

Gas-filled tubes

ELECTRON TUBES

PART 7 - FEBRUARY 1982
GAS-FILLED TUBES

SEGMENT INDICATO	OR TUBES A
------------------	------------

- INDICATOR TUBES B
- DRY REED CONTACT UNITS C
 - THYRATRONS D
- INDUSTRIAL RECTIFYING TUBES E
 - IGNITRONS F
- HIGH-VOLTAGE RECTIFYING TUBES G
 - ASSOCIATED ACCESSORIES H
 - INDEX K

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of four series of handbooks each comprising several parts.

ELECTRON TUBES

BLUF

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

ELECTRON TUBES (BLUE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	February 1980	T1 02-80 (ET1a 12-75)	Tubes for r.f. heating
Part 2	April 1980	T2 04-80 (ET1b 08-77)	Transmitting tubes for communications
Part 2b	May 1978	ET2b 05-78	Microwave semiconductors and components Gunn, Impatt and noise diodes, mixer and detector diodes, backward diodes, varactor diodes, Gunn oscillators, sub- assemblies, circulators and isolators.
Part 3	June 1980	T3 06-80 (ET2a 11-77)	Klystrons, travelling-wave tubes, microwave diodes
Part 3	January 1975	ET3 01-75	Special Quality tubes, miscellaneous devices
Part 4	September 1980	T4 09-80 (ET2a 11-77)	Magnetrons
Part 5	August 1981	T5 08-81 (ET5a 10-79)	Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications.
Part 6	July 1980	T6 07-80 (ET6 01-77)	Geiger-Müller tubes
Part 7	February 1982	T7 02-82 (ET7a 03-77) (ET7b 05-79)	Gas-filled tubes Segment indicator tubes, indicator tubes, dry reed contact units, thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes, associated accessories.
Part 8	February 1982	T8 02-82 (ET8 07-79)	Picture tubes and components Colour TV picture tubes, black and white TV picture tubes, colour monitor tubes for data graphic display, monochrome monitor tubes for data graphic display, components for colour television, components for black and white television and monochrome data graphic display.
Part 9	June 1980	T9 06-80 (ET9 03-78)	Photo and electron multipliers Photomultiplier tubes, phototubes, single channel electron multipliers, channel electron multiplier plates.
Part 10	May 1981	T10 05-81 (ET5b 12-78)	Camera tubes and accessories, image intensifiers

SEMICONDUCTORS (RED SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	March 1980	S1 03-80 (SC1b 05-77)	Diodes Small-signal germanium diodes, small-signal silicon diodes, special diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
Part 2	May 1980	S2 05-80 (SC1a 08-78)	Power diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), rectifier stacks, thyristors, triacs
Part 3	April 1980	S3 04-80 (SC2 11-77, pa (SC3 01-78, pa	
Part 4	September 1981	S4 09-81 (SC2 06-79)	Low-frequency power transistors
Part 4a	December 1978	SC4a12-78	Transmitting transistors and modules
Part 5	October 1980	S5 10-80 (SC3 01-78, pa	Field-effect transistors artly)
Part 7	December 1980	S7 12-80 (SC4c 07-78)	Microminiature semiconductors for hybrid circuits
Part 8	April 1980	S8 06-81 (SC4b 09-78)	Devices for optoelectronics Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices
Part 10	September 1981	S10 09-81 (SC3 01-78, pa	Wideband transistors and wideband hybrid IC modules artly)

INTEGRATED CIRCUITS (PURPLE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code. Books with the purple cover will replace existing red covered editions as each is revised.

Part 1	May 1980	IC1 05-80 (SC5b 03-77)	Bipolar ICs for radio and audio equipment
Part 2	May 1980	IC2 05-80 (SC5b 03-77)	Bipolar ICs for video equipment
Part 4	October 1980	IC4 10-80 (SC6 10-77)	Digital integrated circuits LOCMOS HE4000B family
Part 5	February 1982	IC5 02-82	Digital integrated circuits - ECL ECL10 000 (GX family) ECL100 000 (HX family) Dedicated designs
Part 5a	November 1976	SC5a 11-76	Professional analogue integrated circuits
Part 6b	August 1979	SC6b 08-79	ICs for digital systems in radio and television receivers
Part 7	May 1981	IC7 05-81	Signetics Bipolar memories
Part 8	May 1981	IC8 05-81	Signetics Analogue circuits
Part 9	November 1981	IC9 11-81	Signetics TTL Logic

COMPONENTS AND MATERIALS (GREEN SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	October 1981	C1 10-81	Assemblies for industrial use PLC modules, PC20 modules, HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices, hybrid ICs, peripheral devices
Part 2	June 1981	C2 06-81 (CM3a 09-78)	FM tuners, television tuners, video modulators, surface acoustic wave filters
Part 3	January 1981	C3 01-81 (CM3b 10-78)	Loudspeakers
Part 4	December 1981	C4 12-81	Ferroxcube potcores, square cores and cross cores
Part 4a	November 1978	CM4a 11-78	Soft Ferrites Ferrites for radio, audio and television, beads and chokes, FXC potcores and square cores, FXC transformer cores
Part 6	May 1981	C6 05-81 (CM6 04-77)	Electric motors and accessories Permanent magnet synchronous motors, stepping motors, direct current motors
Part 7a	January 1979	CM7a 01-79	Assemblies Circuit blocks 40-series and CSA70 (L), counter modules 50-series, input/output devices
Part 8	September 1981	C8 09-81 (CM8 06-79)	Variable mains transformers
Part 9	August 1979	CM08-79	Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators
Part 10	October 1980	C10 10-80	Connectors
Part 11	December 1979	CM11 12-79	Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)
Part 12	November 1979	CM12 11-79	Variable resistors and test switches
Part 13	December 1979	CM13 12-79	Fixed resistors
Part 14	April 1980	C14 04-80 (CM2b 02-78)	Electrolytic and solid capacitors
Part 15	May 1980	C15 05-80 (CM2b 02-78)	Film capacitors, ceramic capacitors, variable capacitors
Part 16	January 1982	C16 01-82 (CM4b 02-79)	Piezoelectric ceramics, permanent magnet materials

December 1981

RATING SYSTEM

(in accordance with IEC Publication 134)

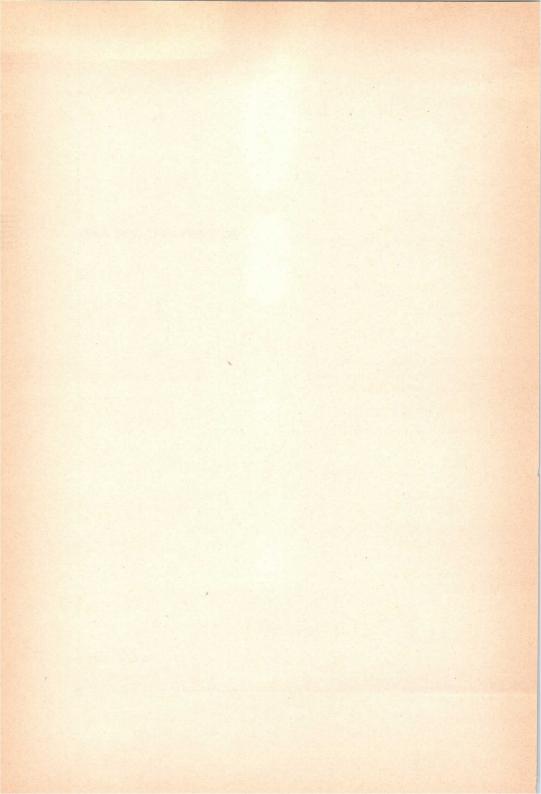
ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Some devices are labelled "MAINTENANCE TYPE" or "OBSOLESCENT TYPE"


Maintenance type - Available for equipment maintenance.

No longer recommended for equipment production.

Obsolescent type - Available until present stocks are exhausted.

SEGMENT INDICATOR TUBES A

DUAL 7-SEGMENT INDICATOR TUBE

suitable for direct drive with 30 V ICs

Long-life segmented dual cold-cathode gas-filled indicator tube in a flat envelope for in-line numeric display applications, such as in digital measuring equipment, clocks, cash registers, weighing machines etc. The tube is suitable for soldering into the circuit. Two or more tubes may be stacked horizontally.

QUICK REFERENCE DATA

Character height	15 mm
Characters	formed by 7 segments
Number of decades	2
Decimal point	to the lower right of the characters
Decade pitch (also for stacked tubes)	17,78 mm (0,7 in)

MECHANICAL DATA

Mounting position: any

The tube is provided with dual in-line tinned dip-solder pins for insertion in a printed-wiring board (e = 2,54 mm). It may also be plugged into a socket.

Mechanical strength

The robustness of the pins is tested according to IEC 68-2-21, test 3.4.2.1, method 1.

Soldering

The dip-solder pins may be soldered for 5 s in solder of max. 260 °C.

CHARACTERISTICS

Ignition voltage, first ignition, 25 lx	V _{ign}	<	165 V	
Ignition delay, first ignition, V _{ba} = 165 V, 25 lx	T _d typ.	<	1 s	
Ignition voltage, subsequent ignitions within 10 ms	V _{ign}	<	145 V	
Primed ignition voltage	V _{ign pr}	<	140 V	*
Maintaining voltage		see	graph	
Extinction voltage	V _{ext}	>	120 V	
Luminous intensity per segment			10 mg	cd/mA

^{*} Primed ignition voltage is the minimum anode to cathode voltage to ensure that any selected numeral (including decimal point) is completed after ignition of one segment.

LIMITING VALUES (Absolute maximum rating system)

	segments	decimal points
Cathode current, d.c.	max. 0,7 min. 0,25	max. 0,25 mA min. 0,1 mA
Cathode current, peak $T_{imp} \ge 0.2 \text{ ms}$ Cathode current, mean $T_{av} = \text{max. } 25 \text{ ms}$	max. 3 min. 0,35 max. 0,5	max. 1,1 mA min. 0,1 mA max. 0,2 mA
Voltage between any two segments and/or decimal points	max.	120 V
Voltage between screen and any other electrode (tube ignited)	max.	120 V
Ambient temperature	max.	100 °C * -50 °C **

RECOMMENDED OPERATING CONDITIONS

If the tube is used within its limiting values and according to the conditions below, a high-quality display is obtained and interdigit discharges are prevented, even with the worst combination of parameters.

For many applications the worst parameter combination will not occur. In those cases the conditions recommended below may be changed which may result in a cheaper drive circuit. These changes should, however, only be made after consulting the tube manufacturer.

Static operation see Fig. 1

Anode supply voltage max. 350 V ba min. 165 V

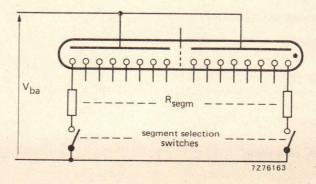


Fig. 1.

^{*} Bulb temperatures above 70 °C result in changes in colour.

^{**} Bulb temperatures below 10 °C result in a reduced life expectancy and changes in characteristics.

Dynamic operation see Fig. 2

Anadagunnly	V.	max.	185	V
Anode supply	V _{ba}	min.	165	V
6		max.	60	V
Screen supply voltage ($R_{screen} < 10 \text{ k}\Omega$)	V _{bs}	min.	50	V
	V/ -#	max.	125	V
	V _{ba} off	min.	115	٧

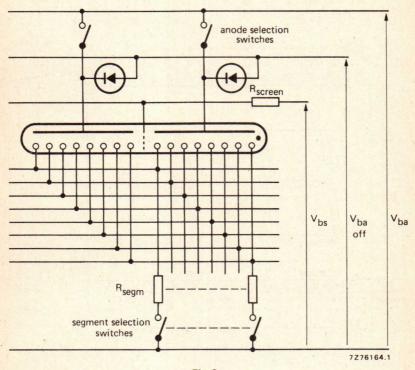


Fig. 2.

Shock and vibration

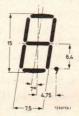
Samples are taken from the normal production line and are subjected to the following tests:

Shock: 50 g (peak), 1000 shocks in one of the three positions of the tube

Vibration: (-1) 2,5 g (peak), -50 Hz for 2 hours

(-2) 2,5 g (peak), -50 Hz for 96 hours (32 hours in each direction)

Acceptable quality level: 0,65


Life expectancy > 50 000 h at 2 mA (peak) cathode current

End of life is reached when: (1) the light output is 50% below the initial output, or (2) the min. cover current is 10% higher than the initial min. cover current.

Life with respect to the min. cover current criterion may be reduced for segments not regularly activated. Please consult the manufacturer.

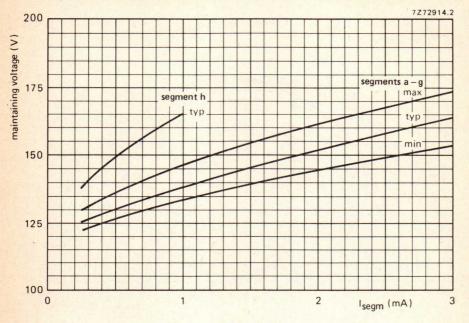


Fig. 4 Maintaining voltage as a function of segment current.

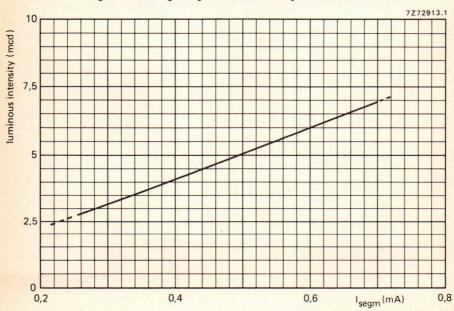


Fig. 5 Luminous intensity as a function of d.c. segment current.

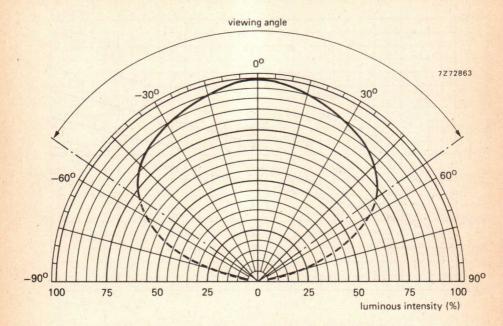


Fig. 6 Relative luminous intensity as a function of the direction of viewing.

7-SEGMENT 11/2 DIGIT INDICATOR TUBE

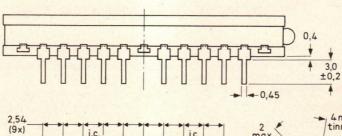
Long-life segmented cold-cathode gas-filled indicator tube in a flat envelope for in-line display applications, such as in digital measuring equipment.

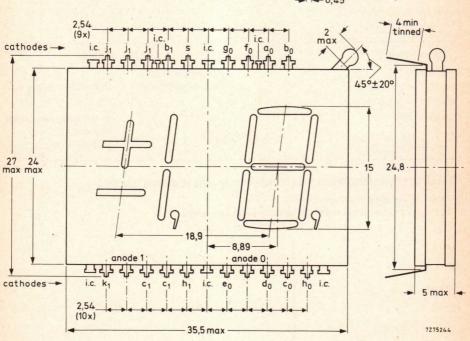
The tube can be stacked with the ZM1550.

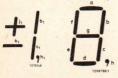
QUICK REFERENCE DATA

Character neight		15 mm
Characters	left compartment right compartment	+ - 1 formed by 7 segments
Number of decades		1,5
Decimal sign		to the lower right of the characters
Decade pitch		17,78 mm (0,7 in)

CHARACTERISTICS, OPERATING CONDITIONS, AND LIMITING VALUES

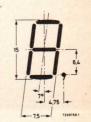

These are the same as of type ZM1550.


The + sign should be considered as consisting of 11/2 segments.



DIMENSIONS AND CONNECTIONS

Dimensions in mm



segment designation

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

7-SEGMENT INDICATOR TUBE

Suitable for direct drive with 30 V ICs, fast ignition type

Long-life segmented cold-cathode gas-filled indicator tube in a flat envelope for in-line numeric display applications, such as in digital measuring equipment, clocks, cash registers, weighing and pin-ball machines etc. The tube is suitable for soldering into the circuit and the connection terminals are positioned in such a way that the units can be mounted side by side without loss of space. The tube contains less than 5,5 kBg (150 nCi) promethium 147.

QUICK REFERENCE DATA

Character height	26,1 mm
Characters	formed by 7 segments
Number of decades	1
Decimal point	to the lower right of the character
Decade pitch for stacked tubes	min. 25,4 mm (1 in)

MECHANICAL DATA

Mounting position: any

The tube is provided with dual in-line tinned dip-solder pins for insertion in a printed-wiring board (e = 2,54 mm). It may also be plugged into a socket.

Mechanical strength

The robustness of the pins is tested according to IEC 68-2-21, test 3.4.2.1, method 1.

Soldering

The dip-solder pins may be soldered for 5 s in solder of max. 260 °C.

CHARACTERISTICS

Ignition voltage, first ignition, 25 lx	Vign	< 165 V
Ignition delay, first ignition, V _{ba} = 165 V, 0 lx	Td	< 0,5 s
Ignition voltage, subsequent ignitions within 10 ms	Vign	< 145 V
Maintaining voltage		see graph
Extinction voltage	V _{ext}	≥ 120 V
Luminous intensity per segment		10 mcd/mA

LIMITING VALUES

Absolute maximum rating system

0.1.1	segments		decimal points		
Cathode current d.c.	max.	1,4	max.	0,25 mA	
Cit.	min.	0,9	min.	0,1 mA	
peak	max.	7	max.	1,1 mA	
T _{imp} ≥ 0,4 ms	min.	1,0	min.	0,1 mA	
mean T _{av} = max. 25 ms	max.	1,0	max.	0,2 mA	
Voltage between any two segments and/or					
decimal points			max.	120 V	
Ambient temperature			max.	100 °C*	
Ambient temperature			min.	-50 °C**	

RECOMMENDED OPERATING CONDITIONS

If the tube is used within its limiting values and according to the conditions below, a high-quality display is obtained even with the worst combination of parameters.

For many applications the worst parameter combination will not occur. In those cases the conditions recommended below may be changed which may result in a cheaper drive circuit. These changes should, however, only be made after consulting the tube manufacturer.

Static operation

Anode supply voltage

V_{ba} max. 350 V min. 165 V

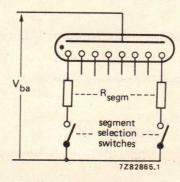


Fig. 1 Static operation.

^{*} Bulb temperatures above 70 °C result in changes in colour.

^{**} Bulb temperatures below 10 °C result in a reduced life expectancy and changes in characteristics.

Dynamic operation

Anode supply

V_{ba} max. 350 V min. 165 V V_{ba} off max. 125 V

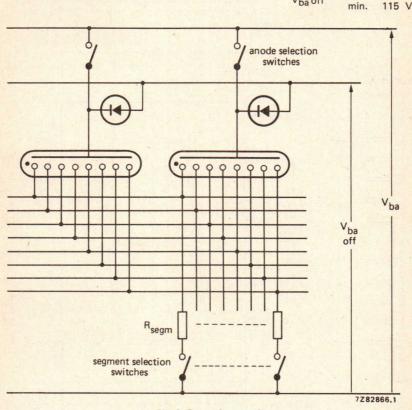


Fig. 2 Dynamic operation.

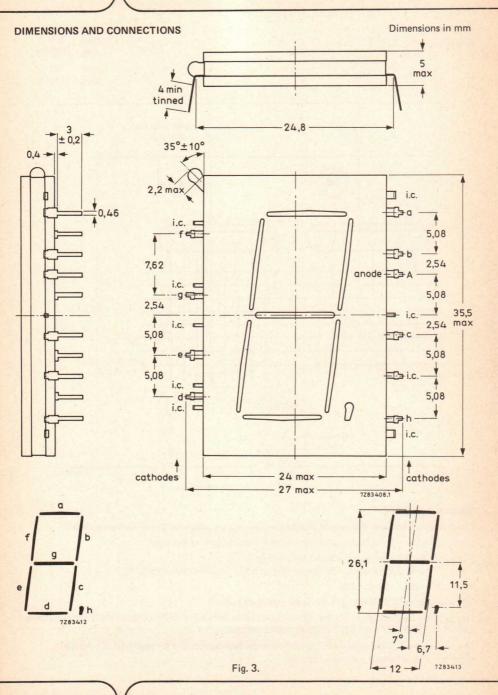
Shock and vibration

Samples are taken from the normal production line and are subjected to the following tests:

Shock: 50 g (peak), 1000 shocks in one of the three positions of the tube.

Vibration: (-1) 2,5 g (peak), -50 Hz for 2 hours.

(-2) 2,5 g (peak), -50 Hz for 96 hours (32 hours in each direction).


Acceptable quality level: 0,65.

Life expectancy > 50 000 h at 4 mA (peak) cathode current

End of life is reached when: (1) the light output is 50% below the initial output, or (2) the min. cover current is 10% higher than the initial min. cover current.

Life with respect to the min. cover current criterion may be reduced for segments not regularly activated. Please consult the manufacturer.

DEVELOPMENT SAMPLE DATA

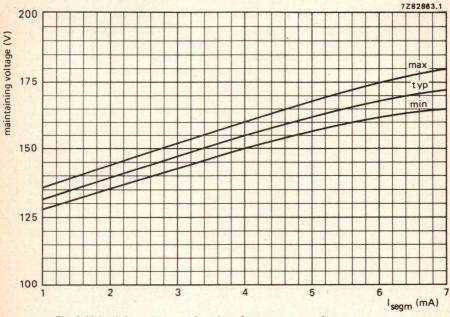


Fig. 4 Maintaining voltage as a function of segment current for segments a - g.

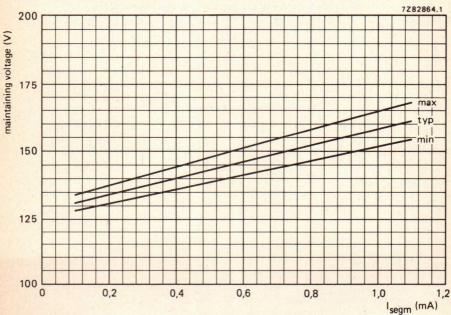


Fig. 5 Maintaining voltage as a function of segment current for decimal point.

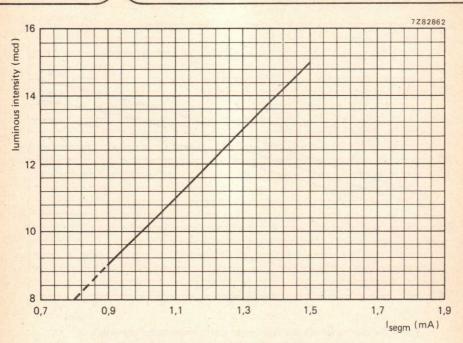


Fig. 6 Luminous intensity as a function of d.c. segment current.

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

7-SEGMENT FRACTION INDICATOR TUBE

Long-life segmented cold-cathode gas-filled fraction indicator tube in a flat envelope for in-line numeric display applications, to be used in combination with ZM1550 series.

The tube is suitable for soldering into the circuit.

The tube has been designed for static operation. For dynamic operation please consult the manufacturers.

QUICK REFERENCE DATA

Character height	26,5 mm
Character	formed by 2 x 7 segments + stroke
Number of decades	1
Decimal point	no

MECHANICAL DATA

Mounting position: any

The tube is provided with dual in-line tinned dip-solder pins for insertion in a printed-wiring board (e = 2,54 mm). It may also be plugged into a socket.

Mechanical strength

The robustness of the pins is tested according to IEC 68-2-21, test 3. 4. 2. 1, method 1.

Soldering

The dip-solder pins may be soldered for 5 s in solder of max. 260 °C.

CHARACTERISTICS

Ignition voltage, first ignition, 25 lx	V _{ign}	< 165 V		
Ignition delay, first ignition, V _{ba} = 165 V, 25 lx	T _d typ.	< 1 s		
Primed ignition voltage	V _{ign pr}	≤ 140 V *		
Maintaining voltage		see graph		
Extinction voltage	V _{ext}	≥ 120 V		

^{*} Primed ignition voltage is the minimum anode to cathode voltage to ensure that any selected numeral (including decimal point) is completed after ignition of one segment.

LIMITING VALUES (Absolute maximum rating system)

	segments stroke				
Cathode current, d.c.	max.	0,45	max.		
	min.	0,20	min.	0,4	mA
Voltage between any two segments and/or stroke		ma	x.	120	٧
Ambient temperature		ma			oC *
		mir	٦.	-50	oC **

RECOMMENDED OPERATING CONDITIONS

Static operation see Fig. 1

Anode supply voltage V max. 350 V Vba min. 165 V

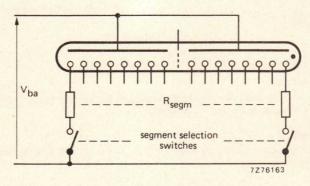


Fig. 1.

Shock and vibration

Samples are taken from the normal production line and are subjected to the following tests:

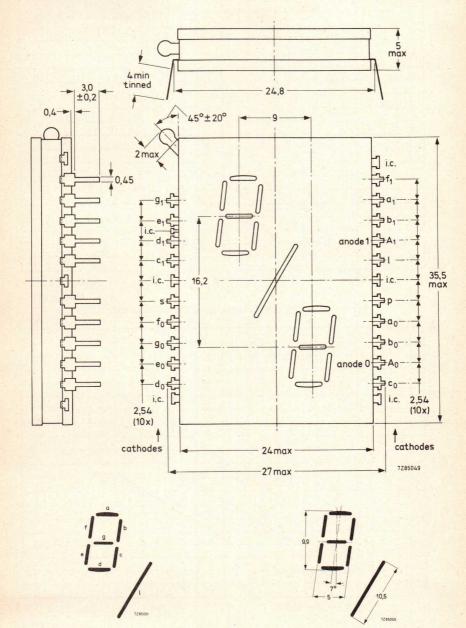
Shock: 50 g (peak), 1000 shocks in one of the three positions of the tube

Vibration: (-1) 2,5 g (peak), -50 Hz for 2 hours

(-2) 2,5 g (peak), -50 Hz for 96 hours (32 hours in each direction)

Acceptable quality level: 0,65

Life expectancy > 50 000 h at max. cathode current


End of life is reached when: (1) the light output is 50% below the initial output, or (2) the min. cover current is 10% higher than the initial min. cover current.

Life with respect to the min. cover current criterion may be reduced for segments not regularly activated. Please consult the manufacturer.

- * Bulb temperatures above 70 °C result in changes in colour.
- ** Bulb temperatures below 10 °C result in a reduced life expectancy and changes in characteristics.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

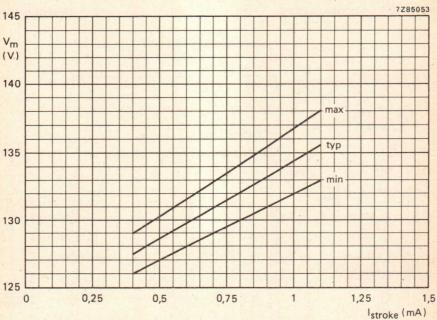


Fig. 3 Maintaining voltage as a function of stroke current.

