathrm{e}=$ electric charge of an electron.
The resistance $R$, caused by the illumination, is then:

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{V}}{\mathrm{i}}=\frac{\mathrm{d}}{\eta \mathrm{e} \mu \tau 1} \mathrm{~L}^{-1} \tag{5}
\end{equation*}
$$

The life time $\tau$ is usually not constant but depends on the wave length $\lambda$ of the light and on the illumination L :

$$
\begin{equation*}
\tau=\tau_{0}(\lambda) L^{-\beta} \tag{6}
\end{equation*}
$$

The relation between the resistance and the illumination can therefore be expressed in good approximation by

$$
\begin{equation*}
\mathrm{R}=\mathrm{A}^{-\alpha} \tag{7}
\end{equation*}
$$

From (6) and (7)

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{d}}{\eta \mathrm{e} \mu \tau_{\mathrm{o}} \mathrm{l}} \tag{8}
\end{equation*}
$$

To have a sensitive LDR it is important to make A as low as possible. This can be done by choosing the right material such as cadmium sulphide with a high value of $\eta, \mu$ and $\tau_{0}$, and by making $\frac{1}{d}$ as large as possible. The latter is done by making a long and narrow slit and ${ }^{\mathrm{d}}$ then folding it up as it were on a small area. This is accomplished by giving the electrodes an interdigital comb-like structure.

## MANUFACTURING PROCESS

Highly purified cadmium-sulphide powder mixed with suitable additives is press ed in the form of discs.
The discs are sintered at a high temperature and carefully controlled conditions such as atmospheric pressure, temperature and time.
The electrodes are applied by vacuum evaporation. Afterwards leads are fixed to the electrodes and the LDR disc with leads is mounted in a suitable casing or covered by a special lacquer.

## ELECTRICAL PROPERTIES

## RESISTANCE/ILLUMINATION CHARACTERISTICS

As shown in the introduction the relationship between resistance value and illumination can be expressed with good approximation by the formula (7):

$$
\mathrm{R}=\mathrm{A} \mathrm{~L}^{-\alpha}
$$

where $\quad \mathrm{R}=$ resistance value in $\Omega$
$\mathrm{L}=$ illumination in lux (see under "photometric concepts, definitions and units" page C161).
A and $\alpha$ are constants
The value of $\alpha$ depends e.g. on the cadmium sulphide used and the manufacturing process. Values around 0.7-0.9 are quite normal. In Fig. 2 the relationship between the resistance $R$ and the illumination in lux is depicted for a normal LDR type.

Fig. 2.
Resistance/illumination characteristic of an LDR


SPECTRAL RESPONSE
LDR's only produce an electric effect with the incident radiation of a limited range of wavelengths. At the red end of the spectrum there is a threshold wavelength above which no photoelectric effect can occur. The photons $\left(\mathrm{h}_{\mathrm{V}}\right)$ of the
radiation beyond that wavelength carry insufficient energy to liberate electrons. At wavelengths lower than the threshold value the response increases at first because $\eta$ increases and more electrons are excited. There is, however, a critical wavelength below which the response decreases mainly because of a decrease in life time of the excited electrons.

The spectral response curve is a curve which shows the relationship between the resistance properties and the wavelength of the incident flux, the ordinates indicating the ratio of the resistance at any given wavelength to the resistance at a wavelength where the resistance is a maximum. The spectral sensitivity is determined by the properties of the photosensitive material. LDR's have their maximum response at about $6800^{\circ} \mathrm{A}$ (see Fig.3).


Fig. 3.
Spectral response characteristic of an LDR

## TEMPERATURE DEPENDENCY

Electrons can be excited not only by photons but also by thermal agitation. The dark resistance is therefore not infinite at normal temperatures. It increases with the ambient temperature and can be decreased by cooling the device.
The temperature can also affect the resistance under illumination. At practical illumination levels and normal ambient temperatures the temperature coefficient is, however, very small and can be neglected.

## RECOVERY RATE

When an LDR is brought from a certain illumination level into total darkness, it can be observed that the resistance value of the LDR does not increase immediately to the dark value but only reaches it after a certain time. The recovery rate is a practical measure for the increase in resistance value in time. It is specified in $\mathrm{k} \Omega / \mathrm{s}$ and for current LDR types it is more than $200 \mathrm{k} \Omega / \mathrm{s}$ (during the first 20 seconds starting at a light level of 1,000 lux).
The speed is much greater in the reverse direction, e.g. going from darkness to an illumination level of 300 lux, it takes less than 10 ms to reach a resistance value which corresponds with a light level of 400 lux.

## LDR RESISTORS

## HOW TO MEASURE LDR RESISTORS

## Preconditioning

Before starting measurements the LDR's have to be adapted to darkness for at least 16 hours. Then, during a minimum of 1 hour and a maximum of 2 hours the LDR's must be exposed to an illumination of 1,000 lux.

## Mounting

The LDR must be mounted in a blackened box or cylinder in such a way that reflections on the surface of the LDR are avoided entirely.
The distance between the lamp and the LDR must be so that the unloaded LDR does not reach a temperature above $30^{\circ} \mathrm{C}$.

## Illumination

The illumination source must be a voltage stabilized incandescent lamp with a colour temperature of $2850{ }^{\circ} \mathrm{K} \pm 150{ }^{\circ} \mathrm{K}$.

Measuring the light value $\mathrm{R}_{\mathrm{L}}$
After preconditioning $R_{\mathrm{L}}$ can be measured at an illumination level of 1,000 lux. The measuring voltage has to be adjusted so that the dissipation in the LDR is less than 50 mW . The light level is controlled by a reference cell, situated at the same level as the LDR .

## Measuring the dark value $\mathrm{R}_{\mathrm{D}}$

The dark resistance is measured after the LDR has been in total darkness for 30 minutes at a voltage of 20 V .

## Recovery rate

When bringing an LDR from light to total darkness it takes some time before the resistance reaches an end value. The recovery rate is a check on this time, and is measured as the increase in resistance value after 20 seconds, starting from a light level of 1,000 lux. Preconditioning as above.

## Drift DL

Although not specified, it is sometimes of interest to measure the change of resistance value during a certain time at a constant light level immediately after a period of staying in total darkness.

$$
D_{L}=\frac{R_{1 L}-R_{0 L}}{R_{0 L}} \cdot 100 \% \text { with: }
$$

$R_{0 L}=$ resistance value at $t=0$ when the resistor comes out of the total darkness and is illuminated with L lux.
$\mathrm{R}_{1 \mathrm{~L}}=$ resistance value at $\mathrm{t}=\mathrm{t}_{1}$ ( 1 or 2 hours), so exposed during a time $t_{1}$ to L lux.

## SPREAD VALUES

The resistance illumination characteristics of LDR's are measured at two points, namely at 1,000 lux and in total darkness. At 1,000 lux a maximum and a minimum resistance value are specified. In total darkness the minimum resistance value, reached after a certain time, is specified.
As the value of $\alpha$ is not a constant (see section on properties of LDR's) but shows some spread, the spread at another light level may be somewhat wider than the spread values at 1,000 lux (see fig. 2).

## Influence of illumination level

At very high illumination levels (above 10,000 lux) the $\mathrm{R} / \mathrm{L}$ characteristics tend to flatten. At this level the influence of the resistance of the electrodes (compared with the resistance of the CdS) is no longer negligible.

## PHOTOMETRIC CONCEPTS, DEFINITIONS AND UNITS

A light source emits radiation of many different wavelengths and in all directions into space. The spectral distribution of the emitted radiation, i.e. the distribution of energy at different wavelengths, is determined by the properties of the source. Thus, practically all the light emitted by a sodium lamp is of one characteristic wavelength ( $589 \mathrm{~m} \mu$ ). This is called monochromatic light. Other sources, such as fluorescent lamps, emit light of a number of discrete wavelengths, together with a continuous spectrum, so that the spectral distribution approximates to that of daylight. On the other hand, an incandescent light source, such as a tungsten lamp, emits radiation over a continuous range of wavelengths only. The intensity of the flux depends on the material of the filament and its temperature.


Fig. 4.
Black-body radiation as a function of the wavelength.

As the radiation of a black body (full radiator) can be expressed by an exact formula, so that for a given temperature the spectral distribution of energy is fixed (Fig.4), the flux of an incandescent lamp is referred to the black-body radiation.
"Wien" has shown that curve a of Fig. 4 can be transposed into curve b by multiplying the wavelengths by $T / T^{\prime}$, and the ordinates by $\left(\mathrm{T}^{\dagger} / T\right)^{5}$. The curves therefore have a uniform shape.

Now the spectral distribution of the radiation emitted by an incandescent lamp is approximately the same as that of a black-body radiator, but with an intensity multiplied by a factor less than unity. By definition, this factor, which is called the emission factor, is equal to unity only for a black body. For tungsten the emission factor is about 0.5 , slightly increasing from longer to shorter wavelengths, so that the maximum of radiation is shifted slightly to the left compared
with a black body. The intensity of the radiation of a tungsten lamp can be expressed as the "luminance temperature", i.e. the absolute temperature a black body should have in order to emit radiation of the same intensity as the tungsten lamp. This luminance temperature of tungsten is obviously some hundreds of degrees below the true temperature of the filament.

Fig. 5.
Curves relating the radiation of a tungsten filament with black-body radiation.
true temperature . . . . . . . 2800 oK
luminance temperature . . . . 2520 OK
colour temperature . . . . . . 2870 ०K



Fig. 6.
Sensitivity of the human eye as a function of the wavelength.

The spectral distribution of the radiation from an incandescent lamp is expressed by the colour temperature, i.e. the absolute temperature of a black body when its maximum of radiation is of the same wavelength as that of the tungsten radiation. As the emission factor of tungsten is almost constant, the colour temper ature is practically equal to the true temperature (Fig.5).
In general, the flux of energy emitted is expressed in watts. In photometry, how ever, it is usual to express the light flux, that is to say the total amount of visible radiation emitted or received by a given surface, in lumens. This quantity, denoted by $\phi$, is given by the expression

$$
\phi=680 \int_{380}^{760} \mathrm{~V}_{\lambda} \mathrm{d} \lambda \text { lumen }
$$

where $E \lambda$ is the flux in watts between $\lambda$ and $\lambda+d \lambda$, and $v \lambda$ the "international luminosity factor', representing the sensitivity of the average human eye as a function of the wavelength (Fig.6). The constant 680 has the dimension of lumens per watt. It can thus be seen that at the maximum sensitivity of the eye ( $550 \mathrm{~m} \mathrm{\mu}$ ) 1 watt corresponds to 680 lumen (since then $v_{\lambda}=1$ ).
In the case of an incandescent lamp the flux is completely described by its colour temperature and the number of lumens which it emits.
The illumination E of an area A is defined as the incident light flux per square metre, i.e. $E=d \phi / d A$. The unit of illumination is the lux, one lux corresponding to one lumen per square metre.
The portion of a spherical space occupied by a given beam of light emitted from a light source (point source) situated at the centre of the sphere is called the solid angle of the beam, and is expressed in steradians (sr). The steradian is defined as follows: Imagine a point source located at the centre of a sphere of 1 metre radius (Fig.7). A beam impinging upon one square metre of the surface of the sphere is said to have a solid angle of one steradian.
If the radius of the sphere is increased to $R_{m}$, this beam of 1 sr will irradiate a surface of $R^{2} \mathrm{~m}^{2}$. Consequently, a spherical surface $S$ at a distance $R$ from the source recieves radiation over a solid angle $\omega=S / R^{2} \mathrm{sr}$. A sphere contains a total of $4 \pi \mathrm{sr}$.
The light flux in lumens emitted in a given direction per unit of solid angle is called the intensity of the source. The intensity $I=d \phi / d \omega$ and is expressed in candela (cd) or lumens per steradian.
Finally the luminance is defined as the flux in lumens radiated into a steradian of solid angle per unit of projected area as seen in the considered direction. In other words, the luminance is the intensity per projected unit area of radiating surface (in $\mathrm{cm}^{2}$ ) in a given direction. Thus $B=d I / d A \cos \phi$; it is expressed in candela per square centimetre $\left(\mathrm{cd} / \mathrm{cm}^{2}\right)$ i.e. lumens per square centimetre per steradian.
The relationships between the above-mentioned units are indicated in a simple manner in Fig. 8.
If a light source which radiates with a uniform intensity of 1 cd in all directions is located at the centre of a sphere of radius 1 m , it emits a light flux of 1 lumen into each steradian of solid angle. The total emission of this light source is $4 \pi \mathrm{~lm}$. The illumination of the surface of the sphere is 1 lux. If this light source has a radiating surface of $1 \mathrm{~cm}^{2}$ perpendicular to the considered direction, its luminance is $1 \mathrm{~cd} / \mathrm{cm}^{2}$.

Consider now a surface $S$ located at a distance $R$ from a light source of intensity $1(c d)$ in the direction of the line joining the source and the surface $S$. This surface receives a flux of IS/R ${ }^{2}$ lumens, provided the direction of the beam is nor mal to the surface, and no optical system is inserted between the lamp and the surface (Fig.9). The normal incandescent lamps are manufactured for a colour temperature of $2700-2900{ }^{\circ} \mathrm{K}$. Their emission, in lumens/watt, is therefore approximately constant. A value of $13 \mathrm{~lm} / \mathrm{W}$ can be taken for design calculations . If the lamps emitted equally in all directions, the intensity would be $1 / 4 \pi$ times
the flux. For practical purposes, the intensity in candela in the forward direction is equal to the number of lumens divided by 10.

Fig. 7.
Diagram illustrating the definition of the solid angle


Fig. 8.
Relation between various photometric units.

Fig. 9.
Point source L illuminating area $S$.



The photometric units described above are those employed in modern practice. However, a number of older, obsolete units are still met with occasionally. The relation between the old and the new units is given below:

$$
\begin{aligned}
& \text { illumination } E=\frac{\text { light flux }}{\text { surface }} \text {; } \\
& \operatorname{lux}(1 \mathrm{x}) \quad=\frac{\text { lumen }}{\text { metre2 }} \\
& \text { foot-candle }(\mathrm{fc})=\frac{\text { lumen }}{\text { foot }{ }^{2}} \\
& \text { phot }(\mathrm{ph}) \quad=\frac{\text { lumen }}{\mathrm{cm}^{2}} \\
& 1 \text { lux }=1 / 10.764 \text { foot-candle } \\
& =10^{-4} \text { phot. } \\
& \text { luminance B } \quad=\frac{\text { light flux }}{\text { surface area x solid angle }} \text {; } \\
& \text { nit } \quad=\frac{\text { candela }}{\text { metre }^{2}}=\frac{\text { lumen }}{\mathrm{m}^{2} \text { steradian }} \\
& \text { stilb } \\
& =\frac{\mathrm{cm}^{2}}{\mathrm{~cd}} \\
& \text { apostilb } \quad=\frac{\text { lux }}{\pi \text { steradian }} \\
& \text { foot-lambert }=\frac{\text { foot-candle }}{\pi \text { steradian }} \\
& \text { lambert } \quad=\frac{\text { phot }}{\pi \text { steradian }} \\
& 1 \mathrm{~cd} / \mathrm{cm}^{2}=1 \text { stilb } \\
& =10^{4} \text { nit } \\
& =\pi \cdot 10^{4} \text { apostilb } \\
& =\frac{1}{3.426} \cdot 10^{4} \text { foot-lambert } \\
& =\pi \text { lambert }
\end{aligned}
$$

## APPLICATIONS

Most LDR applications are on-off applications, either directly operating a lamp or a relay of sufficiently low power or for larger power by means of a suitable amplifier. It is important to calculate the maximum dissipation occuring in the LDR. If the maximum supply voltage ( $V_{\max }$ ) and the resistance value of the load $(\mathrm{R})$ are known, this maximum dissipation in the LDR occurs when its resistance value is equal to $R$. The power to be dissipated by the LDR is then: $\left(V_{m}\right)^{2 / 4 R}$. This value has to be smaller than the maximum permissible dissipation at the given ambient temperature, otherwise the LDR will be damaged by overheating. Furthermore it is important to note that partial illumination of the sensitive area of the LDR can be dangerous (use of lenses or diafragma), namely in that case a small part of the CdS disc has to dissipate all the power and damage may follow even if the dissipated power is lower than the maximum permissible. Combinations lamp-LDR are often mounted in a light-tight container. Care must be taken that the LDR is not heated over $60^{\circ} \mathrm{C}$. Low power lamps, open construction, and heatsinks are meant to keep the temperature as low as possible. In the following some circuits for a variety of applications are given. No details on component values, voltages, etc. are mentioned; for most circuits these are highly dependent on the relays, lamps and mounting used and can be worked out easily. For the more complicated transistor circuits we will gladly supply full details.

LDR-relays with holding circuit
A temporary short circuit of the LDR or a voltage pulse on the lamp energises the "relay" LDR's.

## Level control

If the prism is immersed in a fluid there is practically no reflection. As soon as the prism comes above the fluid level total reflection occurs and the LDR is illuminated.

Twilight switch
Operates with a bi-metal relay so that incident light flashes have no influence.

## Gain limiting control

With increasing $\mathrm{V}_{\mathrm{i}}$, the resistance value of the LDR decreases and $V_{0}$ remains low.


Remote control and/or crackle-free potentiometer

The connection between the lamp and the potentiometer regulating the lamp current can be made as long as necessary.


Switch without click
Used in electronic musical instruments e.g. organs.


Automatic brightness and contrast control in television
Brightness and contrast are automatically adjusted at changing ambient illumination.

## LDR <br> RESISTORS

## Flashing light

As soon as the lamp lights up, the LDR becomes low ohmic and the relays disconnect the lamp, thus the LDR becomes high ohmic etc.


Warning circuit for tail-light failure As soon as one of the tail-lights breaks down the control lamp on the dashboard extinguishes.


Warning circuit for tail-light failure
Transistorized circuit.


## Parking light

The parking light is gradually switchedon.


Rifle range with LDR
The rifle gives by means of a capacitor discharge a short light flash. A hit can be registered by a buzzer and /or lamp.


## Model train control

Different simple and complex control circuits can be made with LDR's.

 bined with a light switch-off alarm


Flashing lights for advertising purposes
Operation is started by applying the supply voltage at opened switch S. Because of the lamps of group 1 lighting up, $\operatorname{LDR}_{1}$ is illuminated, short-circuiting and thus extinguishing group 2 . Consequently, $\operatorname{LDR}_{2}$ is high-ohmic, so that group 3 lights up. This sequence of every other group lighting up continues until the last group is lighted.
When now the switch is closed, the last (low-ohmic) LDR short-circuits group 1 so that, sequentially, group 1 is extinguished, group 2 is lit up, and so forth. With the switch closed, this cycle of operations is repeated continuously. It follows as a matter of course that there should be an odd number of groups. At 220 V supply voltage, approximately 15 groups of four $6 \mathrm{~V} / 50 \mathrm{~mA}$ lamps in series should be used.

## LIGHT DEPENDENT RESISTORS

The light dependent resistors are virtually small photoconductive cells, provided with two tinned copper connecting leads.
Three versions are available differing mainly in shape and coating.
Electrical performance


Important: Soldering and handling instructions available on request.

Version 232260095001
Encapsulated in plastic case and synthetic resin


Ambient temperature range


A special version with a lower light value is available under catalog number 232260095006
Deviating characteristics

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{D}}>1 \mathrm{M} \Omega \\
& \mathrm{R}_{\mathrm{L}}<110 \Omega
\end{aligned}
$$

Version 232260093001
This cell is sealed by means of a plastic coating


RZ 19225-1

$$
-30 \text { to }+60^{\circ} \mathrm{C}
$$

A special version with a lower light value is available under catalog number 232260093002
Deviating characteristics

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{D}}>1 \mathrm{M} \Omega \\
& \mathrm{R}_{\mathrm{L}}<150 \Omega
\end{aligned}
$$

Note: Do not solder closer than 10 mm to the body.

## Version 232260094001

This cell is covered with lacquer.


Ambient temperature range

$$
-30 \text { to }+60^{\circ} \mathrm{C}
$$

Ceramic capacitors

## SURVEY

Application class 1 = for tuning and other applications where low losses and a linear temperature dependence are required.
Application class 2 for all coupling and decoupling purposes.


1) The number between brackets is the old series number.

MARKING
Colour code

	temperature coefficient	first   digit	second digit	multiplier for the capacitance	tolerance on capacitance	
					$\begin{gathered} \mathrm{C} \leq 10 \mathrm{pF} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} C>10 \mathrm{pF} \\ (\%) \end{gathered}$
red/violet	P100					
black	NP0		0	1		$\pm 20$
brown	N033	1	1.	10	$\pm 0.1$	$\pm 1$
red	N075	2	2	$10^{2}$	$\pm 0.25$	$\pm 2$
orange	N150	3	3	$10^{3}$		
yellow	N220	4	4	$10^{4}$		
green	N330	5	5		$\pm 0.5$	$\pm 5$
blue	N470	6	6			
violet	N750	7	7			
grey		8	8	$10^{-2}$		
white		9	9	$10^{-1}$	$\pm 1$	$\pm 10$

Figure code


I II III IV V

capacitance value in pF , using $K$ for the thousands

$\begin{aligned} & \mathrm{C} \leq 1 \\ & \text { tol } \\ & (\mathrm{pF}) \end{aligned}$	$0 \mathrm{pF}$   code	$\left\lvert\, \begin{aligned} & C> \\ & \text { tol } \\ & (\%) \end{aligned}\right.$	$10 \mathrm{pF}$   code
0,25	N	1	D
0, 5	L	2	C
1	M	5	B
		10	A

## TUBULAR CERAMIC CAPACITORS

## CLASS II



RZ 22070-5
Capacitance range 552 -series 561-series
Maximum working voltage

## APPLICATION

Class II tubular ceramic capacitors are made of high-K dielectric materials. They are suitable for bypass and coupling purposes in all kinds of equipment where a high capacitance and small dimensions are of importance and the losses need not be minimized. These capacitors can be supplied in the 552 and in the 561-series. If small dimensions are essential, preference is given to the former series, but if a linear temperature dependence is of greater importance, the latter series are recommended. The temperature dependence of the series 552 and 561 is illustrated by the Graphs 1 and 2 respectively, the latter of which conforms to the class IIA requirements.

## CONSTRUCTION

The capacitors of both ranges consist of a ceramic tube, internally and partly externally covered with a fired-on coating of silver. Two leads of tinned copper, wound around the tube, are soldered to these coatings. A coating of special lacquer protects the non-insulated versions against atmospheric influences. The coating of the insulated versions allows them to be mounted close together or against a metal frame.

Dimensions in mm


For $L$ and $P$ see Tables 1 and 2.
Marking. See Survey Ceramic Capacitors.
TECHNICAL PERFORMANCE
Unless otherwise specified, all electrical values apply to a temperature of 20 $\pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $\leq 75 \%$.

Max. working voltage
Test voltage for 1 min
Test voltage against coating (insulated capacitors) for 1 s
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$ (within 1 min ) for $\mathrm{C} \leq 10000 \mathrm{pF}$

$$
\text { for } \mathrm{C}>10000 \mathrm{pF}
$$

Losses $(\tan \delta)$ at 1 kHz measured at a voltage of $<3.5 \mathrm{~V}$ ac
Temperature dependence

$$
\text { for } 552 \text {-series }
$$

for 561-series
Working temperature range
Climatic robustness

$$
\begin{aligned}
& 500 \mathrm{~V}_{\mathrm{dc}} \\
& 1250 \mathrm{~V}_{\mathrm{dc}}
\end{aligned}
$$

$750 \mathrm{~V}_{\mathrm{dc}}$
$>10000 \mathrm{M} \Omega$
$>\frac{10000 \times 10^{10}}{\mathrm{C}(\mathrm{pF})} \Omega$
$<350 \times 10^{-4}$
see Graph 1
see Graph 2
-40 to $+85^{\circ} \mathrm{C}$
category 40/085/21(I.E.C.68)


Graph 1


Graph 2

## AVAILABLE VERSIONS

Composition of the catalog number
Class II series : 2222552 .....
suffix, see Table 1
Class IIA series: 2222561 .....
suffix, see Table 2
Capacitance and tolerance
The tables give the E6 capacitance series. Capacitance values out of the E12 series are subject to minimum order release requirements.

552 -series, tolerance on the capacitance $-20 /+50 \%$
Table 1

capacitance   $(\mathrm{pF})$	L   $(\mathrm{mm})$	P   $(\mathrm{mm})$	suffix   (insulated)	suffix   (non-insulated) l$)$
680	12	7.6	04681	03681
1000	12	7.6	04102	03102
1500	12	7.6	04152	03152
2200	12	7.6	04222	03222
3300	12	7.6	04332	03332
4700	16	10.2	04472	03472
6800	20	15.2	04682	03682
10000	22	17.7	04103	03103
15000	30	20.3	04153	03153
22000	40	30.5	04223	03223

1) Available on request

561 -series, tolerance on the capacitance $\pm 10 \%$
Table 2

capacitance   $(\mathrm{pF})$	L   $(\mathrm{mm})$	P   $(\mathrm{mm})$	suffix
1000	12	7.6	01102
1500	12	7.6	01152
2200	14	7.6	01222
3300	18	12.7	01332
4700	22	17.7	01472
6800	28	20.3	01682
10000	38	30.5	01103

## MIDGET TUBULAR CERAMIC CAPACITORS CLASS IC



RZ 22070-15

Capacitance range $\quad 3.9$ to 180 pF
Maximum working voltage

$$
70 \mathrm{~V}_{\mathrm{ac}}
$$

## APPLICATION

These midget-type ceramic capacitors are characterised by their low h.f. losses, high stability and a very low inductance. Therefore they are widely used in r.f. tuned circuits. The capacitors have been specially designed for use in small filters such as miniaturised i.f. transformers, bandpass filters for radio and television receivers, discriminators, noise limiters, etc.

## CONSTRUCTION

The capacitors consist of a tiny ceramic tube, covered internally and externally with a fired -on silver electrode, each electrode being provided with a tinned copper connecting lead. The connecting leads can withstand a strain of at least 450 gram . The capacitors are colour-coded according to I.E.C. recommendations, except those having values of $3.9-8.2 \mathrm{pF}$ and 39 pF , which are marked in black script.

## Dimensions in mm



For L and A see table.

## TECHNICAL PERFORMANCE

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity of $<75 \%$.

Maximum working voltage
at a frequency $>100 \mathrm{kHz} \quad 70 \mathrm{~V}$ ac
Test voltage for 1 min
$300 \mathrm{~V}_{\mathrm{dc}}$
Insulation resistance measured within 1 min at $100 \mathrm{~V}_{\mathrm{dc}}$ at R.H. $<75 \%$
at R.H. between $75 \%$ and $95 \%$
$>10000 \mathrm{M} \Omega$
$>100 \mathrm{M} \Omega$
Losses at 1 MHz , measured at $<1 \mathrm{~V}$ ac
parallel damping for $\mathrm{C}<10 \mathrm{pF}$
$\tan$ of for $\mathrm{C} \geq 10 \mathrm{pF}$
Change of capacitance after humidity test according to NT 14-5-3.1
Working temperature range
Climatic robustness
$>5 \mathrm{M} \Omega$
$<10 \times 10^{-4}$
$<1 \%$ or 0.5 pF
-25 to $+85{ }^{\circ} \mathrm{C}$
category 25/085/04
(I.E.C. 68)

## AVAILABLE VERSIONS

Catalog number 2222553 .....
suffix, see table.

capacitance							
nom.   $(\mathrm{pF})$	tol.   $( \pm)$	temp.coeff.   $\left(10^{-6} /\right.$ deg C)	L   $(\mathrm{mm})$	A   $(\mathrm{mm})$	suffix		
3.9	0.5 pF	+100	9	5	01398		
4.7	0.5 pF	+100	9	5	01478		
5.6	0.5 pF	+100	9	5	01568		
6.8	1 pF	+100	9	5	02688		
8.2	1 pF	+100	9	5	02828		
10	1 pF	0	9	5	02109		
12	1 pF	0	9	5	02129		
15	1 pF	0	9	5	02159		
18	1 pF	0	9	5	02189		
22	1 pF	0	9	5	02229		
27	1 pF	0	9	5	02279		
33	$3 \%$	-150	9	5	03339		
39	$3 \%$	-150	9	5	03399		
47	$3 \%$	-150	9	5	03479		
56	$3 \%$	-150	9	5	03569		
68	$3 \%$	-150	9	5	03689		
82	$3 \%$	-150	9	5	03829		
100	$3 \%$	-150	11	7	03101		
120	$3 \%$	-150	13.5	7	03121		
150	$3 \%$	-150	16.5	11	03151		
180	$3 \%$	-150	20	11	03181		

## TUBULAR CERAMIC CAPACITORS CLASS 1B

QUICK REFERENCE DATA	
Capacitance range	0.8 to 820 pF
Rated voltage	$500 \mathrm{~V} \mathrm{d.c}$.
Tolerance on capacitance	$5 \%, 0.5$ or 0.25 pF
Temperature coefficients	$\mathrm{NP0}, \mathrm{~N} 150, \mathrm{~N} 750$
Basic specification	IEC 108, class 1 B
Category (IEC 68)	$40 / 085 / 21$



## APPLICATION

Because low-K ceramic material is used, these capacitors have low losses, a high stability and display a linear temperature dependence of the capacitance. These features render the capacitors ideally suited for application in high frequency equipment, especially in resonant circuits in which advantage can be taken of the linear temperature coefficient to compensate the temperature dependence of other components.
These capacitors have connecting leads of 0.6 mm diameter with a pitch of a multiple of one tenth of an inch, so that they are suitable for printed wiring circuits.

## DESCRIPTION

The capacitors consist of a ceramic tube, partly metallised on the outside, and -except for the smallest capacitances - internally metallised. A coating of special grey lacquer protects the capacitors against atmospheric influences. The temperature coefficient, the capacitance and the tolerances are indicated by means of a colour or a figure code. The inner electrode is connected to the lead at the side of the colour dot for the temperature coefficient.

MECHANICAL DATA
Dimensions in mm


Weight
0.4 to 0.9 g , depending on the dimensions.

Marking
Colour coded or figure coded, see Survey Ceramic capacitors
Mounting
Soldering conditions max. $270^{\circ} \mathrm{C}$, max. 10 s

[^32]
## ELECTRICAL DATA

The capacitors are in conformity with IEC 108.
Unless stated otherwise, all electrical values have been determined at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930 to 1060 mbar and a relative humidity of 45 to $75 \%$.

Cap. values and tolerances
measured at $1 \mathrm{MHz},<5 \mathrm{~V}$

## Rated voltage

Test voltage for 1 min .
Insulation resistance at 500 V d.c. after 1 min .

Tan $\delta$ at $1 \mathrm{MHz},<5 \mathrm{~V}$ for $\mathrm{C} \leq 10 \mathrm{pF}$ for $\mathrm{C}>10 \mathrm{pF}$

Category temperature range
Climatic category (IEC 68)
see table II
500 V d.c. *)
1250 V d.c.
$>10.000 \mathrm{M} \Omega$
$\leq \frac{0.01}{\mathrm{C}}(\mathrm{C}$ in pF$)$
$\leq 10^{\circ} \times 10^{-4}$, average $<5 \times 10^{-4}$
-40 to $+85^{\circ} \mathrm{C}$
40/085/21

Temperature coefficients (Table I)

temp. coeff. $\left(10^{-6} / \operatorname{deg} C\right)$	$\begin{gathered} \text { tolerance } \\ \left(10^{-6 / d e g ~ C)}\right. \end{gathered}$
NP0 : 0	$\begin{array}{ll} \text { for } \mathrm{C}<3 \mathrm{pF}: & -40 \text { to }+250 \\ \text { for } 3<\mathrm{C} \leq 20 \mathrm{pF}: & -40 \text { to }+120 \\ \text { for } C>20 \mathrm{pF}: & \pm 40 \end{array}$
N150: - 150	$\begin{array}{ll} \text { for } \mathrm{C} \leq 20 \mathrm{pF}: & -40 \text { to }+60 \\ \text { for } \mathrm{C}>20 \mathrm{pF}: & \pm 40 \end{array}$
N750: -750	for $\mathrm{C}<3 \mathrm{pF}$ : $\pm 250$   for $3<\mathrm{C} \leq 20 \mathrm{pF}$ : -120 to +250   for $\mathrm{C}>20 \mathrm{pF}: \quad \pm 120$

Capacitors with a temperature coefficient according to P100, N033, N075, N220, N330, N470 and N1500 can be supplied, provided acceptable quantities are ordered.

## Capacitance and tolerance

The following table gives the E12 capacitance series with a tolerance of 0.25 pF , 0.5 pF and $5 \%$, depending on the capacitance value. On request values appertaining to the E24 series can be supplied, provided acceptable quantities are ordered. This also applies to capacitors with tolerances of $20 \%$ of the E6 series, of $10 \%$ of the E12 series and with $2 \%$ and $1 \%$ tolerances for higher capacitance values.
*) If the capacitor is connected to an a.c. source, the r.m, s. current must not exceed 500 mA , whilst the maximum r.m.s. voltage is $\frac{500}{\sqrt{2}}$ volts.

Table II

capacitance		temperature coefficient								
		NP0			N150			N750		
nom. $(\mathrm{pF})$	$\begin{gathered} \text { tol. } \\ ( \pm) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}$	suffix	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}\right.$	suffix	$\begin{aligned} & \mathrm{L} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{P} \\ (\mathrm{~mm}) \end{gathered}$	suffix
0.8	0.25 pF							12	7.6	57807
1	0.25 pF							12	7.6	57108
1.2	0.25 pF							12	7.6	57128
1.5	0.25 pF							12	7.6	57158
1.8	0.25 pF	12	7.6	09188				12	7.6	57188
2.2	0.25 pF	12	7.6	09228				12	7.6	57228
2.7	0.5 pF	12	7.6	08278				12	7.6	56278
3.3	0.5 pF	12	7.6	08338				12	7.6	56338
3.9	0.5 pF	12	7.6	08398				12	7.6	56398
4.7	0.5 pF	12	7.6	08478				12	7.6	56478
5.6	0.5 pF	12	7.6	08568	12	7.6	32568	12	7.6	56568
6.8	0.5 pF	12	7.6	08688	12	7.6	32688	12	7.6	56688
8.2	0.5 pF	10	5.1	08828	10	5.1	32828	10	5.1	56828
10	0.5 pF	10	5.1	08109	10	5.1	32109	10	5.1	56109
12	$5 \%$	10	5.1	08129	10	5.1	32129	10	5.1	56129
15	$5 \%$	10	5.1	08159	10	5.1	32159	10	5.1	56159
18	$5 \%$	10	5.1	08189	10	5.1	32189	10	5.1	56189
22	$5 \%$	10	5.1	08229	10	5.1	32229	10	5.1	56229
27	5 \%	12	7.6	08279	12	7.6	32279	10	5.1	56279
33	5 \%	12	7.6	08339	12	7.6	32339	10	5.1	56339
39	5 \%	12	7.6	08399	12	7.6	32399	10	5.1	56399
47	5 \%	14	7.6	08479	12	7.6	32479	10	5.1	56479
56	5 \%	14	7.6	08569	14	7.6	32569	12	7.6	56569
68	$5 \%$	16	10.2	08689	16	10.2	32689	12	7.6	56689
82	$5 \%$	18	12.7	08829	16	10.2	32829	12	7.6	56829
100	5 \%	20	15.2	08101	18	12.7	32101	12	7.6	56101
120	$5 \%$	22	17.7	08121	20	15.2	32121	14	7.6	56121
150	$5 \%$	26	20.3	08151	24	17.7	32151	16	10.2	56151
180	5 \%	30	20.3	08181	26	20.3	32181	18	12.7	56181
220	$5 \%$	34	25.4	08221	30	20.3	32221	20	15.2	56221
270	5 \%				36	25.4	32271	22	17.7	56271
330	$5 \%$							24	17.7	56331
390	5 \%							28	20.3	56391
470	$5 \%$							32	25.4	56471
560	5 \%							38	30.5	56561
680	5 \%							44	35.6	56681
820	$5 \%$							52	40.6	56821

## TUBULAR CERAMIC CAPACITORS SAFETY



RZ 22070-2

Capacitance range	10 to 560 pF
Maximum working voltage	$700 \mathrm{~V}_{\mathrm{dc}}$
Test voltage	$2000 \mathrm{~V}_{\mathrm{rms}}$

## APPLICATION

These ceramic capacitors withstand a test voltage of $2000 \mathrm{~V}_{\mathrm{rms}}$ for 1 minute, the international requirement for capacitors connected between the mains and conductive parts which might be touched. Therefore, they are very suitable for use in radio and television sets.

## CONSTRUCTION

The capacitor consists of a ceramic tube internally and partly externally covered with a fired-on coating of silver. The connecting leads are soldered to the silver electrodes. A coating of special grey lacquer protects the capacitors against atmospheric influences. The capacitors are marked in black script with an H followed by capacitance value in pF and a letter indicating the tolerance (see Survey Ceramic" capacitors).


For D, L and P see table

## TECHNICAL PERFORMANCE

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $\leq 75 \%$.

Maximum working voltage
Test voltage for 1 min
Insulation resistance measured at $500 \mathrm{~V}_{\mathrm{dc}}$ (within 1 min )

Losses $(\tan \delta)$ at 1 MHz ,
measured at a voltage $<3.5 \mathrm{~V}_{\mathrm{ac}}$
Working temperature range
Climatic robustness
$700 \mathrm{~V}_{\mathrm{dc}}$
$2000 \mathrm{~V}_{\mathrm{rms}}$
$>50000 \mathrm{M} \Omega$
$<10 \times 10^{-4}$
-40 to $+85^{\circ} \mathrm{C}$
category 40/085/21 (I.E.C. 68)

## AVAILABLE VERSIONS

Composition of the catalog number
2222562 .....
suffix, see Table

## Capacitance and tolerance

The tolerance on the capacitances is $\pm 10 \%$.

capacitance   $(\mathrm{pF})$	dimensions			
	D   $(\mathrm{mm})$	L   $(\mathrm{mm})$	P   $(\mathrm{mm})$	suffix
10	3	18	10.2	01109
12	3	18	10.2	01129
15	3	18	10.2	01159
18	3	18	10.2	01189
22	3	18	10.2	01229
27	3	18	10.2	01279
33	3	18	10.2	01339
39	3	18	10.2	01399
47	3	18	10.2	01479
56	4	18	10.2	01569
68	4	18	10.2	01689
82	4	18	10.2	01829
100	4	20	10.2	01101
120	4	20	10.2	01121
150	4	22	12.7	01151
180	4	24	12.7	01181
220	4	28	17.7	01221
270	4	32	20.3	01271
330	4	36	25.4	01331
390	4	40	30.5	01391
470	4	46	35.6	01471
560	4	52	40.6	01561

## UPRIGHT-MOUNTING CERAMIC CAPACITORS

## CLASS II



RZ 22070-12

563 -series:	Capacitance range	1.5 to 10000 pF
	Max. working voltage	$500 \mathrm{~V}_{\mathrm{dc}}$
565 -series:	Capacitance range	2200 to 10000 pF
	Max. working voltage	$125 \mathrm{~V}_{\mathrm{dc}}$

## APPLICATION

These ceramic capacitors are suitable for bypass, coupling and general purposes, where low losses and high stability of capacitance are not of major importance. They feature a high insulation resistance and a low inductance. The configuration of the terminals is adapted to the printed wiring technique; when mounted in a vertical position, the capacitors occupy a small area.
The 565-series of capacitors have been designed for application where high voltages are not required, e.g. transistor equipment.

## CONSTRUCTION

The capacitor consists of an internally and externally fully metallised ceramic tube. The connecting leads are of tinned copper, soldered to the metal layers. The capacitors are coated with a tan-coloured insulation lacquer, which acts as a seal against moisture and mechanical damage, and permits the capacitors to be mounted close together, or against a metal plate. The capacitors are colour coded.

## Dimensions in mm

563 -series


Fig. 1


Fig. 2

565-series


Fig. 3

## TECHNICAL PERFORMANCE

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, at atmospheric pressure of 930-1060 mbar and a relative humidity
of $\leq 75 \%$.

Maximum working voltage
Test voltage for 1 min
563-series
$500 \mathrm{~V}_{\mathrm{dc}}$
$1250 \mathrm{~V}_{\mathrm{dc}}$
$1250 \mathrm{~V}_{\mathrm{dc}}$ $1250 \mathrm{~V}_{\mathrm{dc}}$
$>10000 \mathrm{M} \Omega$
Insulation resistance at 100 V dc (within 1 min )

$$
\begin{aligned}
& \text { for } \mathrm{C}<2500 \mathrm{pF} \\
& \text { for } \mathrm{C}>2500 \mathrm{pF}
\end{aligned}
$$

Losses measured at $<3.5 \mathrm{~V}$
for $\mathrm{C} \leq 10 \mathrm{pF}$, parallel damping at 100 kHz
for $\mathrm{C}=10$ to 180 pF , $\tan \delta$ at 100 kHz for $\mathrm{C}>200 \mathrm{pF}$, $\tan \delta$ at 1 kHz

Temperature dependence from -25 to $+85^{\circ} \mathrm{C}$

Working temperature range
Climatic robustness, I.E.C. 68 category
$>5 \mathrm{M} \Omega$
see Table I
see Table I. $<350 \cdot 10^{-4}$
see Table I $\quad+30$ to $-50 \%$
-40 to $+85{ }^{\circ} \mathrm{C} \quad-25$ to $+85{ }^{\circ} \mathrm{C}$

40/085/21
25/085/21

## AVAILABLE VERSIONS

## 563 -series (500 V)

Catalog number 2222563 .....

> suffix, see Table I.

Table I

$\begin{aligned} & \text { capacitance } \\ & (\mathrm{pF}) \end{aligned}$	tolerance	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \tan \delta \\ \left(\times 10^{-4}\right) \end{gathered}$	$\frac{\Delta \mathrm{C}}{\mathrm{C}}=\mathrm{f}(\mathrm{T})$	suffix of Fig. 1 versions	suffix of Fig. 2 versions
1.5	1 pF	6.5		$\pm 10 \%$	01158	05158
2		8.5			01208	05208
3		8.5			01308	05308
4		6.5			01408	05408
5		8.0			01508	05508
6		7.5			01608	05608
7		8.5			01708	05708
8		9.0			01808	05808
9		6.5			01908	05908
10		7.0			01109	05109
15	$20 \%$	9.0	25		02159	06159
22		7.5			02229	06229
33		8.5			02339	06339
47		6.5	100	$+15 /-25 \%$	02479	06479
68		7.0			02689	06689
100		9.0			02101	06101
150		7.5			02151	06151
220		8.0			02221	06221
330		11.0	350		02331	06331
470		8.0			02471	06471
680		8.5			02681	06681
1000	$-20 /+50 \%$	8.0		+15/-40\%	03102	07102
1500		9.0			03152	07152
2200		12.0			03222	07222
3300		15.0			03332	07332
4700		19.0			03472	07472
6800		23.0			03682	07682
10000		29.0			03103	07103

Capacitance values of the E12 series are subject to minimum order release requirements.

565-series ( 125 V )
Catalog number 2222565 .....
suffix, see Table II
Table II

capacitance   $(\mathrm{pF})$	tolerance	L   $(\mathrm{mm})$	suffix of   Fig.3 versions
2200		8	02222
3300		9	02332
4700	$-20 /+50 \%$	9.5	02472
6800		12	02682
10000		16.5	02103

Capacitance values of the E12 series are subject to minimum order release requirements.

# DISC TYPE CERAMIC CAPACITORS <br> CLASS IB 



RZ 22070-9

Capacitance range
Maximum working voltage

$$
\begin{aligned}
& 0.47 \text { to } 33 \mathrm{pF} \\
& 500 \mathrm{~V}_{\mathrm{dc}}
\end{aligned}
$$

## APPLICATION

Because low-K ceramic material is used, these capacitors have low losses, a high stability and display a linear temperature dependence of the capacitance. These features render the capacitors ideally suited for application in high frequency equipment, especially in resonant circuits in which advantage can be taken of the linear temperature coefficient to compensate the temperature dependence of other components.

## CONSTRUCTION

The capacitor consists of a ceramic disc, provided with a silver plating at both sides to which the connecting leads are soldered. In order to avoid lacquer on the leads the capacitor is only partly lacquered, after which the whole is covered with a solderable film which protects the unlacquered part against atmospheric influences.

## Dimensions in mm



For D and S see Table II.
TECHNICAL PERFORMANCE
Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $<75 \%$.

Maximum working voltage
Test voltage for 1 min
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$ (within 1 min )

Losses ( $\tan \delta$ ) at 1 MHz , measured at a voltage of $<3.5 \mathrm{~V}$ ac for $\mathrm{C}<10 \mathrm{pF}$
for $C>10 \mathrm{pF}$
Working temperature range
Climatic robustness
Capacitance and tolerances

$$
500 \mathrm{~V}_{\mathrm{dc}}
$$

$$
1250 \mathrm{~V}_{\mathrm{dc}}
$$

$>10000 \mathrm{M} \Omega$
$<\frac{0.01}{\mathrm{C}(\mathrm{pF})}$
$<10 \times 10^{-4}$
-40 to $+85^{\circ} \mathrm{C}$
category 40/085/21 (I.E.C. 68)
see Table II

## AVAILABLE VERSIONS

Composition of the catalog number
Non-insulated versions: 2222625 .....
Insulated versions: $2222626 \ldots$... (available on request) suffix, see Table II

Temperature coefficients (Table I)

temp. coeff.   $\left(10^{-6} / \mathrm{deg} \mathrm{C}\right)$	tolerance   $\left(10^{-6} / \mathrm{deg} \mathrm{C}\right)$	t.c. marking   colour
$\underline{\text { P100: }+100}$	-40 to +120	red/violet
NP0: 0	for $\mathrm{C} \leq 20 \mathrm{pF}:$   -40 to +120   for $\mathrm{C}>20 \mathrm{pF}:$   -40 to +40	black
N150: -150	for $\mathrm{C} \leq 20 \mathrm{pF}:$   -40 to +60   for $\mathrm{C}>20 \mathrm{pF}:$   -40 to +40	
N750: -750	for $\mathrm{C} \leq 20 \mathrm{pF}:$   $-120 \mathrm{to}+250$   for $\mathrm{C}>20 \mathrm{pF}:$   -120 to +120	orange

Capacitors with temperature coefficients according to N075, N220, N470 and N1500 can be supplied, provided acceptable quantities are ordered.
Capacitances and tolerances (Table II)

		temperature coefficient											
capacitance		P100			NP0			N150			N750		
nom.   (pF)	tol.   $\pm$ )	Dmax (mm)	Smax (mm)	suffix	Dmax (mm)	Smax   (mm)	suffix	Dmax (mm)	Smax   (mm)	suffix	Dmax (mm)	Smax (mm)	suffix
0.47	0.25 pF	5	4.5	03507									
0.75	0.25 pF	5	3.5	03757									
1.0	0.25 pF	6	3	03108									
1.2	0.25 pF	5	4	03128									
1.5	0.25 pF	5	3.5	03158									
1.8	0.25 pF	5	3.5	03188	5	3.5	09188				5	5	57188
2.2	0.25 pF	6	3.5	03228	6	3.5	09228	5	5	33228	5	4.5	57228
2.7	0.5 pF	6	3	02278	5	4	08278	5	4.5	32278	5	4	56278
3.3	0.5 pF	6	3	02338	5	3.5	08338	5	4	32338	5	3.5	56338
3.9	0.5 pF	6	3	02398	6	4	08398	5	3.5	32398	6	4	56398
4.7	0.5 pF	8	3	02478	6	3.5	08478	5	3	32478	6	3.5	56478
5.6	0.5 pF	8	3	02568	6	3	08568	6	3.5	32568	6	3	56568
6.8	0.5 pF				6	3	08688	6	3	32688	5	4	56688
8.2	0.5 pF				6	3	08828	6	3	32828	5	3.5	56828
10	0.5 pF				6	3	08109	6	3	32109	5	3	56109
12	5 \%				8	3	08129	6	3	32129	6	3.5	56129
15	$5 \%$				8	3	08159	8	3	32159	6	3	56159
18	5 \%							8	3	32189	6	3	56189
22	5 \%										6	3	56229
27	$5 \%$										8	3	56279
33	$5 \%$										8	3	56339

## DISC TYPE CERAMIC CAPACITORS

## CLASS II



RZ 22070-9

$$
\begin{array}{ll}
\text { Capacitance range } & 100 \text { to } 1500 \mathrm{pF} \\
\text { Maximum working voltage } & 500 \mathrm{~V}_{\mathrm{dc}}
\end{array}
$$

## APPLICATION

These capacitors are suitable for coupling and decoupling where a low selfinductance and a high insulation resistance are required. They occupy only a minor area on printed-wiring boards.