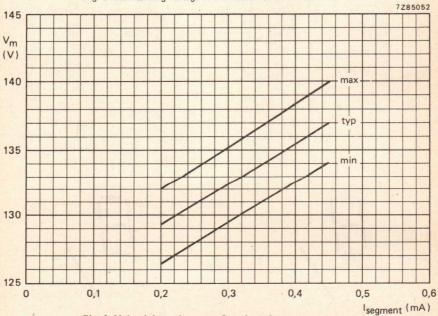


Fig. 4 Maintaining voltage as a function of segment current.

DUAL 7-SEGMENT INDICATOR TUBE

suitable for direct drive with 30 V ICs; fast ignition type

The tube is identical to ZM1550 but contains less than 5,5 kBq (150 nCi) promethium 147. The ignition delay (first ignition) is max. 0,5 s at 0 lx and V_{ba} = 165 V. The tube is marked Pm 147.

7-SEGMENT 11/2 DIGIT INDICATOR TUBE

fast ignition type

The tube is identical to ZM1551 but contains less than 5,5 kBq (150 nCi) promethium 147. The ignition delay (first ignition) is max. 0,5 s at 0 lx and V_{ba} = 165 V. The tube is marked Pm 147.

INDICATOR TUBES

B

COLD CATHODE INDICATOR TUBES

TERMS AND DEFINITIONS

1. Indicator tube.

An indicator tube is a glow discharge tube designed to give a visual indication of the presence of an electrical signal.

A <u>numerical indicator tube</u> is one in which the indication is given in the form of numerals.

In a point indicator tube the indication is given by the position of the glow.

In a segment indicator tube the indication is given in the form of one of more segments, forming a character.

2. Ignition.

2.1 Ignition voltage (symbol Vign)

The ignition voltage is the lowest direct potential, which when applied to a particular anode-cathode gap in the presence of some primary ionisation, will cause a self sustaining discharge to start in that anode-cathode gap.

2.2 Ignition delay

The ignition delay is the time interval between the application of a direct potential (equal to or exceeding the ignition voltage) to a particular anode-cathode gap and the establishment of a self sustaining discharge in that gap.

The figure quoted applies to a tube which has been inoperative for a time long in comparision with the deionisation time.

3. Maintaining voltage (symbol V_m)

The maintaining voltage is the voltage between an anode and that cathode carrying the main discharge.

4. Extinguishing voltage (symbol Vext)

The extinguishing voltage is the voltage between anode and cathode below which the glow discharge extinguishes and is equal to the lowest possible value of the maintaining voltage.

5. "On" cathode.

The "on" cathode is the cathode (numeral) which is required to be displaid and thus carries the main discharge.

6. "Off" cathode.

The "off" cathodes are the cathodes which are not required for display and thus act as probes in the main discharge.

B2 December 1976

7. Cathode selecting voltage (symbol V_{kk})

The cathode selecting voltage is the cathode voltage difference which is used for discrimination between the "off" cathodes and the "on" cathode.

8. Anode selecting voltage (symbol Vaa)

The anode selecting voltage is the anode voltage difference which is used to select the "on" cathode out of a group of cathodes.

9. Anode to cathode bias voltage (bias voltage) (symbol Vbias)

The anode to cathode bias voltage is the anode to cathode voltage before any cathode has been ignited. This voltage serves to reduce the required selecting voltage.

10. Shield voltage (symbol V_S)

The shield voltage is the voltage difference between the shield electrode and the "on" cathode and is used to prevent the penetration of the discharge from one compartment into another which is separated from the former by said shield.

11. Cathode current (symbol I_k)

The cathode current is the current flowing to the "on" cathode.

11.1 Minimum cathode current for coverage (symbol Ikmin.)

The minimum cathode current is the current necessary to ensure full coverage of the "on" cathode by the glow.

11.2 Maximum cathode current (symbol Ik max.)

The maximum cathode current is the current at which the glow is still restricted to the "on" cathode.

If this current is exceeded the glow may spread to connecting leads or other elements.

12. Probe current (symbol Ikk)

A probe current is the current flowing to or from an electrode which does not form part of the main discharge gap.

(The magnitude and direction of this current will be dependent on the position of this electrode with respect to the main discharge and on the external circuit conditions).

13. Anode current (symbol Ia)

The anode current is the algebraic sum of cathode current and all probe currents.

14. Life expectancy.

End of life is reached when the characteristics of any one numeral surpass the stated limits.

SHOCK AND VIBRATION

An indication for the ruggedness of the tube is the fact that 95% of the items sampled from normal production pass the shock and vibration tests specified below without perceptible damage.

These tests are carried out on non operating tubes.

Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.

Vibration: 2.5 gpeak, 50 Hz, during 32 hours in each of the three positions of the tube.

April 1971

INDICATOR TUBE

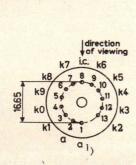
Cold cathode ten digit numeral indicator tube for side viewing.

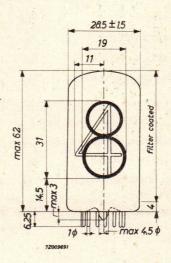
QUICK REFERENCE DATA

Numeral height	30 mm
Numerals	1234567890
Supply voltage	V _{ba} min. 170 V
Cathode current	I _k 4,5 mA

GENERAL

The numerals are 30 mm high and appear on the same base line allowing in-line read out. The ZM1040 is provided with a red contrast filter.


PRINCIPLE OF OPERATION


The tube contains ten cathodes in the form of ten figures and one common anode. By applying a suitable voltage between the anode and one of the ten cathodes the corresponding numeral will be covered by a red neon glow.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: B13B

1) Pins 1 and 2 to be interconnected externally.

Mounting position: any

The numerals are viewed through the side of the envelope. The numerals will appear upright (within 1.5°) when the tube is mounted vertically.

Accessories

Socket

2422 505 00001 type or 2422 505 00002

CHARACTERISTICS AND OPERATING CONDITIONS

Ignition voltage	Vign	max.	170	V
Maintaining voltage	Vm	see page B45		
Cathode current for coverage,				
average, during any conduction period	I_k	min.	3	mA
Cathode current,				
average (T _{av} = 20 ms)	Ik	max.	6	mA
peak	I_{k_p}	max.	20	mA
Cathode selecting voltage	V _{kk}	see page B46		
Extinguishing voltage	Vext	min.	120	V

Typical operation at temperatures tamb = 10 to 50 °C

D.C. operation with or without V_{kk}

(See fig. 1 and 3 and pages B45 and B46)

Anode supply voltage	V _{ba}	200	250	300	350	V
Maintaining voltage	Vm	140 <u>±</u> 10	140 <u>±</u> 10	140±10	140±10	V
Anode series resistor	Ra	15	27	39	47	kΩ
Cathode selecting voltage	V _{kk}			min.	60	V 1)

A.C. half-wave rectified operation with or without V_{kk}

(See fig. 2 and 4 and page B45)

Secondary transformer voltage	Vtr	170	220	250	300	V
Anode series resistor	Ra	5.6	12	18	27	kΩ
Cathode selecting voltage	V _{kk}		,	min.	60	V 1)

 $^{^{1})}$ With low cathode selecting voltages the current I_{kk} to the "off" cathodes will increase and the readability of the "on" cathode will be affected. It is therefore recommended to use a voltage V_{kk} in excess off the stated minimum value.

LIFE EXPECTANCY at Ik = 4.5 mA

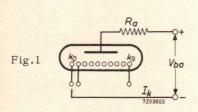
Sequentially changing the display from one digit to the others every 1000 hours or less

100 000 h

LIMITING VALUES (Absolute max. rating system)

Anode voltage necessary for ignition	Va	min.	170	V
Cathode current,				
average during any conduction period	I _k	min.	3	mA
average (T _{av} = 20 ms)	I _k	max.	6	mA
peak	I_{k_p}	max.	20	mA
Cathode selection voltage	V _{kk}	min.	60	V
Bias voltage between anode and "off" cathodes	Vbias	max.	120	V
Bulb temperature	^t bu l b	min.	0 +70	°C 1)

SHOCK AND VIBRATION


An indication for the ruggedness of the tube is the fact that 95% of the items sampled from the normal production line pass the shock and vibration tests specified below without perceptible damage.

Shock: 25 gpeak, 1000 shocks in one of the three positions of the tube.

<u>Vibration:</u> 2.5 g_{peak}, 50 Hz, during 32 hours in each of the three positions of the tube.

 $^{^{}m l}$) Bulb temperatures below 0 $^{
m o}$ C result in a reduced life expectancy and changes in characteristics (see page B47)

In designing equipment to be used over a wide temperature range the use of "constant current operation" (high supply voltage with a high anode series resistor) is recommended.

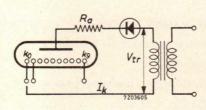
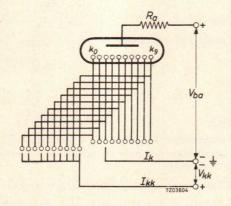
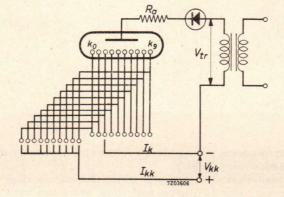
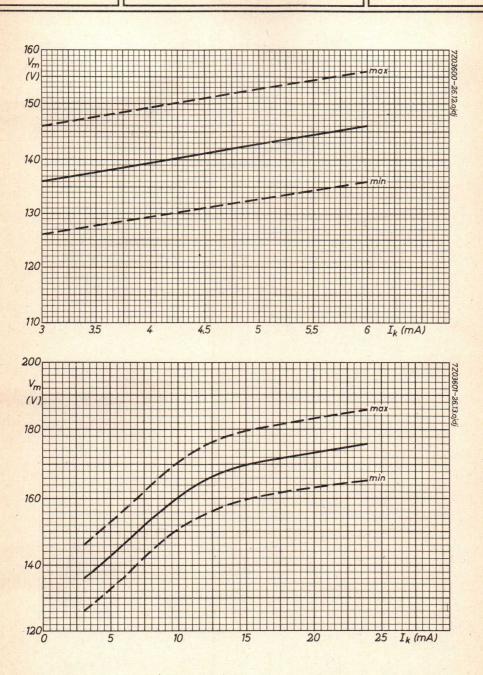
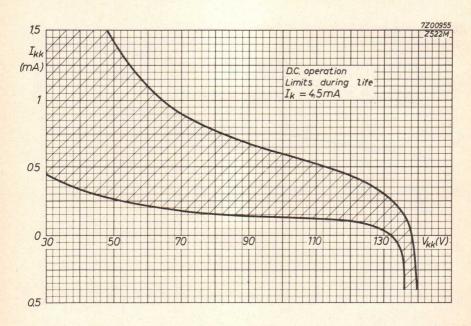
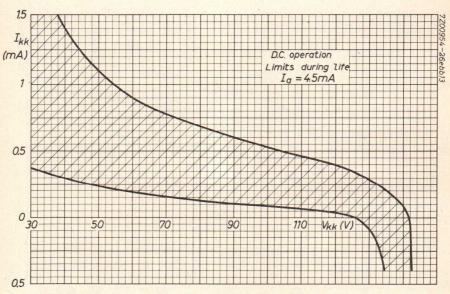
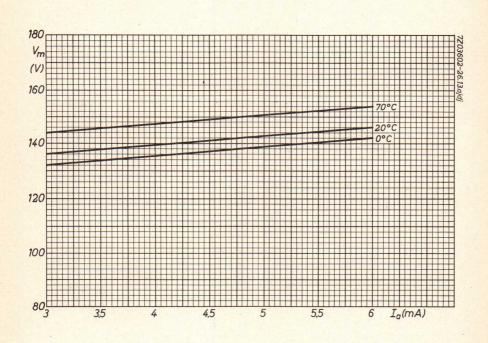


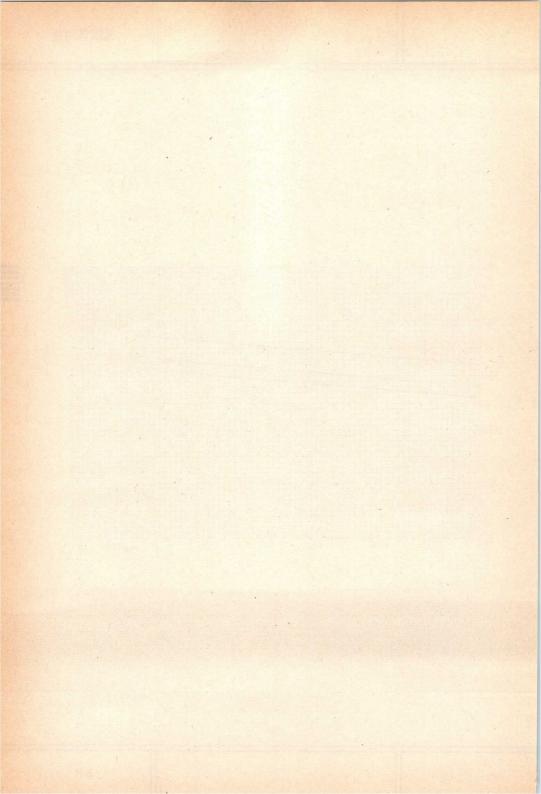
Fig.2

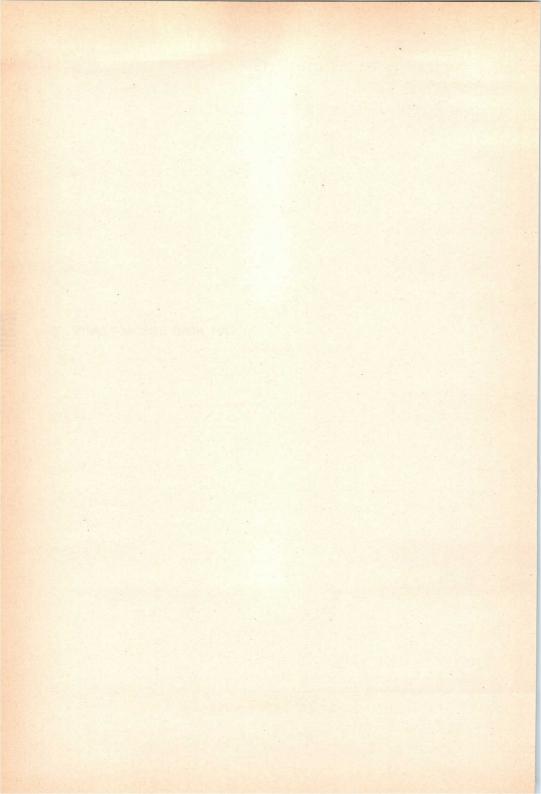
Fig.3


Fig.4







DRY REED CONTACT UNITS C

GENERAL REED CONTACT UNITS

Definitions

Reed contact unit

A reed contact unit is an assembly containing contact blades, some or all of magnetic material, sealed in an envelope.

Must-not-operate value

The must-not-operate value is the stated limit of the magnetic field at which the reed contact unit shall not physically operate.

Must-operate value

The must-operate value is the stated limit of the magnetic field at which the reed contact unit shall physically operate.

Operate time

The operate time is the time between the instant of the application of a specified magnetic field to a specific contact circuit and the instant of the first physical closing (or opening) of this specific contact circuit. The operate time does not include bounce time (unless otherwise indicated).

Bounce

Bounce is a momentary reopening of a contact after initial physical closing, or a momentary reclosing after initial physical opening.

Bounce time

The bounce time is the interval of time between the instant of first physical closing (or opening) and the instant of the final physical closing (or opening) of a specific contact circuit).

Contact circuit

A contact circuit is the whole of the electrically conductive parts of a reed contact unit which are intended to be connected in an external circuit.

Characteristic non-release value

The characteristic non-release value is the stated value of the magnetic field above which the operated reed contact unit fulfills specified qualities, e.g. contact resistance, noise characteristics etc.

GENERAL

Reed contact units

Contact circuit resistance (also contact resistance)

The contact circuit resistance is the resistance of the contact circuit under specified conditions of measurement.

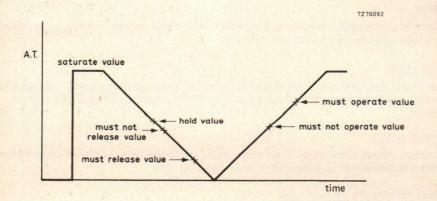
Must-not-release value

The must-not-release value is the stated limit of the applied magnetic field at which the operated reed contact unit shall remain physically operated.

Must-release value

The must-release value is the stated limit of the magnetic field at which the operated reed contact unit shall physically release.

Release time


The release time is the time between the instant of the disconnection of a specific magnetic applied field to a specific contact circuit and the instant of the first opening (or closing) of this specific contact circuit. The release time does not include bounce time.

Saturation

The saturation is the magnetic condition, arbitrarily defined, at which the performance of the reed contact unit is unaffected by further increase of the applied magnetic field.

Saturate value

The saturate value is the arbitrarily defined value of the magnetic field at which the reed contact unit reaches saturation.

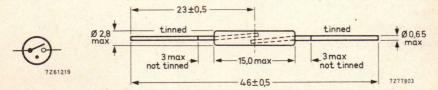
DRY REED CONTACT UNITS

Micro dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semiconductor devices.

QUICK REFERENCE DATA

S.P.S.T. normally	
max.	10 W
max.	200 V
max.	110 V
max.	500 mA
typ.	60 mΩ
	max. max. max. max.

The RI-22 series comprises the types RI-22/AA, RI-22/3A, RI-22/3B, and RI-22/3C with the following basic magnetic characteristics, measured with the Standard coil.


		RI-22AA	RI-22/3A	RI-22/3B	RI-22/3C
Operate range	(At)	14 to 23	18 to 32	28 to 52	46 to 70
Release range	(At)	8 to 19	8 to 22	12 to 32	12 to 32

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position

Dimensions in mm

normally open tinned approx. 5600 Hz approx. 0,21 g any

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt. Dip-soldering is permitted to a minimum of 3 mm from the seals at a solder temperature of 240 °C during maximum 10 s.

Solderability

Solderability is tested according to IEC publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.

The RI-22 series comprises four types: RI-22/AA, RI-22/3A, RI-22/3B, and RI-22/3C.

CHARACTERISTICS RI-22/AA

Not-operate

Breakdown voltage	see relevant graph			
Insulation resistance, initial	min.	10	10 ⁶	
Capacitance, without test coil	max.	0,3	80	pF
		coil I	coil II	
Must-not-operate value	max.	14	13,5	At
Operate				
Must-operate value	max.	23	20	At
Operate time, including bounce	typ. max.	0,25 (note 2) 0,5 (note 2)		ms ms
Bounce time	typ.	0,15 (note 2) 0,3 (note 2)	times to	ms ms
Contact resistance, initial	typ. max.	60 (note 3) 90 (note 3)	l street	$\begin{array}{c} m\Omega \\ m\Omega \end{array}$
Not-release				
Must-not-release value	min.	19	16	At
Release				
Must-release value	max.	8	7	At
Release time	max.	30 (note 2)		μs

Notes

- 1. Measured at a relative humidity of max. 45%.
- 2. Measured with 100 At.
- 3. Measured with 70 At, distance between measuring points: 41 mm. Wire resistance typ. 1,0 mΩ/mm.

CHARACTERISTICS RI-22/3A

N	ot-	O	pe	ra	te

Breakdown voltage	see relevant graph			
Insulation resistance, initial	min.	10 ⁶		$M\Omega$ (note 1)
Capacitance, without test coil	max.	0,2	5	pF
		coil I	coil II	
Must-not operate value	max.	18	16	At
Operate				
Must-operate value	max.	32	27	At
Operate time, including bounce	typ. max.	0,25 (note 2) 0,5 (note 2)		ms ms
Bounce time	typ.	0,15 (note 2) 0,3 (note 2)		ms ms
Contact resistance, initial	typ. max.	60 (note 3) 90 (note 3)		$\begin{array}{c} m\Omega \\ m\Omega \end{array}$
Not-release				
Must-not-release value	min.	22	19	At
Release				
Must-release value	max.	8	7	At
Release time	max.	30 (note 2)	1	μs
CHARACTERISTICS RI-22/3B				

Not-operate

D	 1.4	 	140

Breakdown voltage	see relevant graph			
Insulation resistance	min.	1	O ⁶	$M\Omega$ (note 1)
Capacitance, without test coil	max.	0,	25	pF
		coil I	coil II	
Must-not-operate value	max.	28	23	At

Operate				
Must-operate value	max.	52	42	At
Operate time, including bounce	typ. max.	0,25 (note 2) 0,5 (note 2)		ms ms
Bounce time	typ. max.	0,15 (note 2) 0,3 (note 2)		ms ms
Contact resistance, initial	typ. max.	60 (note 3) 90 (note 3)		$m\Omega$ $m\Omega$
Not-release				
Must-not-release value	min.	32	27	At
Release				
Must-release value	max.	12	10	At

Notes: see previous page.

Release time

30 (note 2)

max.

RI-22 SERIES

CHARACTERISTICS RI-22/3C

Not	-op	era	te
-----	-----	-----	----

Breakdown voltage		see relevan	t granh	
Insulation resistance, initial	min.	10		MΩ (note 1)
Capacitance, without test coil				pF
		coil I	coil II	
Must-not-operate value	max.	46	37	At
Operate				
Must-operate value	max.	70	55	At
Operate time, including bounce	typ.	0,25 (note 2) 0,5 (note 2)	avent.	ms ms
Bounce time	typ. max.	0,15 (note 2) 0,3 (note 2)		ms ms
Contact resistance, initial	typ. max.	60 (note 3) 90 (note 3)		$\begin{array}{c} m\Omega \\ m\Omega \end{array}$
Not-release				
Must-not-release value	min.	32	27	At
Release				
Must-release value	max.	12	10	At
Release time	max.	30 (note 2)		μs

Notes

- 1. Measured at a relative humidity of max. 45%.
- 2. Measured with 100 At.
- 3. Measured with 70 At, distance between measuring points: 41 mm. Wire resistance typ. 1,0 m Ω /mm.

LIMITING VALUES

Absolute maximum ra	ting system
---------------------	-------------

Switched power	max.	10 W
Switched voltage		
d.c.	max.	200 V
a.c. (r.m.s.)	max.	110 V
Switched current, d.c. or a.c. (r.m.s.)	max.	500 mA
Current through closed contacts, d.c. or a.c. (r.m.s.)	max.	2 A
Temperature, storage and operating	max.	125 °C * -55 °C

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when either:

- (a) the contact resistance exceeds either 1 Ω for no-load conditions or 2 Ω for loaded conditions, measured 5 ms after energizing coil; or
 - (b) the release time exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz)

Life expectancy min. 10⁸ operations with a failure rate of less than 10⁻⁹ with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (resistive load: 12 V, 2 mA; operating frequency 50 Hz)

Life expectancy min. 10⁷ operations with a failure rate of less than 10⁻⁸ with a confidence level of 90%. After each operation points (a) and (b) are tested.

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Impact

Acceleration 150 g during 11 ms, due to a force perpendicular to the flat sides of the reeds. Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

Vibration

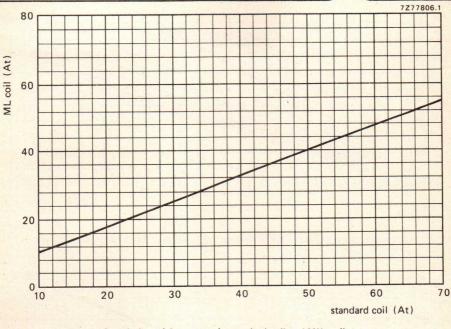
Frequency range 10 Hz to 1500 Hz, acceleration 10 g due to a force perpendicular to the flat sides of the reeds. Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

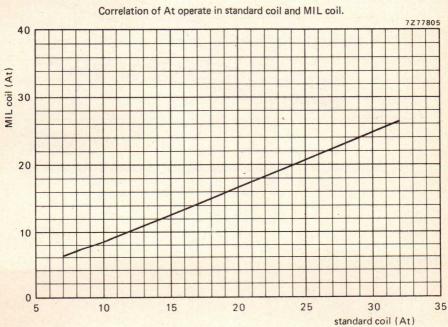
^{*} Excursions up to 150 °C may be permissible. Consult us.


COILS

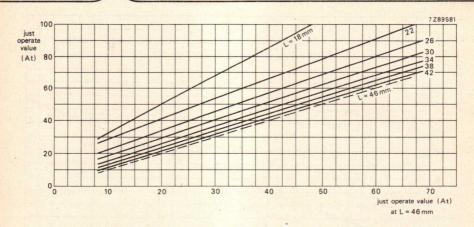
Coil I: Standard coil

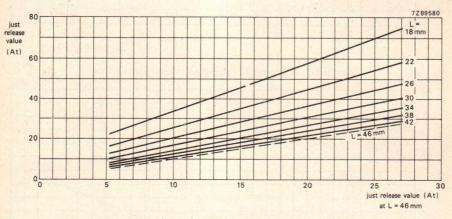
5000 turns of 42 SWG single enamelled copper wire on a coil former of 25,4 mm winding length and a core diameter of 8,75 mm.


Coil II: Miniature coil A according to MIL-S-55433B


10 000 turns of 48 SWG single enamelled copper wire on a coil former of 19,05 mm winding length and a core diameter of 4,32 mm.

Breakdown voltage as a function of ampere-turns.





Correlation of At release in standard coil and MIL coil.

Just operate values at various overall lengths compared with standard length of 46 mm.

Just release values at various overall lengths compared with standard length of 46 mm.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

DRY REED CONTACT UNITS

Micro dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semiconductor devices.

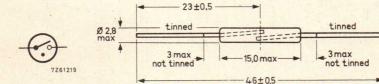
QUICK REFERENCE DATA

S.P.S.T. normally open Contact 10 W Switched power max. Switched voltage 200 V d.c. max. 110 V a.c. (r.m.s.) max. 500 mA Switched current, d.c. or a.c. (r.m.s.) max. Contact resistance (initial) 60 mΩ typ.

		RI-22AAA
Operate range	(At)	8 to 16
Release range	(At)	4 to 14

MECHANICAL DATA

Contact arrangement Lead finish Resonant frequency of single reed Net mass Mounting position


Dimensions in mm

♥ Ø 0,65

max

7277803

normally open tinned approx. 5600 Hz approx. 0,21 g any

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt. Dip-soldering is permitted to a minimum of 3 mm from the seals at a solder temperature of 240 °C during maximum 10 s.

Solderability

Solderability is tested according to IEC publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.

CHARACTERISTICS RI-22 AAA

Not-operate

The operate				
Breakdown voltage		see relevan	t graph	
Insulation resistance, initial	min.	10	10 ⁶	
Capacitance, without test coil	max.	0,3	35	pF
		coil I	coil II	
Must-not-operate value	max.	8	9	At
Operate				
Must-operate value	max.	16	15	At
Operate time, including bounce	typ. max.	0,10 (note 2) 0,25 (note 2)		ms ms
Bounce time	typ. max.	0,05 (note 2) 0,15 (note 2)		ms ms
Contact resistance, initial	typ. max.	60 (note 3) 90 (note 3)		Ω m Ω
Not-release				
Must-not-release value	min.	14	12	At
Release				
Must-release value	max.	4	4	At
Release time	typ. max.	15 (note 2) 70		μs

Notes

- 1. Measured at a relative humidity of max. 45%.
- 2. Measured with 100 At.
- 3. Measured with 70 At, distance between measuring points: 41 mm. Wire resistance typ. 1,0 m Ω /mm.

LIMITING VALUES

Absolute maximum rating system

Switched power	max.	10 W
Switched voltage d.c. a.c. (r.m.s.)	max.	200 V 110 V
Switched current, d.c. or a.c. (r.m.s.)	max.	500 mA
Current through closed contacts, d.c. or a.c. (r.m.s.)	max.	2 A
Temperature, storage and operating	max.	125 °C * -55 °C

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when either:

- (a) the contact resistance exceeds either 1 Ω for no-load conditions or 2 Ω for loaded conditions, measured 5 ms after energizing coil; or
- (b) the release time exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz)

Life expectancy min. 10⁸ operations with a failure rate of less than 10⁻⁹ with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (resistive load: 12 V, 2 mA; operating frequency 50 Hz)

Life expectancy min. 10⁷ operations with a failure rate of less than 5.10⁻⁸ with a confidence level of 90%. After each operation points (a) and (b) are tested.

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

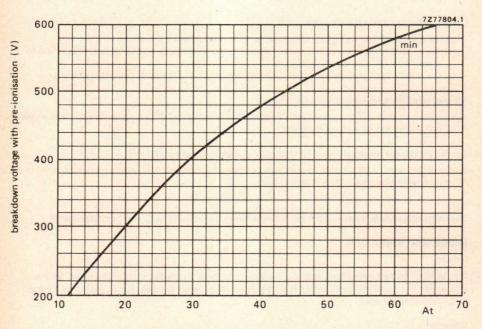
Impact

Acceleration 150 g during 11 ms, due to a force perpendicular to the flat sides of the reeds. Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

Vibration

Frequency range 10 Hz to 1500 Hz, acceleration 10 g due to a force perpendicular to the flat sides of the reeds. Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

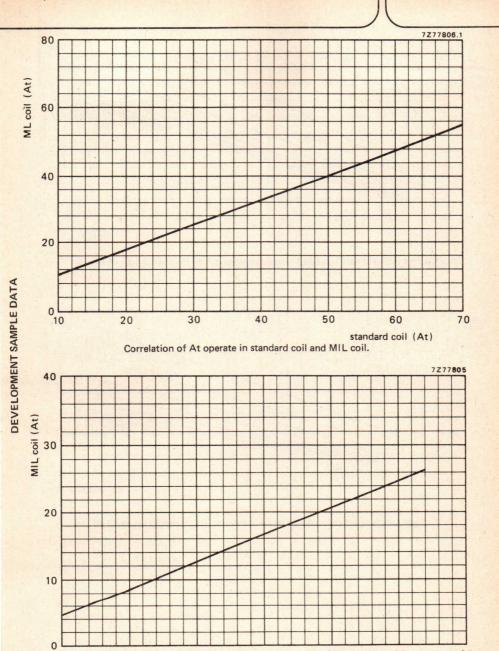
^{*} Excursions up to 150 °C may be permissible. Consult us.


COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of 25,4 mm winding length and a core diameter of 8,75 mm.

Coil II: Miniature coil A according to MIL-S-55433B

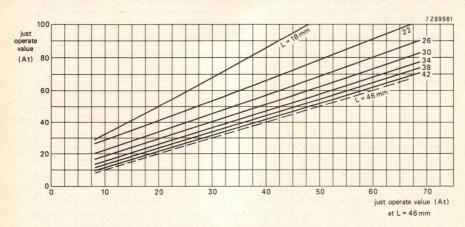

10 000 turns of 48 SWG single enamelled copper wire on a coil former of 19,05 mm winding length and a core diameter of 4,32 mm.

Breakdown voltage as a function of ampere-turns.

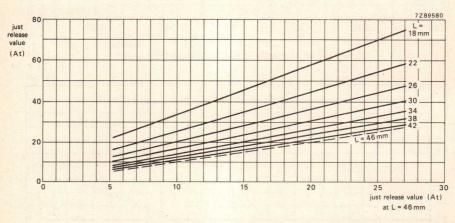
Correlation of At release in standard coil and MIL coil.

20

25


15

10


35

30

standard coil (At)

Just operate values at various overall lengths compared with standard length of 46 mm.

Just release values at various overall lengths compared with standard length of 46 mm.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

DRY REED CONTACT UNITS

Micro dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semiconductor devices.

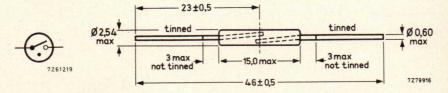
QUICK REFERENCE DATA

Contact	S.P.S.T. normally op		ly open
Switched power	max.	10	W
Switched voltage			
d.c.	max.	200	V
a.c. (r.m.s.)	max.	110	V
Switched current, d.c. or a.c. (r.m.s.)	max.	500	mA
Contact resistance (initial)	typ.	70	mΩ

The RI-23 series comprises the types RI-23/AA, RI-23/3A, RI-23/3B, and RI-23/3C with the following basic magnetic characteristics, measured with the Standard coil.

		RI-23/AA	RI-23/3A	RI-23/3B	RI-23/3C
Operate range	(At)	14 to 23	18 to 32	28 to 52	46 to 70
Release range	(At)	8 to 19	8 to 22	12 to 32	12 to 32

MECHANICAL DATA


Contact arrangement Lead finish Resonant frequency of single reed

Net mass

Mounting position

Dimensions in mm

normally open tinned approx. 5500 Hz approx. 0,19 g

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt. Dip-soldering is permitted to a minimum of 3 mm from the seals at a solder temperature of 240 °C during maximum 10 s.

Solderability

Solderability is tested according to IEC publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.

The RI-23 series comprises four types: RI-23/AA, RI-23/3A, RI-23/3B, and RI-23/3C.

CHARACTERISTICS RI-23/AA

Not-operate

Mor-oberate			
Breakdown voltage		see relevan	t graph
Insulation resistance, initial	min.	10	$M\Omega$ (note 1)
Capacitance, without test coil	max.	0,3	30 pF
		coil I	coil II
Must-not-operate value	max.	14	13,5 At
Operate			
Must-operate value	max.	23	20 At
Operate time, including bounce	typ. max.	0,25 (note 2) 0,5 (note 2)	ms ms
Bounce time	typ. max.	0,15 (note 2) 0,3 (note 2)	ms ms
Contact resistance, initial	typ. max.	70 (note 3) 100 (note 3)	$m\Omega$
Not-release			
Must-not-release value	min.	19	16 At
Release			
Must-release value	max.	8	7 At
Release time	max.	30 (note 2)	μs

Notes

- 1. Measured at a relative humidity of max. 45%.
- 2. Measured with 100 At.
- 3. Measured with 70 At, distance between measuring points: 41 mm. Wire resistance typ. 1,2 m Ω /mm.

CHARACTERISTICS RI-23/3A				
Not-operate				
Breakdown voltage		see relevan	t graph	
Insulation resistance, initial	min.	10)6	$M\Omega$ (note 1)
Capacitance, without test coil	max.	0,2	25	pF
		coil I	coil II	
Must-not operate value	max.	18	16	At
Operate				
Must-operate value	max.	32	27	At
Operate time, including bounce	typ. max.	0,25 (note 2) 0,5 (note 2)		ms ms
Bounce time	typ. max.	0,15 (note 2) 0,3 (note 2)		ms ms
Contact resistance, initial	typ. max.	70 (note 3) 100 (note 3)		$m\Omega$ $m\Omega$
Not-release				
Must-not-release value	min.	22	19	At
Release			Willey.	
Must-release value	max.	8	7	At
Release time	max.	30 (note 2)		μs

CHARACTERISTICS RI-23/3B Not-operate

Breakdown voltage Insulation resistance

min. Capacitance, without test coil max. 28 Must-not-operate value max. Operate

Must-operate value Operate time, including bounce Bounce time

Not-release Must-not-release value Release

Must-release value

Release time

Contact resistance, initial

Notes: see previous page.

see relevant graph 10⁶ MΩ (note 1)

pF

23 At

42 At

ms

ms

ms

ms

 $m\Omega$

mΩ

0,25 coil I coil II

52 max. 0,25 (note 2) tvp. 0,5 (note 2) max. 0,15 (note 2) typ.

max. 0,3 (note 2) 70 (note 3) typ. 100 (note 3) max.

min. 32 27 At

12 10 At max. 30 (note 2) max.

μs

CHARACTERISTICS RI-23/3C

Not-operate

Release time

Not-operate				
Breakdown voltage		see relevant graph		
Insulation resistance, initial	min.	10 ⁶		$M\Omega$ (note 1
Capacitance, without test coil	max.	0,25		pF
		coil I	coil II	
Must-not-operate value	max.	46	37	At
Operate .				
Must-operate value	max.	70	55	At
Operate time, including bounce	typ.	0,25 (note 2)		ms
operate time, moraling beamer	max.	0,5 (note 2)		ms
Bounce time	typ.	0,15 (note 2) 0,3 (note 2)		ms
	max.	70 (note 3)		ms mΩ
Contact resistance, initial	typ.	100 (note 3)		mΩ
Not-release				
Must-not-release value	min.	32	27	At
Release				
Must-release value	max.	12	10	At

30 (note 2)

max.

Notes

- 1. Measured at a relative humidity of max. 45%.
- 2. Measured with 100 At.
- 3. Measured with 70 At, distance between measuring points: 41 mm. Wire resistance typ. 1,2 m Ω /mm.

LIMITING VALUES

Absol	ute	maximum	rating system
-------	-----	---------	---------------

Switched power	max.	10 W
Switched voltage		
d.c.	max.	200 V
a.c. (r.m.s.)	max.	110 V
Switched current, d.c. or a.c. (r.m.s.)	max.	500 mA
Current through closed contacts, d.c. or a.c. (r.m.s.)	max.	2 A
Temperature, storage and operating	max. min.	125 °C * -55 °C

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when either:

- (a) the contact resistance exceeds either 1 Ω for no-load conditions or 2 Ω for loaded conditions, measured 5 ms after energizing coil; or
- (b) the release time exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz)

Life expectancy min. 10⁸ operations with a failure rate of less than 10⁻⁹ with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (resistive load: 12 V, 2 mA; operating frequency 50 Hz)

Life expectancy min. 10⁷ operations with a failure rate of less than 10⁻⁸ with a confidence level of 90%. After each operation points (a) and (b) are tested.

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

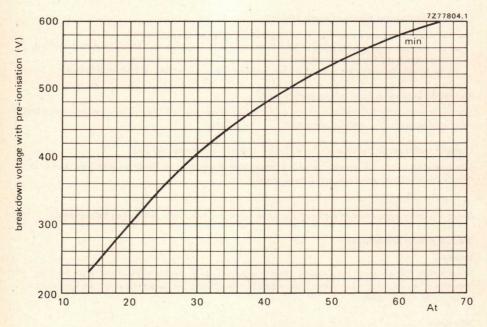
Impact

Acceleration 150 g during 11 ms, due to a force perpendicular to the flat sides of the reeds. Such an impact will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

Vibration

Frequency range 10 Hz to 1500 Hz, acceleration 10 g due to a force perpendicular to the flat sides of the reeds. Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

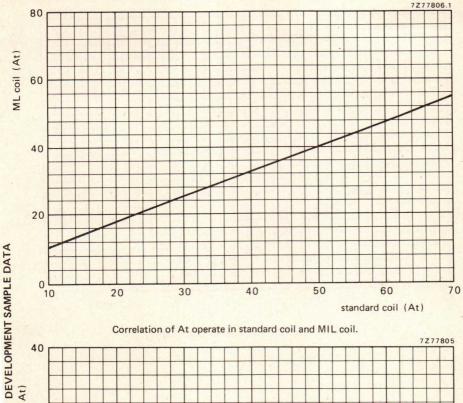
^{*} Excursions up to 150 °C may be permissible. Consult us.

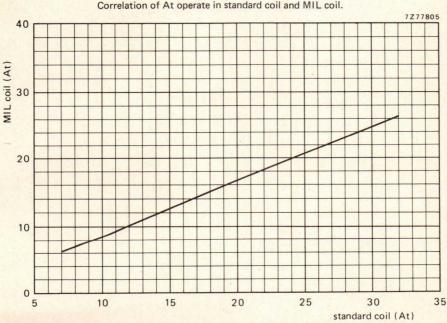

COILS

Coil I: Standard coil

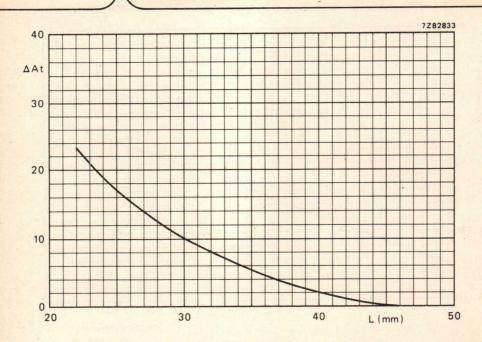
5000 turns of 42 SWG single enamelled copper wire on a coil former of 25,4 mm winding length and a core diameter of 8,75 mm.

Coil II: Miniature coil A according to MIL-S-55433B


10 000 turns of 48 SWG single enamelled copper wire on a coil former of 19,05 mm winding length and a core diameter of 4,32 mm.



Breakdown voltage as a function of ampere-turns.



Correlation of At release in standard coil and MIL coil.

 ΔAt (typical) as a function of total length.

DRY REED CONTACT UNIT

Mini dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays, push buttons or similar devices in conjunction with semiconductor circuits.

QUICK REFERENCE	DATA			
Contact	S.P.S.T.	S.P.S.T. normally open		
Switched power	max.	10	W	
Switched voltage, d.c.	max.	350	V	
a.c. (r.m.s.)	max.	220	V	
Switched current	max.	500	mA	
Contact resistance, initial	max.	100	mΩ	
Basic magnetic characteristics, measured with the Standard coil				
Operate range	30 to	70	At	
Release range	9,5 to	21	At	

MECHANICAL DATA

Contact arrangement

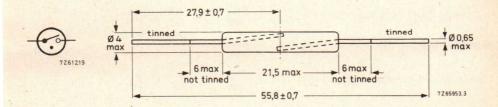
Lead finish

Resonant frequency of single reed

Net mass

Mounting position

Dimensions in mm


normally open

tinned

approx. 2000 Hz

approx. 0,3 g

any

Mechanical strength

The robustness of terminations is tested according to IEC Publication 68-2-21, test Ua (load 3, 5 kg), Ub (load 0, 5 kg, 2 bends), and Uc (3 x 360°).

Mounting

The leads should not be bent nearer than 2 mm to the glass-to-metal seals. Stress on the seals should be avoided.

Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt. Dip-soldering is permitted to a minimum of 6 mm from the seals at a solder temperature

Solderability

Solderability is tested according to IEC Publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.

of 240 °C during maximum 10 s.

CHARACTERISTICS See also "General Reed contact units"

Not-operate

Breakdown voltage	min.	750 1000		V 5) V 6)
Insulation resistance, initial	min.	103		MΩ
Capacitance, without test coil	max.	1		pF
		coil I	coil II	
Must-not-operate value	max.	30	31	At
Operate				
Must-operate value	max.	70	75	At
Operate time, including bounce	typ.	$ \begin{array}{c c} 0, 6 & 2 \\ 1, 0 & 2 \end{array} $		ms ms
Bounce time	typ. max.	0, 3 ²) 0, 5 ²)		ms ms
Contact resistance, initial	typ.	70 ³) 100 ³)		$m\Omega$

Notes: see page 30 .

Not-release				
Must-not-release value	min.	21	22	At
Release				
Must-release value	max.	9,5	9,5	At
Release time	max.	50 2)		μs
LIMITING VALUES (Absolute max. rating				
Switched power		max.	10	W
Switched voltage, d.c.		max.	350	V
a.c. (r.m.s.)			220	V
Switched current, d.c. or a.c. (r.m.s.)		max.	500	mA 4)
Current through closed contact, d.c. or a.	.c. (r.m.s.)	max.	1,5	A
Temperature, storage and operation		max.	125	°C
remperature, storage and operation		min.	-55	°C

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when: either a) the contact resistance exceeds $1\ \Omega$ for no load conditions or $5\ \Omega$ for loaded conditions, measured 5 ms after energizing coil I to 100 At.

or b) the release time once exceeds 5 ms (latching or contact sticking), after deenergizing coil I to 4 At.

No-load conditions

Operating frequency 50 Hz.

Life expectancy min. 10^8 operations with a failure rate of less than 10^{-8} with a confidence level of 90%.

After each operation a) and b) are tested.

Loaded conditions

Resistive load: 12 V, 100 mA, operating frequency 50 Hz.

Life expectancy min. 10^7 operations with a failure rate of less than 10^{-8} with a confidence level of 90%.

After each operation a) and b) are tested.

Notes: see page 30

SHOCK AND VIBRATION

Mechanical shock is tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500 g, half sine-wave).

Such a mechanical shock will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.

 $\frac{\text{Vibration}}{\text{ation 10 g}} \text{ is tested according to IEC Publication 68-2-6, test Fe, procedure B4 (acceleration 10 g, below cross-over frequency amplitude 0,75 mm, frequency range 10-500 Hz, duration 90 min.). Such a vibration will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil to open.$

COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of 25, 4 mm winding length and a core diameter of 8,75 mm.

Coil II: Intermediate coil C according to MIL-S-55433B

 $10\,000$ turns of 41 SWG single enamelled copper wire on a coil former of 25,4 mm winding length and a core diameter of 7,62 mm.

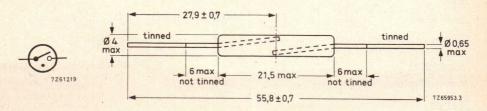
Coil I: Standard coil.
 Coil II: Intermediate coil C according to MIL-S-55433B.

²⁾ Measured with 100 At.

³) Measured with 32 At, distance between measuring points 41 mm.

⁴⁾ Surges (e.g. due to stray capacitances of cables) up to 1,5 A are permissible provided these surges decay to values within the limiting values in less than 0,8 μs. Submicrosecond surges may shorten contact life significantly.

⁵⁾ Measured after pre-ionization.


⁶⁾ Measured without pre-ionization.

DRY REED CONTACT UNIT

Miniature dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in telephone exchange relays.

QUICK REFERENCE DA	TA		
Contact	S. P. S. T	. normal	ly open
Switched power	max.	10	W
Switched voltage	max.	200	V
Switched current	max.	500	mA
Contact resistance (initial)	max.	100	$m\Omega$
Basic magnetic characteristics, measured with the	Standard coil		
Operate range	30 t	0 70	At
Release range	9,5 t	o 21	At

MECHANICAL DATA	Dimensions in mm
Contact arrangement	normally open
Lead finish	tinned
Resonant frequency of single reed	approx. 2000 Hz
Net mass	approx. 0,3 g
Mounting position	any

Mechanical strength

The robustness of terminations is tested according to IEC Publication 68-2-21, test Ua (load 3, 5 kg), Ub (load 0, 5 kg, 2 bends) and Uc ($3 \times 360^{\circ}$).

Mounting

The leads should not be bent nearer than 2 mm to the glass-to-metal seals. Stress on the seals should be avoided.

Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.

Soldering

The contact unit may be soldered direct into the circuit but heat conducted to the glass-to-metal seals should be kept to a minimum by the use of a thermal shunt.

Dip-soldering is permitted to a minimum of 6 mm from the seals at a solder temperature of 240 $^{\rm o}{\rm C}$ during maximum 10 s.

Solderability

Solderability is tested according to IEC Publication 68-2-20, test T, solder globule method.

Weldability

The leads are weldable.

CHARACTERISTICS

Breakdown voltage Insulation resistance, initial	min. min.	750 1000 10 ³			V ⁵) V 6)
		coil I	coil II	coil III	
Must-not-operate value	max.	30	21	31	At
Operate					
Must-operate value	max.	70	37	75	At
Operate time, including bounce	max.		1, 1 2)	T Visit	ms
Bounce time	typ.		$0, 3 \stackrel{2}{=} 0$ $0, 4 \stackrel{2}{=} 0$		ms ms
Hold					
Hold value	min.	32	20,5	33	At
Contact resistance, initial	max.		100 3)		$m\Omega$
Not-release					
Must-not-release value	min.	21	13	22	At
Release					
Must-release value Release time	max.	9,5	5 0, 1 ²)	9,5	At ms

LIFE EXPECTANCY

For life expectancy data end of life is defined as being reached when within $0,1\ x$ the typical number of operations:

- either a) the contact resistance more than once exceeds $1~\Omega$ for no load conditions and $10~\Omega$ for loaded conditions, measured 5 ms after energizing the coil;
- or b) the release time more than once exceeds 2 ms after de-energizing the coil (contact sticking).

No load conditions

Typical number of operations: 10⁸ Operating frequency 50 Hz.

Loaded conditions

- p) Resistance load: 50 V, 100 mA Operating frequency 20 Hz. Minimum number of operations: 2 x 10⁶
- q) Resistive load: 50 V, 50 mA connected to the contacts by means of the following cables:

Surge impedance (Ω)	Cable length (m)
45	20; 100
75	20; 100
140	20; 100

Minimum number of operations: 0,5 x 10⁶ Operating frequency 20 Hz.

r) Discharge of the following floating cables, previously charged to 50 V:

Surge impedance (Ω)	Cable length (m)
45	1; 10; 100
75	1; 10; 100
140	1; 10; 100

Minimum number of operations: 3×10^6 Operating frequency 20 Hz.

General: After each operation points a) and b) are tested.

Note: Switching other loads involves different life expectancy and reliability. Consult us beforehand.

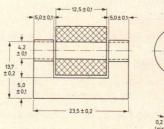
SHOCK AND VIBRATION

Mechanical shock is tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500 g, half sine-wave).

Such a mechanical shock will not cause an open contact (no magnetic field present) to close, nor a contact kept closed by an 80 At coil II to open.

 $\frac{\text{Vibration}}{\text{ation 10 g}}$ is tested according to IEC Publication 68-2-6, test Fc, procedure B4 (acceleration 10 g, below cross-over frequency amplitude 0,75 mm, frequency range 10-500 Hz, duration 90 minutes).

Such a vibration will not cause an open contact by an 80 At coil II to open.


COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of 25, 4 mm winding length and a core diameter of 8, 75 mm.

Coil II: Recommended coil

2000 turns of 42 SWG single enamelled copper wire on a coil former of 12,5 mm winding length and a core diameter of 4,2 mm with a return circuit of annealed soft iron (80 A/m < $\rm H_{C}$ < 96 A/m).

Coil III: Intermediate coil C according to MIL-S55433B

 $10\,000$ turns of 41 SWG single enamelled copper wire on a coil former of 25, 4 mm winding length and a core diameter of 7,62 mm.

Coil II: Recommended coil-

Coil III: Intermediate coil C according to MIL-S-55433B.

¹⁾ Coil I : Standard coil.

²⁾ Measured with 50 At

³⁾ Measured with 20 At, distance between measuring points: 38 mm.

⁴⁾ Surges (e.g. due to stray capacitances of cables) up to 1,5 A are permissible provided these surges decay to values within the limiting values in less than 0, 8 μs. Submicrosecond surges may shorten contact life significantly.

⁵⁾ Measured after pre-ionization.

⁶⁾ Measured without pre-ionization.

THYRATRONS D

GENERAL OPERATIONAL RECOMMENDATIONS THYRATRONS

The following instructions and recommendations apply in general to all types of thyratrons. If there are deviations for any type of tube they will be indicated on the published data sheets of the type in question.

MOUNTING

Normally the tubes must be mounted vertically with the base or filament strips at the lower end. They must be mounted so that air can circulate freely around them. Where additional cooling is necessary forced air should assist the natural convection. (This is of great importance in the case of mercury-vapour filled tubes, in order to condense the mercury in the lower part of the tube). The clearance between the tubes and other components of the circuit and between the tubes and cabinet walls should be at least half the maximum tube diameter.

When 2 or more tubes are used the minimum clearance between them should be 3/4 the maximum tube diameter. When the tube is mounted in a closed cabinet the heat dissipated by the tube and other components should be taken into account. While the tube is working it must not touch any other part of the installation or be exposed to falling drops of liquid.

The tubes should be mounted in such a way that they are not subjected to dangerous shock or vibration. In general, if shock or vibration exceeds 0.5 g a shock absorbing device should be used.

The electrode connections, except for those of the tube holder, must be flexible. The nuts (e.g. of the anode connections) should be well tightened but care must be taken to ensure that no undue forces are exerted on the tube. The contacts must be checked at regular intervals and their surfaces kept clean in order to avoid excessive heating of the glass-metal seals. The cross section of the conductors and leads should be sufficient to carry the r.m.s. value of the current. (It should be noted that ingrid controlled rectifier circuits the r.m.s. value of the anode current may reach 2.5 x the average d.c. value and even more).

FILAMENT SUPPLY

In order to obtain the maximum life of a directly heated tube, a filament transformer with centre-tap and a phase shift of $90^{\circ}\pm30^{\circ}$ between V_a and V_f is recommended.

If, in the published data, limits are given for the filament voltage, steps should be taken to prevent the filament voltage exceeding these limits owing to the spread of the transformer, fluctuations of the mains voltage, etc. The filament voltage at nominal mains voltage is measured at the terminals of the tube. If no limits for the filament voltage are given, deviations with a maximum of 2.5% from the published value, can be accepted.

It is therefore recommended to have tappings on the filament transformer. The mains fluctuations should, in general, not exceed 5%. During short intervals fluctuations of 10% are admissible.

In calculating the ratings of the filament transformer a variation in the filament current of plus and minus 10% from tube to tube should be taken into account, whilst for directly heated tubes the d.c. current flowing through the filament winding should also be considered.

TEMPERATURE

 For tubes filled with mercury vapour or with a mixture of mercury vapour and inert gas.

For these tubes temperature limits for the condensed mercury are given in the published data. Care should be taken to ensure that the temperature during operation is between these limits. Too low temperature gives low gas pressure which results in a low current capability, high arc drop and consequently shortening of life. Too high a temperature gives high gas pressure which results in a reduction of the "arc-back" voltage, and with it the permissible peak inverse and forward voltages. The condensed mercury temperature can be measured with a thermo-element placed against the envelope. The measurement should be made at the coldest part of the bulb where the mercury condenses; in general this will be just above the base or the lower connections.

Good technique and instruments are necessary for accurate thermocouple measurements. In addition to the temperature limits for the condensed mercury sometimes limits for the ambient temperature are given.

The latter are only intended as a guide, as the difference between the ambient and the condensed mercury temperature largely depends on mounting and cooling.

The mercury condensed temperature is decisive in all cases.

The ambient temperature can be measured with a thermometer which has been screened against direct heat radiation. The measurement should be carried out at various points around the lower part of the tube.

2. Tubes with inert gas-filling

For these tubes only the limits of the ambient temperature are given. These limits are in general minimum -55 °C and maxima +75 °C.

SWITCHING ON

 Tubes filled with mercury vapour or with a mixture of mercury vapour and inert gas

It is necessary to allow some time for the cathode to reach its operating temperature before drawing cathode current. Therefore the minimum cathode heating time is given on the published data sheets.

After the cathode heating time the tube may be switched on provided the temperature of the condensed mercury is not too low.

Switching on (not after transport) may be done at a condensed mercury temperature which lies 5 to $10\,^{\rm o}$ C below the minimum temperature published (minimum waiting time required).