## CONSTRUCTION

The capacitor consists of a ceramic disc, provided with a silver plating at both sides to which the connecting leads are soldered. In order to avoid lacquer on the leads the capacitor is only partly lacquered, after which the whole is covered with a solderable film which protects the unlacquered part against atmospheric influences.

Dimensions in mm


For D and S see Table.
TECHNICAL PERFORMANCE
Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $<75 \%$.

Maximum working voltage
Test voltage for 1 min
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$ (within 1 min )
Losses $(\tan \delta)$ at 1 kHz , measured at $<3.5 \mathrm{~V}_{\text {ac }}$

Working temperature range
Climatic robustness

$$
\begin{aligned}
& 500 \mathrm{~V}_{\mathrm{dc}} \\
& 1250 \mathrm{~V}_{\mathrm{dc}}
\end{aligned}
$$

$$
>10000 \mathrm{M} \Omega
$$

$$
<350.10^{-4}
$$

$$
-40 \text { to }+85^{\circ} \mathrm{C}
$$

category 40/085/21 (I.E.C. 68)

AVAILABLE VERSIONS
Catalog number 2222627 .....
suffix, see Table

capacitance   $(\mathrm{pF})$	tolerance   $(\%)$	Dmax   $(\mathrm{mm})$	Smax   $(\mathrm{mm})$	suffix
100		5	4.5	14101
150		5	3.5	14151
220		6	3.5	14221
330		6	3	14331
470	$-20 /+50$	6	3	14471
680		6	3	14681
1000		8	3	14102
1500		9	3	14152

## MINIATURE CERAMIC PLATE CAPACITORS CLASS 2

High-K types

	QUICK REFERENCE DATA	
	$\frac{2222630-\text { series }}{}$	
	$\frac{2222629-\text { series }}{180-4700 \mathrm{pF}}$	
Capacitance range	E12-series	E3-series
	$100 \mathrm{~V} \mathrm{d.c}$.	$40 \mathrm{~V} \mathrm{d.c}$.
Rated voltage	$10 \%$	$-20 /+100 \%$
Tolerance on capacitance	IEC187, class 2	IEC187, class 2
Basic specification	$55 / 085 / 21$	$10 / 055 / 21$
Category (IEC 68)		



RZ 25596-8

## APPLICATION

For use in a wide variety of electronic equipment where a non-1inear change of the capacitance with temperature is permissible and low losses are not of major importance, e.g. for coupling and decoupling purposes.

## DESCRIPTION

The capacitors consist of a thin rectangular plate of high-K ceramic material, both sides being metallised and provided with connecting leads. They are insulated by a coating method that ensures an excellent behaviour under humid conditions.
The capacitors are tan coloured.
Because of their.high dielectric constants these capacitors combine high capacitances with small dimensions.

The high stability capacitors of the 630 -series belong to class 2 A , which means a very small non-linear temperature dependence of the capacitances.
The capacitance of the 629 -series varies less linearly with temperature (class 2 ); however, these capacitors have a higher capacitance value than those of the 630series at the same dimensions.

Due to the absence of silver an extremely good d.c. behaviour has been obtained *).
Mechanically the capacitors distinguish themselves by small dimensions, narrow tolerances on the lead spacing and very little and well defined lacquer on the leads.

## MECHANICAL DATA

The capacitors are available in five versions:

lead spacing	lead length L	lead dia	Fig.	catalogue   number
5.08 (0.2 in)	$\geq 15$	0.6 (0.024 in)	1	$\begin{aligned} & 222262903 . . \\ & 222263003 . . \end{aligned}$
5.08 (0.2 in)	$6^{-2}$	0.6 (0.024 in)	1	$\begin{aligned} & 222262906 \ldots \\ & 2222630 \text { 06... } \end{aligned}$
2.54 (0.1 in)	$\geq 15$	0.6 (0.024 in)	2	$\begin{aligned} & 222262901 \ldots \\ & 222263001 \ldots \end{aligned}$
2.54 (0.i in)	$6^{-2}$	0.6 (0.024 in)	2	$\begin{aligned} & 222262905 . . \\ & 222263005 \ldots \end{aligned}$
2.54 (0.1 in)	$\geq 15$	$0.4(0.016 \mathrm{in})^{*} \times{ }^{\text {c }}$ )	3	$\begin{aligned} & 222262902 \ldots \\ & 222263002 \ldots \end{aligned}$

Dimensions in mm


Fig. 1


Fig. 2


Fig. 3

[^33]| size | BxH <br> $(\mathrm{mm})$ |  | BxH <br> (inches) |  | approx. <br> weight |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fig. 1 | Figs. 2 and 3 | Fig. 1 | Figs.2 and 3 | $(\mathrm{g})$ |
| I | $6 \times 5$ | $3 \times 4$ | $0.24 \times 0.20$ | $0.12 \times 0.16$ | 0.14 |
| II | $6 \times 6$ | $4 \times 5$ | $0.24 \times 0.24$ | $0.16 \times 0.20$ | 0.15 |
| III | $6 \times 7$ | $5 \times 6$ | $0.24 \times 0.28$ | $0.20 \times 0.24$ | 0.17 |
| IV | $6 \times 8$ | $6 \times 7$ | $0.24 \times 0.32$ | $0.24 \times 0.28$ | 0.19 |

The thickness of the capacitors does not exceed $2.1 \mathrm{~mm}(0.08 \mathrm{in})$, except for a few types as is indicated in Table 1.

## Lacquer on the leads

When capacitors shown in Fig. 1 and 2 are mounted on printed-wiring boards with a thickness of 1.5 mm and with holes of 1.3 mm diameter or on printed-wiring boards with a thickness of 1 mm and with holes of 0.8 mm diameter, there will be no lacquer on the leads at the lower side of the board.

## Marking

The capacitance value is indicated in black script according to table 1 and 2.

## Mounting

When bending, cutting or flattening the leads, one should relieve them of the applied load at the capacitor body.
Soldering conditions
$\max .250^{\circ} \mathrm{C}, \max 5 \mathrm{~s}$

## ELECTRICAL DATA

Capacitors 2222630 .....
The capacitors are in conformity with IEC 187.
Unless stated otherwise all electrical values have been determined at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930 to 1060 mbar and a relative humidity of 45 to $75 \%$.

Capacitance values,
measured at $1 \mathrm{kHz},<1.5 \mathrm{~V}$
Tolerance on the capacitance
Rated voltage
Test voltage for 1 min
Test voltage of coating for 1 min
Insulation resistance at 100 V d.c. after 1 min
Tan $\delta$ at $1 \mathrm{kHz},<1.5 \mathrm{~V}$
Maximum voltage dependence of the capacitance between 0 and 4.) V
Category temperature range
Climatic category (IEC68)
Capacitance change versus temperature

$$
\begin{aligned}
& 180-4700 \mathrm{pF}, \text { E12 series (see Table 1) } \\
& \pm 10 \% \\
& 100 \mathrm{~V} \mathrm{d.c.} \\
& 300 \mathrm{~V} \mathrm{d.c.} \\
& 300 \mathrm{~V} \mathrm{d.c.} \\
& \\
& >1000 \mathrm{M} \Omega \\
& <350.10^{-4} \\
& -5 \% \\
& -55 \text { to }+85{ }^{\circ} \mathrm{C} \\
& 55 / 085 / 21 \\
& \text { see Fig. } 4
\end{aligned}
$$

Table 1

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	size	marking	catalogue number		
			0.4 mm leads 2.54 mm spacing	0.6 mm leads   2.54 mm spacing	0.6 mm leads   5.08 mm spacing
$180^{*}$	I	n18	222263002181	222263001181	222263003181
$220{ }^{*}$ )	I	n22	02221	01221	03221
270	1	n27	02271	01271	03271
330	I	n33	02331	01331	03331
390	I	n39	02391	01391	03391
470	I	n47	02471	01471	03471
560	I	n56	02561	01561	03561
680	I	n68	02681	01681	03681
820	1	n82	02821	01821	03821
1000	II	1 n 0	02102	01102	03102
1200	II	1 n 2	02122	01122	03122
1500	II	1 n 5	02152	01152	03152
1800	II	1 n 8	02182	01182	03182
2200	III	2n2	02222	01222	03222
2700	III	2n7	02272	01272	03272
3300	IV	3n3	02332	01332	03332
3900	IV	3n9	02392	01392	03392
4700	IV	4n7	02472	01472	03472



Fig.4. Capacitance-temperature curve of the capacitors of the 630 -series.

[^34]Capacitors 2222629 .....
The capacitors are in conformity with the IEC publ. 187.
Unless otherwise specified all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930-1060 mbar and a relative humidity $\leq 75 \%$.

Capacitance values

Tolerance on the capacitance
Rated voltage
Test voltage for 1 min
Test voltage of coating for 1 min
Insulation resistance at $10 \mathrm{~V} \mathrm{d.c}$. after 1 min
Tan $\delta$ at 1 kHz , measured at $<1.5 \mathrm{~V}$ a.c.
Category temperature range
Storage temperature range
Climatic category (IEC68)
Capacitance change versus temperature

1000-22000 pF (See table 2) ; E3 series. All capacitances are measured at 1 kHz , with a voltage $<1.5 \mathrm{~V}$ a.c.
-20 to $+100 \%$
40 V d.c.
120 V d.c. 120 V d.c.
$>1000 \mathrm{M} \Omega$
$<350.10^{-4}$
-10 to $+55^{\circ} \mathrm{C}$
-40 to $+55^{\circ} \mathrm{C}$
10/055/21
see Fig. 5

Table 2

cap.   (pF)	size	marking	catalogue number			
		0.4 mm leads   2.54 mm spacing	0.6 mm leads   2.54 mm spacing	0.6 mm leads   5.08 mm spacing		
	I	1 n 0	222262902102	222262901102	222262903102	
2200	I	2 n 2	02222	01222	03222	
4700	I	4 n 7	02472	01472	03472	
10000	II	10 n	02103	01103	03103	
22000	IV	22 n	02223	01223	03223	



Fig. 5
Capacitance-temperature curve of the capacitors of the 629-series. The capacitances will be higher than or equal to the curve given for +10 up to $+55{ }^{\circ} \mathrm{C}$. The dotted lines give an indication of the behaviour at higher and lower temperatures.

PACKAGING 500 pieces per box

## QUALITY CONTROL AND TEST SPECIFICATIONS

After manufacturing each capacitor is checked on the following electrical characteristics:

- capacitance
- loss factor
- test voltage

Apart from this several other quality checks are carried out by frequent inspections. Due to the construction and the carefully controlled manufacturing process these ceramic capacitors are capable of withstanding severe climate and electrical tests. The aforementioned tests conform with the recommendations laid down by I.E.C. 68-2.
Some of the more important tests and parameters are described below.

## Life test

The capacitors shall withstand a 1000 hours life test at a voltage of 1.5 times nominal voltage at $85^{\circ} \mathrm{C}$. After the test the capacitance change shall not be more than $\pm 10 \%$ for capacitors of class II A and $\pm 20 \%$ for capacitors of class II compared with pre-test value, the loss factor shall not be more than 1.5 times the initial requirements, and the insulation resistance shall not be less than $300 \mathrm{M} \Omega$.

## Humidity test

The capacitors shall withstand a damp heat test for 21 days at a relative humidity of $95 \%$ and an ambient temperature of $40^{\circ} \mathrm{C}$ with or without nominal voltage applied. After the test the capacitance change shall not be more than $\pm 10 \%$ for capacitors of class II A and $\pm 20 \%$ for capacitors of class II compared with pre-test value, the loss factor shall not be more than 2 times the initial requirements and the insulation resistance shall not be less than $100 \mathrm{M} \Omega$.

## Temperature change test

The class IIA capacitors shall withstand a temperature cycle 3 hours at $85^{\circ} \mathrm{C}$ and 3 hours at $-40^{\circ} \mathrm{C}$ temperature being changed between 2 and 3 minutes.
After the test the capacitance change shall not be more than $\pm 10 \%$ compared with pre-test value. The class II capacitors shall withstand a temperature cycle 3 hours at $55^{\circ} \mathrm{C}$ and 3 hours at $-10^{\circ} \mathrm{C}$ temperature being changed between 2 and 3 minutes. After the test the capacitance change shall not be more than $\pm 20 \%$ compared with pre-test value. The loss factor shall not be more than 2 times the initial requirements and the insulation resistance shall not be less than $100 \mathrm{M} \Omega$.

## Bend-pull test

The capacitors shall withstand a bend-pull test consisting of 1 cycle of 4 bends of 900 with a weight of 250 gram. During test the capacitors are mounted on a board of resin bonded paper with a thickness of 1.0 mm and holes of 0.8 mm diameter.

## Vibration test

The capacitors shall withstand a 6 hours vibration test. In three directions 120 cy cles of 1 minute vibration with an amplitude of 0.75 mm are applied. During each cycle the frequency changes from 10 to 55 to 10 Hz .

Vacuum test
The capacitors shall withstand a low pressure of 85 mbar during at least 2 minutes.

## MINIATURE CERAMIC PLATE CAPACITORS <br> CLASS IB <br> Temperature compensating types

QUICK REFERENCE DATA	
Capacitance range	0.68 to 560 pF (E12 series)
Rated voltage	63 V d.c.
Tolerance on capacitance	$2 \%$ or 0.25 pF
Temperature coefficients	P100, NP0, N075, N150, N220
	N330, N470, N750, N1500
Basic specification	IEC 108, class 1B
Category (IEC publ. 68)	$55 / 085 / 21$



RZ25596-7

## APPLICATION

In a wide variety of electronic equipment, e.g. as temperature compensating capacitors in tuning circuits and filters, as coupling and decoupling capacitors in highfrequency circuits where low losses and good d.c. behaviour are required.
Their small dimensions are an advantage in all cases where space-saving is important.

## DESCRIPTION

The capacitors consist of a thin rectangular ceramic plate, both sides being metallised and provided with connecting leads. They are insulated by a coating method that ensures an excellent behaviour under humid conditions.
The colour of the capacitor body is grey.
The capacitors distinguish themselves by small dimensions, narrow tolerances on the lead spacing and very little and well defined lacquer on the leads. The electrical properties are characterised by low losses, a very close standard tolerance on the capacitance ( $\pm 0.25 \mathrm{pF}$ or $2 \%$ ), high stability and, owing to the absence of silver, an extremely good d.c. behaviour*).

## MECHANICAL DATA

The capacitors are available in five verions:

lead spacing	lead length   L	lead diameter	Fig.	catalogue   number
$5.08(0.2 \mathrm{in})$	$\geq 15$	$0.6(0.024 \mathrm{in})$	1	$2222638 \ldots$.
$5.08(0.2 \mathrm{in})$	$6^{-2}$	$0.6(0.024 \mathrm{in})$	1	$2222642 \ldots$.
$2.54(0.1 \mathrm{in})$	$\geq 15$	$0.6(0.024 \mathrm{in})$	2	$2222631 \ldots$.
$2.54(0.1 \mathrm{in})$	$6-2$	$0.6(0.024 \mathrm{in})$	2	$2222641 \ldots$.
$2.54(0.1 \mathrm{in})$	$\geq 15$	$\left.0.4(0.016 \mathrm{in})^{* * *}\right)$	3	$2222632 \ldots$

## Dimensions in mm



Fig. 1


Fig. 2


Fig. 3

[^35][^36]| size | BxH <br> $(\mathrm{mm})$ |  | BxH <br> (inches) |  | Fig.2,3 |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Fig. 1 | Fig. 2, 3 | Fig.1 | approx. |  |
| weight |  |  |  |  |  |
| (g) |  |  |  |  |  |

The thickness of the capacitors does not exceed 2.1 mm ( 0.08 in ), except for a few types as is indicated in tabels 1 to 9.

## Lacquer on the leads

When capacitors shown in Fig. 1 and 2 are mounted on printed-wiring boards with a thickness of 1.5 mm and with holes of 1.3 mm diameter or on printed-wiring boards with a thickness of 1 mm and with holes of 0.8 mm diameter, there will be no lacquer on the leads at the lower side of the board.

## Marking

The temperature coefficient is indicated by a colour code as per I. E.C. and E.I.A. recommendations.
The capacitance value is indicated by figures in black script.

## Mounting

When bending, cutting or flattening the leads, one should relieve them of the applied load at the capacitor body.

Soldering conditions $\max .250{ }^{\circ} \mathrm{C}$, max. 5 s

## ELECTRICAL DATA

The capacitors meet the essential requirements of IEC 108.
Unless stated otherwise all electrical values have been determined at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930 to 1060 mbar and a relative humidity of 45 to $75 \%$.

Capacitance values and tolerances,
measured at $1 \mathrm{MHz},<5 \mathrm{~V}^{*}$ ) see tables 1 to 9
Rated voltage 63 V d.c.
Test voltage for 1 min
200 V d.c.
Test voltage of coating for 1 mirı
Insulation resistance at $10 \mathrm{~V} \mathrm{d.c}$. after 1 min

Tan $\delta$ at $1 \mathrm{MHz},<5 \mathrm{~V}^{*}$ )
for $\mathrm{C}<50 \mathrm{pF}$
for $\mathrm{C}>50 \mathrm{pF}$
Category temperature range
200 V d.c.
$>1000 \mathrm{M} \Omega$

Climatic category (IEC 68)
$\leq 15\left(\frac{15}{\mathrm{C}}+0.7\right) 10^{-4}$; max. $55 \cdot 10^{-4}$
$\leq 15.10^{-4}$
-55 to $+85{ }^{\circ} \mathrm{C}$
55/085/21

[^37]Capacitors with a temperature coefficient P100
Capacitance range $\quad 0.68$ to 22 pF (E12 series)
Temperature coefficient of the
capacitance $\left(\frac{\Delta \mathrm{C}}{\mathrm{C} . \Delta \mathrm{T}}\right) \quad+100.10^{-6} / \mathrm{deg} \mathrm{C}$
Tolerance on the temperature coefficient
$(-40$ to +120$) 10^{-6} / \mathrm{deg} \mathrm{C}$
Marking colour of the temperature
coefficient
red/violet

Table 1

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				0.4 mm leads 2.54 mm spacing	0.6 mm leads 2.54 mm spacing	0.6 mm leads   5.08 mm spacing
0.68*)	$\pm 0.25 \mathrm{pF}$	I	p68	222263203687	222263103687	222263803687
$0.82^{*}$ )	$\pm 0.25 \mathrm{pF}$	I	p82	03827	03827	03827
1.0	$\pm 0.25 \mathrm{pF}$	I	lp0	03108	03108	03108
1.2	$\pm 0.25 \mathrm{pF}$	I	1 p 2	03128	03128	03128
1.5	$\pm 0.25 \mathrm{pF}$	I	1 p 5	03158	03158	03158
1.8	$\pm 0.25 \mathrm{pF}$	I	1 p 8	03188	03188	03188
2.2	$\pm 0.25 \mathrm{pF}$	I	2p2	03228	03228	03228
2.7	$\pm 0.25 \mathrm{pF}$	I	2p7	03278	03278	03278
3.3	$\pm 0.25 \mathrm{pF}$	I	3p3	03338	03338	03338
3.9	$\pm 0.25 \mathrm{pF}$	II	3p9	03398	03398	03398
4.7	$\pm 0.25 \mathrm{pF}$	II	4 p 7	03478	03478	03478
5.6	$\pm 0.25 \mathrm{pF}$	II	5 p 6	03568	03568	03568
6.8	$\pm 0.25 \mathrm{pF}$	II	6p8	03688	03688	03688
8.2	$\pm 0.25 \mathrm{pF}$	III	8p2	03828	03828	03828
10	$\pm 2$ \%	III	10p	04109	04109	04109
12	$\pm 2$ \%	IV	12p	04129	04129	04129
15	$\pm 2$ \%	IV	15p	04159	04159	04159
18	$\pm 2$ \%	V	18p	04189	04189	04189
22	$\pm 2$ \%	V	22p	04229	04229	04229

*) maximum thickness 2.5 mm ( 0.1 in )

Capacitors with a temperature coefficient NP0
Capacitance range $\quad 1.8$ to 120 pF (E 12 series)
Temperature coefficient of the
capacitance $\left(\frac{\Delta C}{C . \Delta T}\right)$
$0.10^{-6} / \mathrm{deg} \mathrm{C}$
Tolerance on the temperature coefficient

$$
\begin{array}{ll}
\text { for } \mathrm{C}<20 \mathrm{pF} & (-40 \text { to }+120) 10^{-6} / \mathrm{deg} \mathrm{C} \\
\text { for } \mathrm{C}>20 \mathrm{pF} & \pm 40 \cdot 10^{-6} / \operatorname{deg~C}
\end{array}
$$

Marking colour of the temperature coefficient
black

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				$\begin{array}{\|c\|} \hline 0.4 \mathrm{~mm} \text { leads } \\ 2.54 \mathrm{~mm} \text { spacing } \end{array}$	$\begin{gathered} 0.6 \mathrm{~mm} \text { leads } \\ 2.54 \mathrm{~mm} \text { spacing } \end{gathered}$	0.6 mm leads 5.08 mm spacing
1.8*)	$\pm 0.25 \mathrm{pF}$	I	1p8	222263209188	222263109188	222263809188
2.2	$\pm 0.25 \mathrm{pF}$	I	2p2	09228	09228	09228
2.7	$\pm 0.25 \mathrm{pF}$	I	2p7	09278	09278	09278
3.3	$\pm 0.25 \mathrm{pF}$	I	3p3	09338	09338	09338
3.9	$\pm 0.25 \mathrm{pF}$	I	3 p 9	09398	09398	09398
4.7	$\pm 0.25 \mathrm{pF}$	I	4 p 7	09478	09478	09478
5.6	$\pm 0.25 \mathrm{pF}$	I	5p6	09568	09568	09568
6.8	$\pm 0.25 \mathrm{pF}$	I	6 p 8	09688	09688	09688
8.2	$\pm 0.25 \mathrm{pF}$	I	8p2	09828	09828	09828
10	$\pm 2$ \%	I	10p	10109	10109	10109
12	$\pm 2$ \%	I	12p	10129	10129	10129
15	$\pm 2$ \%	I	15p	10159	10159	10159
18	$\pm 2$ \%	I	18p	10189	10189	10189
22	$\pm 2 \%$	II	22p	10229	10229	10229
27	$\pm 2$ \%	II	27p	10279	10279	10279
33	$\pm 2 \%$	II	33p	10339	10339	10339
39	$\pm 2$ \%	II	39p	10399	10399	10399
47	$\pm 2 \%$	III	47p	10479	10479	10479
56	$\pm 2$ \%	III	56 p	10569	10569	10569
68	$\pm 2 \%$	IV	68p	10689	10689	10689
82	$\pm 2 \%$	IV	82p	10829	10829	10829
100	$\pm 2 \%$	V	n10	10101	10101	10101
120	$\pm 2 \%$	V	n12	10121	10121	10121

[^38]Capacitors with a temperature coefficient N075 (non-preferred)
Capacitance range
Temperature coefficient of the
capacitance $\left(\frac{\Delta C}{C . \Delta T}\right)$
Tolerance on the temperature coefficient

$$
\begin{array}{ll}
\text { for } \mathrm{C}<20 \mathrm{pF} & (-40 \text { to }+60) 10^{-6} / \mathrm{deg} \mathrm{C} \\
\text { for } \mathrm{C}>20 \mathrm{pF} & \pm 40.10^{-6} / \mathrm{deg} \mathrm{C}
\end{array}
$$

Marking colour of the temperature coefficient
red

Table 3

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				$\begin{gathered} 0.4 \mathrm{~mm} \text { leads } \\ 2.54 \mathrm{~mm} \text { spacing } \end{gathered}$	0.6 mm leads 2.54 mm spacing	0.6 mm leads 5.08 mm spacing
3.9*)	$\pm 0.25 \mathrm{pF}$	I	3p9	222263227398	222263127398	222263827398
4.7	$\pm 0.25 \mathrm{pF}$	I	4 p 7	27478	27478	27478
5.6	$\pm 0.25 \mathrm{pF}$	I	5p6	27568	27568	27568
6.8	$\pm 0.25 \mathrm{pF}$	I	6 p 8	27688	27688	27.688
8.2	$\pm 0.25 \mathrm{pF}$	I	8p2	27828	27828	27828
10	$\pm 2 \%$	I	10p	28109	28109	28109
12	$\pm 2 \%$	I	12p	28129	28129	28129
15	$\pm 2 \%$	I	15p	28159	28159	28159
18	$\pm 2 \%$	I	18p	28189	28189	28189
22	$\pm 2 \%$	II	22p	28229	28229	28229
27	$\pm 2 \%$	II	27p	28279	28279	28279
33	$\pm 2 \%$	II	33p	28339	28339	28339
39	$\pm 2 \%$	II	39p	28399	28399	28399
47	$\pm 2 \%$	III	47p	28479	28479	28479
56	$\pm 2 \%$	III	56p	28569	28569	28569
68	$\pm 2 \%$	IV	68p	28689	28689	28689
82	$\pm 2 \%$	IV	82p	28829	28829	28829
100	$\pm 2 \%$	V	n10	28101	28101	28101
120	$\pm 2 \%$	V	n12	28121	28121	28121

[^39]
## Capacitors with a temperature coefficient N150

Capacitance range
Temperature coefficient of the capacitance ( $\frac{\Delta \mathrm{C}}{\mathrm{C} . \Delta \mathrm{T}}$ )

Tolerance on the temperature coefficient

$$
\begin{array}{ll}
\text { for } \mathrm{C}<20 \mathrm{pF} & (-40 \text { to }+60) 10^{-6} / \mathrm{deg} \mathrm{C} \\
\text { for } \mathrm{C}>20 \mathrm{pF} & \pm 40.10^{-6} / \mathrm{deg} \mathrm{C}
\end{array}
$$

Marking colour of the temperature coefficient
3.9 to 150 pF (E12 series)
$-150 \cdot 10^{-6} / \mathrm{deg} \mathrm{C}$
orange

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				0.4 mm leads 2.54 mm spacing	0.6 mm leads   2.54 mm spacing	0.6 mm leads   5.08 mm spacing
3.9*)	$\pm 0.25 \mathrm{pF}$	I	3p9	222263233398	222263133398	222263833398
4.7*)	$\pm 0.25 \mathrm{pF}$	I	4p7	33478	33478	33478
5.6	$\pm 0.25 \mathrm{pF}$	I	5p6	33568	33568	33568
6.8	$\pm 0.25 \mathrm{pF}$	I	6p8	33688	33688	33688
8.2	$\pm 0.25 \mathrm{pF}$	I	8p2	33828	33828	33828
10	$\pm 2$ \%	I	10p	34109	34109	34109
12	$\pm 2$ \%	I	12p	34129	34129	34129
15	$\pm 2$ \%	I	15p	34159	34159	34159
18	$\pm 2$ \%	I	18p	34189	34189	34189
22	$\pm 2 \%$	I	22p	34229	34229	34229
27	$\pm 2 \%$	II	27p	34279	34279	34279
33	$\pm 2$ \%	II	33p	34339	34339	34339
39	$\pm 2$ \%	II	39p	34399	34399	34399
47	$\pm 2 \%$	II	47p	34479	34479	34479
56	$\pm 2 \%$	III	56p	34569	34569	34569
68	$\pm 2 \%$	III	68p	34689	34689	34689
82	$\pm 2$ \%	IV	82p	34829	34829	34829
100	$\pm 2$ \%	IV	n10	34101	34101	34101
120	$\pm 2$ \%	V	n12	34121	34121	34121
150	$\pm 2 \%$	V	n15	34151	34151	34151

[^40]Capacitors with a temperature coefficient N220 (non-preferred)

Capacitance range
Temperature coefficient of the capacitance $\left(\frac{\Delta C}{C . \Delta T}\right)$

Tolerance on the temperature coefficient

$$
\begin{aligned}
& \text { for } \mathrm{C}<20 \mathrm{pF} \\
& \text { for } \mathrm{C}>20 \mathrm{pF}
\end{aligned}
$$

Marking colour of the temperature coefficient
3.9 to 150 pF (E12 series)
$-220 \cdot 10^{-6} / \mathrm{deg} \mathrm{C}$
$(-40$ to +60$) 10^{-6} /$ deg C
$\pm 40.10^{-6} / \mathrm{deg} \mathrm{C}$
yellow

Table 5

cap.   $(\mathrm{pF})$	tol.	size	marking	0.4 mm leads	0.6 mm leads	0.6 mm leads
				2.54 mm spacing		
2.54 mm spacing	5.08 mm spacing					
$3.9 *)$	$\pm 0.25 \mathrm{pF}$	I	3 p 9	222263239398	222263139398	222263839398
4.7	$\pm 0.25 \mathrm{pF}$	I	4 p 7	39478	39478	39478
5.6	$\pm 0.25 \mathrm{pF}$	I	5 p 6	39568	39568	39568
6.8	$\pm 0.25 \mathrm{pF}$	I	6 p 8	39688	39688	39688
8.2	$\pm 0.25 \mathrm{pF}$	I	8 p 2	39828	39828	39828
10	$\pm 2 \%$	I	10 p	40109	40109	40109
12	$\pm 2 \%$	I	12 p	40129	40129	40129
15	$\pm 2 \%$	I	15 p	40159	40159	40159
18	$\pm 2 \%$	I	18 p	40189	40189	40189
22	$\pm 2 \%$	I	22 p	40229	40229	40229
27	$\pm 2 \%$	II	27 p	40279	40279	40279
33	$\pm 2 \%$	II	33 p	40339	40339	40339
39	$\pm 2 \%$	II	39 p	40399	40399	40399
47	$\pm 2 \%$	II	47 p	40479	40479	40479
56	$\pm 2 \%$	III	56 p	40569	40569	40569
68	$\pm 2 \%$	III	68 p	40689	40689	40689
82	$\pm 2 \%$	IV	82 p	40829	40829	40829
100	$\pm 2 \%$	IV	n10	40101	40101	40101
120	$\pm 2 \%$	V	nl2	40121	40121	40121
150	$\pm 2 \%$	V	n15	40151	40151	40151

*) maximum thickness 2.5 mm ( 0.1 in )

Capacitors with a temperature coefficient N330 (non-preferred)

## Capacitance range

Temperature coefficient of the capacitance $\left(\frac{\Delta \mathrm{C}}{\mathrm{C} . \Delta \mathrm{T}}\right)$

Tolerance on the temperature coefficient

Marking colour of the temperature coefficient

Table 6

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				0.4 mm leads   2.54 mm spacing	0.6 mm leads   2.54 mm spacing	0.6 mm leads   5.08 mm spacing
4.7 ${ }^{\text {* }}$ )	$\pm 0.25 \mathrm{pF}$	I	4p7	222263245478	222263145478	222263845478
5.6*)	$\pm 0.25 \mathrm{pF}$	I	5p6	45568	45568	45568
6.8	$\pm 0.25 \mathrm{pF}$	I	6p8	45688	45688	45688
8.2	$\pm 0.25 \mathrm{pF}$	I	8p2	45828	45828	45828
10	$\pm 2 \%$	I	10p	46109	46109	46109
12	$\pm 2 \%$	I	12p	46129	46129	46129
15	$\pm 2 \%$	I	15p	46159	46159	46159
18	$\pm 2 \%$	I	18p	46189	46189	46189
22	$\pm 2 \%$	I	22p	46229	46229	46229
27	$\pm 2 \%$	I	27p	46279	46279	46279
33	$\pm 2 \%$	II	33p	46339	46339	46339
39	$\pm 2 \%$	II	39p	46399	46399	46399
47	$\pm 2 \%$	II	47p	46479	46479	46479
56	$\pm 2 \%$	II	56p	46569	46569	465 69
68	$\pm 2 \%$	III	68p	46689	46689	46689
82	$\pm 2 \%$	III	82p	46829	46829	46829
100	$\pm 2 \%$	IV	n10	46101	46101	46101
120	$\pm 2 \%$	IV	n12	46121	46121	46121
150	$\pm 2 \%$	V	n15	46151	46151	46151
180	$\pm 2 \%$	V	n18	46181	46181	46181

*) maximum thickness 2.5 mm (0.1 in)

Capacitors with a temperature coefficient N470 (non-preferred)

Capacitance range
Temperature coefficient of the
capacitance $\left(\frac{\Delta \mathrm{C}}{\mathrm{C} . \Delta \mathrm{T}}\right)$ $-470 \cdot 10^{-6} /$ deg $C$

Tolerance on the temperature coefficient

$$
\begin{array}{ll}
\text { for } \mathrm{C}<20 \mathrm{pF} & (-90 \text { to }+250) 10^{-6} / \mathrm{deg} \mathrm{C} \\
\text { for } \mathrm{C}>20 \mathrm{pF} & \pm 90 \cdot 10^{-6} / \mathrm{deg} \mathrm{C}
\end{array}
$$

Marking colour of the temperature coefficient
6.8 to 220 pF (E12 series)
blue

Table 7

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				0.4 mm leads   2.54 mm spacing	$\begin{gathered} 0.6 \mathrm{~mm} \text { leads } \\ 2.54 \mathrm{~mm} \text { spacing } \end{gathered}$	0.6 mm leads   5.08 mm spacing
6.8*)	$\pm 0.25 \mathrm{pF}$	I	6p8	222263251688	222263151688	222263851688
8.2	$\pm 0.25 \mathrm{pF}$	I	8p2	51828	51828	51828
10	$\pm 2 \%$	I	10p	52109	52109	52109
12	$\pm 2 \%$	I	12p	52129	52129	52129
15	$\pm 2 \%$	I	15p	52159	52159	52159
18	$\pm 2 \%$	I	18p	52189	52189	52189
22	$\pm 2 \%$	I	22p	52229	52229	52229
27	$\pm 2 \%$	I	27p	52279	52279	52279
33	$\pm 2 \%$	I	33p	52339	52339	52339
39	$\pm 2 \%$	II	39p	52399	52399	52399
47	$\pm 2 \%$	II	47p	52479	52479	52479
56	$\pm 2 \%$	II	56p	52569	52569	52569
68	$\pm 2 \%$	II	68 p .	52689	52689	52689
82	$\pm 2 \%$	III	82p	52829	52829	52829
100	$\pm 2 \%$	III	n10	52101	52101	52101
120	$\pm 2 \%$	IV	n12	52121	52121	52121
150	$\pm 2 \%$	IV	n15	52151	52151	52151
180	$\pm 2 \%$	V	n 18	52181	52181	52181
220	$\pm 2 \%$	V	n22	52221	52221	52221

*.) maximum thickness 2.5 mm (0.1 in)

Capacitors with a temperature coefficient N750

Capacitance range
Temperature coefficient of the capacitance $\left(\frac{\Delta \mathrm{C}}{\mathrm{C} . \Delta \mathrm{T}}\right)$

Tolerance on the temperature coefficient
for $\mathrm{C}<20 \mathrm{pF}$
for $\mathrm{C}>20 \mathrm{pF}$
$(-120$ to +250$) 10^{-6} / \operatorname{deg} \mathrm{C}$
$\pm 120.10^{-6} /$ deg $C$

Marking colour of the temperature coefficient
3.9 to 330 pF (E12 series)
$-750 \cdot 10^{-6} /$ deg C
violet

## $\rightarrow$ Table 8

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				0.4 mm leads 2.54 mm spacing	0.6 mm leads 2.54 mm spacing	0.6 mm leads   5.08 mm spacing
3. ${ }^{\text {** }}$ )	$\pm 0.25 \mathrm{pF}$	I	3 p 9	222263257398	222263157398	222263857398
4.7	$\pm 0.25 \mathrm{pF}$	I	4 p 7	57478	57478	57478
5.6	$\pm 0.25 \mathrm{pF}$	I	5p6	57568	57568	57568
6.8	$\pm 0.25 \mathrm{pF}$	I	6p8	57688	57688	57688
8.2	$\pm 0.25 \mathrm{pF}$	I	8p2	57828	57828	57828
10	$\pm 2$ \%	1	10p	58109	58109	58109
12	$\pm 2 \%$	I	12p	58129	58129	58129
15	$\pm 2 \%$	I	15p	58159	58159	58159
18	$\pm 2 \%$	I	18p	58189	58189	58189
22	$\pm 2 \%$	I	22p	58229	58229	58229
27	$\pm 2 \%$	I	27p	58279	58279	58279
33	$\pm 2 \%$	I	33p	58339	58339	58339
39	$\pm 2 \%$	I	39p	58399	58399	58399
47	$\pm 2 \%$	I	47p	58479	58479	58479
56	$\pm 2 \%$	II	56p	58569	58569	58569
68	$\pm 2 \%$	II	68p	58689	58689	58689
82	$\pm 2 \%$	II	82p	58829	58829	58829
100	$\pm 2 \%$	II	n10	58101	58101	58101
120	$\pm 2 \%$	III	n12	58121	58121	58121
150	$\pm 2 \%$	III	n15	58151	58151	58151
180	$\pm 2 \%$	IV	n18	58181	58181	58181
220	$\pm 2 \%$	IV	n22	58221	58221	58221
270	$\pm 2 \%$	V	n27	58271	58271	58271
330	$\pm 2 \%$	V	n33	58331	58331	58331

[^41]Capacitors with a temperature coefficient N1500 (non-preferred)

Capacitance range
Temperature coefficient of the capacitance $\left(\frac{\Delta \mathrm{C}}{\mathrm{C} . \Delta \mathrm{T}}\right)$
Tolerance on the temperature coefficient

Marking colour of the temperature coefficient

18 to 560 pF (E12 series)
$-1500.10^{-6} / \mathrm{deg} \mathrm{C}$
$\left.\pm 250 \cdot 10^{-6} / \mathrm{deg} \mathrm{C}^{* *}\right)$
red/yellow
Table 9

$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$	tol.	size	marking	catalogue number		
				0.4 mm leads   2.54 mm spacing	$\begin{gathered} 0.6 \mathrm{~mm} \text { leads } \\ 2.54 \mathrm{~mm} \text { spacing } \end{gathered}$	0.6 mm leads   5.08 mm spacing
18*)	$\pm 2 \%$	I	18p	222263270189	222263170189	222263870189
22	$\pm 2 \%$	I	22p	70229	70229	70229
27	$\pm 2 \%$	I	27p	70279	70279	70279
33	$\pm 2 \%$	I	33p	70339	70339	70339
39	$\pm 2 \%$	I	39p	70399	70399	70399
47	$\pm 2 \%$	I	47p	70479	70479	70479
56	$\pm 2 \%$	I	56p	70569	70569	70569
68	$\pm 2 \%$	I	68p	70689	70689	70689
82	$\pm 2 \%$	I	82p	70829	70829	70829
100	$\pm 2 \%$	II	n10	70101	70101	70101
120	$\pm 2 \%$	II	n12	70121	70121	70121
150	$\pm 2 \%$	II	n15	70151	70151	70151
180	$\pm 2 \%$	II	n18	70181	70181	70181
220	$\pm 2 \%$	III	n22	70221	70221	70221
270	$\pm 2 \%$	III	n27	70271	70271	70271
330	$\pm 2 \%$	IV	n33	70331	70331	70331
390	$\pm 2 \%$	IV	n39	70391	70391	70391
470	$\pm 2 \%$	V	n47	70471	70471	70471
560	$\pm 2 \%$	V	n56	70561	70561	70561

[^42]
## QUALITY CONTROL AND TEST SPECIFICATIONS

After manufacturing each capacitor is checked on the following electrical characteristics:

- capacitance
- loss factor
- test voltage

Apart from this several other quality checks are carried out by frequent inspections. Due to the construction and the carefully controlled manufacturing process the ceramic capacitors are capable of withstanding severe climate and electrical tests. The aforementioned tests conform with the recommendations laid down by I.E.C. 68-2.
Some of the more important tests and parameters are described below.

## Life test

The capacitors shall withstand a 1000 hours life test at a voltage of 1.5 times nominal voltage at $85^{\circ} \mathrm{C}$. After the test the capacitance change shall not be more than $1 \%$ or 1 pF compared with pre-test value, the loss factor shall not be more than 1.5 times the initial requirements and the insulation resistance shall not be less than $300 \mathrm{M} \Omega$.

## Humidity test

The capacitors shall withstand a damp heat test for 21 days at a relative humidity of $95 \%$ and an ambient temperature of $40^{\circ} \mathrm{C}$ with or without nominal voltage applied. After the test the capacitance change shall not be more than $1 \%$ or 1 pF compared with pre-test value, the loss factor shall not be more than 2 times the initial requirements and the insulation resistance shall not be less than $100 \mathrm{M} \Omega$.
Temperature change test
The capacitors shall withstand a temperature cycle 3 hours at $85^{\circ} \mathrm{C}$ and 3 hours at $-55^{\circ} \mathrm{C}$ temperature being changed between 2 and 3 minutes. After the test the capacitance change shall not be more than $0.5 \%$ or 0.5 pF compared with pre-test value, the loss factor shall not be more than 2 times the initial requirements and the insulation resistance shall not be less than $100 \mathrm{M} \Omega$.

## Bend-pull test

The capacitors shall withstand a bend-pull test consisting of 1 cycle of 4 bends of $90^{\circ}$ with a weight of 250 gram. During test the capacitors are mounted on a board of resin bonded paper with a thickness of 1.0 mm and holes of 0.8 mm diameter.

## Vibration test

The capacitors shall withstand a 6 hours vibration test. In three directions 120 cy cles of 1 minute vibration with an amplitude of 0.75 mm are applied. During each cycle the frequency changes from 10 to 55 to 10 Hz .

## Vacuum test

The capacitors shall withstand a low pressure of 85 mbar during at least 2 minutes.

## CERAMIC BARRIER LAYER CAPACITORS



RZ 22070-10

Capacitance range
Maximum working voltage


R7. 22070-7

22000 to 100000 pF 6 Vdc

## APPLICATION

The capacitors have a very high capacitance at very small dimensions. Therefore they are very suited for coupling and decoupling purposes in small transistorised equipment, for example in i.f. stages of radio receivers.

## CONSTRUCTION

The capacitors consist of a thin rectangular ceramic plate, which has been given semiconducting properties by a reducing process. The surface is oxidised on both sides, thus forming a barrier layer. Both surfaces are metallised and provided with connecting leads. Thus two capacitances with a series resistance in between are formed (see Fig. 1).
The whole is covered with a blue insulating lacquer.
The capacitors are provided with rigid connecting leads of 0.6 mm diameter or with flexible connecting leads of 0.4 mm diameter.
The capacitors of the first mentioned version are intended to be used on printedwiring boards with a pitch of $0.1^{\prime \prime}$. The distance between the leads is 2.54 mm with a tolerance of $\pm 0.2 \mathrm{~mm}$, which assures an easy mounting. It must be pointed out that the leads should not be bent, e.g.for use on printed-wiring boards with a pitch of 5 mm .

For the latter application use must be made of the version with connecting leads of 0.4 mm diameter. When bending, cutting or flattening these leads, they should be relieved of the applied load at the capacitor body.
The capacitor width never exceeds 5 mm . The capacitance value is indicated by letters or figures in black script on the capacitor body as shown in Figs 2 and 3; see also the table.


Dimensions in mm
Fig. 2


$$
\begin{aligned}
\mathrm{d} & =0.4 \mathrm{~mm} \text { (flexible connecting leads) } \\
& =0.6 \mathrm{~mm} \text { (rigid connecting leads) } \\
\mathrm{B} & =\text { see table } \\
\mathrm{H} & =\text { see table }
\end{aligned}
$$

Fig. 3

## TECHNICA L PERFORMANCE

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm$ $5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity $\leq 75 \%$.

Capacitance values and tolerances
see table
Maximum working voltage at $55^{\circ} \mathrm{C}$
6 V dc
Test voltage coating for $\mathrm{t}=1 \mathrm{~min}$
15 V dc
Insulation resistance measured at 6 V dc within 1 min measured at $3 \mathrm{~V}_{\mathrm{dc}}$ within 1 min
$>150000 \Omega$
$>500000 \Omega$
Impedance at 10 MHz for the 47000 pF and 100000 pF versions
$\leq 5 \Omega$
for the 22000 pF version
Working-temperature range
Storage-temperature range
Solderability
$\leq 10 \Omega$
-10 to $+55^{\circ} \mathrm{C}$
-40 to $+55^{\circ} \mathrm{C}$
$250^{\circ} \mathrm{C}, 5 \mathrm{~s}$
Climatic robustness
category $10 / 055 / 21$
(I.E.C. 68)

## AVAILABLE VERSIONS

Catalog numbers: 2222675 .....
suffix, see table

capacitance		dimensions			suffix		
nom.   $(\mathrm{pF})$	tol.   $(\%)$	B   $(\mathrm{mm})$	H   $(\mathrm{mm})$	Fig	version with   0.6 mm leads	version with   0.4 mm leads	
22000	$-20 /+100$	3.7	5.2	2	01223	02223	K
47000	$-20 /+100$	5.0	6.5	3	01473	02473	47 K
						6 V	
100000	$-20 /+100$	5.0	10.5	3	01104	02104	0.1

# CERAMIC FEED-THROUGH CAPACITORS <br> CLASS I, CLASS II 



## APPLICATION

Ceramic feed-through capacitors are designed for decoupling the supply leads of high-frequency equipment, for instance in TV tuners. However, due to their extremely low inductances, they might also be used in frequency-determining circuits in similar equipment. Since in this application (e.g. in v.h.f./u.h.f. tuners) low losses are required, class I types should be chosen.