However, it is good practice to switch on after the temperature having passed its minimum published value (recommended waiting time)

The switching on times, the minimum required and the recommended one can be read from the curve representing the condensed mercury temperature as a function of time with only the filament voltage applied to the tube.

The minimum required switching on time can directly be read from the curve representing this time as a function of the ambient temperature.

Switching on after transport or after a considerable interruption of operation should be done according to the instructions for use which are packed with the tube.

In order to avoid long preheating times it is recommended to leave the filament supply on during stand-by periods (e.g. overnight) at 60-80% of the nominal voltage.

2. Tubes with inert gas-filling

It is necessary to allow the cathode to reach operating temperature before drawing cathode current.

Therefore the minimum cathode heating time is published after which the anode voltage may be applied provided that the ambient temperature is not below the minimum published value.

LIMITING VALUES

In general these values are given as absolute maxima; i.e. maxima which should not be exceeded under any conditions (so they may not be exceeded owing to mains voltage fluctuations, load variations, tolerances on components, overvoltages etc.)

For each rating of maximum average current a maximum averaging time is quoted. This is to ensure that an anode current greater than the maximum continuously permissible average value is not drawn for such a length of time as would give rise to an excessive temperature within the tube.

The maximum peak anode current is determined by the available safe cathode emission whereas the average current is limited by its heating effects.

Under no circumstances may the peak current exceed its maximum published value. For the determination of the actual value of the peak inverse voltage and the peak anode current, the measured values with an oscilloscope or otherwise are decisive.

TYPICAL CHARACTERISTICS

1. Arc voltage

The value published for $V_{\mbox{arc}}$ applies to average operating conditions; under high peak current conditions, e.g. 6 phase rectification, $V_{\mbox{arc}}$ will be higher. The spread which is dependent on the circuit can be expected to be plus and minus 1 V.

During life and increase of approximately 2 V must be taken into account.

2. Frequency

Unless otherwise stated the maximum frequency at which the tubes may run under full load is $150\ \mathrm{Hz}$.

Under special conditions higher frequencies may be used, details should be obtained from the manufacturer.

OPERATING CHARACTERISTICS

The data under this heading are based on normal practical conditions.

SHORT CIRCUIT PROTECTION

In order to prevent the tube from being damaged by passing too high a peak current a value for the surge current is given. The figure given for the maximum surge current is intended as a guide to equipment designers. It indicates the maximum value of a transient current resulting from a sudden overload or short circuit which the thyratron can pass for a period not exceeding 0.1 second without resulting in its immediate destruction. Several overloads of this nature will, however, considerably reduce the life of the tube.

The equipment designer has to take into account this maximum surge current rating when calculating the short-circuit impedance of the equipment.

This surge current value is not intended as a peak current that may occur on switching or during operation.

A simple method to limit the surge current to the max. rating is to incorporate a series resistance in the anode circuit.

SCREENING AND INTERFERENCE

In order to prevent unwanted ionisation of the gas filling (and consequent flash over) due to strong R.F. fields, it may be necessary to enclose the thyratron in a separate earthed screening box.

In circuits with gas-filled tubes oscillation in the transformer windings and other circuit components may occur, resulting in excessive peak inverse voltages and arc back. Damping of these oscillations is necessary especially at higher voltages. Parallel RC-circuits are recommended for this purpose.

SMOOTHING CIRCUITS

In order to limit the peak anode current in a rectifier it is necessary that a choke should precede the first smoothing condenser.

To ensure good voltage regulation on fluctuating loads the inductance value of the choke should be large enough to give uninterrupted current at minimum load.

The choke and capacitor must not resonate at the supply or ripple frequency. In grid controlled rectifier circuits under phased-back conditions the harmonic content of the d.c. output will be large unless the inductance is adequate.

PARALLEL OPERATION OF GAS-FILLED TUBES

As individual gas-filled thyratrons may have slightly different characteristics two or more tubes must not be connected directly in parallel. An alternative expedient must be adopted if a higher current output is required. Information on suitable methods will be supplied on request.

EFFECTS OF POSITIVE ION CURRENT

When a thyratron is conducting, a positive ion current of a magnitude proportional to the cathode current is generated. This current will, in general, flow to that electrode which is at the most negative potential during conduction (e.g. the grid). In order to prevent damage to the tube it is necessary to ensure that the voltage of this electrode is more positive then -10 V during this phase. This precaution will prevent an increase in grid emission due to excessive grid dissipation, sputtering of grid material, changes in the control characteristics caused by shifts in contact potential and, in the case of inert-gas-filled tubes, a rapid gas clean up.

In circuits where the control grid is held negative during anode conduction, a suitable choice of resistor in series with the grid will maintain an effective grid bias more positive than -10 V. The minimum allowable value of the grid resistor is 0.1 x the recommended one.

In circuits where the anode potential changes from a positive to a negative value and the control grid is at a positive potential, thereby drawing cathode current, a small positive ion current flows to the anode. At high negative anode voltages it is therefore essential to limit the magnitude of the positive ion current by severely restricting the current flowing from cathode to grid. This may be effected by using the maximum permitted series resistor, or preferably by using fixed negative grid bias and a narrow positive firing pulse.

February 1968

In those circuits where the anode potential changes very rapidly from a positive to a high negative value, such as with inductive loads fed from polyphase supplies, there will be residual positive ions within the tube which will be drawn towards the anode with considerable energy. In the case of an inert-gas filled tube this would result in excessive gas clean-up and it is therefore necessary to observe the limitations imposed by the commutation factor.

CONTROL CHARACTERISTICS

In most cases the control characteristic given on the data sheets is shown by upper and lower boundary curves within which all tubes may be expected to remain at all temperatures of the published range and during life.

In multitube circuits where the tubes are operating under the same conditions the spread will in general be smaller. The published boundaries are therefore to be considered as extreme limits. This should be taken into consideration when designing grid excitation circuits.

GRID EXCITATION CIRCUITS

To keep the instant of ignition as constant as possible a large value of excitation voltage is recommended.

The use of a negative grid bias (20 to 50 V for a d.c. output voltage of 200 to 600 V) and a sharp positive grid pulse is recommended.

The magnitude of the grid should be 70 to 100 V with a grid series resistor of 20 k Ω and a maximum impedance of the peaking transformer of 30 k Ω . If a sinusoidal grid voltage is used the following r.m.s. values are recommended. With inductive or resistive load without a back E.M.F. this excitation voltage should be of the order of 8 x the spread of the control characteristic (30 to 50 Vrms).

If a back E.M.F. is present the value of excitation voltage should be 15 x the spread of the control characteristic (50 to $100 \text{ V}_{\text{TMS}}$).

THYRATRON

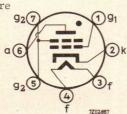
Thyratron, inert gas filled tetrode for relay service, electronic timers, stabilized rectifiers, stabilization of A.C. output, in grid circuits of power thyratrons.

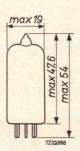
QUICK REFERENCE DATA			Marie I	
Peak anode voltage	Vap	=	650	V
Cathode current, peak	Ikp	=	0.5	A
average	Ik	=	0.1	A

HEATING: indirect by A.C. or D.C.

Heater voltage	V_{f}	=	6.3	V
Heater current	$I_{ m f}$	=	600	mA
Waiting time	T_{w}	=	20	s 1)

CAPACITANCES


Grid No.1 to all other elements	Cg ₁	=	2.4	pF
Anode to all other elements	Ca	=	1.6	pF
Anode to grid No.1	Cag ₁	=	26	mpF


MECHANICAL DATA

Dimensions in mm

Base: 7 pin miniature

Net weight: 10 g

Mounting position: any

 $^{^{\}mathrm{l}}$) If urgently wanted T_{W} may be decreased to min. 10 s.

TYPICAL CHARACTERISTICS

Ionization time

Deionization time

at
$$V_a^{==} = 125 \text{ V}$$
, $V_{g_1} = -100 \text{ V}$, $R_{g_1} = 1000 \Omega$, $I_a = 0.1 \text{ A}$

at
$$V_a = 125 \text{ V}$$
, $V_{g_1} = -10 \text{ V}$, $R_{g_1} = 1000 \Omega$, $I_a = 0.1 \text{ A}$

at
$$V_{a\sim} = 125 V_{RMS}$$
, $I_a = 0.1 A$

Control ratio grid No.1 at striking point
$$R_{g_1} = 0 \Omega$$
, $V_{g_2} = 0 V$

Control ratio grid No.2 at striking point
$$V_{g_1} = 0 V$$
, $R_{g_1} = 0 \Omega$, $R_{g_2} = 0 \Omega$

OPERATING CONDITIONS for relay service

Anode voltage
$$V_a \sim = 117$$

Grid No. 2 voltage $V_a \sim = 0$

Grid No. 2 voltage
$$V_{g_2} = 0$$
 0 V

Grid No.1 (bias) voltage
$$V_{g_{1}} = 5$$
 - V_{RMS}^{1})

Grid No.1 (bias) voltage $V_{g_{1}} = -6$ V

Grid No.1 peak (signal) voltage
$$V_{g_{1p}} = 5$$
 6 V

Anode circuit resistance
$$R_a = 1.2$$
 2.0 $k\Omega$

Grid No.1 circuit resistance
$$R_{g_1} = 1.0 1.0 M\Omega$$

 $T_{ion} = 0.5 \mu s$

 $T_{dion} = 75 \mu s$

 $I_{g_1} = 0.5 \mu A$

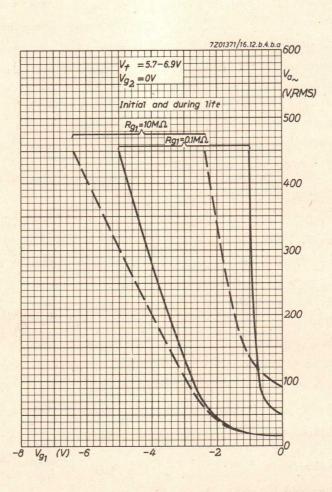
250

1000

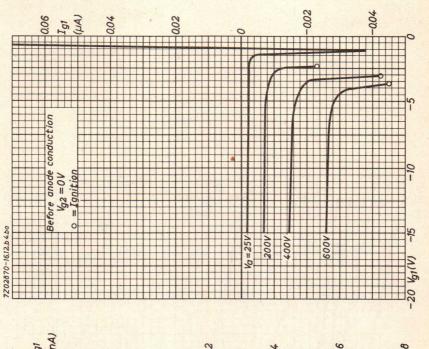
400 VRMS

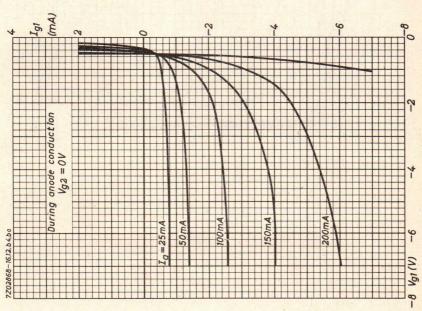
35 µs

T_{dion} =

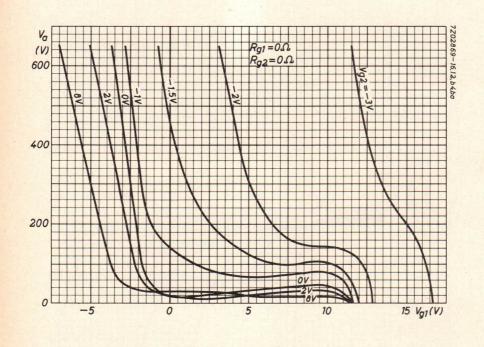

Varc

 $^{^{1}}$) Phase difference between V_{a} and $V_{g_{1}}$ approx. 1800.


LIMITING VALUES for relay- and grid controlled service (Absolute max. rating system)


Anode voltage,					
forward peak	Vap	=	max.	650	V
inverse peak	V _a inv _p	=	max.	1300	V
Grid No.2 voltage,					
peak before conduction	-V _{g2p}	=	max.	100	V
average during conduction $T_{av} = \max. \ 30 \ s$	-V _{g2}	=	max.	10	v
Grid. No.1 voltage,					
peak before conduction	-Vglp	=	max.	100	V
average during conduction $T_{av} = \max. 30 \text{ s}$	-v _{g1}	I	max.	10	V
Cathode current,					
peak	I_{k_p}	=	max.	0.5	A
average, T _{av} = max. 30 s	I _k	=	max.	0.1	A
surge, T = max. 0.1 s	Isurge	=	max.	10	A
Grid No.2 current					
average, T _{av} = max. 30 s	I_{g_2}	=	max.	10	mA ¹)
Grid No.1 current,					
average, T _{av} = max. 30 s	I_{g_1}	=	max.	10	mA
Cathode to heater voltage,					
k pos., peak	V+kf-	=	max.	100	V
k neg., peak	V-kf+	=	max.	25	V
Heater voltage	V_{f}		max. min.		
Ambient temperature	t _{amb}		max.		0
CIRCUIT DESIGN VALUES					
Grid No.1 circuit resistance recommended value	R_{g_1}	===	max.	10	MΩ MΩ

¹⁾ In order not to exceed this maximum value it is recommended to insert a resistor of 1000 Ω in the grid No.2 lead.



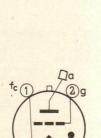
PL2D21

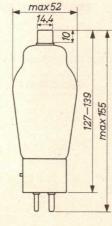
TRIODE THYRATRON

Mercury vapour and inert gas filled triode thyratron with negative control characteristic.

QUICK REFER	ENCE DATA			
Peak forward anode voltage	V _{ap}	max.	1500	V
Peak inverse anode voltage	Vainvp	max.	1500	V
Average cathode current	I _k	max.	1,6	A
Peak cathode current	I_{k_p}	max.	2,5 V 7 A 1.0 V 2,5 V 7 A 1.1 S 2 p 10 V	A
Average grid current	Ig	max.	10	mA
Peak grid current	I_{gp}	max.	50	mA
HEATING: direct				
Filament voltage	$V_{\mathbf{f}}$		2,5	V
Filament current	$I_{\mathbf{f}}$		7	A
Waiting time	$T_{\mathbf{w}}$	min.	15	s) 1)
CAPACITANCE				
Anode to grid	Cag		2	pF
TYPICAL CHARACTERISTICS				
Arc voltage	Varc		10	V
Ionisation time	Tion		10	μs
Deionisation time	Tdion		1000	μs

¹⁾ Recommended waiting time 30 s


- a. normal atmospheric pressure;
- b. the tube shall be adjusted to the worst probable operating conditions;
- c. the temperature shall be measured when thermal equilibrium is reached;
- d. the distance of the thermometer shall be 52 mm from the outside of the envelope (measured in a plane perpendicular to the main axis of the tube at the height of the condensed mercury boundary);
- e. the thermometer shall be shielded to avoid direct heat radiation.


^{2),} **D16** The ambient temperature is defined as the temperature of the surrounding air and shall be measured under the following conditions:

MECHANICAL DATA

: Medium 4p with bayonet Base

Cap : 40619 Net mass: 90 g

Mounting position: Vertical with base down

LIMITING VALUES (Absolute limits)

Peak forward anode voltage

Peak inverse anode voltage

Negative grid voltage before conduction

Negative grid voltage during conduction

Average grid current, anode positive (Averaging time

Peak grid current

Grid circuit resistance

(Averaging time

Surge cathode current

(Duration

Ambient temperature

Condensed mercury temperature

1) Recommended value 50 kΩ

Dimensions in mm

Average cathode current Peak cathode current

Ig Tav Igp max.

Vap

-Vg

-Vg

Vainvp

50 mA 5 to 100 k Ω^{1}) Rg

max.

max.

max.

max.

max.

1500 V

1500 V

500

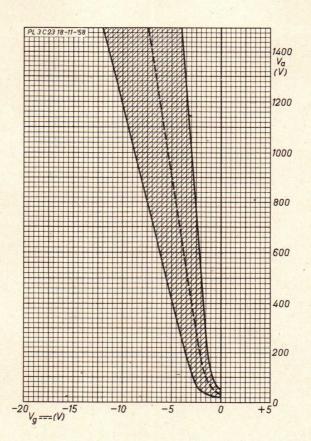
10 V

> 5 s)

10 mA

Ik max. 1.6 A 5 s) Tav

Ikp 6.4 A max. 120


Isurge max. 0, 1 s)max.

-40 to +50 °C 2)3) tamb


-40 to +80 °C tHg

3) Recommended temperature approximately 25 °C.

²⁾ See page D15

THYRATRON

Mercury vapour filled tetrode thyratron intended for the following applications:

- D.C.: for use as rectifier with variable or stabilized output voltage and for electronic D.C. motor speed control.
- A.C.: for use as electronic switch and control of ignition circuits; control of electric furnaces, incandescent lamps and discharge lamps; for resistance welding up to 27 kVA.

QUICK REFERENCE DATA				
Anode voltage, peak forward	Vap	max. 2500 V		
peak inverse	Vinvp	max. 2500 V		
Anode current, average (T _{av} = max. 15 s)	Ia	max. 6.4 A		
peak (f ≥ 25 Hz)	Iap	max. 40 A		

HEATING: indirect

 $\begin{array}{ccccc} \mbox{Heater voltage} & \mbox{V_f} & 5.0 \ \mbox{$V \pm 5\%$} \\ \mbox{Heater current} & \mbox{I_f} & 10 \ \mbox{A} \\ \mbox{Waiting time} & \mbox{T_W} & \mbox{min. 5 min.} \end{array}$

MECHANICAL DATA

Base: Super jumbo with bayonet

max 123 max 97

Dimensions in mm

Pins 2 and 3 heater, pin 4 cathode return

Mounting position: vertical, base down

Net weight: 510 g

ACCESSORIES

Socket

2422 511 01001

Cap connector

40620

CAPACITANCES

Anode to	gric	No.1
Grid No.	1 to	cathode

Cag₁ 1.8 pF C_{g_1k} 5.0 pF

TYPICAL CHARACTERISTICS

Arc voltage Ionization time Recovery time (Reionization time)

Varc Tion

12 V

10 µs

Tdion

1000 µs

max. 150 Hz

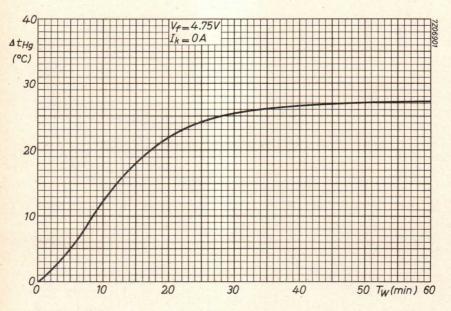
Frequency

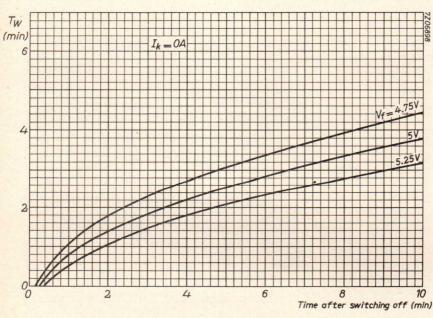
Intermittent service

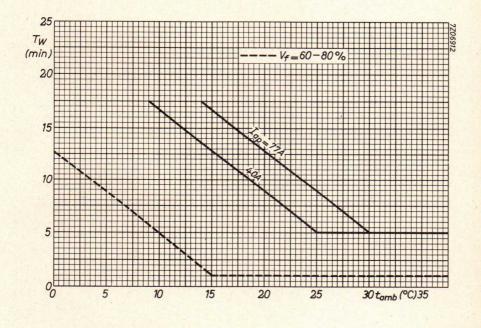
LIMITING VALUES (Absolute max. rating system)

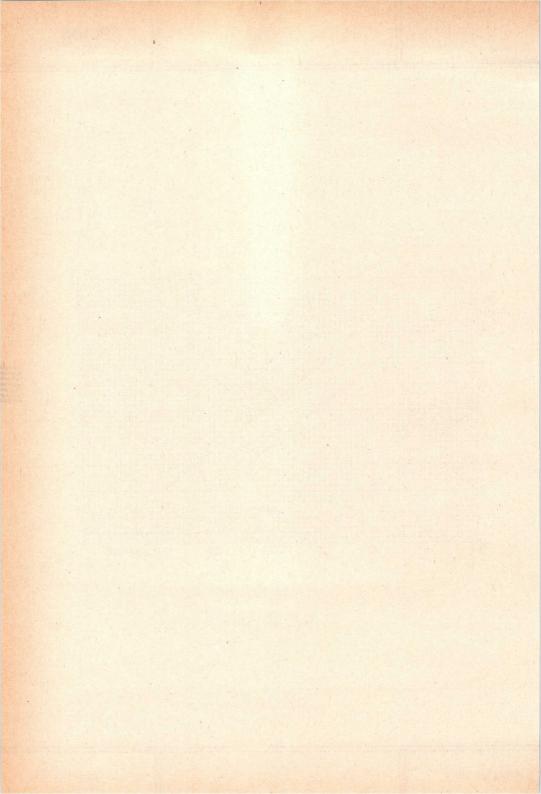
Carried Marie 1				
Anode voltage, peak forward	Vap	max.	750	V
peak inverse	Vinvp	max.	750	V
Grid No. 2 voltage	-Vg2	max.	500	V
tube conducting	-Vg2	max.	10	V
Grid No.1 voltage	-Vg ₁	max.	1000	V
tube conducting	-Vg ₁	max.	10	V
Anode current, peak (f < 25 Hz)	Iap	max.	5.0	A
$(f \ge 25 \mathrm{Hz})$	Iap	max.	77	A
average (T _{av} = max. 5 s)	Ia	max.	2.5	A
Surge current (T = max. 0.1 s)	Isurge	max.	400	A
Grid No.2 current, peak	Ig2p	max.	2.0	A
average (T _{av} = max. 5 s)	Ig2	max.	0.5	A
Grid No.1 current, peak	Ig _{1p}	max.	1.0	A
average (T _{av} = max. 5 s)	Ig ₁	max.	0.25	A
Grid No.2 resistor	R_{g_2}	max.	10	kΩ
recommended value	R_{g_2}		10	kΩ
Grid No.1 resistor	R_{g_1}	max.	100	kΩ
recommended value	Rg1		10	kΩ
Mercury temperature	tHg	40	to 80	°C
recommended value	tHg		60	°C

Continuous service


LIMITING VALUES	(Absolute max.	rating system)
-----------------	----------------	----------------


LIMITING VALUES	(Absolute max. rating system)					
Anode voltage, pea	k forward	Vap	max.	2500	V	
pea	k inverse	Vinvp	max.	2500	V	
Grid No.2 voltage		-Vg2	max.	500	V	
tube	e conducting	-Vg2	max.	10	V	
Grid No.1 voltage		-Vg ₁	max.	1000	V	
tube	e conducting	-Vg1	max.	10	V	
Anode current, pea	ak (f < 25 Hz)	Iap	max.	12.8	A	
	$(f \ge 25 \text{ Hz})$	Iap	max.	40	A	
ave	rage (T _{av} = max. 15 s)	Ia	max.	6.4	A	
Surge current (T =	max. 0.1 s)	Isurge	max.	400	A	
Grid No.2 current,	peak	Ig _{2p}	max.	2.0	A	
	average (Tav = max. 15 s)	I_{g_2}	max.	0.5	A	
Grid No.1 current,	peak	Ig _{1p}	max.	1.0	A	
	average (T _{av} = max. 15 s)	Ig ₁	max.	0.25	A	
Grid No.2 resistor		Rg2	max.	10	kΩ	
rec	ommended value	Rg2		10	kΩ	
Grid No.1 resistor		Rg ₁	max.	100	kΩ	
rec	ommended value	Rg ₁		10	kΩ	
Mercury temperatu	ire	tHg	40	to 80	°C	
rec	ommended value	tHg		60	°C	



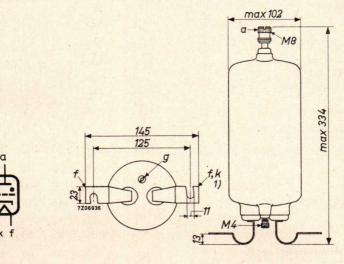


PL105

THYRATRON

Mercury-vapour triode thyratron intended for use in motor control equipment and resistance welding equipment.

QUICK REFERENCE DA	TA			
Anode voltage, peak forward	Vap	max.	1500	V
peak inverse	Vinvp	max.	2500	V
Cathode current, average (Tav = max. 10 s)	Ik	max.	10	A
peak	I_{k_p}	max.	100	A


HEATING: indirect

Heater voltage	$V_{\mathbf{f}}$	5.0	V
Heater current	$\overline{\mathrm{I}_{\mathbf{f}}}$	11	A
	$I_{\mathbf{f}}$	max. 13	A
Waiting time	T_{W}	min. 10	min

If during long periods of service interruption (e.g. during night hours) the heater voltage is maintained at 5 V, the waiting time can be omitted.

MECHANICAL DATA

Dimensions in mm

¹⁾ Marked red.

MECHANICAL DATA (continued)

Mounting position: vertical, base down

Net weight: 820 g

MERCURY TEMPERATURE

 V_f = 5.0 V the temperature rise above ambient is approximately 10 $^{\rm o}$ C.

CAPACITANCES

Grid to all except anode	$C_{g(a)}$		pF	
Anode to grid	Cag	8	pF	
TYPICAL CHARACTERISTICS				

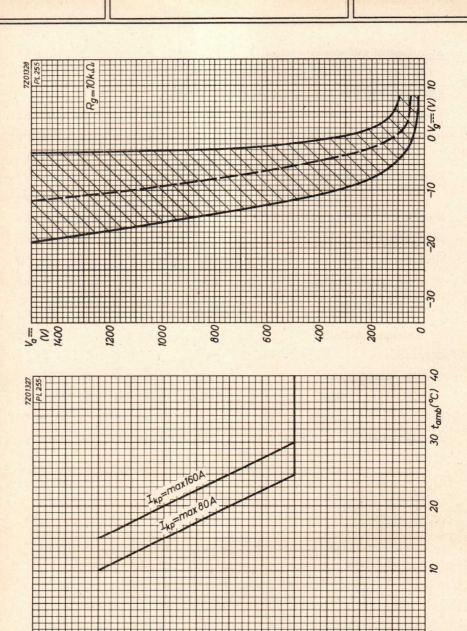
Arc voltage	Varc	10	V	
Ionization time	Tion	10	μs	
Recovery time (Deionization time)	Tdion	1000	μs	

Continuous service (motor control)

LIMITING VALUES (Absolute max. ra	ating syste	m)				
Frequency	f	max.			150	Hz
Anode voltage, peak forward	Vap	max.			1500	V
peak inverse	Vinvp	max.			2500	V
Grid voltage, before conduction	-Vg	max.			300	V
during conduction	-V _g	max.			10	V
Surge current (T = max. 0.1 s)	Isurge	max.			1500	A
Grid current,(Va pos.)	Ig	max.			0.25	A
peak	Igp	max. min.			0.5	A A
Grid resistor	Rg	max.			50	kΩ
recommended value	Rg				10	kΩ
Cathode current, peak	Ikp	max.	80	100	160 ¹)	A
RMS	Ik	max.	30	30	50 1)	A
average	Ik	max.	12.5	10	20 1)	A
Averaging time	Tav	max.	15	15	2)	s
Mercury temperature	t _{Hg}	max.	75 3 5	75 40	75 40	°C
recommended value	t _{Hg}		60	60	60	°C

¹⁾ Overload during max. 5 s in each 5 minutes operation period.

2) Max. 1 cycle.


A.C. control and welding control

Two tubes in inverse parallel

LIMITING VALUES (Absolute max. rating system)

Frequency	f	max.		150	Hz
Anode voltage, peak forward	Vap	max.		750	V
peak inverse	Vinvp	max.		750	V
Grid voltage, before conduction	-Vg	max.		300	V
during conduction	-Vg	max.		10	V
Surge current (T = max. 0.1 s)	Isurge	max.		1500	A
Grid current (anode positive)	Ig	max.		0.25	A
Grid resistor	Rg	max.		50	kΩ
recommended value	Rg			10	kΩ
Mercury temperature	t _{Hg}	max. min.		80 40	°C °C
recommended value	tHg	max.		60	°C
Duty factor	δ	0.1	0.5	1	
Cathode current, peak	Ikp	max. 156	78	39	A
RMS	Ik	max. 110	55	27.5	A
average	Ik	max. 5	12.5	12.5	A
Averaging time	Tav	max. 5	5	15	S

20

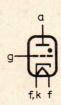
Mercury-vapour triode thyratron intended for use in motor control equipment, relay service and other industrial applications.

QUICK REFERENCE DA	TA			
Continuous service				
Anode voltage, peak forward	Vap	max.	2000	V
peak inverse	Vinvp	max.	2500	V
Cathode current, average (Tav = max. 15 s)	Ik	max.	60	A
peak	Ikp	max.	200	A

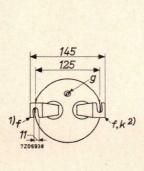
HEATING: indirect

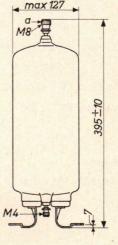
Heater voltage

Heater current


Waiting time

 $rac{V_{f}}{I_{f}}$ 5 V $rac{I_{f}}{I_{f}}$ max. 21 A I_{W} min. 10 min


During long periods of interrupted service (e.g. during night hours) it is recommended to reduce $V_{\rm f}$ to 60-80% of the nominal value instead of switching off the heater. In this way the value of $T_{\rm W}$ can be decreased according to the dotted curve.


MECHANICAL DATA

Dimensions in mm

PL260

MECHANICAL DATA (continued)

Mounting position: vertical, base down

Net weight: 1600 g

MERCURY TEMPERATURE

At V_f = 5.0 V the temperature rise above ambient of the mercury is approximately 10 °C.

CAPACITANCES

Grid to all except anode	Cg(a)	60	pF
Anode to grid	Cag	15	pF

TYPICAL CHARACTERISTICS

Arc voltage	Varc	10	V
Ionization time	Tion	10	μs
Recovery time (Deionization time)	Tdion	1000	μs

Continuous service

LIMITING VALUES (Absolute max. rating system)

Frequency	f	max.	150	Hz
Anode voltage, peak forward	Vap	max.	2000	V
peak inverse	Vinvp	max.	2500	V
Grid voltage, before conduction	-Vg	max.	300	V
during conduction	-V _g	max.	10	V
Surge current (T = max. 0.1 s)	Isurge	max.	2500	A
Grid current, (Va pos.)	Ig	max.	0.25	A 1)
peak	I_{g_p}	min. max.	3	mA A
Grid resistor	Rg	max.	20	kΩ
recommended value	Rg		10	kΩ

Continuous service (continued)

LIMITING VALUES (Absolute max. rating system)

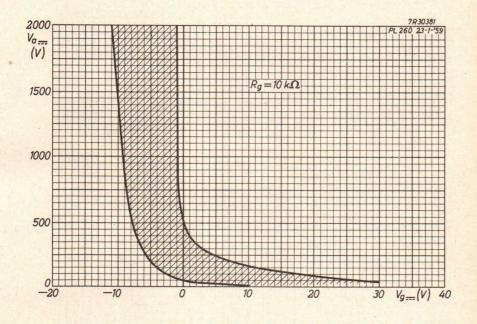
Anode fuse		max.		80 A
recommended value				60 A
Cathode current, peak	Ikp	max. 160	200	300 ²) A
RMS	Ik	max. 60	60	100 ²) A
average	I_k	max. 25	20	40 ²) A
Averaging time	Tav	max. 15	15	²) s
Mercury temperature	tHg	max. 75 min. 35		75 ²) °C 40 ²) °C
recommended value	tHg	60	60	60 °C

A.C. control and welding control

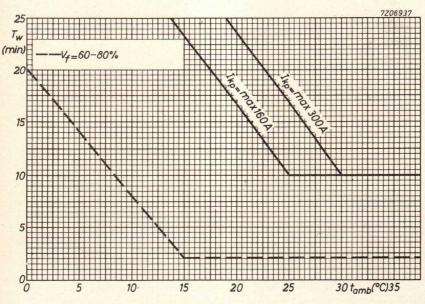
Two tubes in inverse parallel

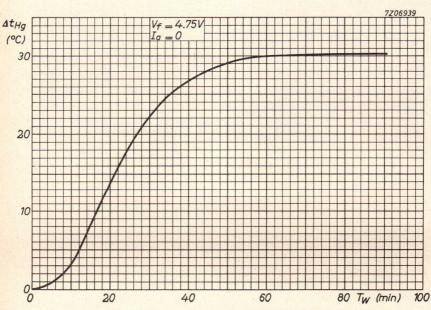
LIMITING VALUES (Absolute max. rating system)

Frequency	f	max.	150	Hz
Anode voltage, peak forward	Vap	max.	750	V
peak inverse	Vinvp	max.	750	V
Grid voltage, before conduction	-Vg	max.	300	V
during conduction	-Vg	max.	10	V
Surge current, (T = max. 0.1 s)	Isurge	max.	2500	A
Grid current (Va pos.)	I_g	max.	0.25	A 1)
Grid resistor	Rg	max.	20	kΩ
recommended value	Rg		10	kΩ
Mercury temperature	t _{Hg}	max.	80 40	°C °C
recommended value	t _{Hg}		60	°C
Duty factor	δ	0.1	0.5 1	
Cathode current, peak	I_{k_p}	max. 285	156 78	A
average	Ik	max. 9	25 25	A
Averaging time	Tav	max. 5	5 15	s
Output current, RMS	I_{Ω}	max. 200	110 55	A



NOTES


- 1. In order to facilitate the ignition of the tube a positive grid current of at least 3 mA is necessary. The use of a fixed negative grid bias (30 V to 50 V for D.C. output voltages of 220 V to 600 V) and a sharp grid pulse (100 V to 130 V) is recommended (Rg = 10 k Ω , impedance of pulse transformer max. 10 k Ω). If a sinusoidal grid voltage is used for control, this voltage should be at least 60 VRMS. The bias source impedance should be low compaired with the total grid series impedance.
- 2. Overload during max. $5 \, \mathrm{s}$ in each $5 \, \mathrm{minutes}$ operating period. $T_{\mathrm{av}} = \mathrm{max}$. $1 \, \mathrm{cycle}$.



March 1969

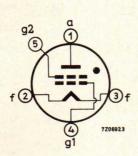
Xenon-filled tetrode intended for use in electronic timers, in grid-controlled rectifiers with variable or constant output voltage.

QUICK REFERENCE DATA				
Anode voltage, peak forward	Vap	max.	650	V
peak inverse	Vinvp	max.	650	v
Anode current, average (Tav = max. 5 s)	Ia	max.	0.5	A
peak ($f \ge 25 \text{ Hz}$)	Iap	max.	2	A

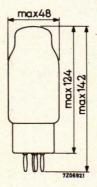
HEATING: direct

Filament voltage

Filament current


Waiting time

 $\frac{V_{f}}{I_{f}}$ 2.0 V ± 5%


Tw min. 30 s

MECHANICAL DATA

Base: O

Dimensions in mm

Pin 3 cathode return

Mounting position: any

Accessories

Socket

type 2422 512 02001

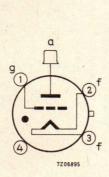
Net weight

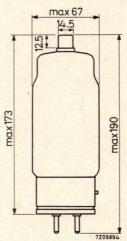
75 g

CAPACITANCES				
Anode to grid No.1	Cag ₁		0.55	pF
Anode to grid No. 2	C_{ag_2}		12	pF
TYPICAL CHARACTERISTICS				
Arc voltage	Varc		15	V
Recovery time (Deionization time)	Tdion		500	μs
A Committee of the Comm				
LIMITING VALUES (Absolute max. rating system)				
Anode voltage, peak forward	Vap	max.	650	V
peak inverse	V _{inv_p}	max.	650	V
Grid No.2 voltage, before conduction	-Vg2	max.	100	V
during conduction	-Vg2	max.	10	V
Grid No.1 voltage, before conduction	-Vg1	max.	100	V
during conduction	-Vg1	max.	10	V
Anode current, peak (f < 25 Hz)	Iap	max.	1	A
peak (f > 25 Hz)	Iap	max.	2	A
average (T _{av} = max. 15 s)	Ia	max.	0.5	A
Grid No.2 current, peak	$I_{g_{2p}}$	max.	0.25	A
average (T _{av} = max. 15 s)	I_{g_2}	max.	0.05	A
Grid No.1 current, peak	Ig _{1p}	max.	0.25	A
average (T _{av} = max. 15 s)	I_{g_1}	max.	0.05	A
Grid No.2 resistor	Rg2	max.	1	-
	- 07	min.	0.1	
Grid No.1 resistor	Rg1	max.	5 0.1	
Ambient temperature	tamb	max.		

Xenon-filled triode thyratron intended for use in motor control equipment and similar applications.

QUICK REFERENCE DA	TA			
Anode voltage, peak forward	Vap	max.	1500	V
peak inverse	Vinvp	max.	1500	V
Cathode current, average (Tav = max. 15 s)	Ik	max.	3.2	A
peak	Ikp	max.	40	A


HEATING: direct


Filament voltage	$V_{\mathbf{f}}$	2.5	$V \pm 5\%$
Filament current	If	12	A
Waiting time	$T_{\mathbf{W}}$	min. 60	s

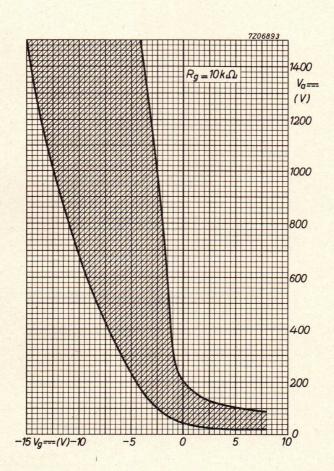
MECHANICAL DATA

Dimensions in mm

Base: Super Jumbo with bayonet

Mounting position: Arbitrary between horizontal and vertical with base down

Accessories


Socket 2422 511 01001

Cap connector 40619 Net weight 300 g

CAPACITANCES				
Anode to grid	C_{ag}	(0.8	pF
Grid to filament	$C_{\sf gf}$		45	pF
TYPICAL CHARACTERISTICS				
Arc voltage	Varc		12	V
Ionization time	T _{ion}		10	μs
Recovery time (Deionization time), $(V_g = -$	-250 V) T _{dion}		40	μs
$(V_g =$	-12 V) T _{dion}	4	100	μs
LIMITING VALUES (Absolute max. rating	system)			
Anode voltage, peak forward	Vap	max. 15	500	V
peak inverse	v_{inv_p}	max. 15	500	V
Grid voltage, before conduction	-Vg	max. 2	250	V
during conduction	-V _g	max.	10	V
Surge current (T = max. 0.1 s)	Isurge	max. 5	560	A
Grid current (Tav = max. 1 cycle)	$I_{\mathbf{g}}$	max.	0.2	A
Cathode current, peak	I_{k_p}	max.	40	A
average (Tav = max. 15	s) I _k	max. 3	3.2	A
Grid resistor	$R_{\mathbf{g}}$		000	$k\Omega$
recommended value	Rg		10	kΩ
Ambient temperature	tamb	max. min	70 -55	°C °C

PL5544

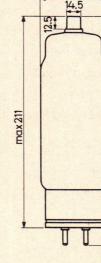
Xenon-filled triode thyratron intended for use in motor control equipment and similar applications.

QUICK REFERENCE DAT	A			
Anode voltage, peak forward	Vap	max.	1500	V
peak inverse	Vinvp	max.	1500	V
Cathode current, average (Tav = max. 15 s)	I _k	max.	6.4	A
peak	Ikp	max.	80	A

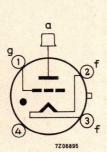
HEATING: direct

Filament voltage

Filament current


Waiting time

$V_{\mathbf{f}}$		2.5	V±	5%
I_f		21	A	
T.,,	min.	60	S	


Dimensions in mm

MECHANICAL DATA

Base: Super Jumbo with bayonet

max 67

Mounting position: Arbitrary between horizontal and vertical with base down

Accessories

Socket

2422 511 01001

Cap connector

40619

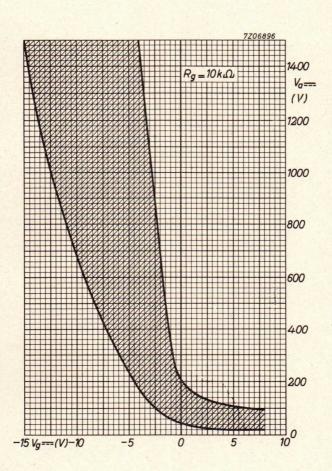
MECHANICAL	DATA	(continued)
------------	------	-------------

Net weight 340 g

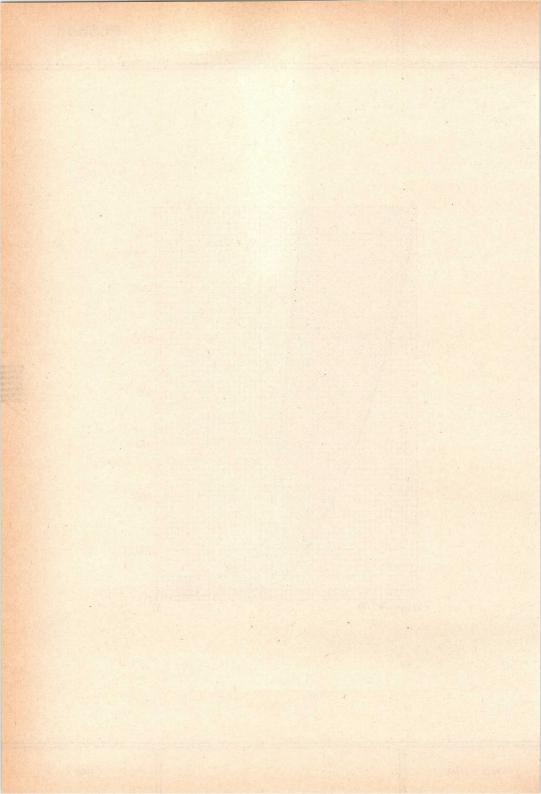
CAPACITANCES

Anode to grid	Cag	0.8 pF
Grid to filament	C_{gf}	45 pF

TYPICAL CHARACTERISTICS


Arc voltage	Varc	12	V
Ionization time	Tion	10 µ	us
Recovery time (Deionization time) $(V_g = -250 \text{ V})$	T _{dion}	50 µ	us
$(V_g = -12 V)$	Tdion	500 · µ	us

LIMITING VALUES (Absolute max. rating system)


Anode voltage, peak forward	Vap	max. 150	0 V
peak inverse	V _{inv_p}	max. 150	0 V
Grid voltage, before conduction	-V _g	max. 25	0 V
during conduction	-Vg	max. 1	0 V
Surge current (T = max. 0.1 s)	Isurge	max. 112	0 A
Grid current (Tav = max. 1 cycle)	Ig	max. 0.	2 A
Cathode current, peak	Ikp	max. 8	0 A
average (T _{av} = max. 15 s)	Ik	max. 6.	4 A

average (Tav = max. 15 s)	lk	max.	6.4	A	
Grid resistor	Rg	max. min.			
recommended value	Rg		10	kΩ	
Ambient temperature	tamb	max. min.	+70 -55	°C °C	

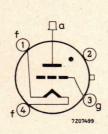
Thyratron, mercury-vapour triode, for relay service, alarm and protection installations, D.C. and A.C. motor control, circuits for obtaining a variable A.C. output current (inverse parallel circuit), rectifier in a half-wave or full-wave circuit (with or without grid control).

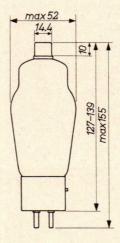
QUICK REFERENCE DATA			
Anode voltage, peak forward	Vap	max. 2500 V	
peak inverse	V _{a invp}	max. 5000 V	
Anode current, peak	I_{ap}	max. 2 A	
average	Ia	max. 0.5 A	

HEATING: direct

Filament volta	ige
Filament curr	ent
Waiting time,	
	minimum

$V_{\mathbf{f}}$	2.5	V
If	5.0	A
$T_{\mathbf{W}}$	10	s
$T_{\mathbf{W}}$	min. 5	s


Dimensions in mm

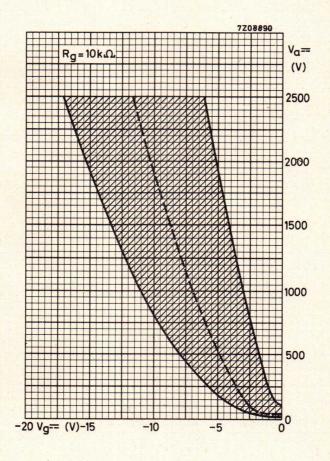

MECHANICAL DATA

Base: Medium 4p with bayonet

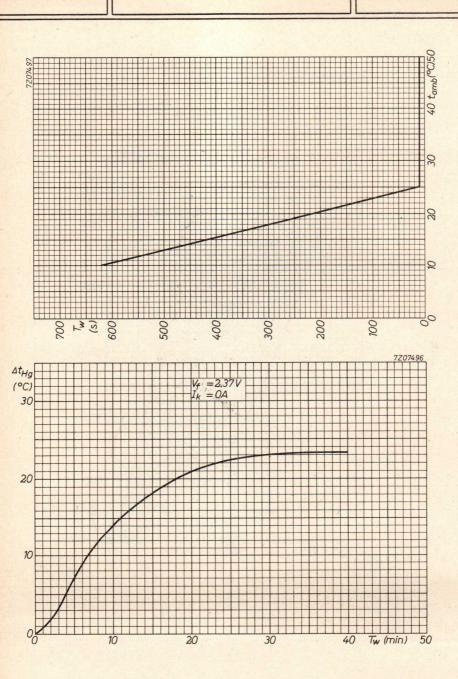
Net weight: 100 g

Mounting position: vertical, base down

보선 가는 모든 사람들이 모든 집에 가는 사람들이 되었다고 하는데 살아보는 것이 되었다. 나를 받는데 나를 받는데 되었다.			
CAPACITANCES			
Anode to grid	Cag	3.3	pF
Grid to filament	C_{gf}	5.0	pF
TYPICAL CHARACTERISTICS			
Arc voltage	Varc	12	V
Ionization time	Tion	10	μs
Deionization time	Tdion	1000	μs
Frequency	f	max. 150	Hz
LIMITING VALUES (Absolute max. rating system)			
Anode voltage, forward peak	Vap	max. 2500	V
inverse peak	Va invp	max. 5000	V
Grid voltage	-Vg	max. 500	V
tube conductive	-Vg	max. 10	V
Anode current, peak (f < 25 Hz)	I_{ap}	max. 1	A
$(f \ge 25 \text{ Hz})$	Iap	max. 2	A
average (T _{av} = max.15 s)	Ia	max. 0.5	A
Grid current, average (Tav = max. 15 s)	Ig	max. 0.05	A
Grid circuit resistance	Rg	max. 100	kΩ
recommended value	Rg	10	kΩ
Mercury temperature	tHg	35 to 80	°C
recommended value	t _{Hg}	50	°C



Surge current (T = max. 0.1 s)


max. 40 A

Isurge

PL5557

Thyratron, mercury-vapour triode, for relay service, motor control, variable and stabilised output rectifiers, automatically operated battery chargers. In anti-parallel circuits the tube can also be used for controlling and switching A.C. power and for firing ignitrons.

QUICK REFER	ENCE DATA
Anode voltage, peak forward	Vap max. 1000 V
peak inverse	Vainvp max. 1000 V
Cathode current, peak	I _{kp} max. 15 A
average	I _k max. 2.5 A

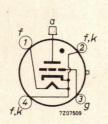
HEATING: indirect

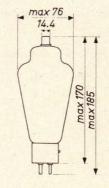
Heater voltage

Heater current

Waiting time

Dimensions in mm


MECHANICAL DATA

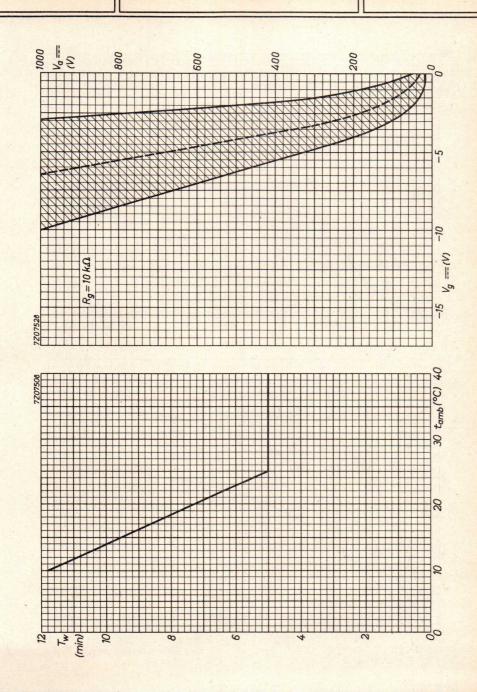

: Medium 4 p with bayonet

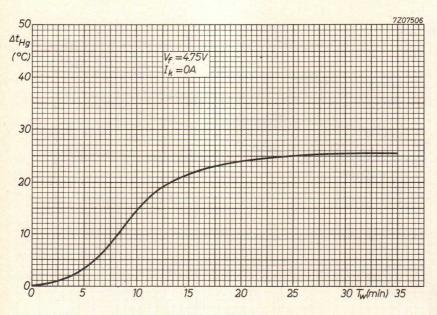
Net weight: 125 g

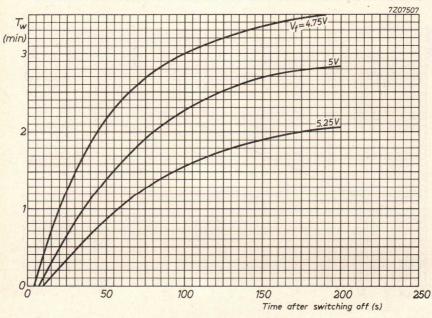
Base

Mounting position: Vertical, base down

CAPACITANCES			
Anode to grid	Cag	3.6	pF
Grid to cathode	C _{gk}	7.8	pF
Ora to canouc	℃gk	7.0	pr
TYPICAL CHARACTERISTICS			
Arc voltage	Varc	12	V
Ionisation time	Tion	10	μs
Deionisation time	T _{dion}	1000	μs
Frequency	f	max. 150	Hz
LIMITING VALUES (Absolute max. rating sys	stem)		
Anode voltage, forward peak	V_{ap}	max. 1000	V
inverse peak	Vainvp	max. 1000	V
Grid voltage,	-V _g	max. 500	V
tube conductive	-V _g	max. 10	V
Cathode current, peak (f < 25 Hz)	I _{kp}	max. 5	A
$(f \ge 25 \text{ Hz})$	I_{kp}	max. 15 max. 40	A A 1)
average (T _{av} = max. 15 s)	I _k	max. 2.5 max. 1	A A 1)
Grid current, average (Tav = max. 15 s)	I_g	max. 0.25	A
Grid circuit resistance	R_g	max. 100	kΩ
recommended value	Rg	10	kΩ
Mercury temperature	t _{Hg}	40 to 80	°C
recommended value	t _{Hg}	60	°C
	9		


Surge current (T = max. 0.1 s)


max. 200 A


Isurge

¹⁾ In firing circuits of ignitrons.

Thyratron, xenon-filled triode with negative control characteristic, for relay service, motor control, ignitor firing service.

QUICK REFERE	NCE DATA			
Anode voltage, peak forward	Vap	max.	1000	V
peak inverse	V _{a invp}	max.	1250	V
Cathode current, peak	I_{k_p}	max.	30	A
average	I_k	max.	2.5	A

HEATING: direct

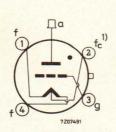
Filament voltage

Filament current

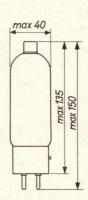
Waiting time, recommended

minimum

Dimensions in mm


MECHANICAL DATA

Base: Medium 4p with bayonet


Cap connector: 40619

Net weight: 95 g

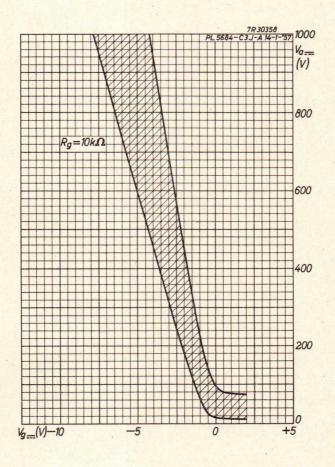
Mounting position: any

¹⁾ Load return

CAPACITANCE	CA	CANCE	S
-------------	----	-------	---

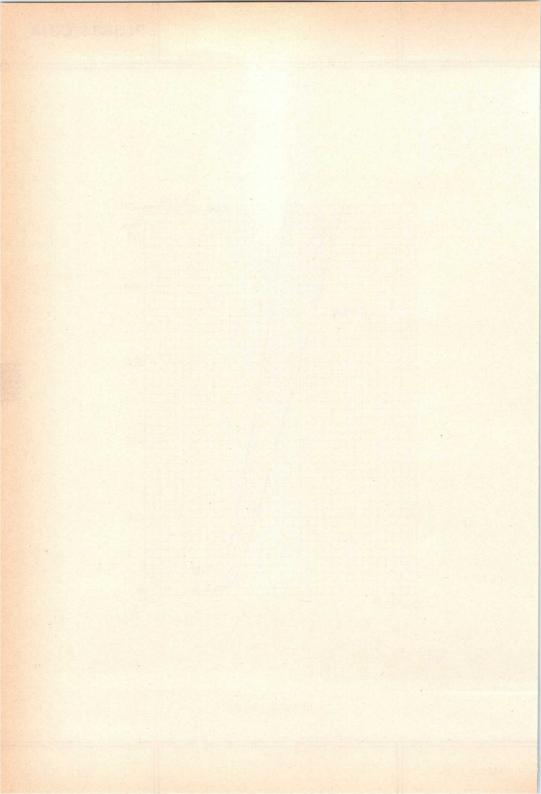
Anode to grid	Cag	3	pF
Grid to filament	C_{gf}	14	pF

TYPICAL CHARACTERISTICS


Arc voltage	Varc	10	V
Ionization time	Tion	10	μs
Deionization time	Tdion	1000	μs

LIMITING VALUES (Absolute max. rating system)

Anode voltage, forward peak	Vap	max. 1000	V
inverse peak	Vinvp	max. 1250	V
Grid voltage	-V _g	max. 300	V
up to V_a = 900 V and R_g = 50 to 100 k Ω	-Vg	max. 400	V
tube conductive	-V _g	max. 10	V
Cathode current, peak	I _{kp}	max. 30	A
average ($T_{av} = max. 5 s$)	Ik	max. 2.5	A
Grid current, peak	Igp	max. 0.5	A
average (Tav = 1 cycle)	Ig	max. 0.1	A
Grid circuit resistance	Rg	10 to 60	kΩ
recommended value	Rg	33	kΩ
Ambient temperature	tamb	-55 to +75	°C
Surge current (T = max. 0.1 s)	Isurge	max. 300	A 1)
Commutation factor		$0.7\frac{V}{\mu s}$	$x \frac{A}{\mu s}$



¹⁾ Fuse in anode circuit max. 10 A (recommended 6 A).