## CONSTRUCTION

The capacitors consist of a ceramic tube provided with silver electrodes. The outer connection is formed by a flange, and the inner one by a split pen ( $700-$ series) or an axial lead ( 702 -series). Both types are provided with sufficient soldering tin to facilitate mounting.
The split pen capacitors are marked in black script or with a colour dot. The lead feed-through type is not marked.

Dimensions in mm
700 -series


702-series


## TECHNICAL PERFORMANCE

Unless otherwise specified all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $\leq 75 \%$.

Maximum working voltage
Test voltage for 1 min
Losses $(\tan \delta)$ measured at $<3.5 \mathrm{~V}$
for $\mathrm{C} \leq 68 \mathrm{pF}$ at 1 MHz
for $\mathrm{C}>68 \mathrm{pF}$ at 1 kHz
Insulation resistance at $100 \mathrm{~V}_{\mathrm{dc}}$ (within 1 min )

Temperature dependence of the capacitance

Working temperature range
Climatic robustness
$350 \mathrm{~V}_{\mathrm{dc}}$
1050 Vdc
$<10 \cdot 10^{-4}$
$<20.10^{-4}$
$>10000 \mathrm{M} \Omega$
see table
-40 to $+85^{\circ} \mathrm{C}$
category 40/085/21 (I.E.C. 68)

## AVAILABLE VERSIONS

Split pen feed-through capacitors
Catalog number 2222700 .....
suffix, see table

$\begin{aligned} & \text { capacitance } \\ & (\mathrm{pF}) \end{aligned}$	tolerance	temperature coefficient $\left(10^{-6} / \mathrm{deg} \mathrm{C}\right)$	class	suffix
$\leq 2.5$			1 C	00258
3.3	$\pm 0.5 \mathrm{pF}$			01338
4.7	$\pm 0.5 \mathrm{pF}$	$+100$		01478
6.8	$\pm 1 \mathrm{pF}$			02688
10	$\pm 1 \mathrm{pF}$			02109
15	$\pm 10 \%$	-150		03159
22				03229
33				03339
47		-750		03479
68	$\pm 20 \%$		II	04689
100				04101
150				04151
220				04221
330				04331
470				04471
680				04681
1000	$-20 /+50 \%$			05102
1500				05152
2200				05222

Lead feed-through capacitors (class II)
Catalog number 2222702 .... .
suffix, see table

cap.   $(\mathrm{pF})$	tolerance	suffix	cap.   $(\mathrm{pF})$	tolerance	suffix
$\leq 2.5$		04258	100		08101
3.3		04338	150		08151
4.7	$\pm 0.5 \mathrm{pF}$	04478	220	$\pm 20 \%$	08221
6.8		04688	330		08331
10		05109	470		08471
15		07159	680		09681
22		07229	1000		09102
33	$\pm 10 \%$	07339	1500		09152
47		07479	2200	$-20 /+50 \%$	09222
68		07689	3300		09332
			4700		09472

Capacitance values of the E12 series are subject to minimum order release requirements.

## Polyester capacitors

## Polycarbonate capacitors

## Polystyrene capacitors

Paper d.c. capacitors
Paper a.c. capacitors

## METALLISED POLYESTER CAPACITORS

## "flat film" type



RZ 22359-4

Nominal voltage	250	400	630	V
Capacitance range	$0.01-2.2$	$0.01-1$	$0.01-0.47$	$\mu \mathrm{~F}$

## APPLICATION

These capacitors are designed primarily for use as coupling and decoupling capacitors for electronic circuits employing printed wiring.
Due to the almost negligible temperature dependency they offer in many cases es sential advantages over ceramic disc capacitors.

## Maximum overvoltage

Special attention is drawn to the fact that the allowed $40 \%$ overvoltage for the 250 V versions permits these capacitors to be employed in anode and screen grid circuits, instead of previously used 400 V capacitors.

## CONSTRUCTION

Dielectric material
of 250 V capacitors : metallised polyethylene-terephtalate (PETP)
of 400 V capacitors : metallised PETP and metallised polycarbonate
of 630 V capacitors : metallised polycarbonate
$\underline{\text { Dimensions in } \mathrm{mm} \text { and colour code }}$


Table I

if $B=12.5$	$\mathrm{~d}=0.6$	$\mathrm{~S}=10.2 \pm 0.5$	$\mathrm{~L}=22 \pm 3$
17.5	0.8	$15.3 \pm 0.3$	$32 \pm 3$
22.5	0.8	$20.3 \pm 0.3$	$32 \pm 3$
30	0.8	$27.9 \pm 0.3$	$32 \pm 3$

TYPES

## Composition of the catalog number

2222342

code for dielectric material, nominal voltage and capacitance tolerance
$44=$ PETP, $250 \mathrm{~V}, 20 \%$
$50=$ polycarbonate, $400 \mathrm{~V}, 20 \%$
$45=$ PETP, $250 \mathrm{~V}, 10 \%$
51 = polycarbonate, $400 \mathrm{~V}, 10 \%$
$60=$ polycarbonate, $630 \mathrm{~V}, 20 \%$
61 = polycarbonate, $630 \mathrm{~V}, 10 \%$


For B, D and H see Table II.
if $B=12.5$
$d=0.6$
$15.3 \pm 0.3$
$32 \pm 3$
22.5
0.8
0.8
$27.9 \pm 0.3$
$32 \pm 3$
$54=$ PETP, $400 \mathrm{~V}, 20 \%$
$55=$ PETP, $400 \mathrm{~V}, 10 \%$
Example: The catalog number of a $0.033 \mu \mathrm{~F} / 400 \mathrm{~V}$ capacitor with dielectric of polycarbonate, tolerance $\pm 10 \%$, is 222234251333 .

Table II

$\begin{aligned} & \text { capacitance } \\ & (\mu \mathrm{F}) \end{aligned}$	capacitance code	max. dimensions (mm)								
		250 V versions			400 V versions			630 V versions		
		D	B	H	D	B	H	D	B	H
0.010	103	4	12.5	9	4	12.5	9	4	12.5	9
0.015	153	4	12.5	9	4	12.5	9	5	12.5	10
0.022	223	4	12.5	9	4	12.5	9	6	12.5	11
0.033	333	4	12.5	9	5	12.5	10	6	17.5	11
0.047	473	4	12.5	9	6	12.5	11	7	17.5	12
0.068	683	5	12.5	10	6	17.5	11	6.5	22.5	11.5
0.10	104	6	12.5	11	7	17.5	12	7.5	22.5	12.5
0.15	154	6	17.5	11	6.5	22.5	11.5	9.5	22.5	14.5
0.22	224	7	17.5	12	7.5	22.5	12.5	9.5	30	14.5
0.33	334	6.5	22.5	11.5	9.5	22.5	14.5	10	30	18
0.47	474	7.5	22.5	12.5	9.5	30	14.5	12	30	20
0.68	684	9.5	22.5	14.5	10	30	18			
1.0	105	9.5	30	14.5	12	30	20			
1.5	155	10.5	30	18						
2.2	225	12.5	30	20.5						

Intermediate values according to the E12 range are available on request. The dimensions are identical to those of the next higher value in the standard E6 range. The capacitance tolerance is either $\pm 10 \%$ or $+20 \%$. The preferred tolerance is $\pm 20 \%$ for $\leq 0.22 \mu \mathrm{~F}$, and $\pm 10 \%$ for $>0.22 \mu \mathrm{~F}$.

## TECHNICAL PERFORMANCE

Unless otherwise specified all electrical characteristics apply to an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930-1060 mbar and a relative humidity of 45-75\%.

Working temperature range
Maximum d.c. working voltage up to $85^{\circ} \mathrm{C}$ derating
Maximum overvoltage for 1 minute per hour.
Maximum a.c. voltage, $50-60 \mathrm{~Hz}$
(never to be exceeded at other frequencies)
Calculation of the dissipation
Maximum dissipation
Pulse loads, maximum steepness
$-40 /+100{ }^{\circ} \mathrm{C}$
nominal voltage $\left(\mathrm{V}_{\text {nom }}\right)$
$1.25 \%$ per $\operatorname{deg} \mathrm{C}$ above $85^{\circ} \mathrm{C}$
250 V versions: $40 \%$
400 V and 630 V versions: $25 \%$
250 V versions: 160 V
400 V versions: 200 V
630 V versions: 220 V
with the aid of Fig. 1
Fig. 2
see Table III

Test voltage (d.c.) for 1 minute
Capacitance drift during life
d.c. loaded, at $1.5 \mathrm{~V}_{\text {nom }}$ and $85^{\circ} \mathrm{C}$

$$
\text { at } 25^{\circ} \mathrm{C}
$$

a.c. loaded, for $B=12.5 \mathrm{~mm}$
$B=17.5 \mathrm{~mm}$
$B=22.5 \mathrm{~mm}$
$B=30 \mathrm{~mm}$
Capacitance as a function of temperature and frequency
Insulation resistance at $20^{\circ} \mathrm{C}$
for $\mathrm{C} \leq 0.33 \mu \mathrm{~F}$
for $\mathrm{C}>0.33 \mu \mathrm{~F}$
Insulation resistance as a function of temperature

Losses $(\tan \delta)$ at 1 kHz and $20^{\circ} \mathrm{C}$
at 10 kHz and $20^{\circ} \mathrm{C}$

Losses as a function of temperature and frequency
Resonance frequency
Climatic robustness
Solderability conforming to
Soldering conditions for p.w. boards
Thermal shock proof
Lead strength, radial
axial
1.6 x nominal voltage
$<5 \%$
$<2 \%$
$<25 \%$
$<20 \%$
$<15 \%$
$<10 \%$
Fig. 3 and Fig. 4
$\mathrm{R}>30000 \mathrm{M} \Omega$
$\mathrm{RC}>10000 \mathrm{~s}(\mathrm{M} \Omega . \mu \mathrm{F})$
Fig.5. Decrease of minimum values is a factor 2 per 10 deg C above $20^{\circ} \mathrm{C}$
250 V versions: $<75 \times 10^{-4}$
400 and 630 V versions: $<30 \times 10^{-4}$
250 V versions: $<250 \times 10^{-4}$
400 and 630 V versions: $<100 \times 10^{-4}$
Fig. 6 and Fig. 7
Fig. 8
category 40/100/21 (I.E.C. 68);
500 hours at $40^{\circ} \mathrm{C}$ and $90-95 \%$ R.H.
I.E.C. 68-2, test T 3.2 on 6 mm from the capacitor body
5 seconds, $250{ }^{\circ} \mathrm{C}$
2 seconds, 350 oC
$>5 \mathrm{~N}(>500 \mathrm{~g})$
$>2.5 \mathrm{~N}(>250 \mathrm{~g})$

Table III

nominal voltage	maximum steepness ( $\mathrm{V} / \mu \mathrm{s}$ )			
	dimension B			
	12.5 mm	17.5 mm	22.5 mm	30 mm
250 V	20	10	7	5
400 V	30	20	10	8
630 V	45	30	15	10

$\rightarrow$ Important note: A metallised film capacitor must not be used in a low-impedance circuit in which any short-circuit current through the capacitor might exceed 400 mA .

## CALCULATION OF THE MAXIMUM A.C. VOLTAGE

A maximum permissible a.c. voltage has been specified for $50-60 \mathrm{~Hz}$ and at $20{ }^{\circ} \mathrm{C}$. This voltage value must also never be exceeded at other frequencies. The permissible a.c. voltage may further be limited by the following requirements:
${ }^{1}$ ) The power dissipation must not exceed the specified limit $\mathrm{P}_{\max }$.
${ }^{2}$ ) The steepness of the a.c. voltage must not exceed the specified limit.
Ad 1.
The power dissipated by a capacitor is a function of the voltage over the series resistance ( $\mathrm{R}_{\mathrm{S}}$ ) or of the current through the series resistance and is expressed by

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}{ }^{2}}{\mathrm{R}_{\mathrm{S}}}=\mathrm{I}^{2} \mathrm{R}_{\mathrm{S}} \tag{1}
\end{equation*}
$$



$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}^{2}=\frac{\mathrm{R}_{\mathrm{S}}^{2}}{\mathrm{R}_{\mathrm{S}}^{2}+1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{~V}_{\mathrm{ac}}^{2} \tag{2a}
\end{equation*}
$$

As for these capacitors $\tan \delta=R_{S} \omega C=$ always $<0.1$, the formula (2a) can be sim plified to

$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}^{2}=\frac{\mathrm{R}_{\mathrm{s}}^{2}}{1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{~V}_{\mathrm{ac}}{ }^{2}=\mathrm{R}_{\mathrm{s}}^{2} \omega^{2} \mathrm{C}^{2} \mathrm{~V}_{\mathrm{ac}}^{2} \tag{2b}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P=R_{s} \omega^{2} C^{2} V_{a c}^{2} \tag{3a}
\end{equation*}
$$

or

$$
\begin{equation*}
P=\left(R_{S} C\right) C \omega^{2} V_{a c}^{2} \tag{3b}
\end{equation*}
$$

The term $R_{S} C$ can be found from Fig.1. C (in farads), $\boldsymbol{\omega}=2 \boldsymbol{\pi} f$ and $V_{a c}$ are assumed to be known.

The maximum permissible value of power dissipation ( $\mathrm{P}_{\max }$ ), which depends on the dimensions of the capacitor and on the ambient temperature, can be found from Fig. 2. Thus, when the actual power has been calculated with formula (3b), Fig. 2 gives the minimum size of capacitor which can dissipate this power.

May be two or three capacitors having this size can be chosen, namely with different nominal working voltages.

Example of using Fig.1. and Fig. 2
A capacitor with dielectric of polycarbonate and a value of $0.33 \mu \mathrm{~F}$ should be used at an a.c. voltage $\mathrm{V}_{\mathrm{ac}}=180 \mathrm{~V}$, a frequency of 1 kHz and an ambient temperature of $50{ }^{\circ} \mathrm{C}$.
The $\mathrm{R}_{\mathrm{S}} \mathrm{C}$-product is $5.10^{-7} \Omega \mathrm{~F}$ (from Fig.1), so that the power to be dissipated

$$
\begin{aligned}
P & =\left(R_{S} C\right) C \omega^{2} V_{a c}{ }^{2} \\
& =5 \times 10^{-7} \times 0.33 \times 10^{-6} \times 4 \pi^{2} \times 1000^{2} \times 180^{2}=0.214 \mathrm{~W}
\end{aligned}
$$

Fig. 2 shows that at $50^{\circ} \mathrm{C}$ capacitors with curve numbers 15 to 23 can be used, thus a minimum size of $9.5 \times 22.5 \times 14.5 \mathrm{~mm}$. It can be seen from Table II that a choice can be made between $0.33 \mu \mathrm{~F}-400 \mathrm{~V}$ and $0.33 \mu \mathrm{~F}-630 \mathrm{~V}$ capacitors.


Fig.1. Maximum product of series resistance and capacitance as a function of the frequency
$\mathrm{I}=\mathrm{PETP}$ versions
II = polycarbonate versions


Fig.2. Maximum permissible power dissipation as a function of the temperature


Fig.3. Capacitance as a function of the temperature


Fig.4. Capacitance as a function of the frequency


Fig. 5. Insulation resistance as a function of the temperature I = PETP versions $\quad$ II = Polycarbonate versions


Fig.6. Losses at 1 kHz as a function of the temperature $\mathrm{I}=$ PETP versions $\quad \mathrm{II}=$ polycarbonate versions


Fig.7. Losses as a function of the frequency
I = PETP versions
II = polycarbonate versions


Fig.8. Resonance frequency as a function of the capacitance, at different total wire lengths

# MOULDED METALLISED POLYESTER CAPACITORS <br> "nugget" type 



RZ 24298

Nominal voltage	100	250	400	630 V
Capacitance range	$0.068-6.8$	$0.01-2.2$	$0.01-1$	$0.01-0.47 \mu \mathrm{~F}$

## APPLICATION

This series of capacitors is an extention of the "flat film" series, and is especially suitable for those applications where the insulation of the winding should meet higher requirements and well-defined dimensions are needed. These capacitors have an easy-plug-in shape for use on printed-wiring boards even with a high component density. They are marked on the top with an embossed print.

Maximum overvoltage:
Special attention is drawn to the fact that the allowed $40 \%$ overvoltage for the 100 V and 250 V versions permits these capacitors to be employed in anode and screen grid circuits, instead of previously used 400 V types.

## CONSTRUCTION

## Dielectric material

of 100 V capacitors : metallised polyethyleneterephtalate and polycarbonate of 250 V capacitors : metallised polyethylene-terephtalate (PETP)
of 400 V and 630 V capacitors: metallised polycarbonate

Dimensions in mm (See also the tables)

$\longrightarrow$ Marking (top view)

$$
\begin{array}{|l|l}
\hline 0.22 / 20 / 250 & \text { - value in } \mu \mathrm{F} / \text { tolerance/nominal voltage } \\
34440224 & \text { - last } 8 \text { digits of catalog number }
\end{array}
$$

TYPES
Composition of the catalog number

code for dielectric material, nominal voltage and capacitance tolerance:
$24=$ PETP, $100 \mathrm{~V}, 20 \%$
$20=$ polycarbonate, $100 \mathrm{~V}, 20 \%$
$25=$ PETP, $100 \mathrm{~V}, 10 \%$
40 = PETP, $250 \mathrm{~V}, 20 \%$
21 = polycarbonate, $100 \mathrm{~V}, 10 \%$
$50=$ polycarbonate, $400 \mathrm{~V}, 20 \%$
51 = polycarbonate, $400 \mathrm{~V}, 10 \%$
$60=$ polycarbonate, $630 \mathrm{~V}, 20 \%$
61 = polycarbonate, $630 \mathrm{~V}, 10 \%$
The capacitance values in the tables are of the E6 series. Intermediate capacitance values of the E12 series can be supplied on request. The dimensions of the latter capacitors are identical to those with the next higher E6 value.
The preferred tolerance on all values $\leq 0.22 \mu \mathrm{~F}$ is $\pm 20 \%$, and on all values $>0.22 \mu \mathrm{~F}$ it is $\pm 10 \%$.

## 100 V versions

capacitance   $(\mu \mathrm{F})$	dimensions (mm)				capacitance
0.068	D	B	H	S	con   0.1
0.15	4.5	13	10	10	683
0.22	4.5	13	10	10	104
0.33	5	13	10	10	154
0.47	5	13	11	10	224
0.68	6	17.5	11	15	334
1.0	7	17.5	11.5	15	474
1.5	8.5	17.5	13	15	684
2.2	7.5	26	14.5	15	105
3.3	8.5	26	16.5	22.5	15
4.7	9.5	26	19	22.5	225
6.8	11	30	19.5	27.5	335

250 V versions

capacitance   $(\mu \mathrm{F})$	dimensions (mm)					catalog No. suffix	
	D	B	H	S	$\pm 20 \%$	$\pm 10 \%$	
0.01	4.5	13	10	10	40103	41103	
0.015	4.5	13	10	10	40153	41153	
0.022	4.5	13	10	10	40223	41223	
0.033	4.5	13	10	10	40333	41333	
0.047	4.5	13	10	10	40473	41473	
0.068	5	13	11	10	40683	41683	
0.1	5	17.5	11	15	40104	41104	
0.15	6	17.5	11.5	15	40154	41154	
0.22	7	17.5	13	15	40224	41224	
0.33	8.5	17.5	14.5	15	40334	41334	
0.47	6.5	26	15.5	22.5	40474	41474	
0.68	7.5	26	16.5	22.5	40684	41684	
1.0	9.5	26	19	22.5	40105	41105	
1.5	11	30	19.5	27.5	40155	41155	
2.2	13.5	30	22.5	27.5	40225	41225	

400 V versions

capacitance   $(\mu \mathrm{F})$	dimensions (mm)					catalog No. suffix	
	D	B	H	S	$\pm 20 \%$	$\pm 10 \%$	
0.01	4.5	13	10	10	50103	51103	
0.15	4.5	13	10	10	50153	51153	
0.022	4.5	13	10	10	50223	51223	
0.033	5	13	11	10	50333	51333	
0.047	5	17.5	11	15	50473	51473	
0.068	6	17.5	11.5	15	50683	51683	
0.1	7	17.5	13	15	50104	51104	
0.15	8.5	17.5	14.5	15	50154	51154	
0.22	6.5	26	15.5	22.5	50224	51224	
0.33	7.5	26	16.5	22.5	50334	51334	
0.47	9.5	26	19	22.5	50474	51474	
0.68	11	30	19.5	27.5	50684	51684	
1.0	13.5	30	22	27.5	50105	51105	

630 V versions

capacitance   $(\mu \mathrm{F})$	dimensions (mm)				catalog No. suffix	
	D	B	H	S	$\pm 20 \%$	$\pm 10 \%$
0.01	4.5	13	10	10	60103	61103
0.015	5	13	11	10	60153	61153
0.022	6	13	12	10	60223	61223
0.033	6	17.5	11.5	15	60333	61333
0.047	7	17.5	13	15	60473	61473
0.068	8.5	17.5	14.5	15	60683	61683
0.1	6.5	26	15.5	22.5	60104	61104
0.15	7.5	26	16.5	22.5	60154	61154
0.22	9.5	26	19	22.5	60224	61224
0.33	11	30	19.5	27.5	60334	61334
0.47	13.5	30	22	27.5	60474	61474

## TECHNICAL PERFORMANCE

Unless otherwise specified all electrical characteristics apply to an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of 45-75 \%.
Working temperature range
$-55 /+100^{\circ} \mathrm{C}$
Maximum d.c. working voltage
up to $85^{\circ} \mathrm{C}$
derating
Maximum overvoltage for *
1 minute per hour
Maximum a.c. voltage, $50-60 \mathrm{~Hz}$
(never to be exceeded at other frequencies)

Calculation of the dissipation
Maximum dissipation
Maximum steepness (pulse loads) ${ }^{1}$ )
Test voltage (d.c.) for 1 minute
Breakdown voltage of encasing
Capacitance drift during life:

> d.c. loaded, at $1.5 \mathrm{~V}_{\text {nom }}$ and $85^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$
a.c. loaded, for $B=13 \mathrm{~mm}$
$B=17.5 \mathrm{~mm}$
$B=26 \mathrm{~mm}$
$B=30 \mathrm{~mm}$
Capacitance as a function of temperature and frequency
Insulation resistance (at $20^{\circ} \mathrm{C}$ )
for $\mathrm{C} \leq 0.33 \mu \mathrm{~F}$
for $\mathrm{C}>0.33 \mu \mathrm{~F}$
Insulation resistance as a function
of temperature
nominal voltage ( $\mathrm{V}_{\text {nom }}$ )
$1.25 \%$ per deg C above $85^{\circ} \mathrm{C}$
100 and 250 V versions: $40 \%$
400 and 630 V versions: $25 \%$
100 V versions: 63 V
250 V versions: 160 V
400 V versions: 200 V
630 V versions: 220 V
with the aid of Fig. 1
Fig. 2
see table next page
1.6 x nominal voltage
$>2500 \mathrm{~V} \mathrm{rms}$
$<3 \%$
$<1.5 \%$
$<25 \%$
$<20 \%$
$<15 \%$
$<10 \%$

Fig. 3 and Fig. 4
$\mathrm{R}>30000 \mathrm{M} \Omega$
$\mathrm{RC}>10000 \mathrm{~s}(\mathrm{M} \Omega . \mu \mathrm{F})$
Fig. 5. Decrease of minimum values is a factor 2 per 10 deg C above $20^{\circ} \mathrm{C}$.

[^43]Losses $(\tan \delta)$ at 1 kHz and $20^{\circ} \mathrm{C}$
at 10 kHz and $20^{\circ} \mathrm{C}$

Losses as a function of temperature and frequency

Resonance frequency
Category (I.E.C. 68)

Solderability conforming to

Soldering conditions for p.w. boards
Thermal shock proof

$$
\begin{array}{ll}
\text { PETP versions } & :<75 \times 10^{-4} \\
\text { polycarbonate versions }: & <30 \times 10^{-4} \\
\text { PETP versions } & :<250 \times 10^{-4} \\
\text { polycarbonate versions: } & <100 \times 10^{-4}
\end{array}
$$

Fig. 6 and Fig. 7
Fig. 8
$55 / 100 / 56 ; 1300$ hours at $40^{\circ} \mathrm{C}$ and $90-95 \%$ R.H.
I.E.C. 68-2, test T3. 2 on 6 mm from the capacitor body
5 seconds, $250^{\circ} \mathrm{C}$
2 seconds, $350{ }^{\circ} \mathrm{C}$

nominal voltage	pulse loads, max. steepness (V/ V )			
	dimension B			
	13 mm	17.5 mm	26 mm	30 mm
100 V	10	7	3.5	3
$250 \mathrm{~V}$	$20$	$10$	$6$	5
$400 \mathrm{~V}$	$30$	$20$	$9$	8
630 V	45	30	13	10

CALCULATION OF THE MAXIMUM A.C. VOLTAGE
A maximum permissible a.c. voltage has been specified for $50-60 \mathrm{~Hz}$ and at $20^{\circ} \mathrm{C}$. This voltage value must also never be exceeded at other frequencies. The permis sible a.c. voltage may further be limited by the following requirements:
${ }^{1}$ ) The power dissipation must not exceed the specified limit $P_{\max }$.
2) The steepness of the a.c. voltage must not exceed the specified limit.

Ad 1.
The power dissipated by a capacitor is a function of the voltage over the series resistance $\left(R_{S}\right)$ or of the current through the series resistance and is expressed by

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}}{\mathrm{R}_{\mathrm{S}}}=\mathrm{I}^{2} \mathrm{R}_{\mathrm{S}} \tag{1}
\end{equation*}
$$



$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}^{2}=\frac{\mathrm{R}_{\mathrm{S}}^{2}}{\mathrm{R}_{\mathrm{S}}^{2}+1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{~V}_{\mathrm{ac}}^{2} \tag{2a}
\end{equation*}
$$

As for these capacitors $\tan \delta=R_{S} \omega C=$ always $<0.1$, the formula (2a) can be simplified to

Thus

$$
\begin{equation*}
\mathrm{v}_{\mathrm{R}_{\mathrm{s}}}^{2}=\frac{\mathrm{R}_{\mathrm{s}}^{2}}{1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{vac}^{2}=\mathrm{R}_{\mathrm{s}}^{2} \omega^{2} \mathrm{C}^{2} \quad \mathrm{vac}^{2} \tag{2b}
\end{equation*}
$$

or $\quad P=\left(R_{s} C\right) C \omega^{2} V_{a c}{ }^{2}$
Theterm $R_{S} C$ can be found from Fig.1. C (in farads), $\omega=2 \pi f$ and $V_{a c}$ are assumed to be known.

The maximum permissible value of power dissipation ( $\mathrm{P}_{\max }$ ), which depends on the dimensions of the capacitor and on the ambient temperature, can be found from Fig.2. Thus, when the actual power has been calculated with formula (3b), Fig. 2 gives the minimum size of capacitor which can dissipate this power.

May be two or three capacitors having this size can be chosen, namely with different nominal working voltages.

Example of using Fig. 1 and Fig. 2
A capacitor with a dielectric of polycarbonate and a value of $1 \mu \mathrm{~F}$ should be used at an a.c. voltage $\mathrm{V}_{\mathrm{ac}}=100 \mathrm{~V}$, a frequency of 1 kHz and an ambient temperature of $50^{\circ} \mathrm{C}$.
The $\mathrm{R}_{\mathrm{s}} \mathrm{C}$-product is $5.10^{-7} \Omega \mathrm{~F}$ (from Fig. 1), so that the power to be dissipated

$$
\begin{aligned}
P & =\left(R_{S} C\right) C \omega^{2} V_{a c^{2}} \\
& =5 \times 10^{-7} \times 10^{-6} \times 4 \pi^{2} \times 1000^{2} \times 100^{2}=0.198 \mathrm{~W}
\end{aligned}
$$

Fig. 2 shows that at $50^{\circ} \mathrm{C}$ capacitors with curve numbers 6 to 12 can be used, thus a minimum size of $7 \times 17.5 \times 13 \mathrm{~mm}$. It can be seen from the tables that a choice can be made between the 400 and 630 V capacitors of $1 \mu \mathrm{~F}$.


Fig.1. Maximum product of series resistance and capacitance as a function of the frequency $. I=$ PETP versions; II = polycarbonate versions


curve	dimensions (mm)		
	D	B	H
1	4.5	13	10
2	5	13	11
3	6	13	12
4	5	17.5	11
5	6	17.5	11.5
6	7	17.5	13
7	8.5	17.5	14.5
8	6.5	26	15.5
9	7.5	26	16.5
10	8.5	26	18
11	9.5	26	19
12	11	30	19.5
13	13.5	30	22

Fig.2. Maximum permissible power dissipation as a function of the temperature


Fig.3. Capacitance as a function of the temperature
I = PETP versions $\quad I I=$ polycarbonate versions


Fig.4. Capacitance as a function of the frequency


Fig.5. Insulation resistance as a function of the temperature
I = PETP versions $\quad$ II = polycarbonate versions


Fig.6. Losses at 1 kHz as a function of the temperature $I=$ PETP versions $\quad$ II = polycarbonate versions


Fig.7. Losses as a function of the frequency
$I=$ PETP versions $\quad I I=$ polycarbonate versions


Fig.8. Resonance frequency as a function of the capacitance, at different total wire lengths

## MOULDED METALLISED POLYESTER CAPACITORS

"mepolesco" type


nominal voltage	capacitance range	
100 V	$0.068-6.8$	$\mu \mathrm{~F}$
250 V	$0.010-2.2$	$\mu \mathrm{~F}$
400 V	$0.010-1.0$	$\mu \mathrm{~F}$
630 V	$0.010-0.47$	$\mu \mathrm{~F}$
1000 V	$0.010-0.15$	$\mu \mathrm{~F}$
1600 V	$0.001-0.068 \mu \mathrm{~F}$	

## APPLICATION

These capacitors are designed for use as bypass and general-purpose capacitors in electronic equipment, both inthe entertainment field and for industrial purposes. The throughout rectangular shape of these capacitors renders them most suitable for wobble-free mounting on printed-wiring boards, either upright or level.

Maximum overvoltage:
Special attention is drawn to the fact that the allowed $40 \%$ overvoltage for the 100 V and 250 V versions permits these capacitors to be employed in anode and screen grid circuits, instead of previously used 400 V capacitors.

## CONSTRUCTION

Dielectric material
of 100 V capacitors: metallised polyethyleneterephtalate (PETP) and metallised polycarbonate
of 250 V capacitors: metallised (PETP)
of $400,630,1000$ and 1600 V capacitors: metallised polycarbonate

## Dimensions in mm



Where $L=14.5,18$ or 23.5 mm (see table): $E=40$ and $d=0.8 \mathrm{~mm}$; where $L=31 \mathrm{~mm}: E=50$ and $d=1 \mathrm{~mm}$.

## Marking

$0.1 / 10 / 250$	- value in $\mu \mathrm{F} /$ tolerance /voltage
34189104	- last 8 digits of catalog number

TYPES
Composition of the catalog number
code for nominal voltage, $\frac{2222341}{2 \pi} \because{ }^{\circ}$ capacitance code, see tables capacitance tolerance and dielectric material
polycarbonate: polycarbonate: PETP:

$$
\begin{aligned}
& 28=100 \mathrm{~V}, \pm 20 \% \\
& 29=100 \mathrm{~V}, \pm 10 \% \\
& 88=250 \mathrm{~V}, \pm 20 \% \\
& 89=250 \mathrm{~V}, \pm 10 \% \\
& 58=400 \mathrm{~V}, \pm 20 \% \\
& 59=400 \mathrm{~V}, \pm 10 \%
\end{aligned}
$$

$$
\begin{aligned}
& 60=630 \mathrm{~V}, \pm 20 \% \\
& 61=630 \mathrm{~V}, \pm 10 \% \\
& 70=1000 \mathrm{~V}, \pm 20 \% \\
& 71=1000 \mathrm{~V}, \pm 10 \% \\
& 80=1600 \mathrm{~V}, \pm 20 \% \\
& 81=1600 \mathrm{~V}, \pm 10 \%
\end{aligned}
$$

$26=100 \mathrm{~V}, \pm 20 \%$
$27=100 \mathrm{~V}, \pm 10 \%$
$88=250 \mathrm{~V}, \pm 20 \%$
$89=250 \mathrm{~V}, \pm 10 \%$

The capacitance values in the tables are of the E6 series. Intermediate capacitance values of the E12 series can be supplied on request.
The preferred tolerance on all values $\leq 0.22 \mu \mathrm{~F}$ is $\pm 20 \%$, and on all values $>0.22 \mu \mathrm{~F}$ it is $\pm 10 \%$.

capacitance		dimensions in mm								
( $\mu \mathrm{F}$ )	code	100 V versions			250 V versions			400 V versions		
		A	B	L	A	B	L	A	B	L
1)										
0.01	103				8.7	4.7	14.5	8.7	4.7	14.5
0.015	153				8.7	4.7	14.5	8.7	4.7	14.5
0.022	223				8.7	4.7	14.5	8.7	4.7	14.5
0.033	333				8.7	4.7	14.5	9.4	5.5	14.5
0.047	473				8.7	4.7	14.5	10.4	6.5	14.5
0.068	683	8.7	4.7	14.5	9.4	5.5	14.5	10.4	6.5	18
0.1	104	8.7	4.7	14.5	10.4	6.5	14.5	11.5	7.6	18
0.15	154	9.4	5.5	14.5	10.4	6.5	18	11.5	7.4	23.5
0.22	224	10.4	6.5	14.5	11.5	7.6	18	12.8	8.7	23.5
0.33	334	10.4	6.5	18	11.5	7.4	23.5	14.4	10.4	23.5
0.47	474	11.5	7.6	18	12.8	8.7	23.5	14.6	10.4	31
0.68	684	11.5	7.4	23.5	14.4	10.4	23.5	19.5	12.4	31
1.0	105	12.8	8.7	23.5	14.6	10.4	31	22	15	31
1.5	155	14.4	10.4	23.5	19.5	12.4	31			
2.2	225	14.6	10.4	31	22	15	31			
3.3	335	19.5	12.4	31						
4.7	475	22	15	31						

1) For 0.001 to $0.0068 \mu \mathrm{~F}$ ( 1 to 6.8 nF ) see next table.

capacitance		dimensions in mm								
		630 V versions			1000 V versions			1600 V versions		
( $\mu \mathrm{F}$ )	code	A	B	L	A	B	L	A	B	L
0.001	102							9.4	5.5	14.5
0.0015	152							10.4	6.5	14.5
0.0022	222							10.4	6.5	18
0.0033	332							10.4	6.5	18
0.0047	472							10.4	0.5	18
0.0068	682							11.5	7.6	18
0.01	103	8.7	4.7	14.5	10.4	6.5	18	11.5	7.4	23.5
0.015	153	9.4	5.5	14.5	11.5	7.6	18	12.8	8.7	23.5
0.022	223	10.4	6.5	14.5	11.5	7.4	23.5	14.4	10.4	23.5
0.033	333	10.4	6.5	18	12.8	8.7	23.5	14.6	10.4	31
0.047	473	11.5	7.6	18	14.4	10.4	23.5	19.5	12.4	31
0.068	683	11.5	7.4	23.5	14.6	10.4	31	22	15	31
0.1	104	12.8	8.7	23.5	19.5	12.4	31			
0.15	154	14.4	10.4	23.5	22	15	31			
0.22	224	14.6	10.4	31						
0.33	334	19.5	12.4	31						
0.47	474	22	15	31						
0.68	684									
1.0	105									
1.5	155									

TECHNICAL PERFOR MANCE
Unless otherwise specified all electrical characteristics apply to an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$.

Working temperature range
Maximum d.c. working voltage up to $85^{\circ} \mathrm{C}$ derating
Maximum overvoltage during 1 minute per hour
$\longrightarrow$ Maximum a.c. voltage, $50-60 \mathrm{~Hz}$
(never to be exceeded at other frequencies)

Calculation of the dissipation
Maximum dissipation
$-55 /+100^{\circ} \mathrm{C}$
nominal voltage ( $\mathrm{V}_{\text {nom }}$ )
$1.25 \%$ per deg C above $85^{\circ} \mathrm{C}$
100 and 250 V versions: $40 \%$
400 and 630 V versions: $25 \%$
100 V versions: 63 V
250 V versions: 160 V
400 V versions: 200 V
630 V versions: 220 V
1000 and 1600 V versions: 250 V
with the aid of Fig. 1
Fig. 2

Maximum steepness (pulse loads):
(See also the note below)

nominal   voltage	dimension L			
	14.5 mm	18 mm	23.5 mm	31 mm
100 V	$10 \mathrm{~V} / \mu \mathrm{s}$	7	4	3
250 V	20	10	7	5
400 V	30	20	10	8
630 V	45	30	15	10
1000 V	-	45	30	20
1600 V	200	90	50	30

Test voltage (d.c.) for 1 minute
Breakdown voltage of encasing
Cápacitance drift during life
d.c. loaded, at $1.5 \mathrm{xV}_{\text {nom }}$ and $85^{\circ} \mathrm{C}$ at $25{ }^{\circ} \mathrm{C}$
a.c. loaded (max. a.c. voltage)
for $L=14 \mathrm{~mm}$
$\mathrm{L}=17.5 \mathrm{~mm} \quad<20 \%$
$\mathrm{L}=23 \mathrm{~mm} \quad<15 \%$
$\mathrm{L}=30 \mathrm{~mm} \quad<10 \%$
Capacitance as a function of temperature and frequency

Insulation resistance (at $20^{\circ} \mathrm{C}$ )
for $\mathrm{C} \leq 0.33 \mu \mathrm{~F}$ for $\mathrm{C}>0.33 \mu \mathrm{~F}$

Insulation resistance as a function of temperature
Losses $(\tan \delta)$ at 1 kHz (and $20^{\circ} \mathrm{C}$ ) at $10 \mathrm{kHz}\left(\right.$ and $20^{\circ} \mathrm{C}$ )

Losses as a function of temperature and frequency

Resonance frequency
Category (I.E.C. 68)

Solderability conforming to
1.6 x nominal voltage
$>2500 \mathrm{~V}_{\mathrm{rms}}$
$<3 \%$
$<1.5 \%$
$<25 \%$

Fig. 3 and Fig. 4
$\mathrm{R}>30000 \mathrm{M} \Omega$
$\mathrm{RC}>10000 \mathrm{~s}(\mathrm{M} \Omega . \mu \mathrm{F})$
Fig.5. Decrease of minimum values is a factor 2 per 10 deg C above $20^{\circ} \mathrm{C}$.
PETP versions $:<75 \times 10^{-4}$
polycarbonate versions: $<30 \times 10^{-4}$
PETP versions $\quad:<250 \times 10^{-4}$
polycarbonate versions: $<100 \times 10^{-4}$

Fig. 6 and Fig. 7
Fig. 8
$55 / 100 / 56 ; 1300 \mathrm{hrs}$ at $40^{\circ} \mathrm{C}$ and 90-95\% R.H.
I.E.C. $68-2$, test T3. 2 on 6 mm from the capacitor body

Important: A metallised film capacitor must not be used in a low-impedance circuit' in which any short-circuit current through the capacitor might exceed 400 mA .

Soldering conditions for stress -free
mounted capacitors

solder   temperature	max. solder time for distance between   solder point and capacitor body				
	0.8 mm	1.6 mm	2.5 mm	4 mm	6 mm
$250^{\circ} \mathrm{C}$		5 s	6 s	8 s	10 s
$260^{\circ} \mathrm{C}$	2.5 s	3 s	4 s	6 s	8 s
$270^{\circ} \mathrm{C}$			2 s	4 s	6 s

Thermal shock proof
2 seconds, $350^{\circ} \mathrm{C}$

## CALCULATION OF THE MAXIMUM A.C. VOLTAGE

A maximum permissible a.c. voltage has been specified for $50-60 \mathrm{~Hz}$ and at $20^{\circ} \mathrm{C}$. This voltage value must also never be exceeded at other frequencies. The permissible a.c. voltage may further be limited by the following requirements:
${ }^{1}$ ) To power dissipation must not exceed the specified limit $P_{\max }$.
${ }^{2}$ ) The steepness of the a.c. voltage must not exceed the specified limit.

## Ad 1.

The power dissipated by a capacitor is a function of the voltage over the series resistance $\left(\mathrm{R}_{\mathrm{S}}\right)$ or of the current through the series resistance and is expressed by

$$
\begin{equation*}
P=\frac{V_{R_{S}}{ }^{2}}{R_{S}}=I^{2} R_{S} \tag{1}
\end{equation*}
$$



$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{s}}}^{2}=\frac{\mathrm{Rs}^{2}}{\mathrm{R}_{\mathrm{s}}^{2}+1 / \omega^{2} \mathrm{C}^{2}} \mathrm{~V}_{\mathrm{ac}}{ }^{2} \tag{2a}
\end{equation*}
$$

As for these capacitors $\tan \delta=R_{S \omega C}=$ always $<0.1$, the formula (2a) can be $\operatorname{sim}$ plified to

Thus

$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{s}}}^{2}=\frac{\mathrm{R}_{\mathrm{s}}^{2}}{1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{~V}_{\mathrm{ac}}{ }^{2}=\mathrm{R}_{\mathrm{s}}^{2} \omega^{2} \mathrm{C}^{2} \mathrm{~V}_{\mathrm{ac}^{2}} \tag{2b}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{P}=\mathrm{R}_{\mathrm{s}} \omega^{2} \mathrm{C}^{2} \quad \mathrm{~V}_{\mathrm{ac}}{ }^{2} \tag{3a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{P}=\left(\mathrm{R}_{\mathrm{s}} \mathrm{C}\right) \mathrm{C} \omega^{2} \mathrm{~V}_{\mathrm{ac}}{ }^{2} \tag{3b}
\end{equation*}
$$

The term $R_{s} C$ can be found from Fig.1. C (in farads), $\omega=2 \pi f$ and $V_{a c}$ are assunred to be known.

The maximum permissible value of power dissipation ( $\mathrm{P}_{\max }$ ), which depends on the dimensions of the capacitor and on the ambient temperature, can be found from Fig.2. Thus, when the actual power has been calculated with formula (3b), Fig. 2 gives the minimum size of capacitor which can dissipate this power.

May be two or three capacitors having this size can be chosen, namely with different nominal working voltages.

Example of using Fig. 1 and Fig. 2
A capacitor with a dielectric of polycarbonate and a value of $1 \mu \mathrm{~F}$ should be used at an a.c. voltage $\mathrm{V}_{\mathrm{ac}}=140 \mathrm{~V}$, a frequency of 1 kHz and an ambient temperature of $50{ }^{\circ} \mathrm{C}$.
The $\mathrm{R}_{\mathrm{S}} \mathrm{C}$-product is $5.10^{-7} \Omega \mathrm{~F}$ (from Fig.1), so that the power to be dissipated

$$
\begin{aligned}
P & =\left(R_{S} C\right) C \omega^{2} V_{a c}^{2} \\
& =5 \times 10^{-7} \times 10^{-6} \times 4 \pi^{2} \times 1000^{2} \times 140^{2}=0.39 \mathrm{~W}
\end{aligned}
$$

Fig. 2 shows that at $50^{\circ} \mathrm{C}$ capacitors with curve numbers 9 to 11 can be used, thus a minimum size of $14.6 \times 10.4 \times 30 \mathrm{~mm}$. It can be seen from the tables that the $1 \mu \mathrm{~F}-400 \mathrm{~V}$ capacitor can be chosen.


Fig.1. Maximum product of series resistance and capacitance as a function of the frequency

I = PETP versions $\quad$ II = polycarbonate versions


curve	dimension (mm)		
	A	B	L
1	8.7	4.7	14.5
2	9.4	5.5	14.5
3	10.4	6.5	14.5
4	10.4	6.5	18
5	11.5	7.6	18
6	11.5	7.4	23.5
7	12.8	8.7	23.5
8	14.4	10.4	23.5
9	14.6	10.4	31
10	19.5	12.4	31
11	22	15	31

Fig.2. Maximum permissible power dissipation as a function of the temperature


I = PETP versions
II = polycarbonate versions

Fig.3. Capacitance as a function of the temperature


Fig.4. Capacitance as a function of the frequency


Fig.5. Insulation resistance as a function of the temperature
I = PETP versions
II $=$ Polycarbonate versions


Fig.6. Losses at 1 kHz as a function of the temperature
$I=P E T P$ versions $\quad I I=$ polycarbonate versions


Fig.7. Losses as a function of the frequency
$I=$ PETP versions
II = polycarbonate versions


Fig. 8. Resonance frequency as a function of the capacitance, at different total wire lengths

## POLYESTER CAPACITORS

## tubular foil type



## APPLICATION

These are very reliable general purpose capacitors for electronic circuits. They have found wide-spread acceptance not only in the radio and television industry, but also in industrial electronics.

## CONSTRUCTION

Dielectric material
polyethylene-terephtalate
Dimensions in mm


## TYPES

Composition of the catalog number


Example: The catalog number of a $2200 \mathrm{pF} / 400 \mathrm{~V}$ capacitor is 222231151222.

capacitance	capacitance code	max. dimensions (mm)			
		160 V versions 222231131 ...		400 V versions 2222311 51...	
		D	L	D	L
1000 pF	102			7.5	18
1500	152			7.5	18
2200	222			7.5	18
3300	332			7.5	18
4700	472			7.5	18
6800	682			7.5	18
$0.010 \mu \mathrm{~F}$	103	7.5	18	7.5	18
0.015	153	7.5	18	7.5	18
0.022	223	7.5	18	8.5	18
0.033	333	7.5	18	10	18
0.047	473	8	18	11.5	18
0.068	683	9	18	9.5	32
0.10	104	10.5	18	11	32
0.15	154	12	18	12.5	32
0.22	224	10	32	14.5	32
0.33	334	12	32	17	32
0.47	474	14	32	19.5	32
0.68	684	16	32		
1.0	105	18.5	32		

Intermediate values according to the E12 range are available on request. The dimensions are identical to those of the next higher value in the standard E6 range.
The standard capacitance tolerance is $\pm 10 \%$.

## TECHNICAL PERFORMANCE

Unless otherwise specified all electrical characteristics apply to an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1^{\circ} 060 \mathrm{mbar}$ and a relative humidity of 45-75\%.