March 1969

Thyratron, inert gas-filled tetrode, for relay service, pulse modulator, grid-controlled rectifier service, servo control, ignitron ignition.

The PL5727 is a special quality type, is shock and vibration resistant and designed for use in mobile equipment.

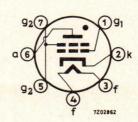
QUICK REFERENCE DATA				
Peak anode voltage	Vap	=	650	V
Cathode current, peak	I_{kp}	=	0.5	A
average	Ik	=	0.1	A

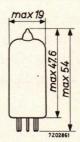
HEATING

Indirect by A.C. or D.C.

Heater voltage	${ m v_f}$	=	6.3	V
Heater current	${ m I_f}$	=	600	mA
Waiting time	$T_{ m w}$	=	20	s 1)

CAPACITANCES


Grid No.1 to all	C_{g_1}	=	2.4	pF
Anode to all	Ca	=	1.6	pF
Anode to grid No.1	Cag ₁	=	26	mpF


MECHANICAL DATA

Dimensions in mm

Base : 7 pin miniature

Net weight: 10 g

Mounting position: any

¹⁾ If urgently wanted Tw may be decreased to min. 10 s.

TYPICAL CHARACTERISTICS

Ionization time at $V_a = 100 \text{ V}$, grid No.1 overvoltage = 50 V (substantial square pulse) Anode peak current during conduction

$$= 0.5 A$$

Deionization time

at
$$V_a = 125 \text{ V}$$
, $V_{g_1} = -100 \text{ V}$, $R_{g_1} = 1000 \Omega$, $I_a = 0.1 \text{ A}$

Deionization time

at
$$V_a = 125 \text{ V}$$
, $V_{g_1} = -10 \text{ V}$, $R_{g_1} = 1000 \Omega$, $I_a = 0.1 \text{ A}$

Critical grid No.1 current

at
$$V_a \sim = 125 \text{ V}_{RMS}$$
, $I_a = 0.1 \text{ A}$

Control ratio grid No.1 at striking point
$$R_{g_1} = 0 \Omega$$
, $V_{g_2} = 0 V$

$$\frac{V_a}{V_{g_1}}$$
 =

Control ratio grid No.2 at striking point
$$V_{g_1} = 0 \text{ V}, R_{g_1} = 0 \Omega, R_{g_2} = 0 \Omega$$

$$\frac{V_a}{V_{g_2}} =$$

OPERATING CONDITIONS for relay service

Anode voltage
Grid No.2 voltage
Grid No.1 (bias) voltage
Grid No.1 (bias) voltage
Grid No.1 peak (signal) voltage
Anode circuit resistance
Grid No.1 circuit resistance

$$V_{a}$$
 = 117 400 V_{RMS}
 V_{g_2} = 0 0 V

$$V_{g_1} = 5 - V_{RMS}^{1}$$

$$V_{g_1} = - -6 V$$

$$V_{g_{1p}} = 5 6 V$$

 $R_a = 1.2 2.0 k\Omega$

$$R_{g_1} = 1.0 \quad 1.0 \quad M\Omega$$

¹⁾ Phase difference between V_a and V_{g_1} approx. 180°.

LIMITING VALUES for relay- and grid controlled service (Absolute max. rating system)

Anode voltage,

forward peak $V_{ap} = max. 650 V$ inverse peak $V_{a invp} = max. 1300 V$

Grid No.2 voltage,

peak before conduction $-V_{g_{2p}} = max. 100 \text{ V}$ average during conduction

 $T_{av} = max. 30 s$ Grid No.1 voltage,

peak before conduction $-V_{g_{1p}} = \max_{l} 100 \text{ V}$

average during conduction

Tay = max. 30 s

 $T_{av} = max. 30 s$ $-V_{g_1} = max. 10 V$

-Vg2

max.

10

Cathode current,

peak $I_{kp} = max. 0.5 A$ average, $T_{av} = max. 30 s$ $I_{k} = max. 0.1 A$ surge, T = max. 0.1 s $I_{surge} = max. 10 A$

Grid No.2 current,

Grid No.1 current,

average, T_{av} = max. 30 s I_{g_1} = max. 10 mA

Cathode to heater voltage,

k pos., peak $V_{+kf-p} = max. 100 \text{ V}$ k neg., peak $V_{-kf+p} = max. 25 \text{ V}$

Heater voltage V_f = max. 6.9 V

Ambient temperature $v_1 = min. 5.7 \text{ V}$ $t_{amb} = min. -75 \text{ °C}$

Ambient temperature $t_{amb} = min. -75$ °C Bulb temperature $t_{bulb} = max. 150$ °C

CIRCUIT DESIGN VALUES

¹⁾ In order not to exceed this maximum value it is recommended to insert a resistor of 1000Ω in the grid No.2 lead.

LIMITING VALUES for pulse modulator service (Absolute max. rating system)

Anode voltage,

forward peak
$$V_{ap} = max. 500 V^{-1}$$
) inverse peak $V_{a \, inv_D} = max. 100 V$

Grid No.2 voltage,

peak before conduction
$$-V_{g_{2p}} = max. \quad 50 \quad V$$
 average during conduction
$$-V_{g_2} = max. \quad 10 \quad V$$

Grid No.1 voltage,

peak before conduction
$$-V_{g_{1p}} = max. 100 \text{ V}$$

average during conduction $-V_{g_1} = max. 10 \text{ V}$

Cathode current.

peak	I_{k_p}	=	max.	10	Α
average	I_k	=	max.	10	mA
rate of change	dI _k /dT	=	max.	100	A/μs
Grid No.2 current, peak	Ig _{2n}	=	max.	20	mA

20 Grid No.1 current, peak max. mA Iglp Impulse duration Timp max. 5 μS

Impulse repetition frequency f max. 500 pps

Duty factor δ max. 0.001 Cathode to heater voltage, peak Vkfp max. 0

V 6.0 max. Heater voltage V_{f} min. 6.9 V

Ambient temperature -75OC min. tamb

OC Bulb temperature max. 150 thulb

CIRCUIT DESIGN VALUES

kΩ min. 2 Grid No.2 circuit resistance Rg2 25 kΩ max. Grid No.1 circuit resistance Rg₁ 500 kΩ max.

¹⁾ After completion of an impulse, a 20 μs delay is required before a positive voltage of more than 10 V is applied to the tube.

LIMITING VALUES for use in capacitor discharge circuit for ignitron ignition (Absolute max. rating system)

See also data sheet ignitron ZX1000 under the heading "Life expectancy"

Anodo	voltage
Alloue	voltage,

	forward peak	Vap	=	max.	650	V	
3	inverse peak	Vainvp	=	max.	100	V	

Grid No.2 voltage,

peak before conduction	$-v_{g_{2p}}$	=	max.	50	V
average during conduction	$-v_{g_2}$	=	max.	10	V

Grid No.1 voltage,

peak	before conduction	-Vg _{lp}	=	max.	100	V	
aver	age during conduction	$-v_{g_1}$	=	max.	10	V	

Cathode current,

	peak	Ikp	=	max.	10	A
	average	I _k	=	max.	5	mA
T.	rate of change	dI _k /dT	=	max.	6	A/µ

rate of change
$$dI_k/dT = max$$
. 6 A/ μ s

Grid No.2 current, peak $I_{g_{2p}} = max$. 20 mA

Grid No.1 current, peak	Ig _{1p}	=	max.	20	mA
Impulse duration (half sine wave)	Timp	=	max.	15	μs

Impulse repetition frequency f = max. 60 pps Cathode to heater voltage, peak
$$V_{kf_{\mbox{\scriptsize p}}}$$
 = max. 3 V

Heater voltage
$$V_f = min. 5.7 V$$

= max. 6.9 V

Ambient temperature
$$t_{amb} = min. -75$$
 °C

Bulb temperature
$$t_{\text{bulb}} = \text{max. } 150 \text{ }^{\circ}\text{C}$$

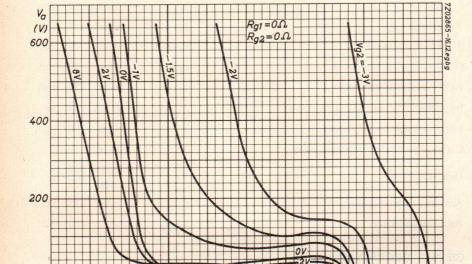
CIRCUIT DESIGN VALUES

Grid No.2 circuit resistance
$$R_{g_2} = \begin{array}{ccc} & = & \min & 1 & k\Omega \\ = & \max & 25 & k\Omega \end{array}$$
 Grid No.1 circuit resistance
$$R_{g_1} = \max & 100 & k\Omega$$

SHOCK AND VIBRATION RESISTANCE

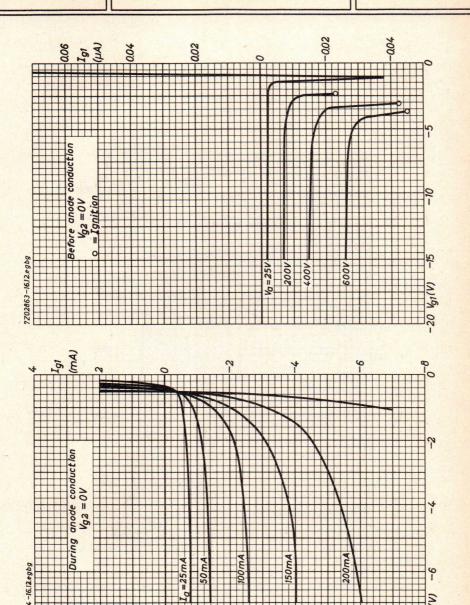
These conditions are used solely to assess the mechanical quality of the tube. The tube should not be continuously operated under these conditions.

Shock resistance:


750 g

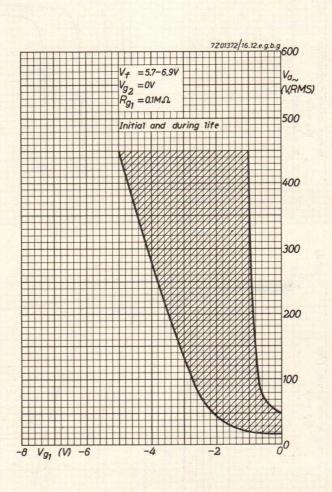
Forces as applied by the NRL impact machine for electronic devices caused by 5 blows of the hammer lifted over an angle of 48° in each of 4 different positions of the tube.

Vibration resistance:


2.5 g

Vibrational forces for a period of 32 hours at a frequency of 50 Hz in each of 3 directions of the tube.

15 Va1 (V)



I_q=25mA

50mA

March 1969

-8 Vg1 (V)

Thyratron, inert gas filled tetrode, with negative control characteristic.

QUICK REFERENCE DA	TA			
Anode voltage, peak forward	Vap	max.	650	V
Cathode current, peak	I_{kp}	max.	2	A
average	Ik	max.	300	mA

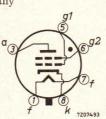
HEATING: direct

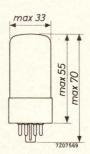
Heater voltage

Heater current

Waiting time

6.3 V 950 mA


Tw min. 15 s


Dimensions in mm

MECHANICAL DATA

Base: octal

Mounting position: any

TYPICAL CHARACTERISTICS

Arc voltage

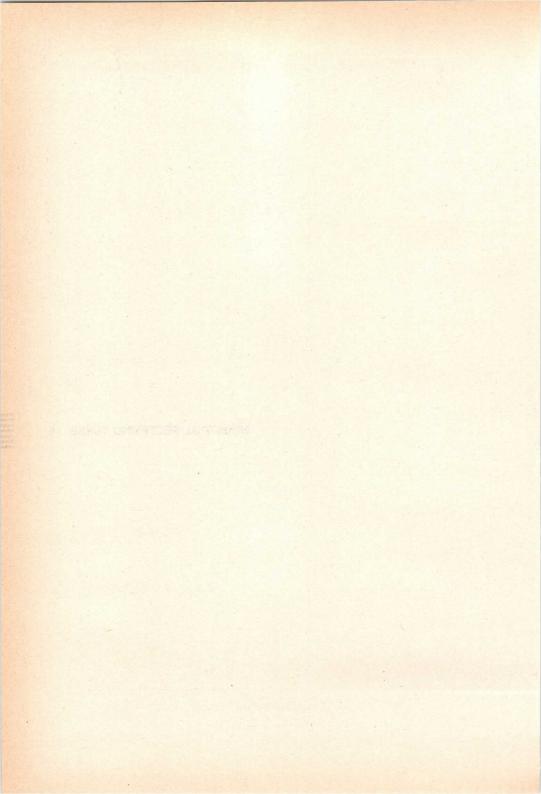
Ratio V_a/V_{g_1} , at striking point $(V_{g_2} = 0 \text{ V}, R_{g_1} = 0 \Omega)$

Ratio V_a/V_{g_2} , at striking point $(V_{g_1} = 0 \text{ V}, R_{g_2} = 0 \Omega)$

Varc 10 V

 $V_{a}/V_{g_{1}}$ 275 -

Va/Vg2 370


LIMITING	VALUES	(Absolute	max.	rating	system)
----------	--------	-----------	------	--------	---------

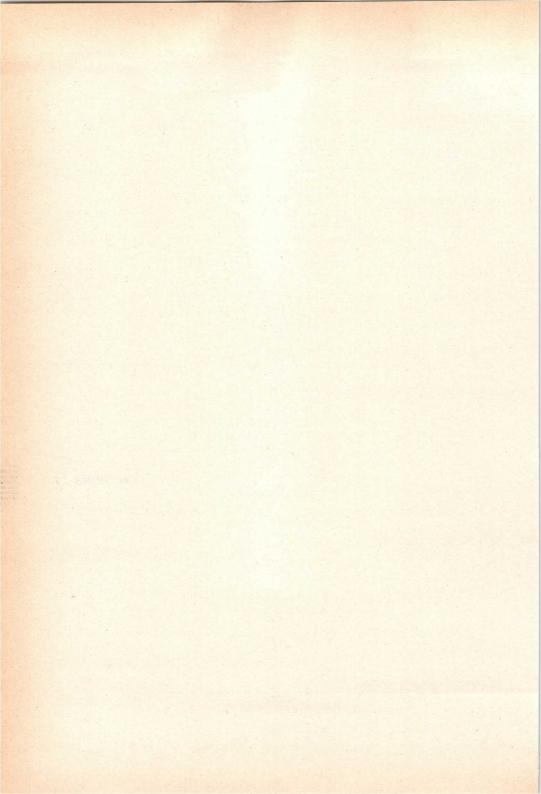
Limitate values (absolute max. lating system)			
Anode voltage, peak forward	Vap	max.650	V
peak inverse	Va invp	max.1.3	kV
Grid No.2 voltage	V_{g_2}	max.100	V
tube conductive	V_{g_2}	max. 10	V
Grid No.1 voltage	-Vg ₁	max.250	V
tube conductive	-Vg ₁	max. 10	V
Cathode current, peak	I_{k_p}	max. 2	A
average (T _{av} = max. 15 s)	Ik	max.300	mA
Grid No.1 current, peak	Ig _{1p}	max. 1	mA 1)
average $(V_a > -10 \text{ V})(T_{av} = 1 \text{ cycle})$)Ig ₁	max. 20	mA
Grid No.2 current $(V_a > -10 \text{ V})(T_{av} = 1 \text{ cycle})$	I_{g_2}	max. 20	mA
Grid No.1 circuit resistance (I _k = 200 mA)	Rg ₁	max. 10	МΩ
Ambient temperature	tamb	-75 to +90	°C
Surge current (T = max. 0.1 s)	Isurge	max. 10	A
Cathode to heater voltage, k pos.	Vkf	max.100	V
k neg.	Vkf	max. 25	V

 $^{^{\}rm l}$) During the period that ${\rm V_a}$ is more negative than -10 V.

INDUSTRIAL RECTIFYING TUBES E

INDUSTRIAL RECTIFYING TUBES

Туре	V _f (V) I _f (A)	Typical characteristics	Limiting values		Base
367 Double anode rectifier	1,9 8,0	V _{arc} = 9 V V _{ign} = 16 V	$V_{ainvp} = 140 \text{ V}$ $I_a = 3 \text{ A}$ $I_{ap} = 18 \text{ A}$	$R_t = \min. 1 \Omega$ -55 °C $T_{amb} + 75 \text{ °C}$	367 W
1010 Double anode rectifier	1,9 3,5	V _{arc} = 9 V V _{ign} = 16 V	$V_{ainvp} = 185 V$ $I_{a} = 0,65 A$ $I_{ap} = 4,0 A$	$R_t = min. 10 \Omega$ $-55 {}^{\circ}\text{C}$ $T_{amb} + 75 {}^{\circ}\text{C}$	2 451 1010 2 A 3 f
1037 Double anode rectifier	1,9 11	V _{arc} = 9 V V _{ign} = 16 V	$V_{ainvp} = 185 V$ $I_{a} = 3.0 A$ $I_{ap} = 18 A$	$R_t = min. 1,75 \Omega$ $T_{Hg} = 30-80 {}^{\circ}C$	Goliath
1119 Double anode rectifier	1,9 5,8	V _{arc} = 9 V V _{ign} = 16 V	$V_{ainvp} = 140 V$ $I_a = 1,5 A$ $I_{ap} = 9,0 A$	$R_t = min. 1,8 \Omega$ $-55 {}^{\circ}\text{C}$ $T_{amb} + 75 {}^{\circ}\text{C}$	1110 1119 A 0 f
1138 Single anode rectifier	2,5 27	V _{arc} = 10 V V _{ign} = 16 V	$V_{ainvp} = 275 V$ $I_a = 15 A$ $I_{ap} = 85 A$	$R_t = min. 0,3 \Omega$ $T_{Hg} = 30-80 {}^{\circ}C$	Goliath
1163 Single anode rectifier	2,25 17	V _{arc} = 9 V V _{ign} = 16 V	$V_{ainvp} = 375 V$ $I_a = 6 A$ $I_{ap} = 36 A$	$R_t = min. 0,5 \Omega$ $-55 {}^{\circ}C$ $T_{amb} + 75 {}^{\circ}C$	Goliath
1164 Single anode rectifier	2,5 25	V _{arc} = 9 V V _{ign} = 16 V	$V_{ainvp} = 225 V$ $I_a = 15 A$ $I_{ap} = 90 A$	$R_t = min. 0,3 \Omega$ 55 °C $T_{amb} + 75 °C$	Goliath
1177 Single anode rectifier	1,9 60	V _{arc} = 12 V V _{ign} = 28 V	$V_{ainvp} = 850 V$ $I_{a} = 25 A$ $I_{ap} = 135 A$	$R_t = min. 0,1 \Omega$ $T_{Hg} = 30-75 {}^{\circ}C$	Straps
1738 Double anode rectifier	1,9 18	V _{arc} = 9 V V _{ign} = 20 V	$V_{ainvp} = 300 \text{ V}$ $I_a = 7,5 \text{ A}$ $I_{ap} = 45 \text{ A}$	R _t = min. 0,2 Ω T _{Hg} = 30-80 °C	Goliath
1749A Double anode rectifier	1,9 25	V _{arc} = 10 V V _{ign} = 22 V	$V_{ainvp} = 300 \text{ V}$ $I_{a} = 12,5 \text{ A}$ $I_{ap} = 75 \text{ A}$	$R_t = min. 0.1 \Omega$ $T_{Hg} = 30-80 {}^{\circ}C$	Straps



NDUSTRIAL RECTIFYING TUBES

1			
			1921 (12.35)
			- rate as
	to the same of the		
	50 pt 2 5 5 1 1 1		

IGNITRONS F

GENERAL OPERATIONAL RECOMMENDATIONS IGNITRONS

The following instructions and recommendations are generally applicable to all ignitron types. When there are variations for a particular type of tube, specific recommendations are given on the appropriate data sheets.

The absolute maximum rating system is used for ignitrons.

MOUNTING

Ignitrons must be mounted vertically the cathode terminal facing downwards. The tubes should be mounted so that the leads and supporting members do not impose stresses on the metal-to-glass seals.

The cross-section of the tube supports should be sufficient to bear the weight of the tube and to carry the required current.

The tube cathode connection must be fixed to its support by means of steel bolts, which should be well tightened.

The anode cable must be fixed to the corresponding terminal on the apparatus using a steel bolt.

Where applicable the anode cable must also be connected to the tube lead-in with a steel bolt using two wrenches.

A check should be made periodically to ensure that the bolts are securely fixed and the contact surfaces still clean. This must be done in any case after the first few hours of operation following the installation of a new tube. Discolouration of the contact area is indicative of a poor contact.

In making the cathode and ignitor connections, care should be taken not to damage the ignitor lead-in. It is recommended to use the ignitor cable supplied by the manufacturer.

Ignitrons are mechanically strong and will withstand moderate shocks. Operation will be most stable however, if they are protected against shock and vibration which would disturb the surface of the mercury pool and tend to change the tube operating characteristics.

Ignitrons must be shielded against strong R.F. and magnetic fields.

WATER COOLING

The cooling water must satisfy the following requirements as regards the content of solids and soluble chemicals:

- 1. pH 7 to 9
- 2. Max. weight of chlorides per litre 15 mg.
 - Max. weight of nitrates per litre 25 mg.
 - Max. weight of sulphates per litre 25 mg.
- 3. Max. weight of insoluble solids per litre 25 mg.
- Total hardness max. 10 German degrees/18 French degrees/12.5 English degrees/10.5 US degrees.
- 5. Specific resistance min. 2000 Ωcm.

In most cases tap-water will satisfy these requirements. If the water locally available is unsuitable a system of cooling employing a heat exchanger with sufficient suitable water in circulation can alternatively be used.

The temperature of the cooling water should be at least 10 °C.

The water-hoses must be of electrically insulating material and should be connected to the ignitrons so that the water enters the water jacket at the bottom and leaves it at the top. Up to 3 tubes may be cooled in series. The hoses should have a length of at least 50 cm in order to ensure that the electrical resistance of the internal water column is sufficiently high. They should be fixed by means of clamps to the hose nipples, care being taken that no leakage can occur. The water must be allowed to flow freely from the last tube into a funnel, which enables the water flow to be easily checked and prevents the water pressure in the jackets from becoming excessive. The water pressure in the tube jackets should never exceed 3.5 atm (50 pounds/square inch).

The water jackets of ignitrons are normally connected to the mains and thus have mains potential to earth. When thermostatic switches are used they must therefore be capable of withstanding this operating voltage. Should the thermostat not be rated for mains voltages an isolating step-down transformer can be used to protect it from damage.

The tubes should not be put into operation until all air is removed from the cooling system and filling completed. This is indicated by water flowing from the outlet pipe on the last tube.

The cooling system should be installed so that the water jackets are not emptied by the water flowing or syphoning away. As an aid to ensuring that the tubes have been correctly installed a useful test is to momentary close the stop valve after filling and check that after a brief interval the outflow of water ceases. A continuous flow of water when the stop valve is closed is evidence of faulty installation and may result in the tubes being completely drained when the equipment is finally shut down. When recommencing operations unless an interval is allowed for refilling this may endanger the tubes.

Important note

In the tube data, ratings are given for the required waterflow as a function of the average tube current and water inlet temperature. It is often more economical to use continuous water cooling according to the reduced cooling ratings rather than a water saving thermostat and solenoid valve. This enables a more constant tube temperature to be obtained which, moreover improves the life expectancy of the tube.

TUBE PROTECTION

Care must be taken to ensure that the prescribed temperature limits of ignitrons are never exceeded. When the tubes are cooled with tapwater the temperature of which remains within the rated limits, it is generally sufficient to ensure that an adequate quantity of water flows through the jacket. To prevent the temperature of the tubes becoming excessive in the event of a failure of the water supply, e.g.: stopped-up or defective hoses, insufficient pressure of the water mains, accidentally closed main cock etc. a protecting thermostat should be used. If the temperature limit set by the protecting thermostat is exceeded either the ignition circuits of the ignitrons are interrupted or the main circuit breaker is tripped by means of a relay. The protecting thermostat, which should be mounted on the last tube of a series, should not actuate its relay under normal operating conditions.

In a three phase welding service using 6 tubes it is recommended that not more than 3 tubes are connected hydraulically in series for cooling purposes. When ignitrons are used for heavy power switching at a high duty factor the internal tube temperature rises very rapidly. Under such conditions it is advisable for the cooling water to circulate through the jackets as soon as the master switch is closed.

Note

When ignitrons are used as rectifiers with the cathode not at earth potential, an electrolytic erosion target connected to the metal envelope may be used to avoid corrosion of tube parts.

SWITCHING

Before firing and during operation the anode and lead-in insulator should always be at a higher temperature than the cooling water. If necessary, a suitable heating device can be used to maintain the required temperature difference.

Care must be taken not to touch live parts, such as the water jackets which are at full line voltage. Some tube types have a plastic-coated water jacket which can withstand voltages up to 3 kV. With this type water condensation on the jacket is kept to a minimum under conditions of high humidity and low cooling water temperature. The uncoated tube parts are at full line voltage.

To prevent mercury from re-condensing on the anode and the anode insulator when the installation is switched off, the cooling water should be allowed to flow through the tubes so that all internal parts are evenly cooled down; this normally takes from 15 to 30 minutes.

Incompletely cooled tubes must always be kept with the anode connection uppermost.

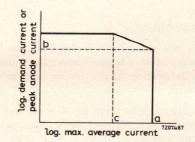
Mercury may also condense on the anode insulator as a result of cold air draught in the vicinity of the tube. It is then necessary either to prevent the occurence of the air flow or to ensure that the anode and anode insulator are not cooled down to a temperature below that of the cooling water.

SPARE TUBES

In order to have some tubes available in a ready-for-use condition it is advisable to place an adequate number of tubes with the anodes uppermost under a lighted incandescent lamp. The heat produced by the lamp is sufficient to remove any mercury deposits on the anode insulator.

TUBE RATINGS

Parameters of the particular ignitron type are the $\underline{\text{demand}}$ and $\underline{\text{max. average}}$ currents.


The demand is the total permissible power which an ignitron contactor can handle in a single-phase control system (acting as a power switch). It is equal to the product of the R.M.S. values of line voltage and contactor current.

The max. average current is valid for a limited demand (or peak current) only. For higher demands or higher peak currents the permissible average current must be reduced as indicated on the particular derating curve.

The longest time over which the max, average current may be calculated is the $\underline{\text{max}}$, averaging time.

Diagram showing the relationship between max. average anode current and demand or peak anode current respectively:

- a) Max. average anode current for lower demand or peak currents.
- b) Demand (peak current) up to which this value applies.
- c) Max. average current at max. demand or peak current.