Working temperature range
Maximum d.c. working voltage up to $85^{\circ} \mathrm{C}$

Maximum a.c voltage, $50-60 \mathrm{~Hz}$ (never to be exceeded at other Irequencies)

Calculation of the dissipation
Maximum dissipation
Test voltage (d.c.) for 1 minute
Capacitance drift during life
d.c. loaded, at $1.5 \times V_{\text {nom }}$ and $85^{\circ} \mathrm{C}$
a.c. loaded

Capacitance as a function of temperature and frequency

Insulation resistance (at $20^{\circ} \mathrm{C}$ )
for $\mathrm{C} \leq 0.33 \mu \mathrm{~F}$
for $\mathrm{C}>0.33 \mu \mathrm{~F}$
Insulation resistance as a function of temperature

Losses $(\tan \delta)$ at $1 \mathrm{kHz}\left(\right.$ and $\left.20^{\circ} \mathrm{C}\right)$
Losses as a function of temperature and frequency

Resonance frequency
Climatic robustness

Solderability conforming to

Axial lead strength
$-40 /+85^{\circ} \mathrm{C}$
nominal voltage ( $\mathrm{V}_{\text {nom }}$ )

160 V versions: 90 V
400 V versions: 150 V
with the aid of Fig. 1
Fig. 2
$2 \times$ nominal voltage
< $5 \%$
$<2 \%$
$<5 \%$
x

Fig. 3 and Fig. 4
$\mathrm{R}>50000 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{C}}>16500 \mathrm{~s}(\mathrm{M} \Omega . \mu \mathrm{F})$
Fig.5. Decrease of minimum values is a factor 2 per 10 deg C above $20^{\circ} \mathrm{C}$
$<60 \times 10^{-4}$

Fig. 6 and Fig. 7
Fig. 8
category $40 / 085 / 21 ; 500$ hours at $40^{\circ} \mathrm{C}$ and 90-95 \% R.H.
I.E.C. $68-2$, test T3.2 on 6 mm from the capacitor body $>10 \mathrm{~N}(>1 \mathrm{~kg})$

CALCULATION OF THE MAXIMUM A.C. VOLTAGE
A maximum permissible a.c. voltage has been specified for $50-60 \mathrm{~Hz}$ and at $20^{\circ} \mathrm{C}$. This voltage value must also never be exceeded at other frequencies. The permissible a.c. voltage may further be limited by the requirement that the power dissipation must not exceed the specified limit $\mathrm{P}_{\max }$.

The power dissipated by a capacitor is a function of the voltage over the series resistance ( $\mathrm{R}_{\mathrm{S}}$ ) or of the current through the series resistance and is expressed by

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}{ }^{2}}{\mathrm{R}_{\mathrm{S}}}=\mathrm{I}^{2} \mathrm{R}_{\mathrm{S}} \tag{1}
\end{equation*}
$$



$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{S}}}^{2}=\frac{\mathrm{R}_{\mathrm{S}}^{2}}{\mathrm{R}_{\mathrm{S}}^{2}+1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{~V}_{\mathrm{ac}}^{2} \tag{2a}
\end{equation*}
$$

As for these capacitors $\tan \delta=\mathrm{R}_{\mathrm{S}} \omega \mathrm{C}=$ always $<0.1$, the formula (2a) can be simplified to

$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}_{\mathrm{s}}}^{2}=\frac{\mathrm{R}_{\mathrm{s}}^{2}}{1 / \omega^{2} \mathrm{C}^{2}} \quad \mathrm{~V}_{\mathrm{ac}}{ }^{2}=\mathrm{R}_{\mathrm{s}}{ }^{2} \omega^{2} \mathrm{C}^{2} \mathrm{~V}_{\mathrm{ac}}{ }^{2} \tag{2b}
\end{equation*}
$$

Thus

$$
\begin{equation*}
P=R_{s} \omega^{2} C^{2} v_{a c}^{2} \tag{3a}
\end{equation*}
$$

or

$$
\begin{equation*}
P=\left(R_{s} C\right) C \omega^{2} V_{a c}^{2} \tag{3b}
\end{equation*}
$$

The term $R_{S} C$ can be found from Fig.l. $C$ (in farads), $\omega=2 \pi r$ and $V_{a c}$ are assumed to be known.

The maximum permissible value of power dissipation ( $\mathrm{P}_{\max }$ ), which depends on the dimensions of the capacitor and on the ambient temperature, can be found from Fig.2. Thus, when the actual power has been calculated with formula (3b), Fig. 2 gives the minimum size of capacitor which can dissipate this power.

May be two or three capacitors having this size can be chosen, namely with different nominal working voltages.

Example of using Fig. 1 and Fig. 2
A tubular foil capacitor with a value of $0.47 \mu \mathrm{~F}$ should be used at an a.c. voltage of $\mathrm{V}_{\mathrm{ac}}=80 \mathrm{~V}$, a frequency of 1 kHz and an ambient temperature of $50^{\circ} \mathrm{C}$.
The $\mathrm{R}_{\mathrm{S}} \mathrm{C}$-product is $10^{-6}$ (from Fig.1), so that the power to be dissipated

$$
\begin{aligned}
P & =\left(R_{S} C\right) C \omega^{2} V_{a c}^{2} \\
& =10^{-6} \times 0.47 \times 10^{-6} \times 4 \pi^{2} \times 1000^{2} \times 80^{2}=0.123 \mathrm{~W}
\end{aligned}
$$

Fig. 2 shows that at $50^{\circ} \mathrm{C}$ capacitors with curve numbers 3 to 27 can be used, thus a minimum size of $8.5 \times 18 \mathrm{~mm}$. It can be seen from the table that a choice can be made between the 160 V and the 400 V capacitors of $0.47 \mu \mathrm{~F}$.


Fig.1. Maximum product of series resistance and capacitance as a function of the frequency


curve	dimensions (mm)	
	D	L
1	7.5	18
2	8	18
3	8.5	18
4	9	18
6	10	18
7	10.5	18
8	11.5	18
9	12	18
11	9.5	32
12	10	32
13	11	32
15	12	32
16	12.5	32
19	14	32
20	14.5	32
23	16	32
24	17	32
26	18.5	32
27	19.5	32

Fig.2. Maximum permissible power dissipation as a function the temperature


Fig.3. Capacitance as a function of the temperature


Fig.4. Capacitance as a function of the frequency


Fig.5. Insulation resistance as a function of the temperature


Fig.6. Losses at 1 kHz as a function of the temperature


Fig.7. Losses as a function of the frequency


Fig.8. Resonance frequency as a function of the capacitance, at different total wire lengths

# MINIATURE POLYSTYRENE CAPACITORS 'micropoco' łype 

Nominal voltage
Capacitance range

63 V	125 V
$820-3300 \mathrm{pF}$	$100-1500 \mathrm{pF}$

## APPLICATION

These capacitors are suitable for use in tuned circuits and electronic filters of all kinds, in telephony equipment etc., where high requirements are imposed as regards precision, stability and low losses at high frequencies. Because of their construction, characteristics and range of values and tolerances these capacitors can provide replacement for any other miniature polysterene capacitor. The leads have a diameter of 0.6 mm and are exactly centred, so that the capacitors can be economically handled by bending and cutting machines. The leads are long enough to be bent for vertical mounting on printed wiring boards .

## CONSTRUCTION

The capacitors are of the extended-foil construction, which results in a low selfinductance, low series resistance and consequently low high-frequency losses, whereas also the working temperature range is very favourable.

Dimensions in mm


## TYPES

Composition of the catalog number
Nominal voltage 63 V : $2222424 \ldots$.
Nominal voltage 125 V : 2222425
code for capacitance tolerance
2 for $\pm 5 \%$
3 for $\pm 2 \%$
4 for $\pm 1 \%$
capacitance value in code, see tables

For available tolerances see also the note below.

63 V capacitors:

capacitance		diam. D   $(\mathrm{mm})$
$(\mathrm{pF})$	code	
820	8201	
910	9101	
1000	1002	
1100	1102	$\leq 3$
1200	1202	
1300	1302	
1500	1502	
1600	1602	$\leq 3.5$
1800	1802	
2000	2002	
2200	2202	
2400	2402	$\leq 4$
2700	2702	$\leq 4.5$
3000	3002	
3300	3302	$\leq$

Note: Intermediate capacitance values of the E96 series ( $\pm 1 \%$ ) and E48 series ( $\pm 1 \%$ or $2 \%$.) are available on request. See list at the back of this book.

125 V capacitors:

capacitance		diam. D
$(\mathrm{pF})$	code	
100	1001	
110	1101	
120	1201	
130	1301	
150	1501	
160	1601	
180	1801	
200	2001	$\leq 3.5$

$$
3001
$$

$$
3301
$$

$$
3601
$$

$$
3901
$$

430	4301	
470	4701	
510	5101	$\leq 3$
560	5601	
620	6201	
680	6801	
750	7501	
820	8201	
910	9101	$\leq 3.5$
1000	1002	
1100	1102	
1200	1202	
1300	1302	
1500	1502	$\leq 4$

## TECHNICAL PERFORMANCE

Unless otherwise specified all electrical characteristics apply to an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $45-75 \%$.
Working temperature range, 63 V series -40 to $+70^{\circ} \mathrm{C}$

$$
125 \mathrm{~V} \text { series } \quad-40 \text { to }+85^{\circ} \mathrm{C}
$$

Max. d.c. voltage up to max. temperature
Maximum a.c. voltage, 63 V series 125 V series

Test voltage (d.c.) for 1 minute
Capacitance tolerances, E24 series E48 series E96 series

Temperature coefficient at $20-70{ }^{\circ} \mathrm{C}$
Capacitance drift after 1000 h endurance test at $1.5 \times V_{\text {nom }}$, 63 and 125 V versions at $70^{\circ} \mathrm{C}$
125 V versions at $85^{\circ} \mathrm{C}$
Capacitance drift after 21 days humidity test (I.E.C.)

Insulation resistance

$$
\text { at } 20^{\circ} \mathrm{C}
$$

at higher temperature

Losses $(\tan \delta)$ at 1 kHz

$$
\text { at } 100 \mathrm{kHz}
$$

at $\quad 1 \mathrm{MHz}$
Category (I.E.C.68) 63 V series 125 V series

Solderability conforms to
nominal voltage ( $\mathrm{V}_{\text {nom }}$ )
25 V
63 V
$2 \times$ nominal voltage
$\pm 1, \pm 2$ and $\pm 5 \%$
$\pm 1$ and $\pm 2 \%$
$\pm 1 \%$
$(-140 \pm 40) 10^{-6} / \operatorname{deg} \mathrm{C}$
$<0.3 \%$
$<0.5 \%$
$<1 \%$
$>10^{5} \mathrm{M} \Omega$
decrease is a factor 2 per $20 \operatorname{deg} \mathrm{C}$ above $20^{\circ} \mathrm{C}$
$<2 \times 10^{-4}$
$<3 \times 10^{-4}$
$<5 \times 10^{-4}$
40/070/21
40/085/21
(both 500 h at $40^{\circ} \mathrm{C}$ and $90-95 \%$ R.H.)
I.E.C. 68-2, test T3. 2 on 6 mm from the capacitor body

Soldering conditions for p.w. boards normal applications
vertical mounting
$230{ }^{\circ} \mathrm{C}$ during 2 seconds
$270{ }^{\circ} \mathrm{C}$ during 2 seconds

solder   time   $(\mathrm{s})$	solder   temp.   $\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{C}$   $\max$.   $(\%)$
2	260	1
3	260	2
3	240	1
5	240	$21)$

$350{ }^{\circ} \mathrm{C}$ during 3 seconds
$>20 \mathrm{~N}(>2 \mathrm{~kg})$

1) In case of forced cooling of the print within 5 seconds after dipsoldering at $240^{\circ} \mathrm{C}$ during 5 seconds, a capacitance change of max. $0.5 \%$ may be expected.

# TUBULAR MOULDED POLYSTYRENE CAPACITORS <br> 'minipoco' łype 



RZ 22359-1

nominal voltage	capacitance range
63 V	$3.6-160 \mathrm{nF}$
125 V	$1.5-82 \mathrm{nF}$
250 V	$1.3-47 \mathrm{nF}$
500 V	$0.68-24 \mathrm{nF}$

These capacitors are suitable for use in tuned circuits and electronic filters of all kinds, in carrier telephony equipment etc. where high requirements are imposed as regards precision, stability and low losses at high frequencies. The fairly small negative temperature coefficient is advantageous for most applications.
The leads are long enough to be bent for vertical mounting on printed-wiring boards.

## CONSTRUCTION

These capacitors are of the extended-foil construction, which results in a low selfinductance, low series resistance and consequently low high-frequency losses, whereas also the working temperature range is very favourable. They are moulded in lecodite.

Dimensions in mm


at L	$\ell$	d
15	35	0.7
25	45	0.8

TYPES
Composition of the catalog number


Example: The catalog No. of a $6200 \mathrm{pF} / 125 \mathrm{~V}$ capacitor, tolerance $5 \%$ is 222243626202
The table lists the capacitance values according to the E24 series. Intermediate values of the E48 series (with 1 and $2 \%$ tolerance) and of the E96 series (with $1 \%$ tolerance) can be supplied on request. The dimensions are identical to those of the next higher value given in the table.

capacitance	capacitance code	dimensions in mm ( $\mathrm{D} \times \mathrm{L}$ )			
		63 V	125 V	250 V	500 V
680 pF	6801				
750	7501				
820	8201				
910	9101				$7.5 \times 15$
1000	1002				
1100	1102				
1200	1202				
1300	1302				
1500	1502				
1600	1602				
1800	1802		$6 \times 15$	$7.5 \times 15$	$9 \times 15$
2000	2002				
2200	2202				
2400	2402				
2700	2702				
3000 3300	3002 3302		$7.5 \times 15$	$9 \times 15$	$10 \times 15$


capacitance	capacitance code	dimensions in mm ( $\mathrm{D} \times \mathrm{L}$ )			
		63 V	125 V	250 V	500 V
3600 pF	3602				
3900	3902		$7.5 \times 15$	$9 \times 15$	
4300	4302	$6 \times 15$			$12.5 \times 15$
4700	4702				
5100	5102				
5600	5602			$10 \times 15$	
6200	6202		$9 \times 15$		
6800	6802				$10 \times 25$
7500	7502				
8200	8202	$7.5 \times 15$			
9100	9102		$10 \times 15$	$12.5 \times 15$	
$0.010 \mu \mathrm{~F}$	1003				
0.011	1103				
0.012	1203				$12.5 \times 25$
0.013	1303	$9 \times 15$	$12.5 \times 15$		
0.015	1503			$10 \times 25$	
0.016	1603				
0.018	1803				
0.020	2003		$10 \times 25$	$12.5 \times 25$	$15 \times 25$
0.022	2203	$10 \times 15$			
0.024	2403				
0.027	2703				
0.030	3003				
0.033	3303				
0.036	3603	$12.5 \times 15$	$12.5 \times 25$		
0.039	3903			$15 \times 25$	
0.043	4303				
0.047	4703	$10 \times 25$			
0.051	5103				
0.056	5603				
0.062	6203				
0.068	6803	$12.5 \times 25$	$15 \times 25$		
0.075	7503				
0.082	8203				
0.091	9103				
0.10	1004				
0.11	1104				
0.12	1204				
0.13	1304	$15 \times 25$			
0.15	1504				
0.16	1604				

## TECHNICAL PERFORMANCE

Unless otherwise specified all electrical characteristics apply to an ambient temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $45-\overline{7} 5 \%$.

Working temperature range, 63 V series 125 to 500 V series

Max. d.c. voltage up to max. temperature
Maximum a.c. voltage,
(up to max. temperature)
63 V series
125 V series

250 V series
500 V series
Test voltage (d.c.) for 1 min .
Breakdown voltage of encasing
Maximum a.c. current, based on a self-heating of $10^{\circ} \mathrm{C}$ and an ambient temperature of $60^{\circ} \mathrm{C}$

Capacitance tolerances, E24 series
E48 series E96 series

Temperature coefficient
Capacitance drift during life, with respect to actual value on delivery: 63 V versions, at $\leq 70^{\circ} \mathrm{C}$ 125 to 500 V versions, at $\overline{\leq} 85^{\circ} \mathrm{C}$

Insulation resistance for $\mathrm{C}<0.1 \mu \mathrm{~F}$ for $\mathrm{C} \geq 0.1 \mu \mathrm{~F}$
H. F. contact safety

Losses $(\tan \delta)$ at 1 kHz
at 100 kHz
at $\quad 1 \mathrm{MHz}$
Climatic robustness,
63 V series 125 to 500 V series

Solderability conforms to

$$
\begin{aligned}
& -40 \text { to }+70^{\circ} \mathrm{C} \\
& -40 \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
$$

nominal voltage ( $\mathrm{V}_{\mathrm{nom}}$ )
30 V
63 V
125 V
250 V
$2 \times$ nominal voltage
$>1000 \mathrm{~V}_{\mathrm{rms}}$

$$
\begin{aligned}
& 1 \mathrm{~A} \\
& \pm 1, \pm 2 \text { and } \pm 5 \% \\
& \pm 1 \text { and } \pm 2 \% \\
& \pm 1 \%
\end{aligned}
$$

$(-100 \pm 50) 10^{-6} / \mathrm{deg} C$
$<0.3 \%$
$<1$ \%
$>10^{6} \mathrm{M} \Omega$
$>10^{5} \mathrm{M} \Omega$
still contact proof for voltage levels < 1 mV
$<2 \times 10^{-4}$
$<5 \times 10^{-4}$
$<10 \times 10^{-4}$
category 40/070/21 (I.E.C. 68)
category 40/085/21
(both 500 h at $40^{\circ} \mathrm{C}$ and $90-95 \%$ R.H.)
I. E.C. 68-2, test T 3.2 on 6 mm from the capacitor body

## Soldering conditions:

p.w. board thickness 1.5 mm and horizontal mounting
p.w. board thickness 1.5 mm and vertical mounting
solder iron on 5 mm from capacitor body

Capacitance change by above conditions
(1), $\mathrm{C} \leq 10 \mathrm{nF}, 63 \mathrm{~V}$ versions
(1), $\mathrm{C}>10 \mathrm{nF}$
(2)
(3)
$<1 \%$
$<0.3 \%$
$<0.2 \%$
$<0.3 \%$
$>20 \mathrm{~N}(>2 \mathrm{~kg})$

Axial lead strength


Capacitance as a function of the temperature
$250^{\circ} \mathrm{C}, 5$ seconds (1)
$250^{\circ} \mathrm{C}, 5$ seconds (2)
$350^{\circ} \mathrm{C}, 10$ seconds(3)


Capacitance as a function of the frequency


Losses at 1 kHz at a function of the temperature


Losses as a function of the frequency


Resonance frequency as a function of the capacitance, at different total wire lengths

# PAPER D.C. CAPACITORS <br> rectangular box type 



These capacitors are suitable for apparatus and installations on which the severest demands are imposed such as stationary and mobile telecommunication installations and measuring apparatus (e.g. for coupling, decoupling and smoothing in transmitters and amplifiers, as separating capacitors in filter circuits and suchlike).

Tolerance on capacitance
Working temperature range
Maximum working voltage ( $\mathrm{V}_{\text {nom }}$ )
Maximum alternating voltage ( $50-60 \mathrm{~Hz}$ )

Capacitance drift during life
Test voltage for 1 minute between terminals
between interconnected terminals and casing
$\pm 10 \%$
-40 to $+70{ }^{\circ} \mathrm{C}$
above $40^{\circ} \mathrm{C}$ to be derated by $0.9 \% / \operatorname{deg} \mathrm{C}$
$250 \mathrm{~V}_{\mathrm{dc}}$ versions $175 \mathrm{~V}_{\mathrm{ac}}$ $500 \mathrm{~V}_{\mathrm{dc}}$ versions $250 \mathrm{~V}_{\mathrm{ac}}$ $1000 \mathrm{~V}_{\mathrm{dc}}$ versions $330 \mathrm{~V}_{\mathrm{ac}}$ $2000 \mathrm{~V}_{\mathrm{dc}}$ versions $484 \mathrm{~V}_{\mathrm{ac}}$ $3400 \mathrm{~V}_{\mathrm{dc}}$ versions $825 \mathrm{~V}_{\mathrm{ac}}$
$\leq 5 \%$
$250 \mathrm{~V}_{\mathrm{dc}}$ versions $650 \mathrm{~V}_{\mathrm{dc}}$
$500 \mathrm{~V}_{\mathrm{dc}}$ versions $1300 \mathrm{~V}_{\mathrm{dc}}$ $1000 \mathrm{~V}_{\mathrm{dc}}$ versions $1940 \mathrm{~V}_{\mathrm{dc}}$ $2000 \mathrm{~V}_{\mathrm{dc}}$ versions $3500 \mathrm{~V}_{\mathrm{dc}}$ $3400 \mathrm{~V}_{\mathrm{dc}}$ versions $5400 \mathrm{~V}_{\mathrm{dc}}$
$4 \times \mathrm{V}_{\text {nom }}\left(\min .2800 \mathrm{~V}_{\mathrm{dc}}\right)$

Insulation resistance at $20^{\circ} \mathrm{C}$

Losses $(\tan \delta)$ at 50 Hz
Climatic robustness
for $\mathrm{C}<0.2 \mu \mathrm{~F} \quad \mathrm{R} \geq 10000 \mathrm{M} \Omega$ for $\mathrm{C} \geq 0.2 \mu \mathrm{~F} \quad \mathrm{RC} \geq 2000 \mathrm{~s}$ $\leq 40 \times 10^{-4}$ category 40/070/56 (I.E.C. 68)

Composition of the catalog number
Max. working voltage code $\quad \underset{ }{2222} 230$ capacitance code, see table
$0=250 \mathrm{~V}_{\mathrm{dc}}$
$2=500 \mathrm{~V}_{\mathrm{dc}}$
$4=1000 \mathrm{~V}_{\mathrm{dc}}$
$5=2000 \mathrm{~V}_{\mathrm{dc}}$
$6=3400 \mathrm{~V}_{\mathrm{dc}}$

1 = types according to Figs. 2 or 3
5 = types according to Fig. 4

Example: The cat. number of a $4 \mu \mathrm{~F} / 1000 \mathrm{~V}$ capacitor with a height of 125 mm according to Fig.3, is 222223041405.

Dimensions and available versions see next page.

Dimensions in mm


Available versions

$\begin{gathered} \text { capacitance } \\ (\mu \mathrm{F}) \end{gathered}$	capacitance code	construction and dimensions (mm)							
		250 V dc				500 V dc			
		Fig.	A	H	h	Fig	A	H	h
1	105					2	20	50	14
2	205	2	20	50	14	2	30	50	14
4	405	2	40	50	14	2	60	50	14
6	605	2	55	50	14	2	35	125	11.5
8	805	2	30	125	11.5	2	45	125	11.5
10	106	2	35	125	11.5	2	55	125	11.5
12	126	2	45	125	11.5	4	75	125	17.5
16	166	2	55	125	11.5	4	90	125	17.5
20	206	4	75	125	17.5	4	120	125	17.5
25	256	4	90	125	17.5				

* 7.5 mm when $\mathrm{A}($ Fig. $)=15 \mathrm{~mm}$

cap.   ( $\mu \mathrm{F}$ )	cap.   code	construction and dimensions (mm)											
		$1000 \mathrm{~V}_{\mathrm{dc}}$				2000 V dc				$3400 \mathrm{~V}_{\mathrm{dc}}$			
		Fig.	A	H	h	Fig.	A	H	h	Fig.	A	H	h
0.1	104					3	15	50	19	3	25	50	24
0.16	164					3	15	50	19	3	35	50	24
0.25	254					3	20	50	19	3	55	50	24
0.5	504	3	15	50	15	3	35	50	19	3	35	125	21.5
1	105	3	30	50	15	3	25	125	16.5	3	60	125	21.5
2	205	3	50	50	15	3	45	125	16.5	4	120	125	26.5
4	405	3	40	125	12.5	4	90	125	21.5				
6	605	3	55	125	12.5	4	120	125	21.5				
8	805	4	75	125	17.5								
10	106	4	90	125	17.5								
12	126	4	105	125	17.5								

If desired use can be made of mounting brackets as illustrated in Fig.5: two if A (Fig.1) is smaller than $60 \mathrm{n} ı \mathrm{~m}$, four if $A$ is 60 mm or larger. The type numbers of the mounting brackets are: 432204103830 for $H($ Fig. 1) $=50 \mathrm{~mm}$, 432204103850 for H (Fig.1) $=125 \mathrm{~mm}$. Two wires of max. 0.75 sq. mm can be
 connected to each soldering tag in the case of glass lead-ins, and two wires of $\max .1 .5 \mathrm{sq} . \mathrm{mm}$ in the case of ceramic lead-ins.

Fig. 5

## PAPER D.C. CAPACITORS high tension types



C 10116


C 29892
'These high-tension capacitors are used e.g. in apparatus for X-ray research, nuclear research and testing of high-voltage installations. In these applications the capacitors may be charged either continuously by a direct current (e.g. in a cascade generator) or only during a short period of time and then discharged again (e.g. in a pulse generator). Various other modes of operation are possible.

Types and construction
In view of the many working conditions which have to be covered, the capacitors are classified into three groups:
(a) for continuous d.c. operation;
(b) for intermittent d.c. operation ( $30 \%$ averaged over 24 hours);
(c) for surge operation (the maximum direct voltage is applied only for short periods, in the order of minutes or even less).

The paper dielectric has been chosen so as to combine optimum performance under the relevant operating conditions with minimum dimensions and low price. The casing is composed of a high-grade synthetic pot enlarged, if necessary, by a number of rings screwed onto this pot to obtain the total volume required.
The top is closed by a cast-iron cover which is connected to one side of the capacitor element, the other connecting terminal being present in the centre of the bottom. For some types the pot and extension rings are provided with flanges of the same material so that the distance between the two terminals is increased and a higher working voltage can be applied. There are two standard diameters of the casing.

Maximum working voltage see Table
Tolerance on capacitance
$\pm 10 \%$
Test voltage:
Types for continuous operation for 1 second
Types for intermittent operation for 30 minutes
Types for surge operation
for 10 minutes
Insulation resistance at $25^{\circ} \mathrm{C}$
2.5 x max. working voltage
1.5 x max. working voltage
$1.2 \times$ max. working voltage
$R C \geq 2000 \mathrm{~s}$
Dimensions in mm (For H see Table)


Table
In the following table the maximum working voltage and the maximum static energy content expressed in terms of joules are given for the various combina tions of pot and rings either with or without flanges and for the three different modes of operation.

The static energy content is calculated in joules as:
$\frac{1}{2} \mathrm{CU}^{2}$, where $\mathrm{C}=$ capacitance in microfarads
$\mathrm{U}=$ direct working voltage in kilovolts.

The table serves only as a guidance to illustrate the possibilities of this highvoltage capacitor programme.

max.   working   voltage   ( $\mathrm{kV} \mathrm{Vc}_{\mathrm{d}}$ )	max. output for the different types (Wsec)			number of rings	construction Fig.	$\begin{aligned} & \text { height (H) } \\ & \text { (mm) } \end{aligned}$
	continuous operation	intermittent operation	surge operation			
20	15	50	65	1	1	145
30	15	50	65	1	2	145
45	40	135	200	2	1	255
60	40	135	200	2	2	255
60	155	525	760	1	3	245
75	60	220	300	3	1	365
75	155	525	760	1	4	245
100	60	220	300	3	2	365
100	80	310	400	4	1	475
120	320	1100	1850	2	3	465
150	80	310	400	4	2	475
150	100	400	500	5	1	585
150	320	1100	1850	2	4	465
180	530	1800	2800	3	3	685
200	100	400	500	5	2	585
200	120	500	600	6	1	695
225	530	1800	2800	3	4	685
250	120	500	600	6	2	695
250	140	590	700	7	1	805
300	140	590	700	7	2	805

Quotations can be made only if full details of the requirements are stated, namely:

1. capacitance;
2. maximum working voltage;
3. maximum temperature if higher than $40^{\circ} \mathrm{C}$;
4. mode of operation (unless continuous d.c. operation is required):
A. for intermittent d.c. operation; average number of operating hours per day;
B. for surge operation: a. discharge time or discharge frequency; b. repetition frequency;
5. any other information that may be of value for the design of the capacitor.

## PAPER A.C. CAPACITORS



A46069

These capacitors are specially designed for ballasts of luminous-discharge lamps but are also extensively used with single-phase asynchronous motors, and for powerfactor correction in low-power devices. They represent the latest stage in the development of paper capacitors in all-metal cans for low a.c. powers.

Working temperature range
Nominal voltage ( $\mathrm{V}_{\text {nom }}$ )
Working voltage
Working frequency

Capacitance drift during life
Test voltage for 1 minute
between the terminals between terminals and can Insulation resistance at $20^{\circ} \mathrm{C}$ between terminals between terminals and can
Losses $(\tan \delta)$ at 50 Hz
240 -series
241 -series
-20 to $+85^{\circ} \mathrm{C}$
$250,300,380,440$ and $500 \mathrm{~V}_{\mathrm{rms}}$
max. $1.1 \times V_{\text {nom }}$
$40-60 \mathrm{~Hz}$, beyond $50 \mathrm{~Hz} \mathrm{~V}_{\text {nom }}$ or working temperature should be derated by $10 \%$ or $10^{\circ} \mathrm{C}$ resp.
$\max . \pm 5 \%$
$2.15 \mathrm{~V}_{\text {nom }}$
$2500 \mathrm{~V}_{\mathrm{rms}}$ or $3500 \mathrm{~V}_{\mathrm{dc}}$
$\mathrm{R} \geq 12500 \mathrm{M} \Omega$
$R C \geq 2000 \mathrm{~s}$
$\leq 40 \cdot 10^{-4}$
$\leq 60 \cdot 10^{-4}$

## Type Approvals

A large part of our capacitor programme has been approved by official testing institutes:

Belgium	- CEBEC
Denmark	- DEMKO
Germany	- VDE
Norway	- NEMKO
Sweden	- SEMKO
Switzerland	- SEV

Besides, our capacitors comply with the British BSI specification, and the relevant IEC and CEE recommendations. If required, detailed information is available.

## Dimensions in mm



250 V -range

size	$\underset{(\mu \mathrm{F})}{\text { cap } \pm 10 \%}$	$\begin{aligned} & \mathrm{H}_{\text {max }} \\ & (\mathrm{mm}) \end{aligned}$	catalog number 2222241 ....			
			Fig. 1	Fig. 2	Fig. 3	Fig. 4
I	3	50	04023	04223	04423	04623
	3.5	57	28	28	28	28
	4	57	34	34	34	34
	4.5	62	39	39	39	39
	5	71	45	45	45	45
	6	86	56	56	56	56
	7	86	67	67	67	67
	8	99	78	78	78	78
	9	109	89	89	89	89
	10	124	04101	04301	04501	04701
	12	148	05	05	05	05
II	8	57	54078	54278	54478	54678
	9	62	89	89	89	89
	10	71	54101	54301	54501	54701
	12	86	05	05	05	05
	13.5	86	08	08	08	08
	15	99	12	12	12	12
	18	109	18	18	18	18
	20	124	23	23	23	23
	25	148	34	34	34	34

Special 250 V -range
These capacitors are specially designed for power-factor correction of gas-discharge lamps for public lighting. They are painted grey.

size	cap. $\pm 10 \%$   $(\mu \mathrm{~F})$	$\mathrm{H}_{\text {max }}$   $(\mathrm{mm})$	catalog number   $2222241 \ldots \ldots$	
			Fig.2	Fig.4
	8	57	90054	90055
	10	71	56	57
	13	86		58
	15	99		59
	18	109		61
	20	124	62	63
	25	148	64	65

## 300 V -range

size	$\text { cap. } \underset{(\mu \mathrm{F})}{ \pm 5 \%}$	$\begin{aligned} & \mathrm{H}_{\text {max }} \\ & (\mathrm{mm}) \end{aligned}$	catalog number $2222240 \ldots$.			
			Fig. 1	Fig. 2	Fig. 3	Fig. 4
I	2	50	07012	07212	07412	07612
	2.5	57	17	17	17	17
	3	62	23	23	23	23
	3.5	71	28	28	28	28
	4	86	34	34	34	34
	4.5	86	39	39	39	39
	5	99	45	45	45	45
	6	109	56	56	56	56
	7	124	67	67	67	67
	8	148	78	78	78	78
II	8	86	57078	57278	57478	57678
	9	86	89	89	89	89
	10	99	57101	57301	57501	57701
	12	109	05	05	05	05
	14	124	09	09	09	09
	16	148	14	14	14	14
	18	148	18	18	18	18

380 V-range

size	$\text { cap. } \pm 5 \%$	$H_{\text {max }}$ (mm)	catalog number $2222240 \ldots$.			
			Fig. 1	Fig. 2	Fig. 3	Fig. 4
I	1.5	50	11006	11206	11406	11606
	2	57	12	12	12	12
	2.5	71	17	17	17	17
	3	86	23	23	23	23
	3.5	99	28	28	28	28
	3.6	99	29	29	29	29
	3.7	99	31	31	31	31
	3.8	99	32	32	32	32
	4	99	34	34	34	34
	5	124	45	45	45	45
	5.7	148	53	53	53	53
	5.8	148	54	54	54	54
	5.9	148	55	55	55	55
	6	148	56	56	56	56
II	7	99	61067	61267	61467	61667
	8	99	78	78	78	78
	10	124	61101	61301	61501	61701

440 V-range

size	$\underset{(\mu \mathrm{F})}{\text { cap. } \pm 5 \%}$	$\begin{aligned} & \mathrm{H}_{\max } \\ & (\mathrm{mm}) \end{aligned}$	catalog number 2222240 ....			
			Fig. 1	Fig. ${ }^{\text {. }}$	Fig. 3	Fig. 4
I	1	50	15001	15201	15401	15601
	1.5	57	06	- 06	06	06
	2	71	12	12	12	12
	2.5	86	17	17	17	17
	3	99	23	23	23	23
	3.5	124	28	28	28	28
	4	124	34	34	34	34
II	5	86	65045	65245	65445	65645
	6	99	56	56	56	56

500 V -range

size	cap. $\pm 5 \%$   $(\mu \mathrm{~F})$	$\mathrm{H}_{\max }$   $(\mathrm{mm})$	catalog number $2222240 \ldots$			
		Fig.1	Fig.2	Fig.3	Fig.4	
I	0.75	50	19192	19392	19592	19792
	1	57	19001	19201	19401	19601
	1.5	71	06	06	06	06
	2	86	12	12	12	12
	2.5	109	17	17	17	17
	3	124	23	23	23	23
	3.5	148	28	28	28	28
II	4	86	6934	69234	69434	69634
	5	109	45	45	45	45
	6	124	56	56	56	56

## METALLISED POLYCARBONATE A.C. CAPACITORS



RZ 20807

Capacitance range
325-series $2-25 \mu \mathrm{~F}$
326-series
327-series
Nominal working voltage
325-series
326-series
327-series
Frequency range

1. 5-18 $\mu \mathrm{F}$
$1.5-10 \mu \mathrm{~F}$
$160 \mathrm{~V}_{\mathrm{rms}}$
$220 \mathrm{~V}_{\mathrm{rms}}$
$280 \mathrm{~V}_{\mathrm{rms}}$
$40-60 \mathrm{~Hz}$

## APPLICATION

- As a shunt capacitor for power factor correction of fluorescent and other discharge lamps.
- As a phase shift capacitor for single phase alternating current motors.
- Due to its low losses also at higher frequencies, this capacitor is suitable to be used as a commutation capacitor in thyristor circuits.


## CONSTRUCTION

The capacitors are made of metallised polycarbonate. They are housed in a cylindrical aluminium casing, which is sealedwith a rubber disc (versions with soldering tags) or with synthetic resin (version with flat connections).
The capacitors are provided with a central fastening bolt at the bottom.
These capacitors offer many advantages over conventional paper capacitors for a.c. applications:

- they are self-healing
- they cannot leak (because they have no liquid impregnation)
- the dimensions are more than $40 \%$ smaller
- the dielectric losses are low, 60-75\% lower than those of a.c. paper capacitors.

Dimensions in mm
For D and H, see table.


Fig.1. Version with soldering tags.


Fig.2. Version with solderingtags, providedwith leads and discharge resistor


Fig.3. Version with flat connections

## TECHNICAL PERFORMANCE

Capacitance
Tolerance on capacitance
Frequency range
Nominal working voltage

> 325 -series
> 326 -series
> 327 -series

Test voltage for 1 minute

- between terminals

> 325 -series
> 326 -series
> 327 -series

- between interconnected terminals and casing
Working temperature range
see table
$\pm 10 \%$
$\overline{40}$ to 60 Hz ; for other frequencies information on request.
$160 \mathrm{~V}_{\mathrm{rms}}$
$220 \mathrm{~V}_{\mathrm{rms}}$
$280 \mathrm{~V}_{\mathrm{rms}}$
$265 \mathrm{~V}_{\mathrm{rms}}$
$365 \mathrm{~V}_{\text {rms }}$
$480 \mathrm{~V}_{\mathrm{rms}}$
$2500 \mathrm{~V}_{\mathrm{rms}}$ or $3500 \mathrm{~V}_{\mathrm{dc}}$
-40 to $+85^{\circ} \mathrm{C}$

Insulation resistance at $20^{\circ} \mathrm{C}$
between terminals
between interconnected
terminals and casing

$$
>\frac{10000}{\mathrm{C}(\mu \mathrm{~F})} \mathrm{M} \Omega
$$

Losses ( $\tan \delta$ ) at 50 Hz and $25-85^{\circ} \mathrm{C}$

$$
\begin{array}{cl}
325-\text { series } & <25 \times 10^{-4} \\
326-\text { series } & <20 \times 10^{-4} \\
327-\text { series } & <15 \times 10^{-4} \\
\text { Climatic category (I.E.C. 68) } & 40 / 085 / 56
\end{array}
$$

## TYPES

Composition of the catalog number:

$$
\begin{aligned}
& 2222325 \\
& 2222326
\end{aligned}
$$

$$
2222327
$$

code for version

$\qquad$ code for capacitance value, see table
$50=$ version Fig. 1
$52=$ version Fig. 2
$70=$ version Fig. 3

$\begin{aligned} & \text { capacitance } \\ & (\mu \mathrm{F}) \end{aligned}$	dimensions D x H (mm)			code in catalog number
	325-series	326-series	327 -series	
1.5	$30 \times 40$	$30 \times 40$	$30 \times 40$	155
2				205
2.5				255
3				305
3.5				355
4				405
4.5			$30 \times 52$	455
5				505
6		$30 \times 52$		605
7			$35 \times 52$	705
8				805
9	$30 \times 52$		$40 \times 52$	905
10		$35 \times 52$		106
12				126
14	$35 \times 52$	$40 \times 52$		146
16				166
18				186
20	$40 \times 52$			206
25				256

Electrolytic capacitors
WET ALUMINIUM TYPES

typ		series number	$\begin{aligned} & \mathrm{T}_{\max } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	capacitance   range ( $\mu \mathrm{F}$ )	voltage range (V)	application
miniature		$\begin{gathered} 001,002 \\ (\mathrm{C} 426) \\ 001 \end{gathered}$	$\begin{aligned} & 70(85) \\ & 70,60 \end{aligned}$	$\begin{array}{ll} 0.32- & 400 \\ 0.64- & 500 \end{array}$	$\begin{aligned} & 64-4 \\ & 64-2.5 \end{aligned}$	general purposes   transistorized equipment
small		023 (C437)	70 (85)	64- 4000	64-2.5	
large	W.	$\begin{gathered} 060(\mathrm{C} 431) \\ 071,073 \\ 072 \end{gathered}$	$\begin{aligned} & 70 \\ & 85 \\ & 85 \end{aligned}$	$\begin{array}{rr} 320- & 20000 \\ 680- & 47000 \\ 2 \times 1 & 100-2 \times 23500 \end{array}$	$\begin{aligned} & 64-6.4 \\ & 63-6.3 \\ & 63-6.3 \end{aligned}$	
miniature and small		015-017	85/70	0.47- 4700	63-4	general purposes and long life
small		040 (C436)	70	2.5- 80	400-100	high voltages
large		$\begin{gathered} 063,064 \\ (\mathrm{C} 433) \\ 080,081 \end{gathered}$	$\begin{gathered} 70(85) \\ 70 \end{gathered}$	$\begin{array}{rr} 200- & 8000 \\ 8- & 500 \end{array}$	$\begin{array}{r} 64-6.4 \\ 500-100 \end{array}$	power rectifiers
		063, 067	70	25-100 triple and quadruple	350-300	special

## SELECTION GUIDE

type	series number	$\begin{aligned} & \mathrm{T}_{\left({ }^{\circ} \mathrm{Cax}\right.} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { capacitance } \\ \text { range } \\ (\mu \mathrm{F}) \end{gathered}$	voltage range (V)	application
	101 (C428)	70	2.5-320	64-4	long service life and high reliability
large $\quad \square \times$ 制	$\begin{aligned} & \begin{array}{l} 102,103^{*} \\ (\mathrm{C} 432) \\ 106,107 \end{array} \end{aligned}$	$\begin{array}{r} 70 \\ 85 \end{array}$	$\begin{gathered} 900-31500 \\ 1500-150000 \end{gathered}$	$\begin{aligned} & 100-6.4 \\ & 100-6.3 \end{aligned}$	
SOLID ALUMINIUM TYPES					
	121	85	2.7- 390	40-4	severe requirements, long service life and high reliability
SOLID TANTALUM TYPES					
miniature	143	125	0.33-330	35-6	severest requirements
miniature $\longrightarrow$	142	85 (125)	0.015-56	25-1.6	ultra small dimensions

NOTE: Unless otherwise specified, all clectrical values given in the data sheets apply to a temperature of 20 to $25{ }^{\circ} \mathrm{C}$, an atmospheric pressure of $9.30-1060$ mbar and a relative humidity of $\leq 75 \%$

* = Maintenance type
(anchen


# ELECTROLYTIC CAPACITORS miniature type, for general purposes (economy range) 



RZ 20603-2
The economy range of miniature wet aluminium capacitors covers the whole capacitance and voltage range of the standard 001 -series, but in can sizes 4 and 6 only, which is obtained by using non-etched or low etched anode foil, of fering the most inexpensive solution.
Moreover, these capacitors offer, compared to smaller types:
(a) better low-temperature characteristics;
(b) lower losses and impedances;
(c) longer service life and higher reliability.
They are therefore preferable in all cases where utmost miniaturisation is not required.
These capacitors are designed for operation between -40 to $+70^{\circ} \mathrm{C}$. They may also operate at $85^{\circ} \mathrm{C}$ for 12 hours per 24 hours.


Dimensions in mm


Fig.1. $\mathrm{d}=0.8$


Fig. 2

$*$   can   size	insulated version   with axial leads			printed-wiring version			
	Fig.	$\mathrm{D}_{1}$   $(\mathrm{~mm})$	$\mathrm{L}_{1}$   $(\mathrm{~mm})$	Fig.	$\mathrm{D}_{2}$   $(\mathrm{~mm})$	$\mathrm{L}_{2}$   $(\mathrm{~mm})$	S   $(\mathrm{mm})$
	1	6.7	18.5	2	8.7	25	7.62
6	1	10.4	18.5	2	12.9	25	10.16

Tolerance on capacitance
Temperature range
Max. temperature for 12 hours per 24 hours
Peak voltage for 1 minute per hour:

$$
\begin{aligned}
& \text { at }+70^{\circ} \mathrm{C} \\
& \text { at } \leq+40^{\circ} \mathrm{C}
\end{aligned}
$$

Climatic robustness
$-10 /+50 \%$
$-40 /+70{ }^{\circ} \mathrm{C}$
$85^{\circ} \mathrm{C}$
1.125 x working voltage +0.5 V
1.25 x working voltage +0.5 V
category 40/070/56 (IEC68)

Composition of the catalog number suffix, see table
2222001 .... high etched foil type $2222002 \ldots$ low and non-etched foil type


can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   $1)$   $(\mu \mathrm{A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	cat.number   2222   followed by   $5)$
4	4	8	4.1	16	0.15	5	00212808
4		125	30	40	0.30	6	00112131
6		400	73	125	0.30	1.8	00112401
4	6.4	32	15	16	0.15	6	00213329
4		100	37	40	0.30	6	00113101
6		320	85	125	0.30	1.8	00113321
4	10	64	37	40	0.25	6	00114649
6		200	85	125	0.25	1.8	00114201
4	16	2.5	4.1	16	0.10	5	00215258
4		16	18	16	0.20	6	00215169
4		40	37	40	0.20	6	00115409
6		125	85	125	0.20	1.8	00115131
4	25	1.6	4.1	16	0.10	6	00216168
4		10	18	16	0.15	6	00216109
4		25	37	40	0.15	6	00116259
6		80	85	125	0.15	1.8	00116809
4	40	1	4.1	16	0.10	10	00217108
4		6.4	18	16	0.10	6	00217648
4		16	37	40	0.10	6	00117169
6		50	85	125	0.10	1.8	00117509
4	64	0.32	2	16	0.10	18	00218327
4		0.64	4.1	16	0.10	12	00218647
4		4	18	16	0.10	6	00218408
4		10	37	40	0.10	6	00118109
6		32	85	125	0.10	1.8	00118329

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70{ }^{\circ} \mathrm{C}$.
3) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
4) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .
5) For insulated version.

## ELECTROLYTIC CAPACITORS miniature type, for general purposes



RZ 16995-3A

These capacitors are specially suitable for coupling and decoupling in miniaturised electronic equipment, such as transistorised pocket radio receivers, personal tape recorders and similar applications.
They are available in an insulated version with axial leads for conventional wiring and in a version for vertical mounting on printed wiring boards.

For applications in which utmost miniaturisation is not required refer to the economy range (see preceding pages)




Fig. 2b

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	axial version (insulated)			printed-wiring version			
		Fig.	$\begin{gathered} \mathrm{D}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{1} \\ (\mathrm{~mm}) \end{gathered}$	Fig.	$\begin{gathered} \mathrm{D}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{~mm}) \end{gathered}$
1	0.6	1 a	3.5	10.5	1b	3.8	12.5	2.54
2	0.6	2 a	4.8	10.5	1 b	5.2	12.5	2.54
3	0.6	2 a	6.1	10.5	1 b	6.4	12.5	3.59
4	0.8	2 a	6.7	18.5	2 b	8.7	25	7.62
5	0.8	2 a	8.3	18.5	2 b	10.3	25	7.62
6	0.8	2 a	10.4	18.5	2 b	12.9	25	10.16

Tolerance on capacitance: can size 2-6
can size 1
Temperature range: can size 2-6 can size 1
Max. a.c. voltage, without d.c. voltage

Peak voltage for 1 minute per hour:
at $+70^{\circ} \mathrm{C}$
at $\leq+40^{\circ} \mathrm{C}$

Climatic robustness
Composition of the catalog number
$-10 /+50 \%$
$-10 /+100 \%$
$-40 /+70^{\circ} \mathrm{C}$
$-40 /+60^{\circ} \mathrm{C}$
2.5 V types: 0.25 V rms

4 V types: $0.4 \mathrm{~V}_{\mathrm{rms}}$
6.4 V types: 0.6 V rms

10-64 V types: 1 V Vms
1.125 x working voltage +0.5 V
1.25 x working voltage +0.5 V category 40/070/56 (IEC68)
Composition of the catalog number

suffix
$1=$ axial version
$4=$ printed-wiring version

ELECTROLYTIC CAPACITORS
\(\left.$$
\begin{array}{c|c|c|c|c|c|c|c}\hline \text { can } \\
\text { size }\end{array}
$$ $$
\begin{array}{c}\text { working } \\
\text { voltage } \\
(\mathrm{V})\end{array}
$$ $$
\begin{array}{c}\text { capac- } \\
\text { itance } \\
(\mu \mathrm{F})\end{array}
$$ $$
\begin{array}{c}\text { leakage } \\
\text { current } \\
1) \\
(\mu \mathrm{A})\end{array}
$$ $$
\begin{array}{c}\text { ripple } \\
\text { current } \\
2) \\
(\mathrm{mA})\end{array}
$$ $$
\begin{array}{c}\text { dissi- } \\
\text { pation } \\
\text { factor } \\
3)\end{array}
$$ $$
\begin{array}{c}\text { impe- } \\
\text { dance } \\
4) \\
(\Omega)\end{array}
$$ \begin{array}{c}suffix <br>
axial <br>
version <br>

5)\end{array}\right]\)| 1 |
| :--- |
| 2.5 |

For notes see next page.

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   $1_{2}$   $(\mu \mathrm{~A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	suffix   axial   version   $5)$
1	40	1	4.1	2.5	0.10	65	17108
2		4	12	10	0.10	24	17408
3		8	21	20	0.10	12	17808
4		16	37	40	0.10	6	17169
5		32	63	80	0.10	3	17329
6		50	85	125	0.10	1.8	17509
1	64	0.64	4.1	2.5	0.10	65	18647
2		2.5	12	10	0.10	24	18258
3		5	21	20	0.10	12	18508
4		10	37	40	0.10	6	18109
5		20	63	80	0.10	3	18209
6		32	85	125	0.10	1.8	18329

${ }^{1}$ ) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{C}\right.$ for can size 1)
${ }^{3}$ ) Maximum dissipation factor ( $\tan \delta$ ) at $20^{\circ} \mathrm{C}$ and 50 Hz
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz
5) See composition of the catal. No.

# WET ALUMINIUM ELECTROLYTIC CAPACITORS to IEC 103, for general purposes (type 2) and for long life applications (type 1) 



RZ 28600-2

QUICK REFERENCE DATA
Nom. capacitance range (E6 series)

$$
0.47 \text { to } 4700 \mu \mathrm{~F}
$$

Tolerance on nom. capacitance

case sizes 2 to 03	$-10 /+50 \%$
case size 1	$-10 /+100 \%$
Rated voltage range (UR)	4 to 63 V

Category (IEC 68) and type (IEC 103):

case size	category	type
1	$25 / 070 / 56$	2
2,3 and 5 a	$25 / 085 / 56$	2
4,5 and 6	$25 / 085 / 56$	1
00 to 03	$40 / 085 / 56$	l

## APPLICATION

General purposes in transistorized equipment.
In comparison to the 001/002 and 023 series higher CV-products and improved temperature ranges are obtained.

$\begin{gathered} C \\ (\mu F) \end{gathered}$	$U_{R}(\mathrm{~V})$						
	4	6.3	10	16	2540	63	
0.47						$1 / 4$	
1						4	
						1	
1.5						13	
						1	
2.2					1	,	
					1	3/4	
3.3					7	1	
						(3)	
						$23 / 4$	
6.8							
					-		
10					(2)	14	
15				$2)$	-		
22			)		(3) 1	5	
33					$44^{\circ}$		
47			$3)$		4/50-5	(6)	
68		(3)	,		11		
100			$5^{\circ}$		$6)$		
150		4/50			(6) 00		
220			5)		1)	02	
330			$6)$		17		
470			0		(01) 02		
680						$4=\varnothing$	$6.7 \times 20$
1000						$5=10$	$8.3 \times 20$
1500					dimensions	$6=\varnothing 1$	$03 \times 20$
2200					$1=\varnothing 3.5 \times 10.5$	$00=\varnothing$	$10.4 \times 32.5$
3300					$2=\varnothing 4.8 \times 12.5$	01- 0	
4700						$01=6$	$12.9 \times 32.5$
					$3=\varnothing 6.1 \times 12.5$	02= $=0$	$154 \times 32.5$
					$5^{\circ}=\varnothing 8.3 \times 12.5$	03 $=\varnothing$	$18.4 \times 325$

## DESCRIPTION

The capacitor has etched aluminium-foil electrodes rolled up with a porous paper spacer which separates the anode and the cathode. The spacer is impregnated with an electrolyte which retains its good characteristics both at low and at high temperatures. The capacitor is housed in an aluminium case.
Case size 1 is sealed with a rubber bung, the other cases are sealed with a phenol paper laminate disc which at one side is covered with rubber and at the other side with polythene tetrafluorethene.

The capacitor is available in 4 styles, all with soldered-copper leads.
Style 1 : Axial leads. Case insulated with a blue transparent plastic sleeve.
Styles 2 and 3: Single ended. Case insulated with a blue transparent plastic sleeve. The sleeve of style 2 has a boss and that of style 3 has a short slot so that a greater pitch between the leads can be made, if necessary.

Style 4 : Single ended. Case fitted in a yellow plastic foot.

MECHANICAL DATA

Dimensions in mm


Style 1

[^44]


Style 3


Style 4

Table 1

$\begin{aligned} & \text { case } \\ & \text { size } \end{aligned}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	style 1			style 2			style 3			style 4			
		$\begin{gathered} \text { D } \\ (\mathrm{mm}) \\ \mathrm{max} . \end{gathered}$	$\begin{aligned} & \left.\mathrm{L}^{3}\right) \\ & (\mathrm{mm}) \\ & \mathrm{max} . \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{min}} \\ 2 \text { ) } \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \\ \max . \end{gathered}$	L ${ }^{3}$ ) (mm) max	$\begin{aligned} & \mathrm{T} \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \\ \mathrm{max} . \end{gathered}$	$L^{3}$ )   (mm)   max	2)	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \\ \mathrm{max} . \end{gathered}$	$\begin{aligned} & \left.L^{3}\right) \\ & (\mathrm{mm}) \\ & \max . \end{aligned}$	T 2)	$\begin{gathered} \text { weight } \\ \mathrm{g} \end{gathered}$
1	0.6	3.5	10.5	6 E	4.1	12.5	E							0.35
2	0.6	4.8	12.5	6 E	5.6	14.5	E							0.53
3	0.6	6.1	12.5	6E	6.9	14.5	EV 2							0.9
5a	0.6	8.3	12.5	6 E	9.1	14.5	2 E							1.2
4	0.8	6.7	20	10E				8.5	24.5	2 E				1.5
5	0.8	8.3	20	10E				10.2	24.5	2 E				2
6	0.8	10.3	20	10E				12.1	24.5	3E				2.7
00	0.8	10.4	32.5	14E				11.2	34.5	3 E	12.8	41	4E	4.0
01	0.8	12.9	32.5	14E				13.6	34.5	3 E	15.2	41	4 E	6.3
02	0.8	15.4	32.5	14E				16	34.5	4 E	17.8	41	5 E	8.2
03	0.8	18.4	32.5	14 E				19	34.5	4 E	20.8	41	6 E	10.9

## Marking

$1 \times$ group number, $2 \times$ capacitance, $2 \times$ rated voltage, a band to indicate negative terminal and a letter code for country of origin and year of manufacture.
2) $\mathrm{E}=2.5+0.04 \mathrm{~mm}$.
${ }^{3}$ ) With exception of case size 1 all lengths are temporarily 2 mm shorter.

Mounting
Styles 2 and 3 are designed for mounting on single-sided printed-wiring boards, however, case sizes 4,5 and 6 and all style 4 capacitors are also directly suitable for double-sided p.w. boards.

No special provisions are required for soldering to the leads.
Minimum atmospheric pressure 200 mbar ( 15 cm Hg )

## ELECTRICAL DATA

Temperature
Category temperature range
for case size 1

$$
2 \text { to } 6
$$

00 to 03
-25 to $+70^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$

## Capacitance

Nom. capacitance values ( 100 Hz )
Tolerance on nom. capacitance ( 100 Hz )
for case size 1
for other case sizes
Voltage
Rated voltage $=\max .($ d.c. + peaka.c. $)$ voltage at $50^{\circ} \mathrm{C}$ up to upper cat. temp.

Max. (d.c. + peak a.c. ) voltage at $\leq 50^{\circ} \mathrm{C}$
Max. a.c. voltage without d.c. voltage (peak value)

Surge: max. voltage for 1 min per h , at 50 to $85^{\circ} \mathrm{C}$
at $\leq 50^{\circ} \mathrm{C}$

## Ripple current

Max. permissible ripple current at 100 Hz , at upper cat. temp.

Leakage current
Leakage current 5 min after application of the rated voltage
$-10 /+100 \%$
$-10 /+50 \%$
see Table 2
see Table 2, UR
$1.1 \times$ rated voltage
$0.1 \times$ rated voltage or 1 V , whichever is less
1.125 x rated voltage +0.5 V
1.25 x rated voltage +0.5 V
see Table 2
see Table 2

Leakage current during continuous operation at UR and at room temperature at upper cat. temp.
approx. $1 / 5$ of value stated in Table 2. $\leq$ value stated in Table 2.

If owing to prolonged storage and/or storage at an excessive temperature the leakage current is too high, application of the rated voltage for some hours will cause the leakage current to fall to a value lower than specified in Table 2.

Tan $\delta$ (tangent of the loss angle)
Tan $\delta$ at 100 Hz (nom. value)
see Table 2
Tolerance on nom. value, at 100 Hz

rated voltage	case size	tolerance
$4-10 \mathrm{~V}$	$1,2,3,5 \mathrm{a}$	$-60 /+60 \%$
	4 to 03	$-50 /+50 \%$
$16-63 \mathrm{~V}$	$1,2,3,5 \mathrm{a}$	$-50 /+50 \%$
	4 to 03	$-40 /+40 \%$

Tan $\delta$ is measured by means of a four-terminal circuit (Thompson circuit)

## Impedance

Impedance at 100 kHz (nom. value) see Table 2
Tolerance on nom. value, at 100 kHz

$$
\begin{array}{cl}
\text { for case size } 1,2,3 \text { and } 5 a & -40 /+70 \% \\
4 \text { to } 03 & -30 /+60 \%
\end{array}
$$

The impedance is measured by means of a four-terminal circuit (Thompson circuit).
Table 2
Unless otherwise specified, all electrical values in Table 2 apply at an ambient temperature of 20 to $25^{\circ} \mathrm{C}$, an atmospheric pressure of 930 to 1060 mbar, and a relative humidity of 45 to $75 \%$.

UR   (V)	```nom. cap. at }100\textrm{Hz (\mu\textrm{F})```	max. ripple current at 100 Hz , upper cat. temp. ( mA )	$\begin{gathered} \text { leakage } \\ \text { current }^{1} \text { ) } \\ (\mu \mathrm{A}) \\ \max . \end{gathered}$	$\begin{gathered} \tan \delta \text { at } \\ 100 \mathrm{~Hz} \\ \text { nom. } \left.{ }^{1}\right) \end{gathered}$	impedance at 100 kHz , nom. ( $\Omega)^{1}$ )		$\begin{aligned} & \text { case } \\ & \text { size } \end{aligned}$	catalogue number 2222 followed by		
					$+20^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$		style 1	styles $2+3$	style 4
4	15	10	5	0.25	12	145	1	01512159	01542159	
4	47	26	10	0.25	4	50	2	01512479	01542479	
4	100	44	20	0.25	2	25	3	01512101	01542101	
4	220	70	44	0.25	1	12	5a	01512221	01542221	
4	220	85	9	0.25	0.5	6	4	01612221	01642221	
4	330	125	12	0.25	0.35	4.5	5	01612331	01642331	
4	1000	325	28	0.25	0.2	1	00	01712102	01742102	01752102
4	4700	920	117	0.25	0.3	0.5	03	01712472	01742472	01752472
6.3	10	12	5	0.20	12	145	1	01513109	01543109	
6.3	33	26	11	0.20	4	50	2	01513339	01543339	
6.3	68	44	22	0.20	2	25	3	01513689	01543689	
6.3	150	70	48	0.20	1	12	5a	01513151	01543151	
6.3	150	85	10	0.20	0.5	6	4	01613151	01643151	
6.3	470	190	22	0.20	0.2	2.4	6	01613471	01643471	
6.3	680	325	30	0.20	0.2	1	00	01713681	01743681	01753681
6.3	1500	470	61	0.20	0.2	0.75	01	01713152	01743152	01753152
6.3	2200	630	88	0.20	0.25	0.6	02	01713222	01743222	01753222
6.3	3300	920	129	0.20	0.3	0.5	03	01713332	01743332	01753332

1) See also corresponding paragraph.

UR   (V)	nom.cap.at 100 Hz$(\mu \mathrm{~F})$	```max. ripple cur- rent at }100\textrm{Hz}\mathrm{ , upper cat. temp. (mA)```	$\begin{gathered} \text { leakage } \\ \text { current }{ }^{1} \text { ) } \\ (\mu \mathrm{A}) \\ \text { max. } \end{gathered}$	$\tan \delta$ at 100 Hz nom.	impedance at 100 kHz , nom. ( $\Omega)^{1}$ )		$\begin{aligned} & \text { case } \\ & \text { size } \end{aligned}$	catalogue number 2222 followed by		
					$+20^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$		style 1	styles $2+3$	style 4
10	6.8	12	5	0.16	12	145	1	01514688	01544688	
10	22	26	11	0.16	4	50	2	01514229	01544229	
10	47	44	24	0.16	2	25	3	01514479	01544479	
10	100	70	50	0.16	1	12	5a	01514101	01544101	
10	100	85	10	0.16	0.5	6	4	01614101	01644101	
10	220	125	18	0.16	0.35	4.5	5	01614221	01644221	
10	330	190	24	0.16	0.2	2.4	6	01614331	01644331	
10	470	325	33	0.16	0.2	1	00	01714471	01744471	01754471
10	1000	470	64	0.16	0.2	0.75	01	01714102	01744102	01754102
10	1500	630	94	0.16	0.25	0.6	02	01714152	01744152	01754152
10	2200	920	136	0.16	0.3	0.5	03	01714222	01744222	01754222
16	4.7	12	5	0.12	12	145	1	01515478	01545478	
16	15	26	12	0.12	4	50	2	01515159	01545159	
16	33	44	27	0.12	2	25	3	01515339	01545339	
16	68	70	53	0.12	1	12	5 a	01515689	01545689	
16	68	85	11	0.12	0.5	6	4	01615689	01645689	
16	150	125	19	0.12	0.35	4.5	5	01615151	01645151	
16	220	190	26	0.12	0.2	2.4	6	01615221	01645221	
16	330	325	36	0.12	0.2	1	00	01715331	01745331	01755331
16	680	470	70	0.12	0.2	0.75	01	01715681	01745681	01755681
16	1000	630	100	0.12	0.25	0.6	02	01715102	01745102	01755102
16	1500	920	148	0.12	0.3	0.5	03	01715152	01745152	01755152

${ }^{1}$ ) See also corresponding paragraph.

UR   (V)	$\begin{aligned} & \text { nom. } \\ & \text { cap. } \\ & \text { at } 100 \mathrm{~Hz} \\ & (\mu \mathrm{~F}) \end{aligned}$	max. ripple current at 100 Hz , upper cat. temp. ( mA )	leakage ${ }^{1}$,current ${ }^{1}$ )$(\mu \mathrm{A})$$\max$.	$\tan \delta$ at 100 Hz nom.	impedance at 100 kHz , nom. ( $\Omega)^{1}$ )		$\begin{aligned} & \text { case } \\ & \text { size } \end{aligned}$	catalogue number 2222 followed by		
					$+20^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$		style 1	styles $2+3$	style 4
25	3.3	11	5	0.10	12	145	1	01516338	01546338	
25	10	23	13	0.10	4	50	2	01516109	01546109	
25	22	37	28	0.10	2	25	3	01516229	01546229	
25	47	60	56	0.10	1	12	5a	01516479	01546479	
25	47	72	12	0.10	0.5	6	4	01616479	01646479	
25	100	105	19	0.10	0.35	4.5	5	01616101	01646101	
25	150	155	27	0.10	0.2	2.4	6	01616151	01646151	
25	220	270	37	0.10	0.2	1	00	01716221	01746221	01756221
25	470	360	75	0.10	0.2	0.75	01	01716471	01746471	01756471
25	680	500	106	0.10	0.25	0.6	02	01716681	01746681	01756681
25	1000	650	154	0.10	0.3	0.5	03	01716102	01746102	01756102
40	2.2	11	5	0.08	12	145	1	01517228	01547228	
40	6.8	23	14	0.08	4	50	2	01517688	01547688	
40	15	37	30	0.08	2	25	3	01517159	01547159	
40	33	60	60	0.08	1	12	5a	01517339	01547339	
40	33	72	12	0.08	0.5	6	4	01617339	01647339	
40	47	105	16	0.08	0.35	4.5	5	01617479	01647479	
40	100	155	28	0.08	0.2	2.4	6	01617101	01647101	
40	150	270	40	0.08	0.2	1	00	01717151	01747151	01757151
40	220	360	57	0.08	0.2	0.75	01	01717221	01747221	01757221
40	470	500	117	0.08	0.25	0.6	02	01717471	01747471	01757471
40	680	650	167	0.08	0.3	0.5	03	01717681	01747681	01757681

1) See also corresponding paragraph.

UR   (V)	```nom.```	max. ripple current at 100 Hz , upper cat. temp. (mA)	$\begin{gathered} \text { leakage } \\ \text { current }{ }^{1} \text { ) } \\ (\mu \mathrm{A}) \\ \max . \end{gathered}$	$\tan \delta$ at 100 Hz   nom. ${ }^{1}$ )	impedance at 100 kHz , nom. ( $\Omega)^{1}$ )		$\begin{aligned} & \text { case } \\ & \text { size } \end{aligned}$	catalogue number 2222 followed by		
					$+20^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$		style 1	styles 2+3	style 4
63	0.47	7	5	0.06	5	25	3	01518477	01548477	
63	0.47	6	1	0.06	4	20	4	01618477	01648477	
63	1	10	5	0.06	3	25	3	01518108	01548108	
63	1	12	1	0.06	2	10	4	01618108	01648108	
63	1.5	9	5	0.06	12	14.5	1	01518158	01548158	
63	1.5	12	5	0.06	2.5	25	3	01590001	01590002	
63	2.2	15	7	0.06	2	25	3	01518228	01548228	
63	2.2	21	2	0.06	1.4	7	4	01618228	01648228	
63	3.3	17	11	0.06	2	25	3	01518338	01548338	
63	4.7	22	15	0.06	2	25	3	01590003	01590004	
63	4.7	18	15	0.06	4	50	2	01518478	01548478	
63	4.7	31	3	0.06	1.2	6	4	01618478	01648478	
63	6.8	25	22	0.06	2	25	3	01518688	01548688	
63	10	30	32	0.06	2	25	3	01518109	01548109	
63	10	44	7	0.06	0.6	6	4	01618109	01648109	
63	15	43	48	0.06	1	12	5a	01518159	01548159	
63	15	55	10	0.06	0.5	6	4	01618159	01648159	
63	22	80	13	0.06	0.35	4.5	5	01618229	01648229	
63	47	115	22	0.06	0.2	2.4	6	01618479	01648479	
63	68	195	30	0.06	0.2	1	00	01718689	01748689	01758689
63	100	240	42	0.06	0.2	0.75	01	01718101	01748101	01758101
63	150	280	61	0.06	0.2	0.75	01	01718151	01748151	01758151
63	220	360	88	0.06	0.25	0.6	02	01718221	01748221	01758221
63	330	495	129	0.06	0.3	0.5	03	01718331	01748331	01758331

1) See also corresponding paragraph.
TESTS AND REQUIREMENTS

IEC 103   clause	$\begin{gathered} \text { IEC } 68 \\ \text { test } \\ \text { method } \end{gathered}$	Name of test	Procedure (quick reference)	Requirements
13.7	-	```Dielectric strength of insulating sleeve```	Metal foil wrapped a round body. 1000 V d.c. between foil and capacitor body for $1 \mathrm{~min} \pm 5 \mathrm{~s}$, voltage increased gradually $100 \mathrm{~V} / \mathrm{s}$	No breakdown or flashover
-	-	Lead pull	Axial pull on lead till destruction occurs	$\geq 40 \mathrm{~N}(4 \mathrm{~kg})$
14.1	Ua	Tensile strength of leads	Loading weight $10 \mathrm{~N}(1 \mathrm{~kg}$ )	No visible damage
14.2	Ub	Bending, half of the leads	Two consecutive bends	No visible damage
14.3	Uc	Torsion, other half of the leads	Two successive rotations of $180^{\circ}$	No visible damage


IEC 103 clause	IEC 68 test method	Name of test	Procedure (quick reference)	Requirements
15	(T3.2)	Soldering (solder bath)	Solderability:   style $1 \quad: \quad 230^{\circ} \mathrm{C}, 2 \mathrm{~s}$   other styles: $\quad 270^{\circ} \mathrm{C}, 2 \mathrm{~s}$   Resistance to heat: $350^{\circ} \mathrm{C}$, 3 s   Single-ended versions immersed up to 13.5 mm from emergence of lead.	Good tinning: no visible damage
15	T3.3	Soldering	Size A soldering iron, 10 s	Good tinning
15	T3.4	Soldering	Solder globule method	Wetting within 4 s
16	$\mathrm{Na}{ }^{1}$ )	Rapid change of temperature	1 cycle of 3 h at $+85^{\circ} \mathrm{C}$ and 3 h at $-40^{\circ} \mathrm{C}$	No visible daınage
17	$\mathrm{Fc}^{2}{ }^{\text {j }}$	Vibration	$10-500 \mathrm{~Hz}$ for cat. $40 / 085 / 56$ and $10-55 \mathrm{~Hz}$ for other categories; 0.75 mm or 10 g (whichever is the less), 6 h	No visible damage; $\Delta \mathrm{C} \leq 5 \%$

1) For category $40 / 085 / 56$ only.
2) This test is not applied to style 3 capacitors in case sizes 00 to 03 .

IEC 103 clause	IEC 68 test method	Name of test	Procedure (quick reference)	Requirements
19.2	Ba	Dry heat	16 h at upper cat. temp. with rated voltage applied	Leakage current at $85^{\circ} \mathrm{C}$ $\leq 5 \times$ stated limit, at $70^{\circ} \mathrm{C} 3 \mathrm{x}$, no visible damage
19.3	D	Accelerated damp heat, first cycle	$\begin{aligned} & 24 \mathrm{~h} \text { at } 55 \pm 2^{\circ} \mathrm{C} \text { and R.H. } 95 \text { to } \\ & 100 \% \end{aligned}$	After recovery immediately followed by cold test.
19.4	Aa	Cold	2 h at lower cat. temp.	Ratio of impedance at $-40^{\circ} \mathrm{C}$ to that at $+20^{\circ} \mathrm{C}(100 \mathrm{~Hz})$ :   5 for $\quad 6.3 \mathrm{~V}$ ratings   4 for 10-16 V ratings   3 for $\geq 25 \mathrm{~V}$ ratings   $\Delta \mathrm{C} \leq 5 \%$; no damage.   Above ratio at $-25^{\circ} \mathrm{C}$ :   2 x all ratings
19.5	Qc	Sealing	1 min in water at $90{ }^{\circ} \mathrm{C}$	No seepage
19.6	D	Accelerated damp heat, remaining cycles	5 cycles of 24 h at $55^{\circ} \mathrm{C}$ and R.H. 90-100\%	No visible damage: leakage current and $\tan \delta \leq$ stated limit; $\Delta \mathrm{C} \leq 5 \%$
20	C	Damp heat (long term)	$\begin{aligned} & 56 \text { days at } 55^{\circ} \mathrm{C} \text { and R.H. } 90 \\ & \text { to } 95 \% \end{aligned}$	No visible damage; leakage current and $\tan \delta \leq$ stated limit; $\Delta \mathrm{C}$ equal to or better than - $20 \%$; insulation breakdown at $\geq 1000 \mathrm{~V}$


IEC 103 clause	$\begin{aligned} & \text { IEC } 68 \\ & \text { test } \\ & \text { method } \end{aligned}$	Name of test	Procedure (quick reference)	Requirements
21.1	Ha	Storage, high temperature (half of the lot)	$96 \pm 4 \mathrm{~h}$ at upper cat. temp. Cooling time $\geq 16 \mathrm{~h}$	Leakage current $\leq 2 \mathrm{x}$ stated limit; $\tan \delta \leq 1.2 \times$ stated limit; $\Delta \mathrm{C} \leq 10 \%$
21.2	Hb	Storage, low temperature (other half of the lot)	$\begin{aligned} & 72 \mathrm{~h} \text { at }-40^{\circ} \mathrm{C} \text { for cat. } 25 / 070 / 56 \text { and } \\ & 25 / 085 / 56 \\ & -55^{\circ} \mathrm{C} \text { for cat. } 40 / 085 / 56 \\ & \text { recovery time } \geq 16 \mathrm{~h} \end{aligned}$	Leakage current $\leq$ stated limit; $\tan \delta \leq$ stated limit; $\Delta \mathrm{C} \leq 10 \%$
22		Endurance	Type 1 capacitors:   2000 h at $85^{\circ} \mathrm{C}$ with rated voltage applied recovery time $\geq 16 \mathrm{~h}$   Type 2 capacitors:   1000 h at upper cat. temp. with rated voltage applied	No visible damage; leakage current $\leq$ stated limit; $\tan \delta$ $\leq 1.3 \times$ stated limit; $\Delta \mathrm{C} \leq$ $15 \%$; ratio of Z at 20 kHz before and after test $\leq 2 \%$; no insulation breakdown at 1000 V d.c.   No visible damage; leakage current $\leq$ stated limit; $\tan \delta$ $\leq 1.5 \times$ stated limit or $\tan \delta$ $=0.4$ whichever is greater; $\Delta \mathrm{C} \leq 15 \%$; ratio of Z at 20 kHz before and after test $\leq 5 \%$, no insulation breakdown at 1000 V d.c.
23		Surge	From source of $\mathrm{p} \times \mathrm{UR}, \mathrm{p}=1.15$ for $\mathrm{U}_{\mathrm{R}} \leq 315 \mathrm{~V}, \mathrm{RC}=100 \pm 50 \mu \mathrm{~s}$; 5000 cycles of 10 s on, 50 s off	Leakage current and $\tan \delta$ $\leq$ stated limit; $\Delta \mathrm{C} \leq 15 \%$

## ELECTROLYTIC CAPACITORS small type, for general purposes



RZ 16995-3B
These capacitors are specially suitable for coupling and decoupling in small transistorised equipment, such as portable radio receivers, personal recorders, and similar applications-where high capacitance values are needed.
This range of electrolytic capacitors, to be considered as an extension of the miniature 001 and 002 series, is characterised by interesting features: small size, high capacitance values and a long service life.
The sturdy mechanical construction with welded terminals - ensures long and reliable operation. Low leakage currents could be achieved by employing highly purified material by a carefully controlled manufacturing process.



Axial version


Printed-wiring version

can size	axial version   (insulated)		printed-wiring   version		
	D   $(\mathrm{mm})$	L   $(\mathrm{mm})$	$\mathrm{D}_{2}$   $(\mathrm{~mm})$	$\mathrm{L}_{2}$   $(\mathrm{~mm})$	S   $(\mathrm{mm})$
00	10.4	30.5	12.8	39.3	10.16
01	12.9	30.5	15.2	39.3	10.16
02	15.4	30.5	17.8	39.3	12.70
03	18.5	30.5	20.8	39.3	15.24

Tolerance on capacitance
Temperature range
Maximum temperature for 12 hours per 24 hours
$-10 /+50 \%$
$-40 /+70^{\circ} \mathrm{C}$
$85{ }^{\circ} \mathrm{C}$
Peak voltage for 1 minute per hour:

$$
\begin{aligned}
& \text { at }+85^{\circ} \mathrm{C} \\
& \text { at } \leq+40^{\circ} \mathrm{C}
\end{aligned}
$$

Climatic robustness
1.125 x working voltage +0.5 V
1.25 x working voltage +0.5 V
category 40/070/56 (IEC 68)

Composition of the catalog number
suffix, see table


$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage   (V)	capacitance ( $\mu \mathrm{F}$ )	leakage current ${ }^{1}$ ) ( $\mu \mathrm{A}$ )	$\begin{aligned} & \text { ripple } \\ & \text { current }{ }^{2} \text { ) } \\ & (\mathrm{mA}) \end{aligned}$	dissipation factor ${ }^{3}$ )	impedance ${ }^{4}$ ) ( $\Omega$ )	$\begin{gathered} \text { suffix } \\ \text { axial } 5 \text { ) } \\ \hline \text { version } \\ \hline \end{gathered}$
00	2.5	1000	100	180	0.35	1.0	11102
01		1600	145	260	0.35	0.8	11162
02		2500	215	360	0.35	0.8	11252
03		4000	325	500	0.35	0.8	11402
00	4	800	120	180	0.30	1.0	12801
01		1250	175	260	0.30	0.8	12132
02		2000	265	360	0.30	0.8	12202
03		3200	400	500	0.30	0.8	12322
00	6.4	640	145	180	0.25	1.0	13641
01		1000	215	260	0.25	0.8	13102
02		1600	325	360	0.25	0.8	13162
03		2500	500	500	0.25	0.8	13252
00	10	400	145	180	0.20	1.0	14401
01		640	215	260	0.20	0.8	14641
02		1000	325	350	0.20	0.8	14102
03		1600	500	500	0.20	0.8	14162
00	16	250	145	180	0.15	1.0	15251
01		400	215	260	0.15	0.8	15401
02		640	325	360	0.15	0.8	15641
03		1000	500	450	0.15	0.8	15102
00	25	160	145	110	0.15	1.0	16161
01		250	215	160	0.15	0.8	16251
02		400	325	220	0.15	0.8	16401
03		640	500	310	0.15	0.8	16641
00	40	100	145	110	0.1	1.2	17101
01		160	215	160	0.1	1.2	17161
02		250	325	220	0.1	0.8	17251
03		400	500	310	0.1	0.8	17401
00	64	64	145	110	0.1	1.2	18649
01		100	215	160	0.1	1.2	18101
02		160	325	220	0.1	0.8	18161
03		250	500	310	0.1	0.8	18251

1) Maximum leakage current at $20{ }^{\circ} \mathrm{C}$ after 5 minutes
${ }^{2}$ ) Maximum permissible ripple current at 50 Hz and $70^{\circ} \mathrm{C}$.
2) Maximum dissipation factor ( $\tan \delta$ ) at $20^{\circ} \mathrm{C}$ and 50 Hz
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz
3) See composition of the catalog number.


## $70^{\circ} \mathrm{C}$

## ELECTROLYTIC CAPACITORS <br> small type, for high voltages



RZ 15568-2
Due to the high working voltages and permissible temperature these small size capacitors are suitable for decoupling in all kind of tube equipment such as radio and television receivers and similar applications.
They have been designed for operation between -40 to $+70{ }^{\circ} \mathrm{C}$.



Axial version


Printed-wiring version

can size	axial version		printed-wiring version		
	D   $(\mathrm{mm})$	L   $(\mathrm{mm})$	$\mathrm{D}_{2}$   $(\mathrm{~mm})$	$\mathrm{L}_{2}$   $(\mathrm{~mm})$	S   $(\mathrm{mm})$
0	10.4	18.5	12.8	26	10.16
00	10.4	30.5	12.8	39.3	10.16
01	12.9	30.5	15.2	39.3	10.16
02	15.4	30.5	17.8	39.3	12.70
03	18.5	30.5	20.8	39.3	15.24

Tolerance on capacitance:

Temperature range
Peak voltage for 1 minute per hour:

$$
\begin{aligned}
& \text { at }+70^{\circ} \mathrm{C} \\
& \text { at } \leq+40^{\circ} \mathrm{C}
\end{aligned}
$$

Climatic robustness
$-10 /+30 \%$
$-40 /+70^{\circ} \mathrm{C}$
1.125 x working voltage +0.5 V
1.25 x working voltage +0.5 V
category 40/070/56 (IEC68)

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage   (V)	capacitance ( $\mu \mathrm{F}$ )	leakage current ${ }^{1}$ ) ( $\mu \mathrm{A}$ )	$\begin{aligned} & \text { ripple } \\ & \text { current } \left.{ }^{2}\right) \\ & (\mathrm{mA}) \end{aligned}$	dissipation factor 3 )	impedance ${ }^{4}$ ) $(\Omega)$	$\begin{aligned} & 2222040 \\ & \text { followed } \\ & \text { by } 5 \text { ) } \end{aligned}$
00	100	20	85	50	0.15	6.4	10209
01		32	130	75	0.15	4.0	10329
02		50	180	100	0.15	2.5	10509
03		80	270	125	0.15	1.6	10809
0	150	6.4	55	25	0.15	15.0	11648
00		12.5	85	50	0.15	8.0	11139
01		20	130	75	0.15	5.0	11209
02		32	180	100	0.15	3.0	11329
03		50	270	125	0.15	2.0	11509
00	200	10	85	25	0.15	8.0	12109
01		16	130	50	0.15	5.0	12169
02		25	180	75	0.15	3.0	12259
03		40	270	100	0.15	2.0	12409
0	250	4	55	25	0.15	20.0	13408
00		8	85	25	0.15	10.0	13808
01		12.5	130	50	0.15	6.4	13139
02		20	180	75	0.15	4.0	13209
03		32	270	100	0.15	2.5	13329
00	300	6.4	85	25	0.15	20.0	14648
01		10	130	50	0.15	15.0	14109
02		16	180	75	0.15	8.0	14169
03		25	270	100	0.15	5.0	14259
0	350	2.5	55	25	0.15	60.0	15258
00		5	85	25	0.15	30.0	15508
01		8	-110	25	0.15	20.0	15808
02		12.5	160	50	0.15	15.0	15139
03		20	240	75	0.15	8.0	15209
00	400	4	85	25	0.15	45.0	16408
01		6.4	110	25	0.15	30.0	16648
02		10	160	50	0.15	20.0	16109
03		16	240	75	0.15	12.5	16169

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70{ }^{\circ} \mathrm{C}$.
${ }^{3}$ ) Maximum dissipation factor $(\tan \delta)$ at $20{ }^{\circ} \mathrm{C}$ and 50 Hz .
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .
3) For axial version, for printed-wiring version the first digit of the suffix is 4 .


# ELECTROLYTIC CAPACITORS <br> large type, for general purposes 



RZ 15738-8B
This range of high-capacitance electrolytic capacitors has been developed for coupling and decoupling applications in mains-operated transistorised equipment, and their design makes them particularly suitable for television receivers. In applications of this type high alternating currents are often involved; therefore, special attention has been given to the current rating of these capacitors.
A special construction guarantees a very low equivalent series resistance which makes them suitable for high ripple currents.
The capacitors are insulated. The five can sizes cover a range of capacitance of from 320 to $20000 \mu \mathrm{~F}$ with working voltages between 6.4 and $64 \mathrm{~V}_{\mathrm{dc}}$.


## Dimensions in mm

See also "Mounting clamps";

can size	$\mathrm{D}(\mathrm{mm})$	$\mathrm{L}(\mathrm{mm})$
5	21.5	49.5
6	25.5	49.5
7	25.5	80.5
9	35.5	80.5
10	40.5	80.5


*) $8+1$ for can sizes 5 and 6

Tolerance on capacitance
Temperature range
$-10 /+50 \%$
$-40 /+70{ }^{\circ} \mathrm{C}$

Peak voltage during 1 minute per hour:

$$
\begin{array}{ll}
\text { at }+70^{\circ} \mathrm{C} & 1.125 \mathrm{x} \text { working voltage }+0.5 \mathrm{~V} \\
\text { at } \leq+40^{\circ} \mathrm{C} & 1.25 \mathrm{x} \text { working voltage }+0.5 \mathrm{~V}
\end{array}
$$

Max. ripple current (r.m.s.) as a function of frequency and temperature

Climatic robustness
$\frac{\text { max. dissipation }}{\text { series resistance }}$
category 40/070/56 (IEC 68)

ELECTROLYTIC CAPACITORS

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ( $\mu \mathrm{F}$ )	$\begin{aligned} & \text { leakage } \\ & \text { current }{ }^{1} \text { ) } \\ & (m A) \end{aligned}$	$\begin{aligned} & \text { ripple } \\ & \text { current } 2 \text { ) } \\ & (\mathrm{m} A) \end{aligned}$	dissipation factor ${ }^{3}$ )	$\begin{aligned} & \text { impe- } \\ & \text { dance }{ }^{4} \text { ) } \\ & (\Omega) \end{aligned}$	$\begin{gathered} \text { at No. } \\ 2222060 \end{gathered}$   followed by
5	6.4	2500	0.5	650	0.45	0.40	13252
6		4000	0.8	800	0.45	0.25	13402
7		6400	1.2	1250	0.45	0.16	13642
9		12500	2.4	2100	0.45	0.16	13133
10		20000	3.8	2900	0.45	0.16	13203
5	10	2000	0.6	650	0.3	0.40	14202
6		3200	1.0	800	0.4	0.25	14322
7		5000	1.5	1250	0.4	0.16	14502
9		10000	3.0	2100	0.4	0.16	14103
10		16000	4.8	2900	0.4	0.16	14163
5	16	1250	0.6	450	0.25	0.40	15132
6		2000	1.0	650	0.25	0.25	15202
7		3200	1.5	1000	0.35	0.16	15322
9		6400	3.0	1700	0.35	0.16	15642
10		10000	4.8	2300	0.35	0.16	15103
5	25	800	0.6	450.	0.2	0.40	16801
6		1250	1.0	650	0.2	0.25	16132
7		2000	1.5	1000	0.2	0.16	16202
9		4000	3.0	1700	0.25	0.16	16402
10		6400	4.8	2300	0.25	0.16	16642
5	40	500	0.6	450	0.15	0.40	17501
6		800	1.0	650	0.15	0.25	17801
7		1250	1.5	1000	0.15	0.16	17132
9		2500	3.0	1700	0.15	0.16	17252
10		4000	4.8	2300	0.15	0.16	17402
5	64	320	0.6	450	0.10	0.40	18321
6		500	1.0	650	0.10	0.25	18501
7		800	1.5	1000	0.10	0.16	18801
9		1600	3.0	1700	0.10	0.16	18162
10		2500	4.8	2300	0.10	0.16	18252

${ }^{1}$ ) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
2) Maximum permissible ripple current at 50 Hz and $70^{\circ} \mathrm{C}$
${ }^{3}$ ) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz
$4^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

## Mounting clamps 432204303290 to 03330



RZ 19634-1
To facilitate vertical mounting, a series of rigid clamps made of cadmiumplated steel are available. They can easily be slid over the capacitor and then fixed to it with a nut and bolt. They are provided with two mounting lugs and, except the smallest version, with two supports to give stability in the cross direction.
Four types are available, one for each can diameter of the capacitor range. They are delivered without nuts or bolts.


For can size 5


For can sizes 6 to 9

can size	dimensions in mm				catalog number
	a	b	c	d	
5	$37.0 \pm 0.2$	21	-	15.5	432204303290
6,7	$41.5 \pm 0.2$	25	35	18.5	03300
8	$46.5 \pm 0.2$	30	40	21	03310
9	$51.5 \pm 0.2$	35	45	23.5	03320
10	$56.5 \pm 0.2$	40	50	26	03330

# ELECTROLYTIC CAPACITORS large types for high and low voltages 



RZ 17647-1
Due to the high working voltages and high permissible temperature these capacitors are suitable for use in power supplies of tube equipment.
There are ten can sizes and three mechanical versions.
(a) Capacitors with soldering terminals acting as positive and negative terminals, either suspended in the wiring of the equipment or fixed by means of a bracket.
(b) Capacitors provided with three or four twistable mounting lugs which serve as negative terminals. One or two soldering tags on the seal serve as positive terminals.
(c) Capacitors for printed-wiring boards. The can has a metallic base with three or four soldering tags for mounting and for serving as negative terminals. One or two pins through the seal serve as positive terminals.

These capacitors have insulated cans.
Tolerance on capacitance: $6.4-64 \mathrm{~V}$ types $\quad-10 /+50 \%$

$$
\begin{array}{ll}
100-500 \mathrm{~V} \text { types } & -10 /+30 \% \\
& -40 /+70{ }^{\circ} \mathrm{C}
\end{array}
$$

Temperature range
Peak temperature ( 12 hours per 24 hours) for types $\leq 64 \mathrm{~V} \quad 85^{\circ} \mathrm{C}$
Peak voltage during 1 minute per hour:

$$
\begin{aligned}
& \text { for types } \leq 64 \mathrm{~V} \text {, at } 70^{\circ} \mathrm{C} \quad 1.125 \mathrm{x} \text { working voltage }+0.5 \mathrm{~V} \\
& \text { at } \leq 40^{\circ} \mathrm{C} \quad 1.25 \mathrm{x} \text { working voltage }+0.5 \mathrm{~V} \\
& \begin{array}{lllllllll}
100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 \\
V
\end{array} \\
& \begin{array}{lllllllll}
110 & 170 & 225 & 280 & 340 & 395 & 450 & 500 & 550
\end{array}
\end{aligned}
$$

for types with a working voltage of:

Climatic robustness
category 40/070/56 (IEC 68)

Capacitors with soldering terminals


Capacitors with twistable mounting lugs

Capacitors for printed-wiring boards


Sizes 4, 5


Size 6T


Sizes 8A, 9A

Dimensions (mm)

can size	D	H
3	19	34
4	19	50
5	22	50
6	26	50
6 T	26	52
7	26	81
8	31	81
8 A	31	52
9	36	81
9 A	36	52

One of the mounting tags of size 9A cans is a double tag.

Hole patterns for printed-wiring boards, component side, grid pitch 2.54 mm


Can size 4, single type, 3 mounting tags


Can size 4, double type, 3 mounting tags


Can size 5, single type, 3 mounting tags

7246879


Can size 5, double type, 3 mounting tags


Can size 6T, single type, 3 mounting tags


Can size 8A, single type, 4 mounting tags


Can size 9A, single type, 4 mounting tags


Can size 6T, double type, 3 mounting tags


Can size 8A, double type, 4 mounting tags


Can size 9A, double type, 4 mounting tags

CAPACITORS WITH SOLDERING TERMINALS (no mounting lugs)
Single capacitors

$\begin{gathered} \text { can } \\ \text { size } \end{gathered}$	working voltage   (V)	capac-   itance   ( $\mu \mathrm{F}$ )	leakage current 1) ( $\mu \mathrm{A}$ )	$\begin{aligned} & \text { ripple } \\ & \text { current } \\ & 2) \\ & (\mathrm{mA}) \\ & \hline \end{aligned}$	dissipation factor 3)	impe-   dance   4)   ( $\Omega$ )	$\begin{aligned} & \text { cat. number } \\ & 2222 \\ & \text { followed by } \end{aligned}$
4	6.4	1600	220	600	0.50	0.63	06313162
5		2500	500	850	0.45	0.40	252
6		4000	770	1000	0.45	0.25	402
4	10	1250	400	600	0.30	0.63	06314132
5		2000	630	850	0.30	0.40	202
6		3200	1000	1000	0.40	0.25	322
4	16	800	400	500	0.25	0.63	06315801
5		1250	600	700	0.25	0.40	132
6		2000	1000	1000	0.25	0.25	202
4	25	500	400	450	0.20	0.63	06316501
5		800	600	650	0.20	0.40	801
6		1250	1000	850	0.20	0.25	132
4	40	320	400	450	0.15	0.63	06317321
5		500	600	650	0.15	0.40	501
6		800	1000	800	0.15	0.25	801
4	64	200	400	400	0.10	0.63	06318201
5		320	600	500	0.10	0.40	321
6		500	1000	800	0.10	0.25	501
4	100	100	330	250	0.15	1.25	08010101
6		250	780	450	0.15	0.63	251
4	150	64	330	200	0.15	1.5	08011649
5		100	500	250	0.15	1.0	101
4	250	50	400	150	0.15	1.5	08013509

${ }^{1}$ ) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}$.
${ }^{3}$ ) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

Single capacitors with soldering terminals (continued)

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   $1)$   $(\mu \mathrm{A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	cat. number   2222   followed by
5	300	64	600	200	0.15	2	08014649
6		100	930	250	0.15	1.25	101
4	350	32	360	100	0.15	4.5	08015329
5		50	550	150	0.15	2.8	509
6		64	700	200	0.15	2.3	649
4	400	25	330	100	0.30	5.85	08016259
5		32	410	150	0.30	7.3	329
6		50	630	200	0.30	4.55	509
4	500	16	270	100	0.30	19.5	08018169
5		25	400	100	0.30	13	259
6		32	500	150	0.30	10.3	329

${ }^{1}$ ) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}$.
3) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
4) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

Double capacitors with soldering terminals

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage   (V)	capacitance ( $\mu \mathrm{F}$ )	leakage current 1) ( $\mu \mathrm{A}$ )	$\begin{array}{\|c\|} \hline \text { ripple } \\ \text { current } \\ 2) \\ (\mathrm{mA}) \end{array}$	dissi-   pation   factor   3)	impe-   dance   4)   ( $\Omega$ )	$\begin{aligned} & \text { cat. number } \\ & 2222 \\ & \text { followed by } \end{aligned}$
4	10	$640+640$	2x200	2x300	0.30	2x1.25	06414641
5		$1000+1000$	2x330	2x425	0.30	2x0.8	102
6		$1600+1600$	2x500	2x500	0.40	$2 \times 0.5$	162
4	25	$250+250$	2x200	2x225	0.20	2x1. 25	06416251
5		$400+400$	2x300	2x 325	0.20	2x0.8	401
6		$640+640$	$2 \times 500$	2x425	0.20	$2 \times 0.5$	641
4	64	$100+100$	2x200	2x200	0.10	$2 \times 1.25$	06418101
5		$160+160$	2x300	2x250	0.10	2x0.8	161
6		$250+250$	2x500	2x400	0.10	2x0.5	251
3	100	$25+25$	2x100	2 x 50	0.15	$2 \times 5$	08110259
4		$50+50$	2x180	2x125	0.15	$2 \times 2.5$	509
6		$125+125$	2x400	2x225	0.15	2x1.25	131
4	150	$32+32$	2x115	2x100	0.15	2x3.0	08111329
5		$50+50$	2x265	$2 \times 125$	0.15	2 x 2	509
3	200	$16+16$	2x125	2x 50	0.15	$2 \times 4.5$	08112169
3	250	$12.5+12.5$	$2 \times 100$	2x 50	0.15	2x6.3	08113139
4		$25+25$	2x200	2x 75	0.15	2x3	259
5	300	$32+32$	2x330	2x100	0.15	2x4	08114329
6		$50+50$	2x500	2x125	0.15	$2 \times 2.5$	$509$

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}$.
3) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

Double capacitors with soldering terminals (continued)
$\left.\begin{array}{c|c|r|c|c|c|c|c}\hline \begin{array}{c}\text { can } \\ \text { size }\end{array} & \begin{array}{c}\text { working } \\ \text { voltage } \\ (\mathrm{V})\end{array} & \begin{array}{c}\text { capac- } \\ \text { itance } \\ (\mu \mathrm{F})\end{array} & \begin{array}{c}\text { leakage } \\ \text { current } \\ 1) \\ (\mu \mathrm{A})\end{array} & \begin{array}{c}\text { ripple } \\ \text { current } \\ 2) \\ (\mathrm{mA})\end{array} & \begin{array}{c}\text { dissi- } \\ \text { pation } \\ \text { factor } \\ 3)\end{array} & \begin{array}{c}\text { impe- } \\ \text { dance } \\ 4) \\ (\Omega)\end{array} & \begin{array}{c}\text { cat. number } \\ 2222\end{array} \\ \text { followed by }\end{array}\right]$

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes .
2) Maximum permissible ripple current at 100 Hz and $70{ }^{\circ} \mathrm{C}$.
3) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
4) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

ELECTROLYTIC CAPACITORS
Large type, for high and low voltages

CAPACITORS WITH TWISTABLE MOUNTING LUGS
$\rightarrow$ Single capacitors

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   $1)$   $(\mu \mathrm{A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	cat.number   2222   followed by
6 T	25	1250	1000	850	0.20	0.25	06336132
7		2000	1500	1100	0.20	0.15	202
8		2500	2000	1200	0.20	0.15	252
6 T	40	800	1000	800	0.15	0.25	06337801
7		1250	1500	1100	0.15	0.15	132
8		1600	2000	1200	0.15	0.15	162
6 T	64	500	1000	800	0.10	0.25	06338501
7		800	1500	1100	0.10	0.15	801
8		1000	2000	1200	0.10	0.15	102
6 T	100	250	780	450	0.15	0.63	08030251
7		500	1500	650	0.15	0.63	501
7	150	250	1150	450	0.15	0.63	0803.251
8		500	2300	650	0.15	0.63	501
6 T	300	100	930	250	0.15	1.25	08034101
8		250	2300	450	0.15	0.63	251
6 T	350	64	700	200	0.15	2.3	08035649
9		250	2650	500	0.15	0.63	251
6 T	400	50	630	200	0.30	4.55	08036509
7		100	1200	200	0.30	2.3	101
7	450	64	900	200	0.30	3.65	08037649
8		100	1300	200	0.30	2.3	101
7	500	32	500	150	0.30	10.3	08038329
8		50	780	200	0.30	6.5	509
9		64	1000	200	0.30	5.2	649
	100	1500	300	0.30	3.25	101	

For footnotes see previous page.