All data assumes full cycle conduction with an equally distributed load on all ignitrons, regardless of whether phase control is used.

The load must be limited so that at zero phase delay no overload will result. The parameters of a particular ignitron give the derived values, depending on line voltage. The parameters may be calculated as follows:

- 1) Demand current: $I_{RMS} = \frac{P (kVA)}{V (V_{RMS})}$. 1000 (A_{RMS}) P = demand V = line voltage
- 2) Max. duty factor: $\delta = 2.22 \frac{I_{AV}}{I_{RMS}}$. 100 (%) $I_{AV} = max.$ av. current
- 3) Max. number of cycles within max. averaging time:

$$n = f \cdot \frac{\delta}{100} \cdot T_{AVmax}$$
 f = mains frequency

4) Integrated R.M.S. load current:

$$I_{\rm F} = I_{\rm RMS} \cdot \sqrt{\frac{\delta}{100} \, (A_{\rm RMS})}$$

The tube parameters are tabulated for every ignitron type at several values of mains voltage.

IGNITOR RATINGS

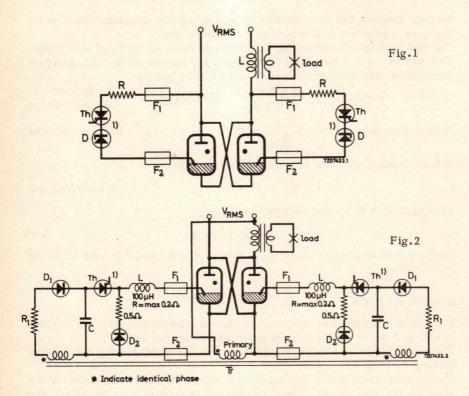
The ignitor of an ignitron should never carry a negative current, i.e. current resulting from the ignitor being negative with respect to cathode.

The possibility of this occuring can be avoided by incorporating a rectifying element in the ignitor circuit.

The ignitor current and voltage required to ensure reliable firing of the tube is given on the ignitron data sheet. In addition, maximum limiting values are quoted which must not be exceeded.

IGNITION CIRCUITS

Two types of excitation are in common use:


- A. Self (anode) excitation used in single phase resistance welding and similar applications.
- B. Separate excitation used in all other applications.

Typical examples are given in fig.1 (self excitation) and fig.2 (separate excitation).

For both circuits two fuses, F_1 and F_2 are recommended.

 F_1 safeguards the ignition circuit; F_2 is connected directly in series with the ignitor, protecting it against shorting between the main anode and ignition circuits.

The ignitor must be connected to its control circuit by a screened lead which affords protection against R.F. fields. It is inadvisable to operate separate excitation in the absence of anode mains voltage.

A. Anode excitation (fig. 1)

The "Ignitor voltage required to fire", must not be interpreted as the instantaneous value of mains voltage at the instant of ignition, but as the voltage measured between the ignitor lead-in and cathode. The values of the resistors in the ignition circuit and the level of supply voltage should be chosen so that the prescribed value of voltage is applied to the ignitor.

Recommended values of R are given in the data sheets. Deviations from these recommended values may impair the performance of the tube.

To ensure a short and reproducible delay between the firing of the ignitor and anode take-over, the rate of rise of ignition current must be sufficiently high. The current rise time is mainly determined by the reactance of the load and at high load reactances it may be too small for proper ignition. In such circumstances separate excitation can be successfully used.

B. Separate excitation (fig. 2)

With separate excitation ignition of the ignitron is independent of the anode circuit parameters. This method is therefore suitable for rectifiers and for A.C. control circuits where the available voltage at the desired ignition angle is, or is very nearly, below the required minimum value for reliable firing.

AUXILIARY ANODE CIRCUIT

When a rectifier feeds a load which generates a back e.m.f., the available voltage between the main anode and cathode will often be insufficient to ensure takeover of the arc discharge when the tube is fired. Moreover, if the ignition current is too small, the main discharge may cease prematurely.

For this reasonignitrons designed for use in rectifying equipment are provided with an auxiliary anode which maintains the arc discharge during the period when the main anode voltage falls below the minimum value necessary for continued conduction of the tube. The auxiliary anode should be connected to a low voltage A.C. source so that auxiliary anode current flows throughout tube conduction.

MAIN CIRCUIT

When the main discharge of an ignitron is interrupted voltage transients are produced in the transformer primary due to its self-inductance, which may puncture the insulation of the transformer.

In resistance welding circuits the transients may be reduced by a damping resistor mounted across the transformer primary terminals. The values of the current drawn by this resistor are determined by the duty factor of the machine.

In rectifier circuits damping is obtained by a series R.C. circuit shunted across the transformer primary.

Cathode and/or anode breakers are usually required in addition to the supply switches, particularly when back e.m.f.'s are present.

IGNITRONS

PL5551A

Replaced by ZX1051

IGNITRON

B-size ignitron intended for use in single-phase and three-phase resistance welding control and similar a.c. control applications.

The tube has a plastic coated stainless steel watercooling jacket, quick change water connections and a temperature sensing pad for mounting of a thermostat.

QUICK REFERENCE DATA					
Maximum demand power (two tubes in inverse parallel)	600	kVA			
Maximum average current	. 56	A			
Ignitor voltage	150	V			
Ignitor current max.	12	A			

MECHANICAL DATA

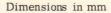
Dimensions and connections see page 2 Net mass $1420 \ g$ Shipping mass $2040 \ g$

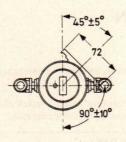
Mounting position vertical, anode connection up

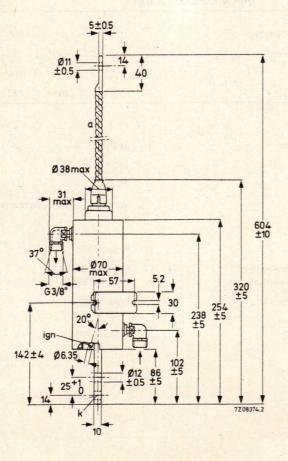
Accessories

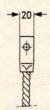
Ignitor cable type 55351

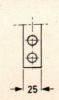
Water hose connections: hose nipple coupling nut type TE1051c type TE1051b


Overload protection thermostat type 55306 or 55318


Water economy thermostat type 55305


or 55317




DIMENSIONS AND CONNECTIONS

TEMPERATURE LIMITS AND COOLING

TYPICAL CHARACTERISTICS

Pressure drop of cooling water (q = 2 1/min)	pi	max.0.08	kg/cm ²
Temperature rise at max. average current (q = 2 1/min)	t _o -t _i	max. 6	°C

LIMITING VALUES (Absolute max. rating system)

A.C. control service

Required water flow at max. average current (See also page 9)	q	min.	2	1/min
Inlet temperature ¹)	t _i	min. max.	10 40	°C °C
Temperature of thermostat mount ²)	tm	max.	50	°C

Intermittent rectifier service or three-phase welding service

Required continuous water flow at max. average				
current	q	min.	2	1/min
Inlet temperature 1)	t _i	min. max.	10 35	°C °C
Temperature of thermostat mount ²)	tm	max.	45	°C

Pulse service

Under conditions of pulse service with low average load (less than 1 A) continuous cooling is normally not required. The cooling jacket can e.g. be permanently filled with oil.

Care should be taken to prevent condensation of mercury at the anode or glass seal. See also "Application directions ignitrons".

Recommended condensed mercury temperature $t_{\mbox{Hg}}$ 25 to 30 $^{
m o}{
m C}$

 $^{^{1}}$) When a number of tubes is cooled in series, $t_{i\ min}$ refers to the coldest tube and $t_{i\ max}$, to the hottest tube.

²⁾ WARNING. The thermostat mount is at full line voltage. When the cooling systems of a number of tubes are connected in series the overload protecting thermostat should be mounted on the last and the water economy thermostat on the last but one tube.

ELECTRICAL DATA

LIMITING VALUES (Absolute max. rating system)

The limiting values are based on full cycle conduction duty, with equally distributed load on all ignitrons, regardless of whether phase control is used or not.

The load must be limited so that at zero phase delay no overload will result.

Single phase A.C. control, two tubes in inverse parallel connection.

Table I. See also pages 10, 11 and 12.

						1	
Mains frequency range	f		2	5 to 6	0		Hz
Mains voltage	VRMS	220 ¹)	250	380	500	600	V
Max. averaging time	Tav max	18	18	11.8	9	7.5	S
A. Max. demand power Max. demand power Corresponding	P max	530	600	600	600	600	kVA
max. average current	Iav	30.2	30.2	30.2	30.2	30.2	A
Demand current	IRMS	2400	2400	1600	1200	1000	A
Duty factor	δ	2.8	2.8	4.2	5.6	6.7	%
Number of cycles within T _{av} max. ²) Integrated RMS load	n (50 Hz)	25	25	25	25	25	c/T _{av} max
current	IF RMS	400	400	320	280	260	A
B. Max. average current Max. average current Corresponding	I _{av} max	56	56	56	56	56	A
max. demand power	P	180	200	200	200	200	kVA
Demand current	I _{RMS}	800	800	530	400	330	A
Duty factor	δ	15.6			31.1	37.7	%
Number of cycles within T _{av} max. ²) Integrated RMS load	n (50 Hz)	140	140	140	140		c/T _{av} max
current	I _F RMS	320	320	260	220	200	A
Max. surge current RMS (T _{max} = 0.15 s)	I _{surge}	6700	6700	4500	3400	2800	A

¹⁾ For mains voltages below 250 V(RMS) the max. demand current and max. averaging time valid at 250 V shall not be exceeded.

²⁾ This is the maximum integrated number of cycles a pair of tubes may conduct with or without interruption during the maximum averaging time: n_{max} = duty factor x T_{av} max x mains frequency.

LIMITING VALUES (Absolute max. rating system; continued)

Intermittent rectifier service or frequency changer resistance welding service

Mains frequency range	f	50 t	Hz	
Anode voltage, forward peak	Va fwdp max	1200	1500	V
inverse peak	Va inv _p max	1200	1500	V
A. Max. peak current				
Anode current, peak	I _{ap} max	600	480	A
Corresponding average current	Iav	5	4	A
B. Max. average current				
Anode current, average	I _{av} max	22.5	18	A
Corresponding peak current	Iap	135	108	A
Averaging time	T _{av} max	10	10	s
Ratio I_a/I_{ap} ($T_{av} = max. 0.5 s$)	I _a /I _{ap} max	1/6	1/6	
Ratio $I_{\text{surge}}/I_{\text{ap}}$ ($T_{\text{max}} = 0.15 \text{ s}$)	Isurge/Iap max	12.5	12.5	

Pulse service

Under certain conditions this ignitron may be used to switch aperiodic current pulses to a very high value (up to 50~kA) and voltages up to 10~kV. The performance depends on the circuit in which the tube is used. The manufacturer should be consulted.

March 1969

IGNITOR CHARACTERISTICS AND IGNITION CIRCUIT REQUIREMENTS

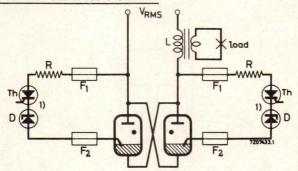
LIMITING VALUES (Absolute max. rating system)

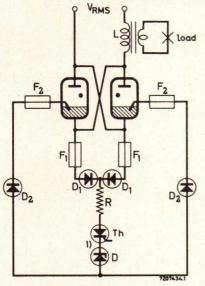
Ignitor voltage,	forward peak	Vigp	max.	2000	V
	inverse peak (including any				
	transients)	-V _{igp}	max.	5	V
Ignitor current,	forward peak	Iigp	max.	100	A
	inverse peak	-I _{igp}	max.	0	A
	forward RMS	IigRMS	max.	10	A
	forward average (Tav = max.5 s)	I _{ig}	max.	1	A

A. Anode excitation

Ignitor characteristics

Firing voltage	Vig	150	V
Firing current	Iig	6 to 8	A
		max. 12	A
Ignition time at the above voltage or current	T _{ig}	max. 50	μs ¹)


Ignition circuit requirements					
Peak voltage required to fire	Vp	min.	200	V	
Peak current required to fire	Ip	min.	12	A	
Rate of rise of ignitor current	di/dT	min.	0.1	A/µs	


¹⁾ Ignition time is taken from the instant that the stated voltage and current are reached.

(continued)

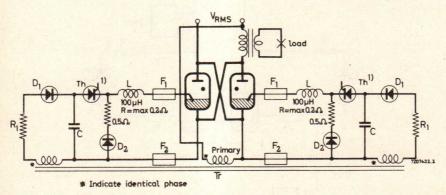
Recommended circuits for anode excitation

Anode excitation with individual thyristors

Anode excitation with common thyristor

 F_2 = 10 A fast response time D = zener voltage \geq 18 V

 V_{RMS} 220 250 380 500 600 V R 2 2 4 5 6 Ω F_1 = 2 A fast response time


¹⁾ The thyristor-zener diode combination may be substituted by a thyratron.

IGNITOR CHARACTERISTICS AND IGNITION CIRCUIT REQUIREMENTS

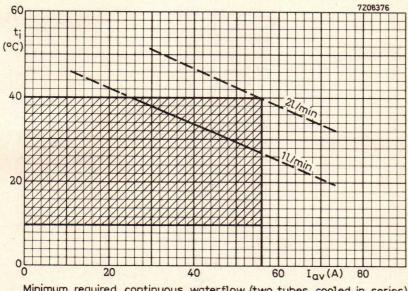
(continued)

B. Separate excitation

Recommended circuit for separate excitation

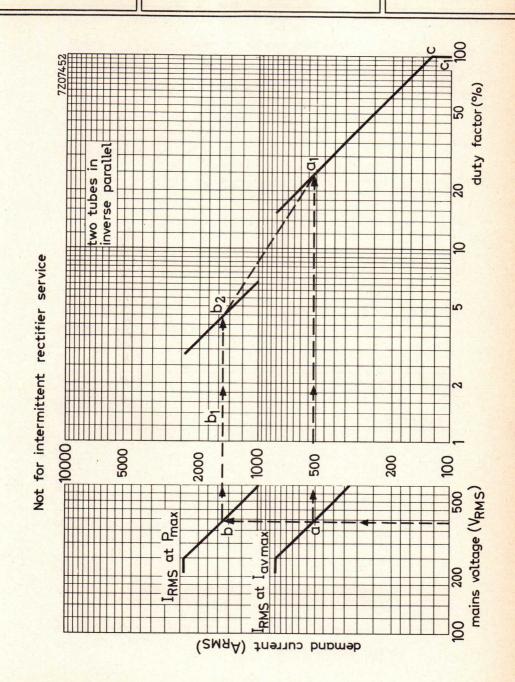
Capacitor value

Capacitor voltage

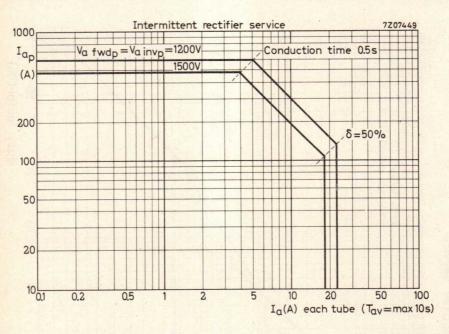

Peak value of closed circuit current

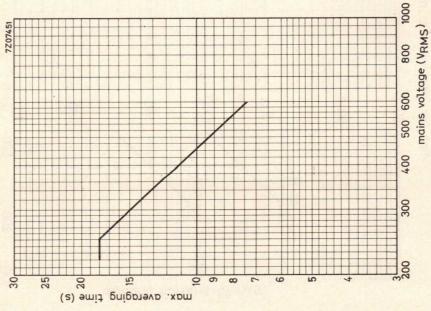
C 2 8 μ F V_C 650 400 V \pm 10% 80 to 100 A

¹⁾ The thyristor may be substituted by a thyratron.


Minimum required continuous waterflow (two tubes cooled in series)

Graph to determine demand current versus duty factor as a function of the mains voltage (page F21 Construction:


1. Determine cross points in the left hand graph for the chosen mains voltage (points a and b). 2. Draw horizontal lines from the points a and b to determine cross points al and b2 in the right


3. The boundary of the operating area for the pertaining mains voltage is thus determined by straight line interconnections of b1, b2, a1, c, c1. hand graph.

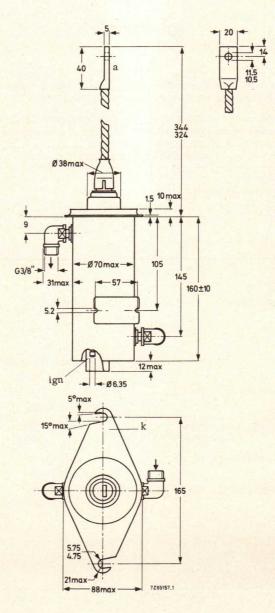
IGNITRON

B-size ignitron in coaxial construction intended for use in single-phase and three-phase resistance welding control and similar a.c. control applications.

The tube has a plastic coated stainless steel watercooling jacket, quick change water connections and a temperature sensing pad for mounting of a thermostat.

QUICK REFERENCE	DATA	
Maximum demand power (two tubes in inverse parallel)	600	kVA
Maximum average current	56	A
Ignitor voltage	150	V
Ignitor current	max. 12	· A

MECHANICAL DATA


Dimensions and connections	see page 2
Net mass	1.4 kg
Shipping mass	2.1 kg.
Mounting position	vertical, anode connection up
Accessories	
Ignitor cable	type 55351
Water hose connections: hose nipple coupling nut	type TE 1051c type TE 1051b
Overload protection thermostat	type 55306 or 55318
Water economy thermostat	type 55305

or 55317

DIMENSIONS AND CONNECTIONS

Dimensions in mm

TEMPERATURE LIMITS AND COOLING

TYPICAL CHARACTERISTICS

Pressure drop of cooling water (q = 2 1/min)	p _i	max.	0.08 kg/cm^2
Temperature rise at max. average current (q = 21/min)	t _o -t _i	max.	6 °C

LIMITING VALUES (Absolute max. rating system)

A.C. control service

Required water flow at max. average current (See also page 9)	q	min.	2 1/min
Inlet temperature ¹)	t _{i.}	min. max.	10 °C 40 °C
Temperature of thermostat mount ²)	tm	max.	50 °C

Intermittent rectifier service or three-phase welding service

Required continuous water flow at max, average				
current	q	min.	2	1/min
Talet town suctions 1		min.	10	°C
Inlet temperature)	i	max.	35	°C
Temperature of thermostat mount ²)	tm	max.	45	°C

Pulse service

Under conditions of pulse service with low average load (less than 1 A) continuous cooling is normally not required. The cooling jacket can e.g. be permanently filled with oil.

Care should be taken to prevent condensation of mercury at the anode or glass seal. See also "Application directions ignitrons".

Recommended condensed mercury temperature $t_{\mbox{Hg}}$ 25 to 30 $^{
m o}{
m C}$

When a number of tubes is cooled in series, t_{i min} refers to the coldest tube and t_{i max}, to the hottest tube.

²⁾ WARNING. The thermostat mount is at full line voltage. When the cooling systems of a number of tubes are connected in series the over-load protecting thermostat should be mounted on the last and the water economy thermostat on the last but one tube.

ELECTRICAL DATA

For electrical data please refer to type ZX1051

IGNITRON

C-size ignitron in coaxial construction intended for use in single-phase resistance welding control and similar a.c. control applications.

The tube has a plastic coated stainless steel watercooling jacket, quick change water connections and a temperature sensing pad for mounting of a thermostat.

QUICK REFERENCE DATA		
Maximum demand power	1200	kVA
(two tubes in inverse parallel)	1200	KVA
Maximum average current	140	A
Ignitor voltage	150	V
Ignitor current max.	12	A

MECHANICAL DATA

Dimensions and connections see page 2

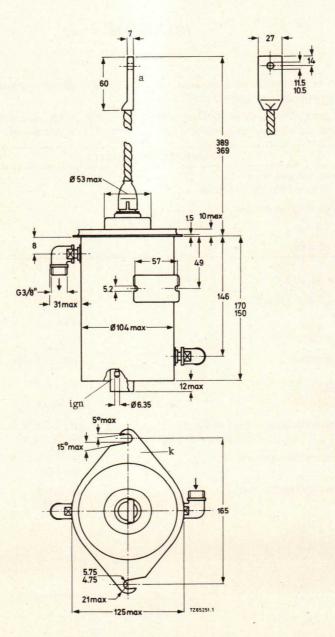
Net mass 2.4 kg

Shipping mass 3.7 kg

Mounting position vertical, anode connection up

Accessories

Ignitor cable type 55351


Water hose connections: hose nipple type TE 1051c coupling nut type TE 1051b

Overload protection thermostat type 55306

or 55318

Water economy thermostat type 55305

or 55317

TEMPERATURE LIMITS AND COOLING

TYPICAL CHARACTERISTICS

Pressure drop of cooling water (q = 5 1/min)	p _i	max.	0.16	kg/cm ²
Temperature rise at max. average current (q = 5 1/min)	t _o -t _i	max.	6	°C

LIMITING VALUES (Absolute max. rating system)

A.C. control service

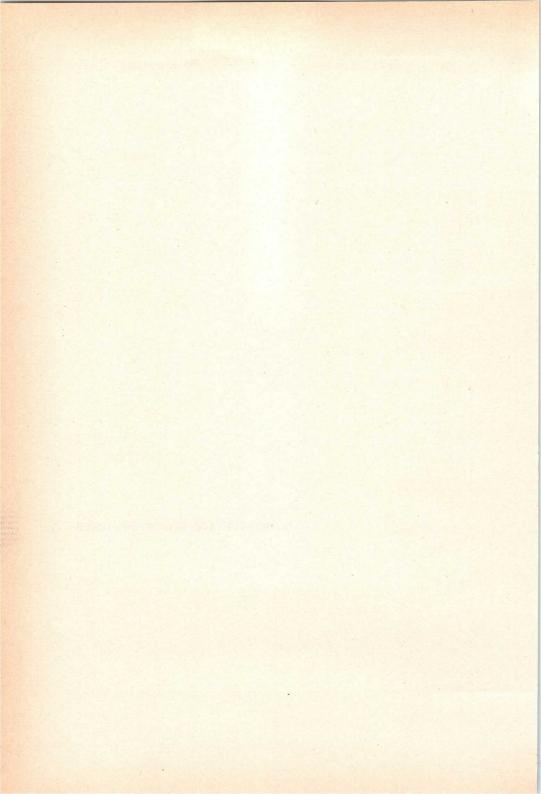
Required water flow at max. average current (See also page 10)	q	min	5	1/min
Inlet temperature ¹)	t _i	min. max.	10 40	°C °C
Temperature of thermostat mount ²)	t	max.	50	°C

Pulse service

Under conditions of pulse service with low average load (less than 1 A) continuous cooling is normally not required. The cooling jacket can e.g. be permanently filled with oil.

Care should be taken to prevent condensation of mercury at the anode or glass seal. See also "Application directions ignitrons"

Recommended condensed mercury temperature $t_{H\sigma}$ 25 to 30 $^{\circ}C$


January 1972

¹⁾ When a number of tubes is cooled in series, t_{i min} refers to the coldest tube and t_{i max}, to the hottest.

²⁾ WARNING. The thermostat mount is at full line voltage. When the cooling systems of a number of tubes are connected in series the over-load protecting thermostat should be mounted on the last and the water economy thermostat on the last but one tube.

THE RESERVE OF THE PARTY OF THE

HIGH-VOLTAGE RECTIFYING TUBES G

HIGH-VOLTAGE RECTIFYING TUBES

LIST OF SYMBOLS

Remarks

- a. In the case of indirectly heated tubes the voltages on the various electrodes are with respect to the cathode, in the case of a.c. fed, directly heated tubes with respect to the electrical centre of the filament, unless otherwise stated.
- b. The symbols for voltages and currents quoted below represent the average values of the concerning voltages and currents, unless otherwise stated.
- c. The positive electrical current is directed opposite to the direction of the electron current

Anode	a
Capacitance between anode and grid (the other elements	
being earthed)	Cag
Capacitance between grid and all other elements except anode	$C_{\mathbf{g}}$
Frequency	f
Filament or heater	f
Grid	g
Anode current	Ia
Filament or heater current	If
Grid current	Ig
D.C. output current of a rectifying tube	Io
Peak value of a current	Ip
Fault current	Isurge
Cathode	k
Resistance in grid lead	Rg
Ambient temperature	tamb
Averaging time	Tav
Deionisation time	Tdion
Temperature of condensed mercury	tHg
Ionisation time	Tion

Waiting time (= time which has to pass between switching on of the	
filament or heater voltage and switching on of the other voltages)	$T_{\mathbf{W}}$
Anode voltage	va
Arc voltage	Varc
Heater voltage	v_{f}
Grid voltage	Vg
Inverse voltage	Vinv
D.C. voltage supplied by a rectifying tube	Vo
Secondary transformer voltage	Vtr
Output power	Wo

GENERAL OPERATIONAL RECOMMENDATIONS HIGH-VOLTAGE RECTIFYING TUBES

The following instructions apply in general to all types of high-voltage rectifying tubes. If there are additional instructions for any type of tube it will be indicated on the technical data sheets of the concerning type.

MOUNTING

The mercury-vapour filled types must be mounted vertically with the base or filament strips at the lower end. The mounting position of the gas-filled types is in general arbitrary.

The tubes must be mounted so that air can circulate freely around them. Therefore the clearance between the tubes and other components of the circuit and between the tubes and the cabinet walls should be at least half the maximum bulb diameter. The minimum clearance between tubes should be 3/4 the maximum bulb diameter.

It should be realised that a minimum clearance is also required for reasons of high voltage insulation.

When a tube is operating and the cooling is only obtained by natural convection the temperature distribution along the bulb will be such that the lowest temperature occurs at the bottom. This distribution is of special importance in the case of mercury-vapour filled types in order to condense the mercury-vapour in the lower part of the tube. Where additional cooling is necessary this cooling should not disturb this normal temperature distribution along the bulb.

Generally if shock or vibration exceeds 0.5 g a shock absorbing device should be used.

The electrode connections, except those of the tube socket, must be flexible. The nuts (e.g. of the anode connections) should be well tightened but care must be taken to ensure that no undue forces are exerted on the tube. The contacts must be checked at regular intervals and their surfaces kept clean in order to avoid excessive heating of the glass-metal seals. The cross section of the conductors should be sufficient to avoid overheating by the current. However, to maintain the normal temperature distribution along the bulb the conductors should not conduct too much heat away from the tube. (It should be noted that in rectifier circuits the r.m.s. value of the anode current may reach 2.5 times the average value.)

February 1968

FILAMENT SUPPLY

In order to obtain the maximum life of a directly heated cathode, a filament transformer with centre-tap and a phase shift of $90^{\rm o}\pm30^{\rm o}$ between V_a and V_f is recommended. Series connection of filaments is not allowable.

The filament voltage at nominal mains voltage must be measured at the terminals of the tube. Permanent deviations up to 2.5% from the published value can be accepted. It is therefore recommended that the filament transformer be equipped with suitable tappings. Temporary variations should not exceed 5%.

However to ensure maximum life it is important to keep the filament voltage as near as possible to the nominal value.