Double capacitors with twistable mounting lugs
\(\left.$$
\begin{array}{l|c|r|c|c|c|c|r}\hline \begin{array}{c}\text { can } \\
\text { size }\end{array} & \begin{array}{c}\text { working } \\
\text { voltage } \\
(\mathrm{V})\end{array} & \begin{array}{c}\text { capac- } \\
\text { itance } \\
(\mu \mathrm{F})\end{array} & \begin{array}{c}\text { leakage } \\
\text { current } \\
\text { l) } \\
(\mu \mathrm{A})\end{array} & \begin{array}{c}\text { ripple } \\
\text { current } \\
2) \\
(\mathrm{mA})\end{array} & \begin{array}{c}\text { dissi- } \\
\text { pation } \\
\text { factor } \\
3)\end{array} & \begin{array}{l}\text { impe- } \\
\text { dance } \\
4) \\
(\Omega)\end{array} & \begin{array}{c}\text { cat.number } \\
2222\end{array}
$$ <br>

followed by\end{array}\right]\)| 6T |
| :--- |
| 7 |

For footnotes see following pages.

CAPACITORS FOR PRINTED-WIRING BOARDS
Single capacitors

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   $1)$   $(\mu \mathrm{A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	cat.number   2222   followed by
4	6.4	1600	220	600	0.50	0.63	06353162
5		2500	500	850	0.45	0.40	252
6T		4000	770	1000	0.45	0.25	402
8A		6400	1220	1300	0.45	0.15	642
9A		8000	1550	1500	0.45	0.15	802
4	10	1250	400	600	0.30	0.63	06354132
5		2000	630	850	0.30	0.40	202
6T		3200	1000	1000	0.40	0.25	322
9A		6400	2000	1500	0.40	0.15	642
4	16	800	400	500	0.25	0.63	06355801
5		1250	600	700	0.25	0.40	132
6T		2000	1000	1000	0.25	0.25	202
8A		3200	1500	1200	0.35	0.15	322
9A		4000	2000	1300	0.35	0.15	402
4	25	500	400	450	0.20	0.63	06356501
5		800	600	650	0.20	0.40	801
6T		1250	1000	850	0.20	0.25	132
8A		2000	1500	1100	0.20	0.15	202
9A		2500	2000	1200	0.20	0.15	252
4	40	320	400	450	0.15	0.63	06357321
5		500	600	650	0.15	0.40	501
6T		800	1000	800	0.15	0.25	801
8A		1250	1500	1100	0.15	0.15	132
9A		1600	2000	1200	0.15	0.15	162
4	64	200	400	400	0.10	0.63	06358201
5		320	600	500	0.10	0.40	321
6T		500	1000	800	0.10	0.25	501
8A		800	1500	1100	0.10	0.15	801
9A		1000	2000	1200	0.10	0.15	102
4	100	100	330	250	0.15	1.25	08050101
6T		250	780	450	0.15	0.63	251
8A		500	1500	650	0.15	0.63	501

For notes see next page.

Single capacitors for printed wiring boards (continued)

can   size	working   voltage   $(V)$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   $1)$   $(\mu \mathrm{A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	cat. number   2222   followed by
4	150	64	330	200	0.15	1.5	08051649
5		100	500	250	0.15	1.0	101
8A		250	1150	450	0.15	0.63	251
9A	200	250	1500	450	0.15	0.63	08052251
5	300	64	600	200	0.15	2	08054649
6T		100	930	250	0.15	1.25	101
4	350	32	360	100	0.15	4.5	08055329
5		50	550	150	0.15	2.8	509
6T		64	700	200	0.15	2.3	649
4	400	25	330	100	0.30	5.85	08056259
5		32	410	150	0.30	7.3	329
6T		50	630	200	0.30	4.55	509
8A		100	1200	200	0.30	2.3	101
8A	450	64	900	200	0.30	3.65	08057649
4	500	16	270	100	0.30	19.5	08058169
5		25	400	100	0.30	13	259
6T		32	500	150	0.30	10.3	329
8A		50	780	200	0.30	6.5	509
9A		64	1000	200	0.30	5.2	649

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70{ }^{\circ} \mathrm{C}$.
${ }^{3}$ ) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

ELECTROLYTIC CAPACITORS
Large type, for high and low voltages

Double capacitors for printed-wiring boards


1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes .
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}$.
3) Maximum dissipation factor ( $\tan \delta$ ) at $20^{\circ} \mathrm{C}$ and 50 Hz .
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

Double capacitors for printed wiring boards (continued)

can   size	working   voltage   $(V)$	capac-   itance   $(\mu \mathrm{F})$	leakage   current   l)   $(\mu \mathrm{A})$	ripple   current   $2)$   $(\mathrm{mA})$	dissi-   pation   factor   $3)$	impe-   dance   $4)$   $(\Omega)$	cat. number   2222
4	350	$16+16$	$2 \times 200$	$2 \times 50$	0.15	$2 \times 9$	08155169
followed by							

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}$.
${ }^{3}$ ) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz .
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

## IMPEDANCE GRAPHS

Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and 100 kHz are stated in the tables.


Can size 4

Can size 5


ELECTROLYTIC CAPACITORS
2222063-064 Large type, for high and low voltages



Can sizes 6, 6T


Can sizes 7, 8A

Can sizes $8,9 \mathrm{~A}$

## ELECTROLYTIC CAPACITORS multiple types, for high voltages



RZ 20603-1

Triple and quadruple capacitors of which one section has a separate cathode con- $\leftarrow$ nection.
They are mainly used as smoothing capacitors in television receivers.
Special attention is drawn to the quadruple types which are ideal for the above application.

## Dimensions in mm

See also the
table


Fig. 1


Fig. 2


Fig. 3

capacitance   $(\mu \mathrm{F})$	max.   voltage   $(\mathrm{V})$	Fig.	D   $(\mathrm{mm})$	H   $(\mathrm{mm})$	cat.number   2222   followed by
$50+50+50$	350	2	35	80	06390027
$100+50+50$	300	2	35	80	06390022
$100+100+50$	300	2	35	80	06790003
$200+100+50+50$	300	1	35	80	06790012
$200+100+50+25$	300	2	35	80	06790013
$200+100+50+25$	300	3	35	80	06790014

# ELECTROLYTIC CAPACITORS Large long life type (I.E.C. type 1) 



A 52327
QUICK REFERENCE DATA
Capacitance range
680 to $47000 \mu \mathrm{~F}$, E6 series
Tolerance on capacitance
$-10 /+50 \%$
Rated voltages
6.3 to 63 V

Category (I.E.C.68)
40/085/56
High ripple current ratings

## APPLICATION

Being an improvement on the 2222060 series, the capacitors are suitable for use in power supplies for transistorized equipment.
Paralleled double capacitors may be preferred over single capacitors because they are shorter.


## DESCRIPTION

Etched aluminium foil anode and cathode separated by a paper layer which is impregnated with an electrolyte exhibiting an improved resistance/temperature curve. The capacitor core is housed in an aluminium can sealed with a rubber-faced paper laminate disc. The can has longitudinal indents to fix the core and to promote heat transfer.
The can, which has no electrical function, is covered with a blue plastic sleeve.
The negative terminal is identified by the symbol $\Delta$; it is the common terminal for double capacitors.

## MECHANICAL DATA

Dimensions in mm


Fig.1. Single capacitors


Fig. 2. Double capacitors

Table 1

Fig.	can size	D   $(\mathrm{mm})$	L   $(\mathrm{mm})$	t   $(\mathrm{mm})$
	5	$21.3+0.3$	$49.3 \pm 1$	$8+1$
1	6	$25.3+0.3$	$49.3 \pm 1$	$8+1$
(single)	7	$25.3+0.3$	$80.3 \pm 1$	$12+1$
	8 a	$30.3+0.3$	$50.3 \pm 1$	$12+1$
8	$30.3+0.3$	$80.3 \pm 1$	$12+1$	
2	8	$35.3+0.3$	$50.3 \pm 1$	$12+1$
(double)	9	$35.3+0.3$	$80.3 \pm 1$	$12+1$
	10	$40.5+0.3$	$80.3 \pm 1$	$12+1$

## Marking

Capacitance, tolerance on capacitance, rated voltage, temperature range, I.E.C. type, max. permissible ripplecurrent, catalogue number and data of manufacture.

## Mounting (See also "Mounting Clamps")

The capacitor may be mounted in any position with or without a mounting clamp. Where a number of capacitors are connected to form a capacitor bank, the proximity to one another must not be less than 15 mm .
The uninsulated part of the can may only touch objects with the same potential as the negative terminal.

## Soldering conditions

No special soldering conditions apply.
Min. atmospheric pressure $\quad 200 \mathrm{mbar}(15 \mathrm{~cm} \mathrm{Hg}$ )
Standard packing
Pack of 100 , marked with catalogue number, capacitance and rated voltage.

## ELECTRICAL DATA

Unless otherwise specified, all electrical values apply at an ambient temperature of 20 to $25^{\circ} \mathrm{C}$, an air pressure of 930 to 1060 mbar , and a relative humidity of 45 to $75 \%$.

Tolerance on capacitance
Category (I.E.C. 68)
Category temperature range
Max. storage temperature
Rated voltage $=\max .(d . c .+$ peak a.c. $)$
voltage at 40 to $85^{\circ} \mathrm{C}$
Max. (d.c. + peak a.c.) voltage at $\leq 40^{\circ} \mathrm{C}$
Max. voltage for 1 min per $h$, at 40 to $85^{\circ} \mathrm{C}$ at $\leq 40^{\circ} \mathrm{C}$
Leakage current under continuous
operation at $\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}
$$

Charge and discharge currents
$-10 /+50 \%$
40/085/56
-40 to $+85^{\circ} \mathrm{C}^{1}$ )
$40^{\circ} \mathrm{C}$
see Table 2
$1.1 \times$ rated voltage
$1.125 \times$ rated voltage +0.5 V
$1.25 \times$ rated voltage +0.5 V
approx. $1 / 5$ of value stated in Table 2.
$\leq$ value stated in Table 2.
see Additional information

[^45]ELECTROLYTIC CAPACITORS
Large long life type (I.E.C. type 1)

Table 2

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	rated   volt-   age   (V)	capacitance   ( $\mu \mathrm{F}$ )	max. ripple current (A) ${ }^{1}$ )			leakage current ${ }^{2}$ ) ( $\mu \mathrm{A}$ ) max.	$\begin{gathered} \tan \delta \text { at } \\ \left.100 \mathrm{~Hz}^{3}\right) \\ \max . \end{gathered}$	$\begin{gathered} \text { impe- } \\ \text { dance at } \\ \left.100 \mathrm{kHz}^{3}\right) \\ (\mathrm{m} \Omega) \max . \end{gathered}$	catal. No. 2222 followed by
			$50^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$				
6		10000	4.0	3.1	1.8	380	0.50	60	07113103
7		15000	6.1	4.8	2.7	570	0.50	50	07113153
8 a		15000	5.5	4.3	2.5	570	0.50	50	07313153
8	6.3	22000	8.3	6.4	3.7	835	0.50	50	07113223
9 a		$11000+11000$	7.5	5.8	3.3	$420+420$	0.50	$60+60$	07213113
9		$16500+16500$	11	8.5	4.9	$625+625$	0.50	$50+50$	07213173
10		$23500+23500$	14.2	11	6.3	$890+890$	0.50	$50+50$	07213243
5		4700	2.5	1.9	1.1	280	0.35	80	07114472
6		6800	4.0	3.1	1.8	410	0.35	60	07114682
7		10000	6.0	4.6	2.7	600	0.35	50	07114103
8 a	10	10000	5.4	4.2	2.4	600	0.35	50	07314103
8	10	15000	8.2	6.3	3.7	900	0.35	50	07114153
9 a		$7500+7500$	7.3	5.7	3.3	$450+450$	0.35	$60+60$	07214752
9		$11000+11000$	10.6	8.3	4.8	$660+660$	0.35	$50+50$	07214113
10		$16500+16500$	13.4	10.4	6.0	$990+990$	0.35	$50+50$	07214173
5		3300	2.4	1.9	1.1	320	0.25		07115332
6		4700	3.9	3.0	1.7	450	0.25	60	07115472
. 7		6800	5.8	4.5	2.6	655	0.25	50	07115682
8 a	16	6800	5.3	4.1	2.4	655	0.25	50	07315682
8	16	10000	7.9	6.1	3.5	960	0.25	50	07115103
9 a		$5000+5000$	7.1	5.5	3.2	$480+480$	0.25	$60+60$	07215502
9		$7500+7500$	10.5	7.6	4.7	$720+720$	0.25	$50+50$	07215752
10		$11000+11000$	13.8	10.6	6.1	$1060+1060$	0.25	$50+50$	07215113
5		2200	2.2	1.7	1.0	330			07116222
6		3300	3.7	2.8	1.7	495	0.20	60	07116332
7		4700	5.4	4.2	2.4	705	0.20	50	07116472
8 a	25	4700	4.9	3.8	2.2	705	0.20	50	07316472
8	25	6800	7.3	5.6	3.3	1020	0.20	50	07116682
9 a		$3400+3400$	6.5	5.1	2.9	510+510	0.20	$60+60$	07216342
9		$5000+5000$	9.6	7.4	4.3	$750+750$	0.20	$50+50$	07216502
10		$7500+7500$	12.6	9.8	5.7	$1125+1125$	0.20	$50+50$	07216752
5		1000	2.1	1.6	1.0	240	0.15	125	07117102
6		2200	2.9	2.2	1.3	530	0.15	100	07117222
7		3300	5.2	4.1	2.4	795	0.15	80	07117332
8 a	40	3300	3.8	3.0	1.7	795	0.15	80	07317332
8	40	4700	7.0	5.4	3.1	1130	0.15	80	07117472
9 a		$2350+2350$	5.3	4.0	2.4	$560+560$	0.15	$100+100$	07217242
9		$3400+3400$	9.1	7.1	4.1	$820+820$	0.15	$80+80$	07217342
10		$5000+5000$	12.0	8.7	5.3	$1200+1200$	0.15	$80+80$	07217502
5		680	2.1	1.4	0.8	260	0.10	125	07118681
6		1000	2.9	2.2	1.3	380	0.10	100	07118102
7		1500	4.3	3.4	2.0	570	0.10	80	07118152
8 a		1500	3.8	3.0	1.7	570	0.10	80	07318152
8	63	2200	5.8	4.5	2.6	835	0.10	80	07118222
9 a		$1100+1100$	5.3	4.0	2.4	$415+415$	0.10	$100+100$	07218112
9		$1650+1650$	7.8	6.0	3.5	$625+625$	0.10	$80+80$	07218172
10		$2350+2350$	10	7.8	4.5	$890+890$	0.10	$80+80$	07218242

$\left.1)^{2}\right)^{3}$ ) See next page.

## ADDITIONAL INFORMATION

## Charge and discharge current

The capacitors may be charged from a source without internal resistance and they may be discharged by a short-circuit.
If the capacitors are charged and discharged continuously at a rate of several times per minute, the charge and discharge currents have to be considered as ripple currents flowing through the capacitor. The r.m.s. value of these currents should be determined and the value thus found must not exceed the limit specified in Table 2.

## Re-formation

After storage the capacitors may need re-formation at the working voltage for some hours, to meet the specified leakage current requirements.

## Impedance graphs

The impedance/temperature curves represent typical values.

[^46]${ }^{2}$ ) Leakage current 5 min after application of the rated voltage.
${ }^{3}$ ) Measured using a 4 -pole circuit (Thompson bridge), which eliminates the resistance and the self-inductance of the test cables.

ELECTROLYTIC CAPACITORS
Large long life type (I.E.C. type 1)

TESTS AND REQUIREMENTS TO I.E.C. 68

1.E.C. $103^{1}$ ) clause	Tests	Conditions (quick reference)	Requirements
23	Surge	5000 cycles, each consisting of a 10 s charge and 50 s no load	Leakage current and $\tan \delta \leq$ stated limit; $\Delta \mathrm{C} \leq 10 \%$
22	Endurance	2000 h at $85^{\circ} \mathrm{C}$ with $85 \%$ rated voltage and $5 \%$ ripple applied	Leakage current $\leq$ stated limit; $\tan \delta \leq 1.3 \times$ stated limit; $\Delta \mathrm{C} \leq 15 \%$
21.1	Storage, high temperature	$96 \pm 4 \mathrm{~h}$ at $+85^{\circ} \mathrm{C}$ with no voltage applied	Leakage current $\leq 2 \times$ stated limit; $\tan \delta \leq 1.2 \times$ stated limit; $\Delta \mathrm{C} \leq 10 \%$
21.2	Storage, low temperature	72 h at $-55^{\circ} \mathrm{C}$ with no voltage applied	Leakage current $\leq$ stated limit; $\tan \delta \leq$ stated limit; $\Delta \mathrm{C} \leq 10 \%$
20	Damp heat long term	56 days at $40^{\circ} \mathrm{C}$ and R.H. $90-95 \%$ with no voltage applied	No visual damage
19.2	Dry heat	16 h at $85 \pm 2^{\circ} \mathrm{C}$ with rated voltage applied	Leakage current at $85^{\circ} \mathrm{C}<5 \mathrm{x}$ stated limit; no damage, no leakage
19.3	Accelerated damp heat	24 h at $55 \pm 2^{\circ} \mathrm{C}$ with no voltage applied	Immediately followed by cold test
19.4	Cold	2 h at $-40 \pm 3^{\circ} \mathrm{C}$ with no voltage applied	```Ratio of impedance found at \(-40^{\circ} \mathrm{C}\) to that found at \(+20^{\circ} \mathrm{C}\) to be: \(<5\) for 6.3 V ratings; \(<4\) for \(6.3-16 \mathrm{~V}\) ratings; \(<3\) for \(\geq 25 \mathrm{~V}\) ratings; \(\Delta \mathrm{C} \leq 5 \%\) No damage```
19.5	Seal	1 min in water at $90{ }^{\circ} \mathrm{C}$	No leakage
19.6	Accelerated damp heat	5 cycles of 24 h at $55 \pm 2^{\circ} \mathrm{C}$ and R.H. $90-100 \%$ with no voltage applied	Leakage current and $\tan \delta \leq$ stated limit; $\Delta \mathrm{C} \leq 10 \%$
17	Shock   Vibration	$40 \mathrm{~g}, 2$ directions, 2000 shocks per direction. $10-500-10 \mathrm{~Hz}, 1$ dctave per min; max. $10 \mathrm{~g}, 2$ directions, 3 h per direction	No visual damáge, no leakage $\Delta \mathrm{C} \leq 5 \%$
16	Change of temperature	1 cycle of 3 h at $+85^{\circ} \mathrm{C}$ with no voltage applied and 3 h at $-40^{\circ} \mathrm{C}$	No damage
15	Solderability		Proper solder coating and no damage
14.1	Pull	destructive	$\geq 40 \mathrm{~N}(4 \mathrm{kgf})$
13.7	Dielectric strength of insulation	Metal foil wrapped around body.   $1000 \mathrm{~V}_{\mathrm{dc}}$ for $1 \mathrm{~min} \pm 5 \mathrm{~s}$, voltage rise $100 \mathrm{~V} / \mathrm{s}$	No breakdown

1) Second edition (1969)




$p \ggg \gg$
$m$ 응 0 o
0




ELECTROLYTIC CAPACITORS
Large long life type (I.E.C. type 1)



## Mounting clamps 432204303290 to 03330

To facilitate vertical mounting, a series of rigid clamps made of cadmium plated steel are available. They can easily be slid over the capacitor and then fixed to it with a nut and bolt. They are provided with two mounting lugs and, except the smallest version, with two supports to give stability in the cross direction.
Four types are available, one for each can diameter of the capacitor range. They are delivered without nuts or bolts.


For can size 5


For can sizes 6 to 9

can size	dimensions in mm				catalog number
	a	b	c	d	
5	$37.0 \pm 0.2$	21	-	15.5	432204303290
6,7	$41.5 \pm 0.2$	25	35	18.5	03300
8	$46.5 \pm 0.2$	30	40	21	03310
9	$51.5 \pm 0.2$	35	45	23.5	03320
10	$56.5 \pm 0.2$	40	50	26	03330



# ELECTROLYTIC CAPACITORS small long life type 

RZ $13317 \sim 1$


This range of electrolytic capacitors has been specially developed for industrial apparatus where long service life anc high reliability are essential, e.g.computors, telecommunication and telephon $\epsilon$ equipment.
High grade materials, an extra reservt of electrolyte and close quality contro during manufacture ensure that thest capacitors have a life expectancy fas superior to normal grade electrolytis capacitors.
The cans of the capacitors are complete. ly cold-welded.
This range supersedes the C427 series


## Dimensions in mm



Fig. 1


Fig. 2

can size	Figure 1		Figure 2		
	D   $(\mathrm{mm})$	L   $(\mathrm{mm})$	$\mathrm{D}_{2}$   $(\mathrm{~mm})$	$\mathrm{L}_{2}$   $(\mathrm{~mm})$	S   $(\mathrm{mm})$
	8.3	22.5	11.3	30	10.16
2	10.5	22.5	12.9	31	10.16
3	10.5	30.5	12.9	39	10.16
4	13	30.5	15.3	39	10.16

Tolerance on capacitance
Temperature range
Peak voltage: for several hours for several days

Maximum permissible alternating voltage at 50 and 100 Hz

Climatic robustness
$-10 /+50 \%$
$-40 /+70^{\circ} \mathrm{C}$
1.2 x working voltage
$1.1 \times$ working voltage
$1.5 \mathrm{~V}_{\mathrm{rms}}$
category 40/070/56 (IEC 68)

Composition of the catalog number
suffix, see table


$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ( $\mu \mathrm{F}$ )	leakage current ${ }^{1}$ ) ( $\mu \mathrm{A}$ )	ripple current   (mA) 2)		$\begin{gathered} \tan \delta \\ 3) \end{gathered}$	impedance ${ }^{4}$ ) $(\Omega)$	catalog number suffix ${ }^{5}$ )
				$50{ }^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$			
1	4	25	6	60	20	0.20	6	12259
1		50	7	75	40	0.30	6	12509
2		80	8	120	55	0.30	4	12809
3		160	11.5	195	90	0.30	2	12161
4		320	18	315	145	0.30	1	12321
1	6.4	20	6.5	60	25	0.20	6	13209
1		40	7.5	75	40	0.25	6	13409
2		64	9	120	55	0.25	4	13649
3		125	13	195	90	0.25	2	13131
4		250	21	315	145	0.25	1	13251
1	10	16	6.5	60	25	0.15	6	14169
1		32	8	75	40	0.20	6	14329
2		50	10	120	55	0.20	4	14509
3		100	15	195	90	0.20	2	14101
4		200	25	315	145	0.20	1	14201
1	16	10	6.5	60	25	0.15	6	15109
1		20	8	75	40	0.15	6	15209
2		32	10	120	55	0.15	4	15329
3		64	15.5	195	90	0.15	2	15649
4		125	25	315	145	0.15	1	15131
1	25	6.4	6.5	60	25	0.10	6	16648
1		12.5	8	75	40	0.10	6	16139
2		20	10	120	55	0.10	4	16209
3		40	15	195	90	0.10	2	16409
4		80	25	315	145	0.10	1	16809
1	40	4	6.5	40	15	0.10	6	17408
1		8	8	55	25	0.10	6	17808
2		12.5	10	80	35	0.10	4	17139
3		25	15	125	55	0.10	2	17259
4		50	25	210	90	0.10	1	17509
1	64	2.5	6.5	40	15	0.10	6	18258
1		5	8	55	25	0.10	6	18508
2		8	10	80	35	0.10	4	18808
3		16	15.5	125	55	0.10	2	18169
4		32	25.5	210	90	0.10	1	18329

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
2) Maximum permissible ripple current at 100 Hz and $70^{\circ} \mathrm{C}$
3) For axial version.
${ }^{3}$ ) Maximum dissipation factor at $20{ }^{\circ} \mathrm{C}$ and 100 Hz
${ }^{4}$ ) Maximum impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .


Typical curves of impedance, measured at $20^{\circ} \mathrm{C}$, against frequency.

## Impedance graphs

Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and 100 kHz are stated in the table.

Can size 1


Can size 1


Can size 2


Can size 4


Can size 3

## ELECTROLYTIC CAPACITORS large long life type



RZ 15738-8A
These high-capacitance, low-voltage capacitors, having a high quality, a long service life and an extreme reliability, are suitable for use as filter and en-ergy-storage capacitors for the power supplies of professional equipment, as for instance computers. The cans are provided with an insulating sleeve.

$\begin{gathered} c \\ (\mu F) \end{gathered}$	max. d.e. working voltage (V)								
	6.4	10	16	25	40	64	100		
900							(11)		
1250									
1400									
2000						7			
2240					(11)				
					\%				
2800							15)		
$3150$				(11)			I		
3550				$\pi$					
				,					
4500			1						
5000			(11)	7					
5600			7	,					
			1						
7100		1		,					
8000		11.		4.					
				4					
10000									
		(12)		,					
$12500$									
$14000$									
16000									
20000		14							
25000									
31500									

## Dimensions in mm



can size	D   $(\mathrm{mm})$	L   $(\mathrm{mm})$	S   $(\mathrm{mm})$	T   $(\mathrm{mm})$
11	36.5	88	15	9.3
12	36.5	108	15	9.3
14	51.5	88	22	14.3
15	51.5	108	22	14.3

Tolerance on capacitance
Temperature range
Peak voltage for 1 minute per hour:

$$
\begin{aligned}
& \text { at } 70^{\circ} \mathrm{C} \\
& \text { at } \leq 40^{\circ} \mathrm{C}
\end{aligned}
$$

Max. ripple current (r.m.s.) as a function of frequency and temperature

Impedance at 100 kHz
Climatic robustness
Mounting position
$-10 /+50 \%$
$-40 /+70{ }^{\circ} \mathrm{C}$
1.15 x working voltage
1.25 x working. voltage
$\sqrt{\frac{\text { max. dissipation }}{\text { series resistance }}}$
$\max .0 .1 \Omega$, average $0.05 \Omega$ category 40/070/56 (IEC68) not with terminals down

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current $\left.^{1}\right)$   $(\mathrm{mA})$	ripple   current $\left.^{2}\right)$   $(\mathrm{A})$	dissipation   factor $\left.^{3}\right)$	cat. number   2222   followed by
11	6.4	10000	1.9	2.1	0.45	10213103
12		14000	2.7	2.8	0.45	143
14		25000	4.8	3.2	0.45	253
15		31500	6.1	4.9	0.45	323
11	10	8000	2.4	2.1	0.35	10214802
12		11200	3.4	2.8	0.35	113
14		20000	6.0	3.2	0.35	203
15		25000	7.5	4.9	0.35	253
11	16	5000	2.4	2.1	0.25	10215502
12		7100	3.4	2.8	0.25	712
14		12500	6.0	3.2	0.25	133
15		16000	7.7	4.9	0.25	163
11	25	3150	2.4	2.1	0.15	10216322
12		4500	3.4	2.8	0.15	452
14		8000	6.0	3.2	0.15	802
15		10000	7.5	4.9	0.15	103
11	40	2240	2.7	2.1	0.10	10217222
12		3150	3.8	2.8	0.10	322
14		5600	6.7	3.2	0.10	562
15		7100	8.4	4.9	0.10	712
11	64	1400	2.7	1.1	0.10	10218142
12		2000	3.8	1.5	0.10	202
14		3550	6.7	2.2	0.10	362
15		4500	8.4	2.6	0.10	452
11	100	900	2.7	1.1	0.10	10310901
12		1250	3.8	1.5	0.10	132
14		2240	6.7	2.2	0.10	222
15		2800	8.4	2.6	0.10	282

1) Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes .
${ }^{2}$ ) Maximum permissible ripple current at 50 Hz , first value for $70{ }^{\circ} \mathrm{C}$.
2) Maximum dissipation factor $(\tan \delta)$ at $20^{\circ} \mathrm{C}$ and 50 Hz ; average values are approximately $50 \%$ lower.
$\square$

## ELECTROLYTIC CAPACITORS large long life type (I.E.C. type 1)



RZ 15738-8A

Applicable specification

Climatic category
Capacitance range
Rated voltages
I.E.C. 40 (C.O. 176), Type 1, style B4;
C.C.T.U. 02-10

40/085/56 (I.E.C. 68)
1500 to $150000 \mu \mathrm{~F}$
6.3 to $100 \mathrm{~V}_{\mathrm{dc}}$

## APPLICATION

Because of their high reliability and long service life these capacitors are recommended not only for industrial but also for military applications.
Their extremely low impedance and inductance values render them very suitable for applications such as:
power supplies in digital equipment, energy storage in pulse systems, filters in measuring and control apparatus.

## DESCRIPTION

The low values of impedance and inductance are achieved by a special construction with several internal anode and cathode connections.
The capacitors are completely cold-welded and charge/discharge proof.
By the introduction of aluminium foil with the highest etching factor and new electrolytes, very high CV-products are obtained combined with outstanding electrical characteristics.
The aluminium cans are fully insulated and sealed by a synthetic resin disc with a vent. In the case of overpressure the vent releases this pressure and closes again; the proper operation of the capacitor remains guaranteed.
The capacitors are delivered with two screws and two washers.

ELECTROLYTIC CAPACITORS
Large long life type (I.E.C. type 1)

MECHANICAL DATA (See also "Mounting clamps" further on)


can size	Dmax   $(\mathrm{mm})$	L   $(\mathrm{mm})$	S   $(\mathrm{mm})$	T   $(\mathrm{mm})$
11	35.8	82	15	9.3
12	35.8	114	15	9.3
14	50.8	82	22	14.3
15	50.8	114	22	14.3
16	65.8	114	31	19.0

## ELECTRICAL DATA

Unless otherwise specified, all electrical values apply at an ambient temperature of 20 to $25^{\circ} \mathrm{C}$, an air pressure of 930 to 1060 mbar , and a R.H. of 45 to $75 \%$.
Tolerance on capacitance
$-10 /+50 \%$
Category (I.E.C. 68)
40/085/56
Category temperature range ${ }^{1}$ )
6.3 to 63 V types
-40 to $+85^{\circ} \mathrm{C}$
100 V types
Max. storage temperature
-25 to $+85^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$

Rated voltage $=\max .($ d.c. + peak a.c. $)$
voltage at 40 to $85^{\circ} \mathrm{C}$
Max. (d.c. + peak a.c.) voltage at $\leq 40^{\circ} \mathrm{C}$
see table

## $1.1 \times$ rated voltage

Max. voltage for 1 min per $h$, at 40 to $85^{\circ} \mathrm{C}$
$1.125 \times$ rated voltage +0.5 V
at $\leq 40^{\circ} \mathrm{C}$
1.25 x rated voltage +0.5 V

Leakage current under continuous operation at the rated voltage $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}
$$

approx. $1 / 5$ of value stated in table $\leq$ value stated in table

[^47]ELECTROLYTIC CAPACITORS
Large long life type (I. E. C. type 1)

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	rated voltage   (V)	capacitance ( $\mu \mathrm{F}$ )	$\begin{array}{\|c\|} \hline \text { leakage } \\ \text { current } \\ (\mathrm{mA}) \end{array}$	$$			$\begin{aligned} & \tan \delta \\ & \text { at } 100 \mathrm{~Hz} \\ & \max . \end{aligned}$	impedance ${ }^{3}$ ) ( $\Omega$ )	$\begin{aligned} & \text { cat. number } \\ & 2222 \\ & \text { followed by } \end{aligned}$
11	6.3	22000	0.9	7	6.3	3.1	0.45	0.04	10613223
12		33000	1.3	10	9	4.5	0.55	0.04	10613333
14		47000	1.8	12	11	5.4	0.6	0.04	10613473
15		68000	2.6	17	15	7.7	0.7	0.04	10613683
16		150000	5.7	28	25	12.6	1.0	0.04	10613154
11	10	15000	0.9	7	6.3	3.1	0.3	0.04	10614153
12		22000	1.4	10	9	4.5	0.35	0.04	10614223
14		33000	2.0	12	11	5.4	0.4	0.04	10614333
15		47000	2.9	17	15	7.7	0.45	0.04	10614473
16		100000	6.0	28	25	12.6	0.7	0.04	10614104
11	16	10000	1.0	7	6.3	3.1	0.2	0.04	10615103
12		15000	1.5	10	9	4.5	0.25	0.04	10615153
14		22000	2.2	12	11	5.4	0.25	0.04	10615223
15		33000	3.2	17	15	7.7	0.30	0.04	10615333
16		68000	6.6	28	25	12.6	0.45	0.04	10615683
11	25	6800	1.1	7	6.3	3.1	0.15	0.04	10616682
12		10000	1.5	10	9	4.5	0.16	0.04	10616103
14		15000	2.3	12	11	5.4	0.19	0.04	10616153
15		22000	3.3	17	15	7.7	0.20	0.04	10616223
16		47000	7.1	28	25	12.6	0.32	0.04	10616473
11	40	4700	1.2	7	6.3	3.1	0.1	0.04	10617472
12		6800	1.7	10	9	4.5	0.11	0.04	10617682
14		10000	2.4	12	11	5.4	0.12	0.04	10617103
15		15000	3.6	17	15	7.7	0.14	0.04	10617153
16		33000	8.0	28	25	12.6	0.2	0.04	10617333
11	63	2200	0.9	7	6.3	3.1	0.05	0.04	10618222
12		3300	1.3	10	9	4.5	0.055	0.04	10618332
14		4700	1.8	12	11	5.4	0.055	0.04	10618472
15		6800	2.6	17	15	7.7	0.06	0.04	10618682
16		15000	5.7	28	25	12.6	0.1	0.04	10618153
11	100	1500	0.9	7	6.3	3.1	0.4	0.2	10710152
12		2200	1.4	10	9	4.5	0.4	0.2	10710222
14		3300	2.0	12	11	5.4	0.4	0.1	10710332
15		4700	2.9	17	15	7.7	0.4	0.1	10710472
16		10000	6.0	28	25	12.6	0.4	0.08	10710103

1) Maximum leakage current 5 min after application of the rated voltage.
2) Maximum permissible ripple current at 100 Hz .
${ }^{3}$ ) Maximum impedance at 100 kHz .

2222106

Impedance graphs
The impedance/temperature curves represent typical values.


$\begin{aligned} \text { Curve } 1 & =4700 \mu \mathrm{~F}, \quad 63 \mathrm{~V} \\ 2 & =10000 \mu \mathrm{~F}, \quad 40 \mathrm{~V} \\ 3 & =15000 \mu \mathrm{~F}, \quad 25 \mathrm{~V} \\ 4 & =22000 \mu \mathrm{~F}, \quad 16 \mathrm{~V} \\ 5 & =39000 \mu \mathrm{~F}, \quad 10 \mathrm{~V} \\ 6 & =47000 \mu \mathrm{~F}, \quad 6.3 \mathrm{~V}\end{aligned}$

$\begin{aligned} \text { Curve } 1 & =15000 \mu \mathrm{~F}, \quad 63 \mathrm{~V} \\ 2 & =33000 \mu \mathrm{~F}, \quad 40 \mathrm{~V} \\ 3 & =47000 \mu \mathrm{~F}, \quad 25 \mathrm{~V} \\ 4 & =68000 \mu \mathrm{~F}, \quad 16 \mathrm{~V} \\ 5 & =100000 \mu \mathrm{~F}, \quad 10 \mathrm{~V} \\ 6 & =150000 \mu \mathrm{~F}, \quad 6.3 \mathrm{~V}\end{aligned}$

## Mounting clamps 432204304270 to 04290

Material: cadmium plated steel, passivated


Mounting clamp 432204304270 for cans with 35 mm diameter


Mounting clamp
432204304280
for cans with 50 mm diameter


Mounting bracket 432204304290
for cans with 65 mm diameter

## ELECTROLYTIC CAPACITORS <br> small solid aluminium type



RZ 16462-3
These capacitors are an extension of the preceding 120 -series in two ways: by the application of ultra highly etched foils and by the addition of two larger can sizes. They have a symmetrical tolerance on the capacitance of $\pm 20 \%$.
Because of their high stability, low-temperature characteristics and reliability they can be used in professional equipment.


## $\longrightarrow$ Dimensions in mm


$\mathrm{d}=0.8$


can size	axial version*		printed-wiring version	
	D   $(\mathrm{mm})$	$\mathrm{L}_{\mathrm{max}}$   $(\mathrm{mm})$	S   $(\mathrm{mm})$	L   $(\mathrm{mm})$
1	6.6	17.5	7.62	24.5
2	6.6	24	7.62	30.5
3	8.3	24	7.62	30.5
4	10.4	24	10.16	30.5
5	10.4	32	10.16	39.3
6	12.9	32	10.16	39.3

Capacitance values
Tolerances on the capacitance
Working voltage
Permissible voltage at $\leq 50^{\circ} \mathrm{C}$
Peak voltage at $\leq 50^{\circ} \mathrm{C}$,
for $1 \mathrm{~min} /$ hour
Average leakage current
Temperature range
see table
$\pm 20 \%$
see table
1.1 x working voltage
1.25 x working voltage
$40 \%$ of maximum value, see table
$-80^{\circ} \mathrm{C}$ up to $85^{\circ} \mathrm{C}$
(without derating)

Composition of the catalog number


[^48]ELECTROLYTIC CAPACITORS
Small solid aluminium type

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ( $\mu \mathrm{F}$ )	leakage current ${ }^{1}$ ) ( $\mu \mathrm{A}$ )	ripple current ${ }^{2}$ )		$\left.\tan \delta^{3}\right)$	impe-   dance ${ }^{4}$ )   ( $\Omega$ )	voltage and сарас. code
				$\begin{gathered} 100 \mathrm{~Hz} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} 100 \mathrm{kHz} \\ (\mathrm{~mA}) \end{gathered}$			
1	4	27	9	100	220	0.20	2.5	2279
2		56	32	155	325	0.20	1.25	2569
3		100	57	235	485	0.20	0.75	2101
4		180	80	350	655	0.20	0.5	2181
5		270	105	505	865	0.20	0.4	2271
6		390	120	685	980	0.20	0.4	2391
1	6.3	22	12	90	220	0.18	2.5	3229
2		47	43	150	325	0.18	1.25	3479
3		82	73	225	485	0.18	0.75	3829
4		150	107	340	655	0.18	0.5	3151
5		220	140	480	865	0.18	0.4	3221
6		330	160	670	980	0.18	0.4	3331
1	10	15	15	80	220	0.16	2.5	4159
2		33	53	135	325	0.16	1.25	4339
3		56	90	195	485	0.16	0.75	4569
4		100	133	290	655	0.16	0.5	4101
5		150	175	420	865	0.16	0.4	4151
6		220	200	575	980	0.16	0.4	4221
1	16	8.2	18	65	220	0.14	2.5	5828
2		18	57	157	325	0.14	1.25	5189
3		33	105	105	485	0.14	0.75	5339
4		56	160	240	655	0.14	0.5	5569
5		82	210	335	865	0.14	0.4	5829
6		120	240	465	980	0.14	0.4	5121
1	25	5.6	21	55	150	0.14	5	6568
2		12	60	95	235	0.14	2.5	6129
3		22	110	140	340	0.14	1.5	6229
4		39	185	210	470	0.14	1	6399
5		56	245	295	610	0.14	0.8	6569
6		82	280	405	880	0.14	0.5	6829
1	40	2.7	24	45	150	0.10	5	7278
2		5.6	84	70	235	0.10	2.5	7568
3		10	145	105	340	0.10	1.5	7109
4		18	212	160	470	0.10	1	7189
5		27	280	230	610	0.10	0.8	7279
6		39	320	305	880	0.10	0.5	7399

1) Max. value at $20^{\circ} \mathrm{C}$ after 5 min ; the average values are $40 \%$ of the max. values.
2) Maximum permissible ripple current up to $70^{\circ} \mathrm{C}$.
3) Maximum dissipation factor at $20^{\circ} \mathrm{C}$ and 100 Hz , the average values are approximately $50 \%$ lower.
4) Maximúm impedance at $20^{\circ} \mathrm{C}$ and 100 kHz .

The leakage currents of solid aluminium capacitors can be considerably reduced by derating the voltage:


Leakage current (in \% of the leakage current at the working voltage) as a function of the derating factor (applied voltage/nominal working voltage), applicable to both average and maximum values of leakage current.

## Impedance graphs

Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and 100 kHz are stated in the table.







## ELECTROLYTIC CAPACITORS miniature solid tantalum type


$\square \longrightarrow$

RZ24124-1

Capacitance range
Maximum d.c. working voltages
$0.015-56 \mu \mathrm{~F}$

1. $6-25 \mathrm{~V}$

## APPLICATION

Miniature solid tantalum capacitors are designed especially for those applications where ultra small dimensions are a must and yet a high stability and reliability are required.
Typical applications are hearing-aids, electronic watches and paging-systems.

## CONSTRUCTION

The capacitor is of the solid type with a sintered anode and is built into a metal can. Two versions are available, a single-ended version and an axial-lead version.

Dimensions in mm

can   size	Fig.	D	L
1	1	1.9	2.5
2		1.9	3.8
3		1.9	4.7
4	2	2.4	5.2
5		3.4	7.2



Fig.1. Single-ended version


Fig. 2. Axial-lead version

## Colour code

The colour code should be read starting from the leads for the single-ended versions or from the anode side for the axial-lead versions. The third dot (c) is on the top of the single-ended version.

colour	c capacitance $=\mathrm{axb} \mu \mathrm{F}$		nominal voltage
	a   $(\mu \mathrm{F})$	b   multiplier	c   $(\mathrm{V})$
black	1	1	2.5
brown	1.2	10	4
red	1.5	$10^{2}$	6.3
orange	1.8	$10^{3}$	10
yellow	2.2		16
green	2.7		25
blue	3.3		40
violet	3.9		63
grey	4.7		1
white	5.6		1.6
silver	6.8	$10^{-2}$	
gold	8.2	$10^{-1}$	

Example: dot a = yellow dot $\mathrm{b}=$ gold $\operatorname{dot} \mathrm{c}=\mathrm{red}$

TECHNICAL PERFORMANCE (See also the tables)
Unless otherwise specified, all electrical values apply to a temperature of $20+5{ }^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity $\leq 75 \%$.

Tolerance on capacitance
Temperature range

$$
\begin{aligned}
& -20 /+50 \% \\
& -55 /+85{ }^{\circ} \mathrm{C}
\end{aligned}
$$

A temperature of $125^{\circ} \mathrm{C}$ is permissible for one hour per 24 hours.

SINGLE-ENDED VERSION

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current $\left.{ }^{1}\right)$   $(\mu \mathrm{A})$	ripple   current $\left.^{2}\right)$   $(\mathrm{mA})$	tan $\delta$   $3)$	impedance   $4)$   $(\Omega)$	cat. No.   2222142   followed by
1	1.6	0.82	0.5	0.1	0.15	75	10827
1		2.2	0.5	0.25	0.15	60	10228
2		4.7	1	0.5	0.15	50	10478
1	2.5	0.47	0.5	0.1	0.10	75	11477
1		1.5	0.5	0.25	0.10	60	11158
2		2.7	1	0.5	0.10	50	11278
1	4	0.33	0.5	0.1	0.10	75	12337
1		1.00	0.5	0.25	0.10	60	12108
2		1.8	1	0.5	0.10	50	12188
1	6.3	0.22	0.5	0.1	0.08	75	13227
1		0.56	0.5	0.25	0.08	60	13567
2		1.2	1	0.5	0.08	50	13128
1	10	0.12	0.5	0.1	0.08	75	14127
1		0.39	0.5	0.25	0.08	60	14397
2		0.82	1	0.5	0.08	50	14827
1	16	0.015	0.5	0.02	0.08	150	90004
1		0.039	0.5	0.04	0.08	150	90005
1		0.082	0.5	0.1	0.08	100	90006
1		0.22	0.5	0.25	0.08	75	15227
2		0.47	1	0.5	0.08	50	15477
1	25	0.047	0.5	0.1	0.08	75	90014
1		0.15	0.5	0.25	0.08	60	16157
2		0.27	1	0.5	0.08	50	16277

For notes see next page.

AXIAL-LEAD VERSION

can   size	working   voltage   $(\mathrm{V})$	capac-   itance   $(\mu \mathrm{F})$	leakage   current $\left.^{1}\right)$   $(\mu \mathrm{A})$	ripple   current $\left.{ }^{2}\right)$   $(\mathrm{mA})$	tan $\delta$   $3)$	impedance   $4)$   $(\Omega)$	cat. No.   2222 142   followed by
3	1.6	10	1	1	0.15	10	20109
4		22	1.5	2.5	0.15	7.5	20229
5		56	2.5	7	0.15	3.5	20569
3	2.5	6.8	1	1	0.10	10	21688
4		15	1.5	2.5	0.10	7.5	21159
5		39	2.5	7	0.10	3.5	21399
3	4	3.9	1	1	0.10	10	22398
4		10	1.5	2.5	0.10	7.5	22109
5		22	2.5	7	0.10	3.5	22229
3	6.3	2.7	1	1	0.08	10	23278
4		6.8	1.5	2.5	0.08	7.5	23688
5		15	2.5	7	0.08	3.5	23159
3	10	1.5	1	1	0.08	10	24158
4		3.9	1.5	2.5	0.08	7.5	24398
5		10	2.5	7	0.08	3.5	24109
3	16	1	1	1	0.08	10	25108
4		2.7	1.5	2.5	0.08	7.5	25278
5		6.8	2.5	7	0.08	3.5	25688
3	25	0.68	1	1	0.08	10	26687
4		1.5	1.5	2.5	0.08	7.5	26158
5		4.7	2.5	7	0.08	3.5	26478

1) Maximum leakage current after 5 minutes.
2) Maximum permissible ripple current at 100 Hz and $85^{\circ} \mathrm{C}$.
3) Maximum dissipation factor at 100 Hz .
4) Maximum impedance at 100 kHz .

## ELECTROLYTIC CAPACITORS

## solid tantalum type



RZ 18570
Solid electrolytic tantalum capacitors offer great advantages over wet types as regards service life, reliability, stability during life, temperature range etc. Apart from this, very small dimensions are achieved. They are therefore preferable for all kinds of miniaturised professional equipment.



DIMENSIONS in mm


## ELECTRICAL DATA

Tolerance on capacitance
Temperature with rated voltage with derated voltage
$-55 /+85^{\circ} \mathrm{C}$
up to $+125^{\circ} \mathrm{C}$
D. C. rated and surge voltages

d.c. rated voltage   (V)		d.c. surge voltage	
(V)			

## Ripple current



Graph 1


Graph 2

The capacitors may be operated at a superimposed a.c. ripple voltage, provided this does not cause the limit of the heat dissipation to be exceeded. This limit depends on the ripple frequency, ambient temperature and capacitance.
The ripple current $\mathrm{I}_{\mathrm{r}}$, permissible at $25^{\circ} \mathrm{C}$ and 100 Hz , is calculated from the equation $\mathrm{I}_{\mathrm{r}}=2 \pi \mathrm{fE}_{\mathrm{r}} \mathrm{C}$, where $\mathrm{f}=$ the ripple frequency in $\mathrm{Hz} ; \mathrm{E}_{\mathrm{r}}=$ the ripple voltage (see Graph 1); C = the capacitance in F.
The ripple voltage $E_{r}$, permissible at any temperature $T$ and frequency $f$, is calculated by means of the two graphs and the equation $E_{r}=E_{100} \times E_{25} / R_{r}$, where
$\mathrm{E}_{\mathrm{r}} \quad=$ the maximum ripple voltage at $25^{\circ} \mathrm{C}$ and 120 Hz , see Graph 1
$\mathrm{E}_{100}=$ the maximum ripple voltage at $\mathrm{T}^{\circ} \mathrm{C}$ and 120 Hz , see Graph 1
$\mathrm{E}_{25}=$ the maximum ripple voltage at $25^{\circ} \mathrm{C}$ and f Hz , see Graph 2.
\(\left.$$
\begin{array}{c|c|c|c|c}\hline \text { can } \\
\text { size } & \begin{array}{c}\text { d.c. rated } \\
\text { voltage } \\
85{ }^{\circ} \mathrm{C} \\
(\mathrm{V})\end{array} & \begin{array}{c}\text { capacitance } \\
(\mu \mathrm{F})\end{array} & \begin{array}{c}\text { leakage } \\
\text { current } \\
1)\end{array} & \begin{array}{c}\text { catal. No. } \\
(\mu \mathrm{A})\end{array}
$$ <br>
\hline 1 \& 6 \& 5222143 <br>
followed by <br>

2)\end{array}\right]\)|  |
| :---: |
| 1 |

1) Maximum leakage current at $25{ }^{\circ} \mathrm{C}$ after 5 minutes.
${ }^{2}$ ) For $10 \%$ tolerance the first digit of the suffix is 8 instead of 1 .
\(\left.$$
\begin{array}{c|c|c|c|c}\hline \begin{array}{c}\text { can } \\
\text { size }\end{array} & \begin{array}{c}\text { d.c. rated } \\
\text { voltage } \\
85{ }^{\circ} \mathrm{C} \\
(\mathrm{V})\end{array} & \begin{array}{c}\text { capacitance } \\
(\mu \mathrm{F})\end{array} & \begin{array}{c}\text { leakage } \\
\text { current } \\
1)\end{array} & \begin{array}{c}\text { catal. No. } \\
(\mu \mathrm{A})\end{array}
$$ <br>
\hline 4 \& 20 \& 5622143 <br>
followed by <br>

2)\end{array}\right]\)|  |
| :---: |
| 4 |
| 4 |

1) Maximum leakage current at $25{ }^{\circ} \mathrm{C}$ after 5 minutes.
2) For $10 \%$ tolerance the first digit of the suffix is 8 instead of 1 .

## Variable capacitors

Tubular ceramic trimmers page G3
Air dielectric trimmers page G23
Concentric air dielectric trimmers page G39
Film dielectric trimmers page G59Air dielectric correcting capacitorspage G35Precision tuning capacitorspage G43

## TUBULAR CERAMIC TRIMMERS <br> screw-driver slot at both ends




Capacitance swing Connections


A 46055

3, 6, $9,12 \mathrm{pF}$
soldering tags

## APPLICATION

The trimmers have been designed for v.h.f. applications in radio and television receivers. For many applications the negative temperature coefficient results in a favourable compensation at varying temperatures. The two modes of mounting increase the universal applicability.

## CONSTRUCTION

The trimmers consist of an internally ground ceramic tube in which a helical rotor of invar metal can be screwed up and down. Both rotor ends are slotted for screwdriver operation.
The rotor is guided by means of a wire spring which is interposed between the tube and a silver-plated brass fixture. This fixture is pressed on to the top of the tube ( 2 versions are available). The external bottom part of the tube acts as a stator and is provided with a soldering tag.

TECHNICAL PERFORMANCE

Minimum capacitance swing
Maximum zero capacitance
Effective angle of rotation
Temperature coefficient
Maximum permissible working voltage
Test voltage for 1 minute
Permissible temperature range
Minimum insulation resistance
Maximum contact resistance
Minimum parallel damping at 1.0 MHz and maximum capacitance
Operating torque
Maximum axial load on the
rotor during operation
Weight
Soldering
Category (I.E.C.68)

3; 6; 9; 12 pF
0.8; 0.8; 0.9; 1 pF
$3 \times 360^{\circ} ; 5 \times 360^{\circ} ; 7 \times 360^{\circ} ; 9 \times 360^{\circ}$
$-200 \pm 200 \mathrm{ppm} / \operatorname{deg} \mathrm{C}$
$500 \mathrm{~V}_{\mathrm{dc}}$
$1000 \mathrm{~V}_{\mathrm{dc}}$
-50 to $+100^{\circ} \mathrm{C}$
$10000 \mathrm{M} \Omega$
$10 \mathrm{~m} \Omega$
$3 \mathrm{M} \Omega$
0.4-5 Ncm

2 N
approximately 2 g
$260^{\circ} \mathrm{C}, 4 \mathrm{~s}$
50/100/21

## MECHANICAL DATA

Dimensions (mm) and catalogue numbers
Version A - the fixture is provided with a tag (hole 3.2 mm )
for mounting screw (M3). ${ }^{1}$ )
Version C- the fixture is intended to be soldered directly to the mounting panel.


capacitance swing (pF)	dimensions (mm)		catalogue number	
	1	a	version A	version C
3	5.5	13.5	222280120001	222280120005
6	8.5	16.5	20002	20006
9	11.5	19.5	20003	20007
12	14.5	22.5	20004	20008

## Mounting


mounting holes (mm)

## MIDGET TUBULAR CERAMIC TRIMMERS <br> screw-driver slot at both ends



Capacitance swing Connections


RZ 21046-1

3 and 6 pF
soldering tags

## APPLICATION

These trimmers have been developed for v.h.f. application in radio and television sets, especially in miniaturised equipment.

## CONSTRUCTION

A thin ceramic tube, internally ground, fits closely a threaded invar spindle (rotor). This spindle is guided by a U -shaped spring, which is kept in place by a silverplated brass cap. Both ends of the spindle are provided with a screwdriver slot to facilitate adjustment. The stator is a silverplated brass tube; it makes a tight fit with the ceramic tube. The cap, which must be soldered to the chassis, and a soldering tag on the stator enable a reliable connection with the circuit.

TECHNICAL PERFORMANCE

Minimum capacitance swing
Maximum zero capacitance
Temperature coefficient

222280120051	222280120052
3	6
0.8	0.8

Maximum permissible working voltage
Test voltage for 1 minute
$400 \mathrm{~V}_{\mathrm{dc}}$
Permissible temperature range
Minimum insulation resistance
Maximum contact resistance
800 V dc
-50 to $+100{ }^{\circ} \mathrm{C}$
$10000 \mathrm{M} \Omega$
Minimum parallel damping at
1.0 MHz and maximum capacitance
$10 \mathrm{~m} \Omega$

Operating torque
Category (I.E.C. 68)
Soldering
$3 \mathrm{M} \Omega$
0.1-2 Ncm

50/100/21
stator tag: in conformity with I.E.C.68, test T
cap : the soldering temperature must lie between $240^{\circ} \mathrm{C}$ and $260^{\circ} \mathrm{C}$, maximum soldering time is 10 s .
Maximum axial load on the rotor during operation

MECHANICAL DATA
Dimensions in mm

L (mm)	A at $C_{\min }(\mathrm{mm})$	catalog number
$7.8 \pm 0.5$	$10.5+1$	222280120051
$10.8 \pm 0.5$	$13.5+1$	20052

## Mounting

The trimmers can be fixed by soldering the cap to the chassis. The diameter of the required circular
 mounting hole is 4.2 mm .

## TUBULAR CERAMIC TRIMMERS

screw-driver slot at both ends



Capacitance swing


A 46050

3 and 6 pF

## APPLICATION

These trimmers have been designed for
v.h.f. applications and are particularly suitable for u.h.f. tuners and other electronic circuits operating in the higher frequency ranges.

## CONSTRUCTION

Since a brass rotor is used, the series resistance of the trimmers is low and the Q value quite acceptable, even at very high frequencies; see the graph in which Q has been plotted as a function of working frequency.
Because, rather than wire leads, connecting strips being an integral part of the circuit are appropriate at high frequencies, the stator is not provided with a soldering tag and it is silver-plated to ensure good solderability.
The fixture on the top of the ceramic tube is likewise intended for being soldered on directly to the mounting panel. In order to obtain items of equal lengths, the fixture is attached at the same height of the tube irrespective of the capacitance rating.

TECHNICAL PERFORMANCE

Minimum capacitance swing Maximum zero capacitance

Temperature coefficient
Maximum permissible working voltage

Test voltage for 1 minute
Permissible temperature range
Minimum insulation resistance
Maximum contact resistance
Minimum parallel damping at 1.0 MHz and maximum capacitance Operating torque
Maximum axial load on the
rotor during operation
Weight
Category (I.E.C.68)

222280196003	222280196002
3	6 pF
0.5	0.7 pF
$+150 \pm 150$	$+150 \pm 100 \mathrm{ppm} / \mathrm{deg} \mathrm{C}$
$500 \mathrm{~V}_{\mathrm{dc}}$	
$1000 \mathrm{~V} \mathrm{~V}_{\mathrm{dc}}$	
-50 to $+100{ }^{\circ} \mathrm{C}$	
$10000 \mathrm{M} \Omega$	
$3 \mathrm{~m} \Omega$	

$10 \mathrm{M} \Omega$
$0.4-5 \mathrm{Ncm}$

## 2 N

approx. 1.8 g 50/100/21

Soldering:
The soldering temperature, which should not exceed $250^{\circ} \mathrm{C}$, can be achieved either in a uniformly heated furnace (max. 4 s ) or by means of h.f. heating (max. 7 s). In both cases, adequate solder connections will be obtained without impairment of the characteristics, provided that low-melting tin foil is used in conjunction with an appropriate flux.

MECHANICAL DATA


Dimensions (mm)

## Mounting



The mounting hole should have a diameter of 6.5 mm

## TUBULAR CERAMIC TRIMMERS <br> screw-driver slot at both ends



Capacitance swing Connections
$3,6,9,12,18 \mathrm{pF}$
soldering tags

## APPLICATION

These capacitors have been designed for the precision trimming of industrial equipment which operate at the higher frequencies.
Their simple form of construction guarantees high reliability and facilitates, moreover, a high breakdown voltage, good stability and high adjustment accuracy.
For many applications the negative temperature coefficient characteristic results in adequate compensation of various temperatures.
The small dimensions contribute to the miniaturisation of electronic equipment.

## CONSTRUCTION

The trimmers consist of an internally ground ceramic tube, in which an invar rotor is guided by a silverplated steel wire spring.
Both ends of the rotor are provided with a slot for screw-driver operation.

## Dimensions in mm

For A and L see table on next page.


## Mounting

The trimmers can be fixed to pancls up to 2 mm thick by means of the nut supplied. The diameter of the required circular mounting hole is 5.2 mm .

TECHNICAL PERFORMANCE

Permissible working voltage
Test voltage
Permissible temperature range
Temperature coefficient
Contact resistance (between tag and rotor)
Parallel damping at 1.0 MHz
Insulation resistance
Operating torque
Capacitance change with an
axial load of 2 N
for trimmer 222280220001
20002
20003
20004
20005
Category (I.E.C.68)

$$
\begin{aligned}
& \leq 500 \mathrm{~V} \mathrm{dc} \\
& 1000 \mathrm{~V} \mathrm{dc} \\
& -50 \text { to }+100{ }^{\circ} \mathrm{C} \\
& -200 \pm 200 \mathrm{ppm} / \mathrm{deg} \mathrm{C} \\
& \leq 10 \mathrm{~m} \Omega \\
& >3 \mathrm{M} \Omega \\
& >10000 \mathrm{M} \Omega \\
& 0.4-5 \mathrm{Ncm}
\end{aligned}
$$

$\leq 0.03 \mathrm{pF}$
$\leq 0.04 \mathrm{pF}$
$\leq 0.06 \mathrm{pF}$
$\leq 0.08 \mathrm{pF}$
$\leq 0.2 \mathrm{pF}$
50/100/21
Also in accordance with equivalent MIL requirements .

capaci-   tance   swing   $(\mathrm{pF})$	zero   capaci-   tance   $(\mathrm{pF})$	angle of   rotation $\mathrm{a}^{\circ}$   (approx.)	maximum   dimensions   $(\mathrm{mm})$	catalog number	
$\geq 3$	$\leq 0.8$	$7 \times 360$	11	14.5	222280220001
$\geq 6$	$\leq 0.8$	$7 \times 360$	14	17.5	20002
$\geq 9$	$\leq 0.9$	$9 \times 360$	17	20.5	20003
$\geq 12$	$\leq 1.0$	$11 \times 360$	20	23.5	20004
$\geq 18$	$\leq 1.7$	$11 \times 360$	20	23.5	20005

## HIGH STABILITY TUBULAR CERAMIC TRIMMERS with locking device



Capacitance swing
Connéctions
$3,4.5,6,9,12 \mathrm{pF}$
soldering tags

## APPLICATION

These capacitors have been designed for the precision trimming of industrial equipment which operate at the v.h.f. frequencies.
Their simple form of construction guarantees high reliability and facilitates, moreover, a high breakdown voltage, good stability and high adjustment accuracy.
For many applications the negative temperature coefficient characteristic results in adequate compensation at various temperatures.
The small dimensions contribute to the miniaturisation of electronic equipment.

## CONSTRUCTION

The trimmers consist of a low-k ceramic tube (for the values 3, 4.5, 6 pF and a higher-k ceramic tube for 9 and 12 pF ), internally ground, in which an invar rotor is guided by a threaded cap. This invar rotor has a copper coating which is nickelplated ${ }^{*}$ ), one end is provided with a slot for screw-driver operation. By means of a locking nut the rotor can be locked after adjustment.

[^49]
## Dimensions in mm

For $A$ and $L$ see table.

Mounting in specially shaped hole


## TECHNICAL PERFORMANCE

Permissible working voltage
Test voltage
Permissible temperature range
Contact resistance (between tag and rotor)
Parallel damping at 1.0 MHz at 100 MHz
Insulation resistance
Operating torque
Capacitance change with
an axial load of 2 N
Category (I.E.C.68)
$\leq 500 \mathrm{~V}_{\mathrm{dc}}$
$1000 \mathrm{~V}_{\mathrm{dc}}$
-50 to $+100^{\circ} \mathrm{C}$
$\leq 3 \mathrm{~m} \Omega$
$>10 \mathrm{M} \Omega$
$>3 \mathrm{M} \Omega$
$>10000 \mathrm{M} \Omega$
$0.4-4 \mathrm{Ncm} ; 10 \mathrm{Ncm}$ if locked with 42 Ncm
$\leq 0.005 \mathrm{pF}$
$50 / 100 / 21$
Also in accordance with equivalent
MIL requirements .

capaci-   tance   swing   $(\mathrm{pF})$	zero   capaci-   tance   $(\mathrm{pF})$	temp. coeff   $(\mathrm{ppm})$	angle of   rotation a   (approx.)	maximum   dimensions   $(\mathrm{mm})$	catalogue number	
$\geq 3$	$\leq 0.5$	$-10 \pm 60$	$8 \times 360$	12.4	22.5	222280220011
$\geq 4.5$	$\leq 0.6$	$-10 \pm 60$	$10 \times 360$	15.4	25.5	20012
$\geq 6$	$\leq 0.7$	$-10 \pm 60$	$11 \times 360$	17.9	28.0	20013
$\geq 9$	$\leq 0.9$	$-250 \pm 250$	$10 \times 360$	15.4	25.5	20014
$\geq 12$	$\leq 1.0$	$-250 \pm 250$	$11 \times 360$	18.4	28.0	20015

# MIDGET TUBULAR CERAMIC TRIMMERS screw-driver slot at both ends 



## APPLICATION

These trimmers have been designed for professional electronic applications, particularly in the domain of miniaturised industrial equipment. Reliability is ensured by the simple construction and good stability.

## CONSTRUCTION

A thin ceramic tube, internally ground, fits closely a threaded invar spindle (rotor). This spindle is guided by a U-shaped spring, which is kept in place by a silverplated brass cap. Both ends of the spindle are provided with a screw-driver slot to facilitate adjustment. The stator is a silverplated brass tube; it makes a tight fit with the ceramic tube. A soldering tag on the cap and a soldering tag on the stator enable a reliable connection with the circuit.

Dimensions in mm (see figure on next page)

$L$	1	$A$ at $C_{\min }$	catalog number
$8.3 \pm 1$	$7.3 \pm 0.5$	$9+1$	222280296035
$11.3 \pm 1$	$10.3 \pm 0.5$	$12+1$	96036

## Mounting

The trimmers can be fixed to chassis up to 1 mm thick by means of the nut supplied. The diameter of the required circular mounting hole is 4.2 mm .

For A, 1 and L see table on preceding page.


TECHNICAL PERFORMANCE
Minimum capacitance swing
trimmer 222280296035
3 pF
trimmer 222280296036
6 pF
Maximum zero capacitance
Maximum permissible working voltage
Test voltage for 1 minute
Permissible temperature range
Temperature coefficient
trimmer 222280296035
trimmer 222280296036
Minimum insulation resistance
Maximum contact resistance
Minimum parallel damping at 1.0 MHz
Operating torque
Category (I.E.C.68)
Solderability
Maximum capacitance change with an axial load of 2 N
0.03 pF

# HIGH STABILITY TUBULAR CERAMIC TRIMMERS with friction locking device 



## APPLICATION

These trimmers have been designed for u.h.f. applications, where high stability has to be maintained even under severe mechanicalconditions, e.g. television aerial amplifiers.

## CONSTRUCTION

The dielectric of the urimmers is formed by a ceramic tube, in which a gold-plated-copperclad invar rotor is guided by an U-shaped spring. This spring is clamped between the ceramic tube and the fixing cap. AP.T.F.E. locking ring, which is pressed into the fixing cap, guarantees a high stability. The trimmers are available with a ceramic tube with low dielectric constant ( k 6 material, class A) and with a high dielectric constant ( $k 20$ material, class B). Trimmers of both classes are delivered in a screw mounting type as well as in a solder mounting type. For mounting the last mentioned type, the cap has to be soldered to the chassis.

Dimensions in mm

For A and L see tables on next page.

mounting hole

Fig. 1. Screw mounting type

mounting hole

Fig. 2. Solder mounting type


Fig. 3. Screw mounting type

mounting hole
Fig.4. Solder mounting type

cap.	zero	class	dimensions (mm), see Figs. 1 and 2   L A at $\mathrm{C}_{\text {min }}$		catalogue numbe	$2222802960 .$.
swing ( pF )	$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$				screw mounting type (Fig.1)	solder mounting type (Fig. 2)
$\geq 3$	$\leq 0.8$	B	11	14.5	44	51
$\geq 6$	$\leq 0.8$		14	17.5	45	52
$\geq 9$	$\leq 0.9$		17	20.5	46	53
$\geq 12$	$\leq 1.0$		20	23.5	47	54
$\geq 3$	$\leq 0.5$	A	14	14	66	69
$\geq 4.5$	$\leq 0.6$		17	17	67	71
$\geq 6$	$\leq 0.7$		19	20	68	72


cap.	zero	class	dimensions (mm), see Figs. 3 and 4   L A at $\mathrm{C}_{\text {min }}$		catalogue number 2222802960.	
$\begin{aligned} & \text { swing } \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & \text { cap. } \\ & (\mathrm{pF}) \end{aligned}$				screw mounting type (Fig.3)	solder mounting type (Fig.4)
$\geq 3$	$\leq 0.8$	B	8.8	7.8	55	57
$\geq 6$	$\leq 0.8$	B	11.8	10.8	56	58


class A	class B		
types according   Figs. 1 and 2	types according Figs. 1 and 2	types according Figs. 3 and 4	
500	500	400	$\mathrm{V}_{\mathrm{dc}}$
1000	1000	800	$\mathrm{V}_{\mathrm{dc}}$
$-10 \pm 60$	$-200 \pm 150$	$-200 \pm 150$	$\mathrm{ppm} / \mathrm{deg} \mathrm{C}$
10000	10000	10000	$\mathrm{M} \Omega$
-50 to +100	-50 to +100	-50 to +100	${ }^{\circ} \mathrm{C}$
3	3	3	$m \Omega$
10	3	3	$M \Omega$
0.006	0.01	0.006	pF

IIIIIII
TECHNICAL PERFORMANCE
Maximum permissible working voltage Test voltage

Temperature coefficient
Minimum insulation resistance
Permissible temperature range
Maximum contact resistance between
tag and rotor
Minimum parallel damping at 1.0 MHz and maximum capacitance

Maximum capacitance change with an
axial load of 2 N
Category (I.E.C.68)

# AIR DIELECTRIC TRIMMERS ( $14 \times 17 \mathrm{~mm}$ ) 

screw-driver adjustment


RZ 16105-3

Capacitance swing
single-stator type
split-stator type
differential type
Connections

soldering tags

## APPLICATION

For accurate adjustments where long-term operating stability is required. Three types are available: single-stator, split-stator and differential trimmers. Splitstator trimmers are suitable for symmetrically built h.f. circuits; differential types can be used for h.f. capacitive volume or voltage control.

## CONSTRUCTION

Base : high-quality siliconised ceramic material.
Rotor : silver-plated brass vanes, soldered on a shaft which is slotted for screwdriver operation; without locking device; slide bearing.
Stator : silver-plated brass vanes, supported by sturdy bars, which are soldered onto the ceramic base.

Dimensions in mm
For L see table on next page.


Mounting
By two M2.6 screws at a distance of 12 mm in a maximum 3 mm thick panel.

## TECHNICAL PERFORMANCE

Tolerance on capacitance swing
Effective angle of rotation
Temperature range
Temperature coefficient
Contact resistance between rotor tags and rotor
Insulation resistance
Parallel damping
Torque
Maximum working voltage
Category (I.E.C. 68)

```
+20% with a minimum of l pF
180}\mp@subsup{}{}{\circ}\mathrm{ for single-stator and differential trimmers,
90}\mp@subsup{}{}{\circ}\mathrm{ for split-stator items
-40 to +85 O}\textrm{C
150\pm150 ppm/degC
< 3 m\Omega
> 10000 M\Omega
> 10 M\Omega
2-6 Ncm
75% of test voltage (see table)
40/085/21
Also in accordance with equivalent
MIL requirements.
```

| type | capacitance <br> swing <br> $(\mathrm{pF})$ | max. zero <br> capacitance <br> $(\mathrm{pF})$ | test <br> voltage <br> $\left(\mathrm{V}_{\mathrm{dc}}\right)$ | L | (mm) |
| :---: | :---: | :---: | :---: | :--- | ---: | catalog number

1) Measured between stator and rotor
2) Measured between the two stators
3) Measured between stators and rotor

## PACKING

The trimmers are packed in transparant plastic boxes (5 trimmers per box).

## AIR DIELECTRIC TRIMMERS ( $17 \times 20 \mathrm{~mm}$ )

screw-driver adjustment


RZ 16105-2

Capacitance swing single-stator type split-stator type differential type

Connections
$6.4,10,16,25,40 \mathrm{pF}$
2.5, 4, 6.4 pF
$6.4,10,16,25 \mathrm{pF}$
soldering tags

## APPLICATION

For accurate adjustments where long-term operating stability is required.
Three types are available: single-stator, split-stator and differential trimmers.
Split-stator trimmers are suitable for symmetrically built h.f. circuits; differential types can be used for h.f. capacitive volume or voltage control.

## CONSTRUCTION

Base: : high-quality siliconised ceramic material.
Rotor : silver-plated brass vanes, soldered on a shaft which is slotted for screwdriver operation; with or without locking device; slide bearing.
Stator: silver-plated brass vanes, supported by sturdy bars, which are soldered onto the ceramic base .

## Dimensions in mm

For L see table on next page.


## Mounting

By two M3 screws at a distance of 13 mm in a maximum 3 mm thick panel.

## TECHNICAL PERFORMANCE

Tolerance on capacitance swing Effective angle of rotation

Temperature range
Temperature coefficient
Contact resistance between rotor tags and rotor
Insulation resistance
Parallel damping
Torque
Maximum working voltage
Category (I.E.C.68)
$+20 \%$ with a minimum of 1 pF $180^{\circ}$ for single-stator and differential trimmers, $90^{\circ}$ for split-stator items
-40 to $+85^{\circ} \mathrm{C}$
$150 \pm 150 \mathrm{ppm} / \mathrm{deg} \mathrm{C}$
$\leq 3 \mathrm{~m} \Omega$
$>10000 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$
$2-6 \mathrm{Ncm}$ when unlocked, 10 Ncm when locked at 42 Ncm
$75 \%$ of test voltage (see table)
40/085/21
Also in accordance with equivalent MIL requirements.

type	capacitance swing ( pF )	```maximum zero capacitance (pF)```	test voltage$\left(\mathrm{V}_{\mathrm{dc}}\right)$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	catalog number$2222804 \text {..... }$	
					without locking device	with locking device
single-stator	6.4	3	1000	16	01001	01006
	10	3	800	16	01002	01007
	16	$3.5{ }^{1}$ )	$\left.800{ }^{1}\right)$	19.5	01003	01008
	25	3.5	800	19.5	01004	01009
	40		650	19.5	01005	01011
split-stator	2.5		1600	16	01012	01015
	4	$2.5{ }^{2}$ )	$1600{ }^{2}$ )	19.5	01013	01016
	6.4	2.5	1600	19.5	01014	01017
differential	6.4	3	1000	16	01018	01023
	10	3 3)	800 3)	16	01019	01024
	16	$3.5{ }^{3}$	$800{ }^{3}$	19.5	01021	01025
	25	3.5		19.5	01022	01026

1) Measured between stator and rotor.
2) Measured between the two stators.
3) Measured between stators and rotor.

The single-stator and split-stator types can generally be supplied from stock.

## PACKING

The trimmers are packed in transparant plastic boxes (5trimmers per box).
$\square$

## AIR DIELECTRIC TRIMMERS ( $20 \times 24 \mathrm{~mm}$ )



RZ 16105-1

Capacitance swing single-stator type
split-stator type

## Connections

$10,16,25,40,64,100 \mathrm{pF}$
$2.5,4,6.4,10,16,25 \mathrm{pF}$
soldering tags

## APPLICATION

For accurate adjustments where long-term operating stability is required.
Two types are available: single-stator and split-stator trimmers.
Split-stator trimmers are suitable for symmetrically built h.f. circuits.

## CONSTRUCTION

Base : high-quality siliconised ceramic material.
Rotor : silver-plated brass vanes, soldered on a shaft which is slotted for screwdriver operation; with or without locking device.
Stator: silver-plated brass vanes, supported by sturdy bars, which are soldered onto the ceramic base.

## Dimensions in mm

For L see table on next page.


## Mounting

By two M3 screws at a distance of 16 mm in a maximum 3 mm thick panel.

## TECHNICAL PERFORMANCE

Tolerance on capacitance swing
Effective angle of rotation
Temperature range
Temperature coefficient
Contact resistance between rotor
tags and rotor
Insulation resistance
Parallel damping
Torque
Maximum working voltage
Category (I.E.C.68)
$+20 \%$ with a minimum of 1 pF
$180^{\circ}$ for single-stator trimmers,
900 for split-stator items
-40 to +85 oC
$150 \pm 150 \mathrm{ppm} / \mathrm{deg} \mathrm{C}$
$\leq 3 \mathrm{~m} \Omega$
$>10000 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$
2-6 Ncm when unlocked, 10 Ncm when locked at 42 Ncm
$75 \%$ of test voltage (see table)
40/085/21
Also in accordance with equivalent MIL requirements.

AIR DIELECTRIC TRIMMERS (20 x 24 mm ) screw-driver adjustment
$222280402001-$ 222280402026

type	capaci-   tance   swing   (pF)	maximum zero capacitance ( pF )	test voltage$\left(\mathrm{V}_{\mathrm{dc}}\right)$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	catalog number$2222804 \ldots .$	
					without locking device	with locking device
single-stator	10	3.5	1500	23	02001	02007
	16	3.5	1000	23	02002	02008
	25	4 1)	1000 1)	23	02003	02009
	40	$4.5{ }^{1}$	1000	26.5	02004	02011
	64	5	800	26.5	02005	02012
	100	5.5	800	36.5	02006	02013
split-stator	2.5	2	2500	23	02014	02021
	4	2	2500	26.5	02015	02022
	6.4		2000 2)	26.5	02016	02023
	10	2.5	1600	26.5	02017	02024
	16	3	1600	36.5	02018	02025
	25	31	1600	36.5	02019	02026

${ }^{1}$ ) Measured between stator and rotor
2) Measured between the two stators

The types with locking device are preferred and can generally be supplied from stock.

## PACKING

The trimmers are packed in transparant plastic boxes (5 trimmers per box).

## AIR DIELECTRIC CORRECTING CAPACITORS ( $\phi \mathbf{2 5} \mathrm{mm}$ ) screw-driver and knob adjustment



RZ 11678-2

Capacitance swing single-stator type split-stator type differential type Connections

$2.5,4,6.4,10,16,25,40,64,100 \mathrm{pF}$ 1.6, 4, 10 pF 2.5, 10, 40 pF soldering tags

## APPLICATION

For fine adjustment of capacitance. Three types are available: single-stator, splitstator and differential capacitors.
Single-stator capacitors are suitable for capacitance adjustment in tuned circuits, split-stator capacitors for capacitance adjustment in symmetrically built tuned circuits and differential types for capacitive volume or voltage control.

## CONSTRUCTION

Base : nickel-plated brass with pressed-in siliconised ceramic stator supports.
Rotor : brass vanes soldered on a shaft, which has a double-race ball-bearing and is slotted for screw-driver operation ( 0.8 mm width, 1.2 mm depth). Friction springs assure a stable torque. The $6 \mathrm{~mm} \emptyset$ shaft can also be fitted with a control knob. The single-stator and the differential types are available with an insulated or a non-insulated rotor.
By rotation of the rotor of the split-stator types, the capacitance of either pack of each pair increases or decreases to the same degree.
By rotation of the rotor of the differential types, the capacitance of one pack increases to the same degree as that of the other decreases.
Stator : brass vanes soldered to brass studs which are fixed to the ceramic supports of the base.

Dimensions in mm
For $L$ see table on next page.


Mounting
In a hole with a diameter of 10.5 mm , in a maximum 4 mm thick panel, by means of a nut supplied with each capacitor.

## TECHNICAL PERFORMANCE

Tolerance on capacitance swing
Accuracy of adjustment
Test voltage
(stator and rotor insulated)
Maximum working voltage
Insulation resistance
(insulated version)
Contact resistance
(between soldering tag and rotor)
Permissible temperature range
Temperature coefficient at $2 / 3$ of the maximum capacitance
Effective angle of rotation
Torque
Category (I.E.C.68)
$+10 \%$ with a minimum of 1 pF
better than $0.01 \%$ of the capacitance swing with a minimum of 0.003 pF
$2000 \mathrm{~V}_{\mathrm{dc}}$
$75 \%$ of test voltage (see table)
$>10000 \mathrm{M} \Omega$
$\leq 3 \mathrm{~m} \Omega$
-40 to $+85^{\circ} \mathrm{C}$
$25 \mathrm{ppm} / \mathrm{deg} \mathrm{C}$
approximately $180^{\circ}$
$1.5-4 \mathrm{Ncm}$
40/085/21
Also in accordance with equivalent MIL requirements.

type	capacitance swing (pF)	zerocapacitance$(\mathrm{pF})$	test voltage$\left(\mathrm{V}_{\mathrm{dc}}\right)$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	catalog number$2222804 \text {. . . . }$	
					non-   insulated   rotor   1	insulated rotor
singlestator	2.5	$\leq 2.5$	1500	23	15001	15017
	4	$\leq 2.5$	1500	23	15002	15018
	6.4	$\leq 3$	1500	23	15003	15019
	10	$\leq 3$	1000	23	15004	15021
	16	$\leq 3 \quad{ }^{1}$ )	$1000{ }^{1}$ )	23	15005	15022
	25	$\leq 4$	1000	28	15006	15023
	40	$\leq 4$	800	28	15007	15024
	64	$\leq 4$	800	28	15008	15025
	100	$\leq 4$	650	28	15009	15026
$\begin{aligned} & \text { split- } \\ & \text { stator } \end{aligned}$	1.6	$\leq 1.5$	2000 )	23		15027
	4	$\leq 2.0{ }^{2}$ )	$1250{ }^{2}$ )	28		15028
	10	$\leq 2.5$		28		15029
diffe-   rential			1500	23	15014	15031
	10	$\leq 3 \quad 3$ )	$800{ }^{3}$ )	23	15015	15032
	40	$\leq 4$	800	28	15016	15033

${ }^{1}$ ) Measured between stator and rotor.
2) Measured between the two stators.
3) Measured between stators and rotor.

Versions for other voltages, with different capacitance values and with different shaft lengths are available on request.

## PACKING

The capacitors are packed in transparant plastic boxes ( 5 capacitors per box).


## CONCENTRIC AIR DIELECTRIC TRIMMERS ( $\phi 1 / 2^{\prime \prime}$ )

screw-driver or trim-key adjustment


Capacitance swing Connections
$6.4,10,16,25 \mathrm{pF}$
soldering tags and printed-wiring pins

## APPLICATION

For adjusting h.f. tuned circuits if very small changes in capacitance and a highdegree of stability are required.

CONSTRUCTION
Rotor and stator: extruded aluminium, consisting of concentric rings separated by air gaps. Rotor provided with hexagonal or slotted shaft for trimkey or screw-driver adjustment.
Types with soldering tags and types with pins for mounting on printed-wiring boards are available.

Dimensions in mm


Type with printed wiring pins; trimkey adjustment.


Type with soldering tags and insulated rotor; screw-driver adjustment.


Type with soldering tags and non-insulated rotor; trimkey adjustment.

type	max. dimensions (mm)			cat. number $2222804 \ldots$			
	below   chassis (a)	above   chassis (b)	6.4 pF	10 pF	16 pF	25 pF	
with tags,   trim-key   adjustment	non-   insulated   rotor	3.5	27	20021	20022	20023	20024
	insulated   rotor	7.5	27	20001	20002	20003	20004
with tags,   screw -driver   adjustment	non-   insulated   rotor	3.5	41.5	20031	20032	20033	20034
insulated   rotor	7.5	41.5	20011	20012	20013	20014	
with p.w. pins,   trim-key   adjustment	non-   insulated   rotor	3.5	29	20041	20042	20043	20044
with p.w. pins,   screw-driver   adjustment	non-   insulated   rotor	3.5	43.5	20051	20052	20053	20054

## Mounting

a. By means of an M6 nut and a fixture which is insulated or non-insulated from the spindle end.
b. For insertion mounting on printed-wiring boards the types with a sturdy 4 -point fixation are used, which prevents wrong insertion and permits automatic dip soldering. The double rotor connection allows "jumping" of the earth conductor, and so a more efficient use of the board area.

## TECHNICAL PERFORMANCE

Minimum capacitance swing
Maximum zero capacitance
Temperature coefficient
Maximum permissible working voltage
Test voltage for 1 min
Permissible temperature range
Minimum insulation resistance
Maximum contact resistance
Minimum parallel damping at
1.5 MHz and max. capacitance

Operating torque
Maximum axial load on the rotor
during operation
Weight
Solderability
Effective angle of rotation
Accuracy of adjustment
Tolerance on capacitance swing
Category (I.E.C. 68)

6.4	10	16	25	pF
3.5	3.5	3.5	3.5	pF
$40 \pm 100$	$30 \pm 75$	$20 \pm 75$	$10 \pm 50$	
			$\mathrm{ppm} / \mathrm{deg} \mathrm{C}$	
500	325	250	250	$\mathrm{~V}_{\mathrm{dc}}$
1000	650	500	500	$\mathrm{~V}_{\mathrm{dc}}$
$-40 \mathrm{to}+85^{\circ} \mathrm{C}$				
$10000 \mathrm{M} \Omega$				
$3 \mathrm{~m} \Omega$				
$10 \mathrm{M} \Omega$				
$0.5-6.5 \mathrm{Ncm}$				

## 5 N

$5.5-8.5 \mathrm{~g}$
in conformity with I.E.C. 68 , test T
$4 \times 360^{\circ}$
better than 0.02 pF
$+20 \%$
40/085/21
Also in accordance with equivalent MIL requirements.

## PACKING

The trimmers are packed in "blisterpacking" (50 trimmers per packing).

## PRECISION TUNING CAPACITORS



37482-57


6486/19

## APPLICATION

These air dielectric capacitors are applicable where a high accuracy of adjustment and a high degree of stability are required.
They are available with one to four gangs .

TYPES		$40 \times 40 \mathrm{~mm}$   linear law		$60 \times 60 \mathrm{~mm}$	
		heavy torque *   spindle end   slotted	linear   law	logarithmic   law	
single   stator   $1-4$ gangs	non insulated	$16-250 \mathrm{pF}$	$100-640 \mathrm{pF}$	$100-500 \mathrm{pF}$	
split   stator   $1-4$ gangs	non insulated	insulated	$6.4-64 \mathrm{pF}$	$100-640 \mathrm{pF}$	$100-500 \mathrm{pF}$
differen-   tial   1 gang	non insulated	insulated	$16-250 \mathrm{pF}$	$25-125 \mathrm{pF}$	

* for 1 gang capacitor only

Law and ganging tolerances

$$
\pm 0.7 \%
$$

## CONSTRUCTION

## Frame

Nickel-plated brass plates and bars, assembled by riveting and soldéring.

## Shaft

Ball bearings on both ends.
a. Non-insulated version: one piece brass shaft.
b. Insulated version: brass sections separated by ceramic bars.

## Rotor

Clean brass vanes soldered to the shaft.

## Stator

Clean brass vanes supported and insulated by siliconized ceramic balls.
Protruding shaft end
Diameter 6 mm , standard free length 10 and 14.5 mm for ( $40 \times 40 \mathrm{~mm}$ ) version and ( $60 \times 60 \mathrm{~mm}$ ) version respectively.

## Direction of rotation

Clockwise for increasing capacitance.
Angle of rotation
$180^{\circ}$ or $360^{\circ}$ at choice.
Owing to the eccentric rotor vanes, the versions with logarithmic laws have $180^{\circ}$ as maximum angle of rotation.

## Dimensions in mm



dimensions in mm		a x b	number of gangs							
			normal gap				wide gap			
			1	2	3	4	1	2		
distance between mounting holes $( \pm 0.5)$	L	$40 \times 40$	45	76.5 117.5	108	139.5	65	116.5		
		$60 \times 60$	67	117.5	168	218.5	103	189.5		
	t	$40 \times 40$	2235							
		$60 \times 60$								
compartment length	c	$40 \times 40$	$\begin{aligned} & 31.5 \\ & 50.5 \end{aligned}$				$\begin{aligned} & 51.5 \\ & 86.5 \end{aligned}$			
$( \pm 0.2)$		$60 \times 60$								
shaft length	1	$40 \times 40$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$							
$( \pm 0.5)$		$60 \times 60$								
shaft height	h	$40 \times 40$	22.5							
$( \pm 0.5)$		$60 \times 60$	32.5							

High stability and freedom from noise are obtained by soldering all the retal parts together. Low contact resistance is ensured by silver contact points on the rotor drag spring.
Silicone treated ceramics are used exclusively for insulation ensuring that the insulation resistance is high and the losses are low, even in humid conditions. The resistance to shock and vibration is high as the stator is insulated with ceramic ball-bearings. Ceramic spindles, included in versions with insulated rotors, are able to withstand severe impact and vibration.
The standard spindle end is provided with a detent which, together with a removable stop on the front plate, permits the accurate setting of a rotation angle of $15^{\circ}$ as a reference for checking the capacitance and its variation as a function of rotation. For rotation angles of $165^{\circ}$ and above, the stop should be removed.

Single capacitors of the ( $40 \times 40 \mathrm{~mm}$ ) version for direct drive operation have the spindle end slotted for screwdriver adjustment.

The capacitors are built entirely of basic parts with symmetrically placed stator and rotor packs. Non-listed combinations having non-standard capacitances, extra compartments, thicker and/or longer spindle ends (protruding up to 50 mm from both faces) and different connections, can be obtained if required.

## TECHNICAL PERFORMANCE

Nominal capacitance swing
Maximum capacitance at $0^{\circ}$
Test voltage
Permissible peak voltage
see $\mathrm{C}_{\text {var }}$ in table I
see $\mathrm{C}_{0}$ in table I
see $V_{\text {test }}$ in table I
$\leq \frac{1}{2} \mathrm{~V}_{\text {test }}$

TABLE I
size a $\times \mathrm{b}=40 \times 40 \mathrm{~mm}$, linear capacitance law

single-stator	$\mathrm{C}_{\text {var }}$		16	25	40	64	100	160	250	pF
or differen-   tial type ${ }^{1}$ )	$\left.\mathrm{C}_{0} \pm 1 \mathrm{pF} 2\right)^{\text {normal gap }} \begin{aligned} & \text { wide gap } \end{aligned}$		2500	8.5	9	9	10 15.5	11	11.5	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
	$\left.V_{\text {test }}{ }^{3}\right)$	normal gap   wide gap		2000	1500   2500	1000 2000	1000 1250	800 1000	650 800	$\mathrm{V}_{\mathrm{dc}}$
split-stator	$\mathrm{C}_{\text {var }}$		6.4	10	16	25	40	64		pF
	$\mathrm{C}_{\mathrm{o}} \pm 1 \mathrm{pF}$	normal gap wide gap	3	3	3.6 4.5	4.5	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	4 5		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
	$\mathrm{V}_{\text {test }}{ }^{4}$ )	normal gap	4000	30004000	$\begin{aligned} & 2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2500 \end{aligned}$	$\begin{aligned} & 1600 \\ & 2000 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1600 \end{aligned}$		$\mathrm{V}_{\mathrm{dc}}$   $V_{d c}$
		wide gap								

size a x b $=60 \times 60 \mathrm{~mm}$, linear capacitance law

$\begin{aligned} & \text { single-stator } \\ & \text { type } \end{aligned}$	$\mathrm{C}_{\text {var }}$		$\begin{array}{r} 100 \\ 14.5 \end{array}$	$\begin{array}{r} 125 \\ 15 \end{array}$	$\begin{array}{r} 160 \\ 15.5 \end{array}$	200	250	320	400	500	640	pF
	$\mathrm{Co}+1 \mathrm{pF}$	normal gap				16	16	17.5	19	20.5	21.5	pF
	$\mathrm{C}_{\mathrm{O}} \pm 1 \mathrm{pF}$	wide gap				26	26.5	27.5	28	29.5	30.5	pF
	Vtest ${ }^{3}$ )	normal gap	2000	2000	1500	1250	1250	1000	1000	1000	800	$\mathrm{V}_{\mathrm{dc}}$
	test	wide gap				2000	2000	1500	1250	1250	1000	$\mathrm{V}_{\mathrm{dc}}$
split-stator   type	Cvar		25	32	40	50	64	80	100	125		pF
	$\mathrm{C}_{0} \pm 1 \mathrm{pF}$	normal gap wide gap	5	5	5	7	5.5	5.5	5.58	68		$\mathrm{pF}$
							8.5	8				
		normal gap	4000	3000	3000	2500	2000	2000	2000	1600		$\mathrm{V}_{\mathrm{dc}}$
	st	wide gap				4000	4000	3000	2500	2500		$\mathrm{V}_{\mathrm{dc}}$

${ }^{1}$ ) Differential type only up to and including $\mathrm{C}_{\text {var }}=160 \mathrm{pF}$.
2) For the differential version the $C_{0}$ values are 1 pF less than the tabulated values.
3) Between rotor and stator.
4) Between the two stators.
size a x b $=60 \times 60 \mathrm{~mm}$, logarithmic capacitance law

${ }^{3}$ ) Between rotor and stator.
4) Between the two stators.

Coupling capacitance
between stator packs $\quad \leq 0.02 \mathrm{pF}$
between rotor packs (if insulated) $\leq 0.05 \mathrm{pF}$
Insulation resistance between
stator and rotor and between
frame and stator and rotor $\quad>10000 \mathrm{M} \Omega$

## Contact resistance

between any soldering tag and the relative rotor pack
$\leq 5 \mathrm{~m} \Omega$
Parallel damping at 1.5 MHz
with 50 pF (or max. capacitance if $<50 \mathrm{pF}$ )
$>10 \mathrm{M} \Omega$
Temperature coefficient of capacitance for the first compartment, (at $C=1 / 3$ cap. swing + capacitance at $15^{\circ}$ ) in $\mathrm{ppm} / \operatorname{deg} \mathrm{C}$.

version	$40 \times 40 \mathrm{~mm}$	$60 \times 60 \mathrm{~mm}$
single	$20 \pm 20$	$30 \pm 30$
double	$20 \pm 20$	$30 \pm 30$
triple	$30 \pm 30$	$50 \pm 50$
quadruple	$50 \pm 50$	$50 \pm 50$

Capacitance law

angle of   rotationcapacitance increase   (\% of capacitance swing)  linear law	logarithmic law	
	0	0
$20^{\circ}$	3.12	0.83
$30^{\circ}$	9.38	2.68
$40^{\circ}$	15.62	4.81
$50^{\circ}$	21.88	7.28
$70^{\circ}$	34.38	13.41
$90^{\circ}$	46.88	21.58
$110^{\circ}$	59.38	32.49
$130^{\circ}$	71.88	47.03
$150^{\circ}$	84.38	66.42
$175^{\circ}$	100	100

## Capacitance tolerance

For angles of rotation between $15^{\circ}$ and $175^{\circ}$, the capacitance tolerance in the first compartment is given by the expression:

$$
\pm 0.7\left(0.11 \mathrm{C}+\mathrm{C}^{\prime}\right) / 100
$$

where
$\mathrm{C}=$ capacitance swing (minimum 25 pF )
$C^{\prime}=$ capacitance increase calculated from the capacitance law.
Ganging tolerance (rotation angles between $15^{\circ}$ and $175^{\circ}$ )
The capacitance in the second, third, and fourth compartments will not differ from the actual capacitance in the first compartment by more than $\pm 0.7 \%$.

## Backlash

(for indirect drive capacitors)
Temperature range

Better than $150 \times 10^{-6} \mathrm{pF} / \mathrm{pF}$
-40 to $+85^{\circ} \mathrm{C}$

MECHANICAL DATA

Operating torque	single		double	triple	quadruple	
	direct   drive	indirect   drive				
Minimum	2					Ncm   Maximum
5	2	2.5	3	3.5	Ncm	

Maximum axial thrust
Direction of rotation for increase in capacitance
Effective angle of rotation, linear capacitor
logarithmic capacitor

50
Clockwise
360
180
deg
deg

Mounting
The capacitors can be mounted by means of screws passed through the three holes in the mounting brackets.
In many applications it may be advantageous to use a vernier control knob.
Connecting leads
Two wires of $1.5 \mathrm{~mm}^{2}$ maximum diameter can be connected to each soldering tag.

Weight

version		number of	weight in $g$	
$40 \times 40 \mathrm{~mm}$	single stator   split stator	1	120	170
		2	200	300
		3	300	-
		4	400	-
	differential	1	140	190
$60 \times 60 . \mathrm{mm}$	single stator   split stator	1	400	550
		2	700	1000
		3	1000	-
		4	1300	-

CATALOG NUMBERS ( $40 \times 40 \mathrm{~mm}$ ) VERSION
Single stator, 1 gang
Catalog number 222280500 ...

C   (par   (pF)	catalog number suffix			
	non insulated	insulated	non insulated	insulated
16	043	173	001	131
25	044	178	002	132
40	045	174	003	133
40 (wide gap)	051	181	032	162
64	046	175	004	134
64 (wide gap)	052	182	033	163
100	047	176	005	135
100 (wide gap)	053	183	034	164
160	048	177	006	136
160 (wide gap)	054	184	035	165
250	049	179	007	137
250 (wide gap)	055	185	036	166

Single stator, 2 gangs
Catalog number 222280500 ...

$C_{\text {Var }}$   $(\mathrm{pF})$	catalog number suffix	
	non insulated	insulated
$2 \times 16$	008	138
$2 \times 25$	009	139
$2 \times 40$	011	141
$2 \times 40$ (wide gap)	037	167
$2 \times 64$	012	142
$2 \times 64$ (wide gap)	038	168
$2 \times 100$	013	143
$2 \times 100$ (wide gap)	039	169
$2 \times 160$	014	144
$2 \times 160$ (wide gap)	041	171
$2 \times 250$	015	145
$2 \times 250$ (wide gap)	042	172

Single stator, 3 gangs
Catalog number 222280500 ...

$\mathrm{C}_{\mathrm{Var}}$   $(\mathrm{pF})$	catalog number suffix	
	non insulated	insulated
$3 \times 16$	016	146
$3 \times 25$	017	147
$3 \times 40$	018	148
$3 \times 64$	019	149
$3 \times 100$	021	151
$3 \times 160$	022	152
$3 \times 250$	023	153

Single stator, 4 gangs
Catalog number 222280500 ...

$C_{\text {var }}$   $(\mathrm{pF})$	catalog number suffix	
	non insulated	insulated
$4 \times 16$	024	154
$4 \times 25$	025	155
$4 \times 40$	026	156
$4 \times 64$	027	157
$4 \times 100$	028	158
$4 \times 160$	029	159
$4 \times 250$	031	161

## 2222805

## CATALOG NUMBERS ( $40 \times 40 \mathrm{~mm}$ ) VERSION

Split stator, 1 gang
Catalog number 222280500 ...

$\begin{aligned} & \mathrm{C}_{\mathrm{var}} \\ & (\mathrm{pF}) \end{aligned}$		catalog number suffix			
		direct drive		indirect drive	
		non insulated	insulated	non insulated	insulated
6.4		094	224	056	186
10		095	225	057	187
10	(wide gap)	101	231	083	213
16		096	226	058	188
16	(wide gap)	102	232	084	214
25		097	227	059	189
25	(wide gap)	103	233	085	215
40		098	228	061	191
40	(wide gap)	104	234	086	216
64		099	229	062	192
64	(wide gap)	105	235	087	217

Split stator, 2 gangs
Catalog number 222280500 ...

$C_{\text {Var }}$   $(\mathrm{pF})$	catalog number suffix	
	non insulated	insulated
$2 \times 6.4$	063	193
$2 \times 10$	064	194
$2 \times 10$	(wide gap)	088
$2 \times 16$	065	218
$2 \times 16$	(wide gap)	089
$2 \times 25$		195
$2 \times 25$	(wide gap)	066
$2 \times 40$		219
$2 \times 40$	(wide gap)	067
$2 \times 64$		196
$2 \times 64$	(wide gap)	092

CATALOG NUMBERS ( $40 \times 40 \mathrm{~mm}$ ) VERSION
Split stator, 3 gangs
Catalog number 2222805 00...

$C_{\mathrm{Var}}$   $(\mathrm{pF})$	catalog number suffix	
	non insulated	insulated
$3 \times 6.4$	069	199
$3 \times 10$	071	201
$3 \times 16$	072	202
$3 \times 25$	073	203
$3 \times 40$	074	204
$3 \times 64$	075	205

Split stator, 4 gangs
Catalog number 2222805 00...

$\mathrm{C}_{\mathrm{Var}}$   $(\mathrm{pF})$	catalog number suffix	
	non insulated	insulated
$4 \times 6.4$	076	206
$4 \times 10$	077	207
$4 \times 16$	078	208
$4 \times 25$	079	209
$4 \times 40$	081	211
$4 \times 64$	082	212

Differential type, 1 gang
Catalog number 2222805 00...

C   (var   (pF)	catalog number suffix			
	non insulated	insulated	non insulated	insulated
16	118	248	106	236
25	119	249	107	237
40	121	251	108	238
40 (wide gap)	125	255	113	243
64	122	252	109	239
64 (wide gap)	126	256	114	244
100	123	253	111	241
100 (wide gap)	127	257	115	245
160	124	254	112	242
160 (wide gap)	128	258	116	246
250 (wide gap)	129	259	117	247

## CATALOG NUMBERS ( $60 \times 60 \mathrm{~mm}$ ) VERSION

Single stator, 1 gang
Catalog number 2222805 02...

$\begin{aligned} & \mathrm{C}_{\mathrm{Var}} \\ & (\mathrm{pF}) \end{aligned}$	catalog number suffix			
	linear law		logarithmic law	
	non insulated rotor	insulated rotor	non insulated rotor	insulated rotor
100	001	196	054	249
125	002	197	055	251
160	003	198	056	252
200	004	199	0.57	253
200 (wide gap)	041	236	089	285
250	005	201	058	254
250 (wide gap)	042	237	091	286
320	006	202	059	255
320 (wide gap)	043	238	092	287
400	007	203	061	256
400 (wide gap)	044	239	093	288
500	טuo	204	062	257
500 (wide gap)	045	241	094	289
640	009	205		
640 (wide gap)	046	242	095	291

## CATALOG NUMBERS ( $60 \times 60 \mathrm{~mm}$ ) VERSION

Single stator, 2 gangs
Catalog number 2222805 02...

$C_{\text {Var }}$   (pF)	catalog number suffix			
	non insulated   rotor	insulated   rotor	non insulated   rotor	insulated   rotor
$2 \times 100$	011	206	063	258
$2 \times 125$	012	207	064	259
$2 \times 160$	013	208	065	261
$2 \times 200$	014	209	066	262
$2 \times 200$ (wide gap)	047	243	096	292
$2 \times 250$	015	211	067	263
$2 \times 250$ (wide gap)	048	244	097	293
$2 \times 320$	016	212	068	264
$2 \times 320$ (wide gap)	049	245	098	294
$2 \times 400$	017	213	069	265
$2 \times 400$ (wide gap)	051	246	099	295
$2 \times 500$	018	214	071	266
$2 \times 500$ (wide gap)	052	247	101	296
$2 \times 640$	019	215	-	-
$2 \times 640$ (wide gap)	053	248	102	297

Single stator, 3 gangs
Catalog number 2222805 02...

$\begin{aligned} & \mathrm{C}_{\mathrm{Var}} \\ & (\mathrm{pF}) \end{aligned}$	catalog number suffix			
	linear law		logarithmic law	
	non insulated rotor	insulated rotor	non insulated rotor	insulated rotor
$3 \times 100$	021	216	072	267
$3 \times 125$	022	217	073	268
$3 \times 160$	023	218	074	269
$3 \times 200$	024	219	075	271
$3 \times 250$	025	221	076	272
$3 \times 320$	026	222	077	273
$3 \times 400$	027	223	078	274
$3 \times 500$	028	234	079	275
$3 \times 640$	029	225		

## CATALOG NUMBERS ( $60 \times 60 \mathrm{~mm}$ ) VERSION

Single stator, 4 gangs
Catalog number 222280502. .

$\begin{aligned} & \mathrm{C}_{\mathrm{var}} \\ & (\mathrm{pF}) \end{aligned}$	catalog number suffix			
	linear law		logarithmic law	
	non insulated rotor	insulated rotor	$\underset{\substack{\text { notor } \\ \text { rotor }}}{ }$	insulated rotor
$4 \times 100$	031	226	081	276
$4 \times 125$	032	227	082	277
$4 \times 160$	033	228	083	278
$4 \times 200$	034	229	084	279
$4 \times 250$	035	231	085	281
$4 \times 320$	036	232	086	282
$4 \times 400$	037	233	087	283
$4 \times 500$	038	234	088	284
$4 \times 640$	039	235		

Split stator, 1 gang
Catalog number $222280502 \ldots$

C   (var   (pF)	catalog number suffix			
	non insulated   rotor	linear law   insulated   rotor	non insulated   rotor	insulated   rotor
25	103	298	149	345
32	104	299	151	346
40	105	301	152	347
50	106	302	153	348
50 (wide gap)	138	334	185	381
64	107	303	154	349
64 (wide gap)	139	335	186	382
80	108	304	155	351
80 (wide gap)	141	336	187	383
100	109	305	156	352
100 (wide gap)	142	337	188	384
125	111	306	157	353
125 (wide gap)	143	338	189	385

CATALOG NUMBERS ( $60 \times 60 \mathrm{~mm}$ ) VERSION
Split stator, 2 gangs
Catalog number 2222805 02...

$\begin{aligned} & \mathrm{C}_{\mathrm{var}} \\ & (\mathrm{pF}) \end{aligned}$	catalog number suffix			
	linear law		logarithmic law	
	non insulated rotor	insulated rotor	non insulated rotor	insulated rotor
$2 \times 25$	112	307	158	354
$2 \times 32$	113	308	159	355
$2 \times 40$	114	309	161	356
$2 \times 50$	115	311	162	357
2 x 50 (wide gap)	144	339	191	386
$2 \times 64$	116	312	163	358
2 x 64 (wide gap)	145	341	192	387
$2 \times 80$	117	313	164	359
$2 \times 80$ (wide gap)	146	342	193	388
$2 \times 100$	118	314	165	361
$2 \times 100$ (wide gap)	147	343	194	389
$2 \times 125$	119	315	166	362
$2 \times 125$ (wide gap)	148	344	195	391

Split stator, 3 gangs
Catalog number 2222805 02...

$\begin{aligned} & \mathrm{C}_{\mathrm{Var}} \\ & (\mathrm{pF}) \end{aligned}$	catalog number suffix			
	linear law		logarithmic law	
	non insulated rotor	insulated rotor	non insulated rotor	insulated rotor
$3 \times 25$	121	316	167	363
$3 \times 32$	122	317	168	364
3 x 40	123	318	169	365
3 x 50	124	319	171	366
3 x 64	125	321	172	367
3 x 80	126	322	173	368
$3 \times 100$	127	323	174	369
$3 \times 125$	128	324	175	371

Split stator, 4 gangs
Catalog number 2222805 02...

$\begin{aligned} & \mathrm{C}_{\mathrm{Var}} \\ & (\mathrm{pF}) \end{aligned}$	catalog number suffix			
	linear law		logarithmic law	
	non insulated rotor	insulated rotor	non insulated rotor	insulated rotor
$4 \times 25$	129	325	176	372
$4 \times 32$	131	326	177	373
$4 \times 40$	132	327	178	374
$4 \times 50$	133	328	179	375
$4 \times 64$	134	329	181	376
$4 \times 80$	135	331	182	377
$4 \times 100$	136	332	183	378
$4 \times 125$	137	333	184	379

# FILM DIELECTRIC TRIMMERS <br> screw-driver adjustment 



RZ 20532-1

Maximum capacitance
Mounting
$\geq 3.5,5.5,10,22,40,65 \mathrm{pF}$
on printed-wiring board

## APPLICATION

These film dielectric trimmers have been designed to be used on printed-wiring boards in e.g. radio sets. Moreover, thanks to their good stability, chese trimmers have proved their value in miniaturised industrial equipment.

## CONSTRUCTION

The vanes are stacked on a sturdy plastic base. As a dielectric plastic is used which support the vanes in such a way that a very good stability has been obtained*). The plastic materials used are resistant against all standard cleaning agents.
Types with a screw-driver slot at the top of the rotor as well as types with a screwdriver slot at both ends of the rotor are available.
The connection pins are arranged so as to fit a grid of 0.1 inch.

[^50]
TECHNICAL PERFORMANCE

	catalogue number 2222808 . . . .						
Top adjustment   Top and bottom adjustment	00014	$\begin{aligned} & 00004 \\ & 00011 \end{aligned}$	$\begin{aligned} & 00005 \\ & 00012 \end{aligned}$	$\begin{aligned} & 00006 \\ & 00013 \end{aligned}$	$\begin{aligned} & 91503 \\ & 91504 \end{aligned}$	$\begin{aligned} & 01001 \\ & 01004 \end{aligned}$	
Maximum capacitance	$\geq 3.5$	$\geq 5.5$	$\geq 10$	$\geq 22$	$\geq 40$	$\geq 65$	pF
Minimum capacitance	$\leq 1.2$	$\leq 1.4$	$\leq 2$	$\leq 2$	$\leq 5.5$	$\leq 5.5$	pF
Temperature coefficient	$-550 \pm 250$	$-750 \pm 300$	$-200 \pm 300$	$-350 \pm 250$	$-400 \pm 300$	$-200 \pm 300$	$\mathrm{ppm} / \mathrm{deg} \mathrm{C}$
Maximum permissible voltage	100	100	100	100	100	100	$\mathrm{V}_{\mathrm{dc}}$
Test voltage for 1 minute	300	300	300	300	300	300	$\mathrm{V}_{\mathrm{dc}}$
Permissible temperature range	-40 to +70	${ }^{\circ} \mathrm{C}$					
Minimum insulation resistance	10000	10000	10000	10000	10000	10000	$\mathrm{M} \Omega$
Maximum contact resistance	10	10	10	10	10	10	$\mathrm{m} \Omega$
Minimum parallel damping at 1.0 MHz	10	10	3	3	3	3	$\mathrm{M} \Omega$
Operating torque	0.1-1.5	0.1-1.5	0.1-1.5	0.1-1.5	0.2-2.5	0.2-2.5	Ncm
Category (I.E.C.68)	40/070/21	40/070/21	40/070/21	40/070/21	40/070/21	40/070/21	
Soldering	$260{ }^{\circ} \mathrm{C}, 3 \mathrm{~s}$	$260{ }^{\circ} \mathrm{C}, 3 \mathrm{~s}$	$260^{\circ} \mathrm{C}, 3 \mathrm{~s}$	260 oc, 3 s	$260^{\circ} \mathrm{C}, 3 \mathrm{~s}$	$260{ }^{\circ} \mathrm{C}, 3 \mathrm{~s}$	
Maximum capacitance change with an axial load of 2 N	0.02	0.05	0.1	0.1	0.2	0.3	pF
Weight	0.7	0.7	0.7	0.8	1.2	1.3	g
Colour of base	blue	grey	yellow	green	grey	yellow	

## FILM DIELECTRIC TRIMMERS high temperature type

QUICK REFERENCE DATA	
Max. $\mathrm{C}_{\min } / \mathrm{min} . \mathrm{C}_{\max }$	$1 / 3.5 \mathrm{pF}$
	$1.8 / 10 \mathrm{pF}$
	$2 / 18$ pF
Overall dimensions	$6 \times 8 \times 9 \mathrm{~mm}$
Rated voltage	300 V d.c.
Temperature range	-40 to $+125^{\circ} \mathrm{C}$

## APPLICATION



RZ 24851-6

For use in miniaturised measuring and telecommunication equipment, specially where high temperatures occur and a low temperature coefficient is important, e.g. for fine adjustment of h.f. tuned circuits.

## DESCRIPTION

The trimmers consist of a polysulphone housing, brass rotor and silver-plated brass stator with either a P.T.F.E., or a polyimide/F.E.P. sandwich film as the dielectric. The stator plates with their tag are heat sealed to the housing. The rotor contact surfaces are gold plated to ensure a long life and a stable contact even under severe climatic conditions.
The capacitors can be supplied with top adjustment, and with top and bottom adjust ment. Top adjustment should be done by means of a screwdriver, bottom adjustment by means of the key, catalogue number 812208823660.

FILM DIELECTRIC TRIMMERS high temperature type

MECHANICAL DATA
Dimensions in mm
type with
top adjustment

Table 1


max. capacitance	3.5 pF	10 pF	18 pF
effective angle of rotation	$180^{\circ}$	$180^{\circ}$	$180^{\circ}$
operating torque	0.1 to 1.5 Ncm	0.25 to 2.0 Ncm	0.25 to 2.0 Ncm
maximum axial load	2 N	2 N	2 N
weight approx.	0.7 g	0.7 g	0.7 g
colour dot	orange	white	red

## Marking

The capacitors are marked with a colour dot, see Table 1.

## Mounting

The trimmers can be mounted on printed-wiring boards having holes with a minimum diameter of 1.25 mm . The hole patterns are given in the figures below.


Hole pattern for type with top and bottom adjustment

Soldering conditions $\max .240^{\circ} \mathrm{C}$, max. 5 s

Bending the tags by 90 degrees is permitted

ELECTRICAL DATA

$\mathrm{C}_{\text {max }}$ (pF)	$\begin{gathered} \mathrm{C}_{\mathrm{min}} \\ (\mathrm{pF}) \end{gathered}$	$\begin{aligned} & \max \cdot \tan \delta \\ & \text { at } 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \max \cdot \tan \delta \\ & \text { at } 100 \mathrm{MHz} \end{aligned}$	temperature coefficient*) (ppm/degC)	catalogue number	
					top adjustment	top + bottom   adjustment
	$\leq$	10.1	20.1	150	222280905001	222280905004
$\geq$	$\leq 1.8$	10. $10^{-4}$	$20.10^{-4}$	$-250 \pm 75$	222280905002	22228090500
$\geq 18$	$\leq 2$	$25.10^{-4}$	$40.10^{-}$	$-250 \pm 75$	222280905003	22228090500

Rațed voltage
Test voltage
Contact resistance
Insulation resistance
between stator and rotor
Category temperature range
Climatic category (IEC 68)

300 V d.c.
600 V d.c.
$\max .5 \mathrm{~m} \Omega$
$\min .10000 \mathrm{M} \Omega$
-40 to $+125^{\circ} \mathrm{C}$
40/125/21

## PACKAGING

In blisters containing 100 capacitors, 9 blisters per box.

[^51]
## FILM DIELECTRIC TRIMMERS <br> high temperature type

	QUICK REFERENCE DATA	
Max. $\mathrm{C}_{\text {min }} /$ min. $\mathrm{C}_{\text {max }}$,	single stator type	$2.5 / 20 \mathrm{pF}$ to $7 / 100 \mathrm{pF}$
	split stator type            differential type	$1.5 / 5 \mathrm{pF}$ to $3 / 25 \mathrm{pF}$   Overall dimensions
Rated voltage	$11 \times 14 \times 9 \mathrm{pF}$ to $7 / 100 \mathrm{pF}$	
Temperature range		200 to $375 \mathrm{~V} \mathrm{d.c}$.



RZ 24762-1

## APPLICATION

For use in miniaturised measuring and telecommunication equipment, specially where high temperatures occur and a low temperature coefficient is important, e. g. single--stator trimmers are suitable for fine adjustment of h.f. tuned circuits, split-stator trimmers for symmetrically built h.f. circuits and differential types for capacitive volume or voltage control.

## DESCRIPTION

The trimmers consist of a polysulphone housing, brass rotor and stator with P.T.F.E. film as the dielectric. The stator plates are stacked on pins and separated by rings, so that it is possible to produce a single-stator, a split-stator or a differential type. The rotor contact surfaces are silver plated to ensure a long life and a stable contact even under severe climatic conditions.
The capacitors can be adjusted from the top by means of a screwdriver.

## MECHANICAL DATA.

Dimensions in mm


	single stator   type	differential   type	split stator   type
effective angle of rotation	$180^{\circ}$	$180^{\circ}$	$90^{\circ}$
operating torque	1 to 3.5 Ncm	1 to 3.5 Ncm	1 to 3.5 Ncm
max. axial load	2 N	2 N	2 N
weight approx.	2.3 g	2.9 g	2.8 g

## Marking

Capacitance value in pF plus letter E , in the case of a differential capacitor followed by the letter D , in the case of a split-stator type by the letter S .

## Mounting

The trimmers can be mounted on printed-wiring boards having holes with a minimum diameter of 1.25 mm . The hole pattern is given in the figure below.

Soldering conditions
$\max .240^{\circ} \mathrm{C}$, max. 5 s


Bending the tags by 90 degrees is not permitted.

ELECTRICAL DATA

type	max. cap.   ( pF )	min. cap.   (pF)	max. $\tan \delta$ at 100 MHz	test voltage ( $\mathrm{V}_{\mathrm{dc}}$ )	$\begin{gathered} \text { catalogue } \\ \text { number } \\ 2222809 \text {. } \end{gathered}$
single-stator	$\begin{aligned} & \geq 20 \\ & \geq 40 *) \\ & \geq 60 *) \\ & \geq 80 \\ & \geq 100 *) \end{aligned}$	$\begin{aligned} & \leq 2.5 \\ & \leq 4 \\ & \leq 5 \\ & \leq 6 \\ & \leq 7 \end{aligned}$	$\begin{aligned} & 17.10^{-4} \\ & 17.10^{-4} \\ & 25.10^{-4} \\ & 25.10^{-4} \\ & 25.10^{-4} \\ & \hline \end{aligned}$	$\begin{aligned} & 700 \\ & 700 \\ & 400 \\ & 400 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 07004 \\ & 07008 \\ & 07011 \\ & 07013 \\ & 07015 \\ & \hline \end{aligned}$
split-stator	$\begin{array}{lr} \geq & 5 \\ \geq & 10 \\ \geq & 15 \\ \geq & 20 \\ \geq & 25 \end{array}$	$\begin{aligned} & \leq 1.5 \\ & \leq 2 \\ & \leq 3 \\ & \leq 3 \\ & \leq 3 \end{aligned}$	$\begin{aligned} & 17.10^{-4} \\ & 17.10^{-4} \\ & 25.10^{-4} \\ & 25.10^{-4} \\ & 25.10^{-4} \end{aligned}$	$\begin{aligned} & 700 \\ & 700 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 07001 \\ & 07002 \\ & 07003 \\ & 07005 \\ & 07007 \end{aligned}$
differential	$\begin{aligned} & \geq 20 \\ & \geq 40 \\ & \geq 60 \\ & \geq 80 \\ & \geq 100 \end{aligned}$	$\begin{aligned} & \leq 2.5 \\ & \leq 4 \\ & \leq 5 \\ & \leq 6 \\ & \leq 7 \end{aligned}$	$\begin{aligned} & 17 \cdot 10^{-4} \\ & 17.10^{-4} \\ & 25.10^{-4} \\ & 25.10^{-4} \\ & 25.10^{-4} \end{aligned}$	$\begin{aligned} & 700 \\ & 700 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 07006 \\ & 07009 \\ & 07012 \\ & 07014 \\ & 07016 \end{aligned}$

Rated voltage
Tan $\delta$ at 1 MHz
Contact resistance
Insulation resistance
between stator and rotor
Temperature coefficient ${ }^{*}$ **)
Ambient temperature range
Climatic category (IEC 68)
$50 \%$ of test voltage (see Table)
$\max$. $10.10^{-4}$
$\max .5 \mathrm{~m} \Omega$
min. $10000 \mathrm{M} \Omega$
$(-200 \pm 200) \mathrm{ppm} / \operatorname{degC}$
-40 to $+150^{\circ} \mathrm{C}$
40/150/21

## PACKAGING

In blisters containing 50 capacitors. 4 blisters per box.
*) Preferred versions.
**) Between +20 and $+70{ }^{\circ} \mathrm{C}$ at $\mathrm{C}_{\max }$

## STANDARD SERIES OF VALUES IN A DECADE for resistances and capacitances

according to I.E.C. publication 63

E192	E96	E48												
100	100	100	169	169	169	284			481			816		
101			172			287	287	287	487	487	487	825	825	825
102	102		174	174		291			493			835		
104			176			294	294		499	499		845	845	
105	105	105	178	178	178	298			505			856		
106			180			301	301	301	511	511	511	866	866	866
107	107		182	182		305			517			876		
109			184			309	309		523	523		887	887	
110	110	110	187	187	187	312			530			898		
111			189			316	316	316	536	536	536	909	909	909
113	113		191	191		320			542			920		
114			193			324	324		549	549		931	931	
115	115	115	196	196	196	328			556			942		
117			198			332	332	332	562	562	562	953	953	953
118	118		200	200		336			569			965		
120			203			340	340		576	576		976	976	
121	121	121	205	205	205	344			583			988		
123			208			348	348	348	590	590	590			
124	124		210	210		352			597					
126			213			357	357		604	604		E24	E12	E6
127	127	127	215	215	215	361			612			10	10	10
129			218	.		365	3.65	365	619	619	619	11		
130	130					370			626			12	12	
132			221	221		374	374		634	634		13		
133	133	133	223			379			642			15	15	15
135			226	226	226	383	383	383	649	649	649	16		
137	137		229			388			657			18	18	
138			232	232		392	392		665	665		20		
140	140	140	234			397			673			22	22	22
142			237	237	237	402	402	402	681	681	681	24		
143	143		240			407			690			27	27	
145			243	243		412	412		698	698		30		
147	147	147	246			417			706			33	33	33
149			249	249	249	422	422	422	715	715	715	36		
150	150		252			427			723			39	39	
152			255	255		432	432		732	732		43		
154	154	154	258			437			741			47	47	47
156			261	261	261	442	442	442	750	750	750	51		
158	158		264			448			759			56	56	
160			267	267		453	453		768	768		62		
162	162	162	271			459			777			68	68	68
164			274	274	274	464	464	464	787	787	787	75		
165	165		277			470			796			82	82	
167			280	280		475	475		806.	806		91		

## Contents

page
DATA HANDBOOK SYSTEM ..... 2
FIXED RESISTORS
Film resistors, Introduction ..... A3
Carbon film resistors CR16 CR25 CR37
CR52 CR68 CR93 ..... A7
Metal film resistors MR25 MR31 MR58 MR30 MR39 MR81 ..... A19
Insulated pin-head carbon resistors 2322120 ..... A33
Precision wire-wound resistors ..... 2322 260-2322264A37
Low-ohmic glass-sealed wire resistors ..... 2322327 ..... A41
Low-ohmic wire-wound resistors ..... 2322326 ..... A43
Cemented wire-wound resistors WR0617 WR0842 WR0825 WR0865 ..... A45
Enamelled wire-wound resistors ..... 2322320 ..... A53
Wire-wound resistors with side terminations ..... 2322321 ..... 2322323 ..... A57
Adjustable wire-wound resistors ..... 23223222322324A61
VARIABLE RESISTORS
Wire-wound potentiometers
Wire-wound trimming potentiometers ..... 2322000 ..... B3
Wire-wound potentiometers ..... 2322003
2322010 ..... B7
Wire-wound potentiometers ..... 2322004 ..... B13
Wire-wound trimming potentiometers ..... 2322011 ..... B19
Wire-wound potentiometers ..... 2322012
2322013 ..... B23
Load potentiometers 232095B29

## Carbon potentiometers

Circuit and connections of the switches		B37
23 mm single carbon potentiometers	2322350	
	2322 352-	
	2322357	B39
23 mm tandem carbon potentiometers	232236.	B49
16 mm single carbon potentiometers	2322380	
	2322 387-	
	2322389	B59
Tandem carbon potentiometers	2322390	B67
Miniature carbon trimming potentiometers	2322410	B73
Carbon trimming potentiometers	2322411	B77
Multiturn carbon pre-set potentiometers	2322412	
	2322413	B83
Miniature carbon potentiometers	2322440	B95
Single carbon potentiometers	2322450	B99
23 mm single carbon potentiometers	2322460	B105
23 mm twin carbon potentiometers	2322470	
	2322476	B111
NON-LINEAR RESISTORS		
NTC thermistors		
Introduction		C5
Electrical properties		C7
How to measure NTC thermistors		C15
Choice of type		C17
Soldering disc NTC thermistors		C19
Applications		C21
NTC thermistors, standard disc types	2322610	C27
NTC thermistors, for radio and television	2322610	
	2322 619-622	C31
NTC thermistors, for motor cars	2322611	C41
NTC thermistors, miniature types	2322627	
	2322634	C43
NTC thermistors, indirectly heated	2322628	C49
NTC thermistors, standard rod types	2322635	
	2322636	
	2322637	C59
NTC thermistors, standard disc types	2322642 1....	C63
	2322642 2...	C71
	2322643	
	2322644	C75
NTC thermistors, disc types	232264490004	
	232264490005	C79

page

## PTC termistors

Introduction C89
Electrical properties C91
Explanation of terms C99
How to measure PTC thermistors C103
Applications C105
PTC thermistors, 2322660 91006standard disc type

232266091009
C111
PTC thermistors, standard disc type
PTC thermistor
PTC thermistor
PTC thermistor
PTC thermistors, for motor protection
2322661 91002-
232266191005 C123
232266291001 C131
232266293036 C137
232266293066 C143
2322672 92046232267292053 C149

Voltage dependent resistors (VDR)

Introduction

C161

Electrical properties C163
How to measure VDR resistors C177
Choice of type C179
Asymmetric VDR resistors C181
Applications C183
Voltage dependent resistors, standard disc types with leads
standard rod types
small disc types for special purposes asymmetric types
disc types for contact protection
$23225520 \ldots$ C187
2322553 0.... C193
$23225540 \ldots$ C199
$23225550 \ldots$ C205
2322564 C211
232256492003 C213
2322565 C219
2322574 C221
2322575
2322576
2322577 C223
Light dependent resistors (LDR)
Introduction C227
Electrical properties C229
How to measure LDR resistors C231
Photometric concepts, definitions and units C233
Applications C239
Light dependent resistors 2322600 C245

## CERAMIC CAPACITORS

Ceramic capacitors, survey		D3
Tubular ceramic capacitors, class II	2222552	
	2222561	D5
Midget tubular ceramic capacitors, class 1C	2222553	D9
Tubular ceramic capacitors, class 1B	2222555	D13
Tubular ceramic capacitors, safety	2222562	D17
Upright-mounting ceramic capacitors, class II	2222563	
	2222565	D21
Disc type ceramic capacitors, class 1B	2222625	
Disc type ceramic capacitors, class II	2222626	D27
Miniature ceramic plate capacitors, class II	2222627	D31
	2222629	
Miniature ceramic plate capacitors, class 1B	2222630	D33
	$2222631-632$	
Ceramic barrier layer capacitors	2222638	
Ceramic feed-through capacitors	$2222641-642$	D41
class I, class II	2222675	D55

POLYESTER, POLYCARBONATE, POLYSTYRENE, PAPER D.C., PAPER A.C., CAPACITIORS

Metallised polyester capacitors,   "flat film" type   Moulded metallised polyester   capacitors, "nugget" type   Moulded metallised polyester   capacitors, "mepolesco" type	2222342	E3
Pylyester capacitors, tubular foil type	2222344	E13
Miniature polystyrene capacitors,	2222341	E25
"micropoco" type	2222311	E37
Tubular moulded polystyrene capacitors,   "minipoco" type	2222424	
Paper d.c. capacitors, rectangular box type   Paper d.c. capacitors, high tension types   Paper a.c. capacitors	2222425	E47
Metallised polycarbonate a.c. capacitors	$2222435-$	E51
	2222232201	E57
	2222240	E61
	2222241	E65
	2222325	

page

## ELECTROLYTIC CAPACITORS

Selection guide		F2
Miniature type, for general purposes	2222001	
(economy range)	2222002	F5
Miniature type, for general purposes	2222001	F9
Wet aluminium types		
for general purposes (type 2)	2222015 -	
and for long life applications (type 1)	2222017	F13
Small type, for general purposes	2222023	F27
Small type, for high voltages	2222040	F31
Large type, for general purposes	2222060	F35
Mounting clamps 432204303290 to 03330		F38
Large type, for high and low voltages	$222206{ }^{\text {- }}$	
	2222064	
	2222 080-	
	2222081	F39
Multiple types, for high voltages	22220679.	
	22220639.	F55
Large long life type (I. E. C. type 1)	2222 071-	
	2222073	F57
Small long life type	2222101	F69
Large long life type	2222102	
	2222103	F75
Large long life type (I. E. C. type 1)	2222106	
	2222107	F79
Mounting clamps 432204304270 to 04290		F85
Small solid aluminium type	2222121	F 87
Miniature solid tantalum type	2222142	F95
Solid tantalum type	2222143	F99

## VARIABLE CAPACITORS

Tubular ceramic trimmers screw-driver slot at both ends
Midget tubular ceramic trimmers screw-driver slot at both ends
Tubular ceramic trimmers screw-driver slot at both ends
Tubular ceramic trimmers screw-driver slot at both ends
Tubular ceramic trimmers with locking device
Midget tubular ceramic trimmers screw-driver slot at both ends
High stability tubular ceramic trimmers with friction locking device

2_22 801 200.. G3
222280120051
222280120052
G7
222280196002
222280196003
G9
2222802 20001-
222280220005
G11
2222802 20011-
222280220015 G15
222280296035
222280296036 G17
2222802 960.. G19

## VARIABLE CAPACITORS

Air dielectric trimmers (14 x 17 mm$)$	$222280400001-$	
screw-driver adjustment	222280400011	G23
Air dielectric trimmers $(17 \times 20 \mathrm{~mm})$	$222280401001-$	
screw-driver adjustment	222280401026	G27
Air dielectric trimmers $(20 \times 24 \mathrm{~mm})$	$222280402001-$	
screw-driver adjustment	222280402026	G31
Air dielectric correcting capacitors $(\phi 25 \mathrm{~mm})$		

Air dielectric correcting capacitors ( $\phi 25 \mathrm{~mm}$ ) screw-driver and knob adjustment 2222804 150.. G35
Concentric air dielectric trimmers ( $\phi \frac{1}{2}^{\prime \prime}$ ) screw-driver or trim-key adjustment

2222804 200. G39
Precision tuning capacitors
2222805
G43
Film dielectric trimmers screw-driver adjustment

2222808 000..
2222808 010..
222280891503
Film dielectric trimmers screw-driver adjustment

2222809 050.. G63
Film dielectric trimmers
screw-driver adjustment
2222809070

## A Fixed resistors

B Variable resistors
C Non-linear resistors
D Ceramic capacitors
E Polyester, polycarbonate,
polystyrene, paper capacitors
F Electrolytic capacitors
G Variable capacitors



[^0]:    1) A version with pins for printed-wiring and a tap at $50 \%$ of the effective angle of rotation can be supplied on request (catalogue number 232201090013 ).
[^1]:    1) The potentiometers can be supplied with a tap at $50 \%$ of the effective angle of rotation.
[^2]:    1) Version with pins for printed-wiring catalogue number 232201090013 , available on request.
[^3]:    $\left.{ }^{*}\right)_{\text {Measured between }} S_{1}$ and $S_{3}$; for potentiometers with a tap, between $S_{1}$ and $S_{4}$ and between $\mathrm{S}_{4}$ and $\mathrm{S}_{3}$.

[^4]:    *) Measured between the terminals and between the case or spindle and interconnected terminals.

[^5]:    ${ }^{*)}$ Measured between the terminals and between the case or spindle and interconnected terminals.

[^6]:    *) Measured between $S_{1}$ and $S_{3}$; for potentiometers with a tap, between $S_{1}$. and $S_{4}$ and between $S_{4}$ and $S_{3}$.
    **) Balance potentiometers.

[^7]:    ") Measured between $S_{1}$ and $S_{3}$; for potentiometers with a tap, between $S_{1}$ and $S_{4}$ and between $S_{4}$ and $S_{3}$.

[^8]:    *) Measured between the terminals and between the case or spindle and interconnected terminals.

[^9]:    *) Measured between the terminals and between the case or spindle and interconnected terminals.

[^10]:    ${ }^{1}$ ) Measured between the terminals and between the case and interconnected terminals.

[^11]:    1) Measured between the terminals $S_{1}$ and $S_{3}$.

    7Z9 5199
    2) Balance potentiometers

[^12]:    1) Measured between the terminals $S_{1}$ and $S_{3}$; for potentiometers with a tap, between the terminals $S_{1}$ and $S_{4}$ and between $S_{4}$ and $S_{3}$.
[^13]:    *) Preferred type

[^14]:    *) See section "Composition of the catalogue number".

[^15]:    *) Valid only for potentiometers with linear or special resistance law.

[^16]:    ${ }^{1}$ ) Measured between the tags $S_{1}$ and $S_{3}$; for potentiometers with a tap, between the tags $S_{1}$ and $S_{4}$ and between $S_{4}$ and $S_{3}$.
    ${ }^{2}$ ) Minimum resistance values (in $\Omega$ ) at the end.

[^17]:    ${ }^{1}$ ) Measured between the tags and between the case or spindle and interconnected tags.

[^18]:    ${ }^{1}$ ) This is available from Multicore Solders Ltd., of Hemel Hempstead, England, with a diameter of 1.6 mm .
    ${ }^{2}$ ) Also entirely satisfactory is Dynoline 59810 manufactured by DYNA of 36, Avenue Gambetta, Paris 20, France. Sufficient flux to cover the whole thermistor surface must be used.

[^19]:    1) This type is also available with a lead length of 65 mm , catalog numbers 2322 61090039 (20\%) and $232261090038(10 \%)$ respectively.
    ${ }^{2}$ ) The versions of Fig. A and B are also available with a tolerance of $\pm 10 \%$ on request. The catalog numbers are 232 ? $61002 \ldots$ and 2322610 12... respectively. A silver colour band is added on the $\pm 10 \%$ version with leads.
[^20]:    1) The catalog numbers are 2322 6.. .2...
[^21]:    1) Defined according to CCTU 11-01
[^22]:    1) The catalog numbers are $232263502 \ldots, 232263602 \ldots$ and $232263702 \ldots$ respectively.
[^23]:    1) $B$-value is subject to change
    2) Replace dot in catalogue number (9th digit) by

    1 for a tolerance of $20 \%$ on $\mathrm{R}_{25}$,
    2 for a tolerance of $10 \%$ on $\mathrm{R}_{25}$,
    3 for a tolerance of $5 \%$ on $\mathrm{R}_{25}$.

[^24]:    1) The curie temperature, wellknown as an indication for the behaviour of ceramic capacitors and magnetic materials, is less suitable for use as a practical measure for PTC thermistors.
[^25]:    1) Measuring voltage not exceeding $1.5 \mathrm{~V}_{\mathrm{dc}}$ to avoid internal heating.
    2) Measurements made with specimen in phosphor bronze clips, in still air.
    3) PTC thermistor 2322660 91009: -10 to $+150^{\circ} \mathrm{C}$.
[^26]:    1) Measuring voltage not exceeding $1.5 \mathrm{~V}_{\mathrm{dc}}$ to avoid internal heating.
    2) Measurement made without internal heating occurring.
    3) Measurement made with specimen in phosphor bronze clips, in still air.
[^27]:    ${ }^{1}$ ) Tref is the temperature at which the thermistor has to make the protective system operative.
    ${ }^{2}$ ) Measuring voltage not exceeding $1.5 \mathrm{~V}_{\mathrm{dc}}$ to avoid internal heating.
    ${ }^{3}$ ) Measurements made without internal heating occurring.
    4) Measurements made with specimen in phosphor-bronze clips, in still air.
    5) Response time is the time in which the thermistor-body temperature rises to $63.2 \%$ of the difference between initial and final body temperature, when the thermistor is subjected to a step function change in ambient temperature.
    Initial temperature: $25^{\circ} \mathrm{C}$ (air)
    Final temperature : $\mathrm{T}_{\text {ref }}+15^{\circ} \mathrm{C}$ (silicon oil MS 200/50)

[^28]:    1) for a voltage tolerance of $\pm 10 \%$ the last figute of the catalogue number is 2 instead of 1 .
[^29]:    1) Also available with a tolerance of $10 \%$.

    The voltage is so measured that the internal heat development is negligible.

[^30]:    ${ }^{1}$ ) For a voltage tolerance of $\pm 10 \%$ the last figure of the catalogue number is 2 instead of 1
    ${ }^{2}$ ) The $10 \%$ types have an extra silver band on the top.

[^31]:    1) current through a VDR and a coil in parallel, with the switch closed (see diagram)
    2) maximum voltage which develops across a VDR when the switch is opened (see diagram)
[^32]:    *) maximum 6 mm for capacitors of 2.7 and 3.3 pF .

[^33]:    *) Capacitors with silver electrodes suffer from the "silver migration" effect. Silver particles move from one electrode to the other under the influence of a d.c.voltage and moisture. Capacitors with silver electrodes are considerably larger.
    **) Flexible leads

[^34]:    *) maximum thickness 2.5 mm ( 0.1 in )

[^35]:    *) Capacitors with silver electrodes suffer from the "silver migration" effect. Silver particles move from one electrode to the other under the influence of a d.c. voltage and moisture. Capacitors with silver electrodes are considerably larger.

[^36]:    **) Flexible leads

[^37]:    *) including 2 mm per connecting lead

[^38]:    *) maximum thickness 2.5 mm ( 0.1 in )

[^39]:    *) maximum thickness 2.5 mm (0.1 in)

[^40]:    ${ }^{*}$ ) maximum thickness 2.5 mm ( 0.1 in )

[^41]:    *) maximum thickness 2.5 mm ( 0.1 in )

[^42]:    *) Maximum thickness 2.5 mm (0.1 in)
    **) Temporarily these capacitors are delivered with a tolerance of ( +0 to -500 ). $10^{-6} /$ deg C

[^43]:    1) Important: A metallised film capacitor must not be used in a low-impedance circuit in which any short-circuit current through the capacitor might exceed 400 mA .
[^44]:    ${ }^{1}$ ) 55-1 for case sizes $00,01,02$ and 03 .

[^45]:    1) The lower category temperature is determined with a view to the increase of the impedance only, see the impedance graphs.
[^46]:    ${ }^{1}$ ) Max. permissible r.m.s. values of ripple current, of any frequency and with the rated voltage applied, for single capacitors and for paralleled double capacitors. When both sections of a double capacitor carry ripple current, $\frac{1}{2} \mathrm{x}$ stated limit applies to each section; when only one section carries ripple current, $\frac{1}{2} \sqrt{2} \mathrm{x}$ stated limit applies (70\%).

[^47]:    1) The lower category temperature is determined with a view to the increase of the impedance only, see the impedance graphs.
[^48]:    * insulated

[^49]:    $\left.{ }^{*}\right)$ Silverplated rotor can be delivered on request.

[^50]:    ${ }^{*}$ ) For temperatures up to $125^{\circ} \mathrm{C}$ capacitors with a polysulphone base and P.T.F.E. film as a dielectric can be supplied on request.

[^51]:    *) between +20 and $+70^{\circ} \mathrm{C}$ at $\mathrm{C}_{\max }$