In calculating the rating of the filament transformer a spread in the filament current of $\pm\,10\%$ form tube to tube should be taken into account, whilst for directly heated tubes the d.c. current flowing through the heater winding should also be considered. It is recommended to furnish the filament transformer with several taps on the primary especially in case of h.t.-insulated high magnetic leakage transformers.

TEMPERATURE

1. Tubes filled with mercury vapour

In the technical data of these tube types temperature limits for the condensed mercury are given. During operation the condensed mercury should only be visible in the neighbourhood of the socket or the lowest part of the bulb. Care should be taken to ensure that the condensed mercury temperature during operation is between the published temperature limits. Too low a temperature gives low gas pressure which results in a low current carrying capability, high arc drop and consequently shortening of life. Too high a temperature gives high gas pressure which results in a reduction of the permissible peak inverse and forward voltage.

Accurate values of the condensed mercury temperature can be measured by means of a thermocouple placed against the envelope, but good technique and instruments are necessary for this measurement. In general temperature values of sufficient accuracy can be obtained by using a normal mercury thermometer the mercury vessel of which is wrapped in staniol strips and that can be fixed against the bulb by means of a cotton thread.

The temperature measurements should be made at the coldest part of the bulb where the mercury vapour condenses which in general will be just above the base or the lower connections.

In addition to the temperature limits for the condensed mercury sometimes limits for the ambient temperature are given. For each type there is a specific difference between ambient and condensed mercury temperature. High ambient temperature can make it desirable to decrease this difference, which can be

obtained by directing a low velocity air flow of ambient temperature or less to the glass just above the base.

The condensed mercury temperature is decisive in all cases.

The ambient temperature can be measured by a thermometer which has been screened against direct heat radiation. The measurement should be carried out at a distance of max. once and min. half the tube diameter from the tube at the same height as the condensed mercury or just above the base.

2. Tubes with inert gas filling.

For these tubes only the limits of the ambient temperature are given. These limits are in general minimum -55 °C and maximum +75 °C.

SWITCHING ON

If switching on of the rectifier takes place twice a day or less the allowable peak anode current when switching on may amount up to twice the maximum published value for I_{a_n} .

1. Tubes filled with mercury vapour.

It is necessary to allow time for the cathode to reach its operating temperature before drawing anode current. Therefore the minimum cathode heating time is given in the published data sheets of each type. After the cathode heating time the high voltage may be switched on provided the temperature of the condensed mercury is not too low and all the condensed mercury is confined to the lower part of the bulb.

Sometimes a heat conserving hood is prescribed for the tube. The purpose of this hood is to avoid condensation of the mercury vapour on the electrodes and upper part of the bulb whilst the tube is cooling.

Switching on (not after transport) may be done at a condensed mercury temperature which lies 5 to $10\,^{\rm o}$ C below the published minimum temperature (minimum waiting time required). However, it is good practice to switch on after the temperature has reached its minimum published value (recommended waiting time).

The waiting times, the minimum required and the recommended one can be read from the curve representing the condensed mercury temperature rise as a function of time with only the filament voltage applied to the tube.

Switching on after transport or after a considerable interruption of operation should be done according to the instructions on the published data sheets.

In order to avoid long preheating times it is recommended to leave the filament supply on during standby periods (e.g. overnight) at 60 to 80% of the nominal value.

Standby position for mercury vapour filled tubes.

In order to have a spare tube always ready for immediate operation it is recommended to have a spare position where a tube stands with continuously a filament voltage of 60-80% of the nominal voltage applied.

When for a certain type a heat conserving hood is prescribed this hood should be fitted on the tube.

2. Tubes with inert gas-filling

It is necessary to allow the cathode to reach operating temperature before drawing anode current. The relevant minimum cathode heating time is given in the technical data sheets of each type. After warming up the anode voltage may be applied provided that the ambient temperature is not below the minimum published value.

No other delays apart from the cathode heating delay are required.

LIMITING VALUES

The limiting values should be used in accordance with the "Absolute maximum rating system" as defined by IEC publication 134.

Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

For some ratings of average current a maximum averaging time is quoted. This is to ensure that an anode current greater than the maximum continuously permissible average value is not drawn for such a length of time as would give rise to an excessive temperature within the tube.

The maximum peak anode current is determined by the available safe cathode emission whereas the average current is limited by its heating effects. During normal operation or frequent switching the peak current should not exceed its

maximum published value.

For the determination of the actual value of the peak inverse voltage and the peak anode current, the measured values with an oscilloscope or otherwise are decisive.

The I_{surge} is the maximum fault current which should ever be allowed to pass through the tube. (See section "Short circuit protection".)

DESIGN VALUES

1. Varc

The value published for Varc applies to average operating conditions.

2. Frequency

Unless otherwise stated the maximum frequency at which the tubes may run under full load is 150 Hz. Under special conditions (derating of voltage and current) higher frequencies may be used; details should be obtained from the manufacturer.

TYPICAL OPERATING CONDITIONS

Sometimes 2 columns of operating conditions are given viz. one giving theoretical values based on the absolute maxima and one giving more practical values in which mains fluctuations of max. 10% and a voltage drop in tube, transformer, filter etc. of max. 8% are incorporated.

SHORT CIRCUIT PROTECTION

In order to prevent the tube from being damaged by passing too high a fault current a value for the maximum permissible surge current is given.

The figure given for the maximum surge current is intended as a guide to equipment designers. It indicates the maximum value of a transient current resulting from a sudden overload or short circuit which the rectifier can pass for a period not exceeding 0.1 second without resulting in its immediate destruction. Several overloads of this nature will, however, considerably reduce the life of the tube.

The equipment designer has to take into account this maximum surge current rating when calculating the short-circuit impedance of the equipment.

This surge current value is not intended as a peak current that may occur during switching-on or during operation.

A simple method to limit the surge current to the maximum rating is to put a series resistance in the anode circuit which in most cases will also be necessary because the relation between the ohmic and the inductive resistance of the short circuit path should be at least 0.3.

SCREENING AND INTERFERENCE

In order to prevent unwanted ionisation of the gas filling (and consequent flash over) due to strong r.f. fields, it may be necessary to enclose the rectifier in a separate earthed screening box. Of course r.f. should bé prevented from reaching the rectifier by r.f. chokes and condensers.

In circuits with gas filled tubes oscillation in the transformer windings can occur especially in grid controlled circuits. These oscillations should be reduced by suitable circuits as excessive peak inverse voltages may occur, causing arc back. The use of two parallel RC circuits is advisable.

An air choke in the order of $100\,\mu\mathrm{H}$ should be connected in series with and close to the anode connection. This choke can advantageously be wound from resistance wire in order to help short circuit protection.

SMOOTHING CIRCUITS

In order to limit the peak anode current in a rectifying tube it is necessary to use a choke-input filter.

If switching on of the rectifier takes place twice a day or less the allowable peak anode current when switching on may reach a value of twice the published max. value for $\rm I_{\rm ap}$

To ensure good voltage regulation on fluctuating loads the inductance value of the choke should be large enough to give uninterrupted current at minimum load. The choke and capacitor must not resonate at the supply or ripple frequency. Damping of this choke will be necessary.

In grid controlled rectifier circuits under "phased back" conditions the harmonic content of the d.c. output will be large unless the inductance is adequate.

PARALLEL OPERATION OF MERCURY-VAPOUR OF GAS-FILLED TUBES

As individual gas or mercury-vapour filled tubes may have slightly different characteristics two or more tubes must not be connected directly in parallel.

Parallel operation is permissible when series resistances are used and the peak voltage drop over this series resistance is at least the ignition voltage. Coupling transformers in the anode leads of parallel connected tubes can serve the same purpose.

GRID CONTROLLED RECTIFIERS

When a thyratron is conducting, a positive ion current of a magnitude proportional to the cathode current is generated. This current will, in general, flow to that electrode which is at the most negative potential during conduction (e.g. the grid). In order to prevent damage to the tube it is necessary to ensure that

the voltage of this electrode is less negative than -10 volts during this phase. This precaution will prevent an increase in electrode emission due to excessive electrode dissipation, sputtering of electrode material, changes in the control characteristics caused by shift in contact potential and, in the case of inert gas-filled tubes, a rapid gas clean-up. The minimum allowable value of the grid resistor is 0.1 x the recommended one.

In circuits where the anode potential changes from a positive to a negative value and the control grid is at a positive potential, thereby drawing grid current, a small positive ion current flows to the anode. At high negative anode voltages it is therefore essential to limit the magnitude of the positive ion current by severely restricting the current flowing from cathode to grid.

This may be effected by using fixed negative grid bias and narrow positive firing pulses.

However, for bridge circuits the minimum width of these pulses should be sufficiently large to secure safe "take-over" of the discharge.

In those circuits where the anode potential changes very rapidly from a positive to a high negative value, such as with inductive loads fed from polyphase supplies, there will be residual positive ions within the tube which will be drawn towards the anode with considerable energy. In the case of an inert gas-filled tube this would result in excessive gas clean-up and it is therefore necessary to observe the limitations imposed by the commutation factor.

CONTROL CHARACTERISTICS

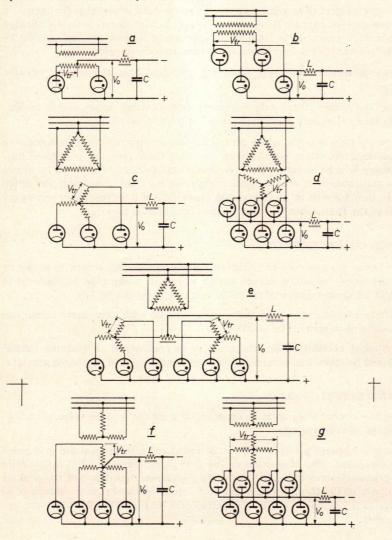
In most cases the control characteristic given on the data sheets is shown by upper and lower boundary curves within which all tubes may be expected to remain at all temperatures of the published range and during life.

In multitube circuits where the tubes are operating under the same conditions the spread will in general be smaller.

The published boundaries are therefore to be considered as extreme limits. This should be taken into consideration when designing grid excitation circuits.

GRID EXCITATION CIRCUITS

To keep the instant of ignition as constant as possible a large value of excitation voltage is recommended.


The use of a negative grid bias (50 to 120 volts) and a sharp positive grid pulse is recommended. The magnitude of the grid pulse should be 100 to 200 volts with a grid series resistor of $10~k\Omega$ and a maximum impedance of the peaking transformer of $10~k\Omega$. If a sinusoidal grid voltage is used r.m.s. values of 50 to 120 volts in combination with a negative grid bias of 50 to 120 volts are recommended.

February 1968 G11

BRIDGE CIRCUITS (diagrams b, d and g)

For output voltages of more than $6\ kV$ bridge circuits are recommended because of the lower peak inverse anode voltage and the larger range of applicable ambient temperatures.

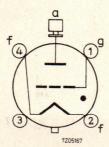
The current angle of the grid should be for 2 phase bridge circuits $> 90^{\circ}$, for 3 phase $> 60^{\circ}$, and for 4 phase $> 45^{\circ}$.

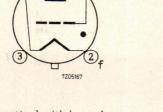
GRID-CONTROLLED HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

QUICK REFERENCE DATA								
Peak inverse voltage	V _{a inv_p}	max.	13	kV				
Peak forward voltage	v_{a_p}	max.	13	kV				
Output current	Io	max.	1	A				
Peak anode current	I_{a_p}	max.	4	A				
Negative grid voltage	$-V_g$	max.	300	V				
Peak grid current	I_{g_p}	max.	50	mA				

For electrical data please refer to type DCG6/6000

MECHANICAL DATA (Dimensions in mm)


Base : Jumbo 4 p, with bayonet


: 2422 511 02001 Socket

Anode cap: 40616

This cap must always be mounted on the tube, thus also during preheating

Net weight: 240 g

Mounting position: vertical with base down

HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

	QUICK REF	ER	ENCE D	ATA			
Peak inverse voltage	Vainvp	=	max.	10	kV	max. 2	kV
Output current	Io	=	max. 0	.25	Α	max. 0.5	Α
Peak anode current	Iap	=	max.	1	Α	max. 2	Α

HEATING: direct; filament oxide-coated

Filament voltage
$$V_f = 2.5 \text{ V}$$

Filament current $I_f = 4.8 \text{ A}$
Cathode heating time $T_w = \min. 30 \text{ s}$

Phase shift of $90^{\circ}\pm30^{\circ}$ between V_a and V_f and use of a centre-tapped filament transformer is recommended

After transport and after a long interruption of service a waiting time of at least 30 minutes between the switching on of the filament voltage and the switching on of the anode voltage should be observed

TYPICAL CHARACTERISTICS

Arc voltage

$$V_{arc} (I_a = 0.25 A) = 12 V$$

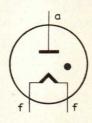
LIMITING VALUES (Absolute limits)

Output current	Io	=	max. 0.25	Α	max. 0.5	A
Peak anode current	Iap	=	max. 1	Α	max. 2	A
Peak inverse voltage (Frequency	V _{a invp}	= =	max. 10 max. 150	kV Hz	max. 2 max. 150	kV Hz)
Condensed mercury temperature 1)	t _{Hg}	=	25 to 60	°C	25 to 70	°C
Ambient temperature 2)	tamb	=	15 to 40	°C	15 to 50	°C

¹⁾ If the equipment is started not more than twice daily it is permitted to apply the high tension at a condensed mercury temperature of 20 °C

²⁾ With convection cooling only

MECHANICAL DATA

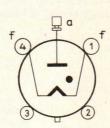

Mounting position: vertical with base down

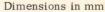
DCG4/1000 ED

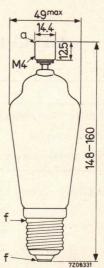
Base : Edison

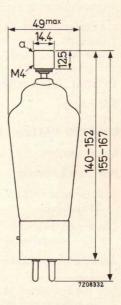
Anode connector: 40619

Net mass : 65 g




DCG4/1000 G = 866A

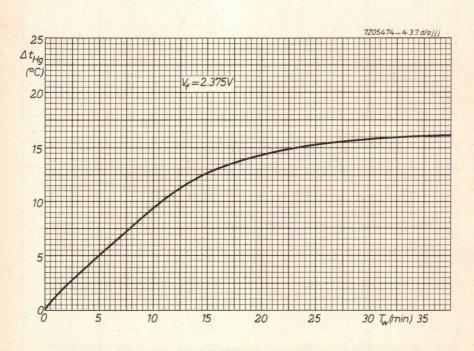

Base : Medium 4p with bayonet


Anode connector: 40619

Net mass : 80 g

¹⁾ At voltages above 2 kV the socket must be insulated from the chassis.

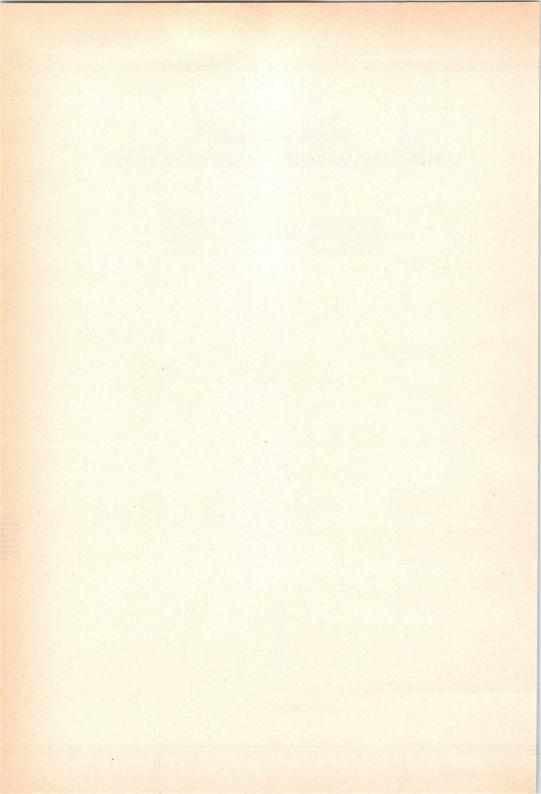
OPERATING CONDITIONS


Transformer regulation and voltage drops in the tubes are neglected

Peak inverse voltage V _{ainvp} = 10 kV											
Circuit ¹)	Transformer voltage V _{tr} (kV _{RMS})	Output voltage V _O (kV)	Output current I _O (A)	Power output W _o (W)							
a	3.5	3.2	0.5	1590							
b	7.1	6.4	0.5	3180							
С	4.1	4.8	0.75	3600							
d	7.1	9.6	0.75	7200							
e	3.5	4.1	1.5	6200							
f	f 3.5		1	4500							
g	7.1	9.0	1	9000							

	Peak inverse voltage V _{ainvp} = 2 kV										
Circuit ¹)	Transformer voltage V _{tr} (kVRMS)	Output voltage V _O (kV)	Output current I _O (A)	Power output W _o (W)							
a	0.71	0.63	1	630							
b	1.41	1.27	1	1270							
c	0.82	0.96	1.5	1430							
d	1.41	1.91	1.5	2870							
e	0.71	0.83	3	2480							
f	0.71	0.90	2	1800							
g	1.41	1.80	2	3600							

¹⁾ For circuits see page G12



HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

DCG5/5000GB replaced by type ZY1000 DCG5/5000GS replaced by type ZY1001 DCG5/5000EG replaced by type ZY1002

HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

	QUICK REFERE	ENC	E DAT	A				
Peak inverse voltage	V _{a inv}) =	max.	15	kV	max.	2.5	kV
Output current	Io	=	max.	3	A	max.	5	A
Peak anode current	Iap	=	max.	12	A	max.	20	A

HEATING: direct; filament oxide-coated

Filament voltage	V_{f}	=	5	V
Filament current	I_{f}	=	11.5	A
Cathode heating time	T_{w}	=	min. 60	s

Phase shift of $90^{\circ}\pm30^{\circ}$ between V_a and V_f and use of a centre-tapped filament transformer is recommended.

After transport and after a long interruption of service a waiting time of at least 30 minutes between the switching on of the filament voltage and the switching on of the anode voltage should be observed.

TYPICAL CHARACTERISTICS

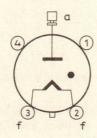
Arc voltage	$V_{arc} (I_a = 3 A) =$	12	V
Equilibrium condensed mercury			
temperature rise over ambient	no load	19	°C
temperature	full load	21	°C

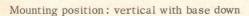
LIMITING VALUES (Absolute limits)

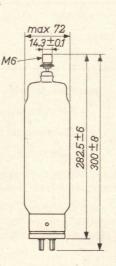
Peak inverse voltage (Frequency	V _{a inv_p}	= =	max.	15 150	kV Hz	max. 2.5 max. 150	kV Hz)
Output current (Averaging time	I _o T _{av}		max.			max. 5 max. 10	
Peak anode current	Iap	=	max.	12	A	max. 20	A
Surge current (Duration	I _{surge} T		max. max.			max. 200 max. 0.1	

LIMITING VALUES (Absolute limits) (continued)

Peak inverse voltage	v _{a invp}	15	10	2.5	kV
Condensed mercury temperature	t _{Hg} 1)	25-55	25 - 60	25-75	°C
Ambient temperature	tamb 2)	15-35	15-40	15-55	oC


MECHANICAL DATA (Dimensions in mm)


Base : Super Jumbo with bayonet


Anode connector: 40619

Socket : 2422 511 01001

Net weight : 450 g

¹⁾ If the equipment is started not more than twice daily, it is permitted to apply high tension at a condensed mercury temperature of 20 °C

²⁾ With natural cooling

MAXIMUM OPERATING CONDITIONS

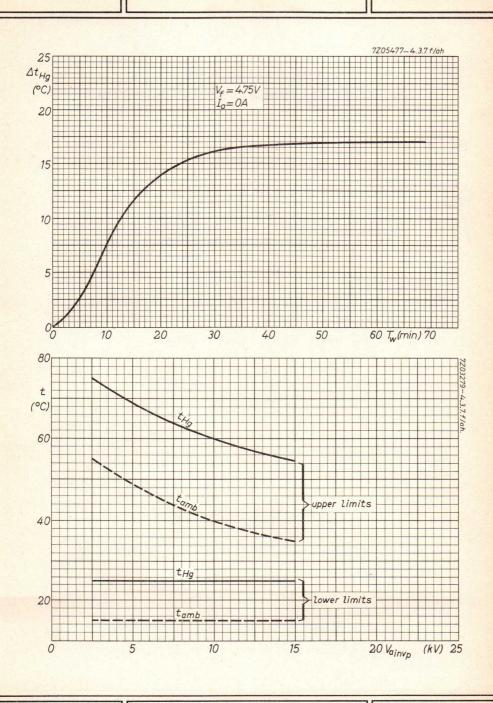
Transformer regulation and voltage drops in the tubes are neglected.

Peak inverse voltage V _{a invp} = 15 kV						
Circuit 1)	Transformer voltage V _{tr} (kV _{RMS})	Output voltage V _O (kV)	Output current I _O (A)	Power output W _o (kW)		
a	5.3	4.8	6	28.8		
b	10.6	9.6	6	57.6		
c	6.1	7.2	9	64.8		
d	10.6	14.4	.9	130		
e	5.3	6.2	18	112		
f	5.3	6.7	12	80.4		
g	10.6	13.5	12	162		

Peak inverse voltage V _{a invp} = 2.5 kV						
Circuit ¹)	Transformer voltage V _{tr} (kV _{RMS})	Output voltage V _O (kV)	ltage current			
a	0.88	0.79	10	7.9		
b	1.76	1.58	10	15.8		
c	1.02	1.19	15	17.9		
d	1.76	2.38	15	35.8		
е	0.88	1.03	30	30.9		
f	0.88	1.13	20	22.6		
g	1.76	2.26	20	45.2		

¹⁾ For circuits see page G12

TYPICAL OPERATING CHARACTERISTICS

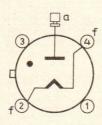

Peak inverse voltage V _{a invp} = max. 15 kV ²)							
Circuit ¹)	Transformer voltage V _{tr} (kV _{RMS})	Output ³) voltage V _o (kV)	Output current I _O (A)	Power output W _o (kW)			
a	4.8	4.0	6	24			
b	9.6	8.0	6	48			
С	5.55	6.0	9	54			
d	9.6	12.0	9	108			
е	4.8	5.15	18	93			
f	4.8	5.6	12	67			
g	9.6	11.2	12	134			

¹⁾ For circuits see page 8 in front of this section

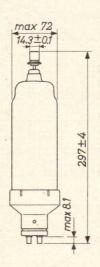
²⁾ This value corresponds to a nominal peak inverse anode voltage of 13.6 kV, allowing a mains voltage fluctuation of $\pm\,10~\%$

³⁾ Tube voltage drop and losses in transformer, filter, etc., amounting to 8% of the output voltage across the load, have already been deducted

HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE


MECHANICAL DATA

Base : Jumbo 4p with bayonet


Socket : 2422 511 02001

Anode

connector: 40619

Dimensions in mm

For further data and curves of this type please refer to type DCG6/18

GRID-CONTROLLED HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

QUICK REFERENCE DATA						
Peak inverse voltage	V _{a invp}	=	max.	13	kV	
Peak forward voltage	Vap	=	max.	13	kV	
Output current	I_{O}	=	max.	1	A	
Peak anode current	I_{a_p}	=	max.	4	A	
Negative grid voltage	$-V_g^r$	=	max.	300	V	
Peak grid current	I_{g_p}	=	max.	50	mA	

HEATING: direct; filament oxide-coated

Filament voltage	V_{f}	=		5	V
Filament current	I_{f}	=		6.5	A
Cathode heating time	T_{W}	=	min.	60	s

Phase shift of $90^{\circ}\pm30^{\circ}$ between V_a and V_f and use of a centre-tapped filament transformer are recommended.

After transport and after a long interruption of service a waiting time of at least 60 minutes between the switching on of the filament voltage and the switching on of the anode voltage should be observed.

CAPACITANCES

Anode to grid	Cag	=	3	pF
Grid to cathode	Cg	=	8	pF

TYPICAL CHARACTERISTICS

Arc voltage	$V_{arc} (I_a = 1 A)$	=	12	V
Ionization time	Tion	=	10	μs
Deionization time	Tdion	=	250	μs

LIMITING VALUES (Absolute limits)

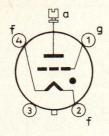
When the anode voltage $V_{\rm a}$ is negative, the grid voltage must never be positive

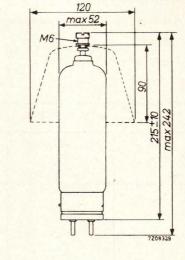
Peak inverse voltage (Frequency		V _{a inv_p}		max.	13 150	kV Hz)
Peak anode voltage		Vap	=	max.	13	kV
Output current (Averaging time		I _o T _{av}	= =	max.	1 10	A s)
Peak anode current		Iap	=	max.	4	A
Surge current (Duration		I _{surge} T	=	max.	40	A s)
Negative grid voltage 1)		-Vg	=	max.	300	V
Grid current (Averaging time		Ig Tav	= =	max.	10 10	mA s)
Peak grid current		I_{gp}	=	max.	50	mA
Peak inverse voltage		Va invp	=		13	kV
Condensed mercury temperature	2)	tHg	=	25 t	o 55	°C
Ambient temperature	3)	tamb	=	15 t	o 30	°C
Peak inverse voltage		Va invp	=		10	kV
Condensed mercury temperature	2)	tHg	=	25 t	0 60	°C
Ambient temperature	3)	t _{amb}	=	15 t	o 35	°C

¹⁾ Before conduction

²⁾ If the equipment is started not more than twice daily it is permitted to apply high tension at a condensed mercury temperature of 20°C

³⁾ With natural cooling


MECHANICAL DATA (Dimensions in mm)


Base : Super jumbo with bayonet

Socket : 2422 511 01001

Anode cap: 40616 1)

Net weight: 240 g

Mounting position: vertical with base down

1) This cap must always be mounted on the tube, thus also during preheating

OPERATING CONDITIONS

Transformer regulation and voltage drops in the tubes are neglected.

Grid voltage $V_g (V_{a \text{ inv}_p} = 13 \text{ kV}) = -100 \text{ V}$

Grid voltage $V_g (V_{a \text{ inv}_p} = 10 \text{ kV}) = -50 \text{ V}$

Grid current $I_g = 1 \text{ mA}$

Peak inverse voltage V _{a invp} = 13 kV						
Circuit 1)	Transformer voltage V _{tr} (kV _{RMS})	tage voltage current		Power output W _O (kW)		
a	4.6	4.1	2	8.3		
b	9.2	8.3	2	16.6		
1 c	5.3	6.2	3	18.6		
d	9.2	12.4	3	37.2		
е	4.6	5.4	6	32.4		
f	4.6	5.8	4	23.4		
g	9.2	11.7	4	46.8		

Peak inverse voltage V _{a invp} = 10 kV							
Circuit 1)	Transformer voltage V _{tr} (kV _{RMS})	Output voltage V _O (kV)	Output current I _o (A)	Power output W _O (kW)			
a	3.5	3.2	2	6.4			
b	7	6.4	2	12.8			
С	4.1	4.8	3	14.4			
d	7	9.6	3	28.8			
е	3.5	4.1	6	24.8			
f	3.5	4.5	4	18			
g	7	9	4	36			

¹⁾ For circuits see page G12

GRID-CONTROLLED HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

OTHER DE	FERENCE DATA				
QUICK RE	FERENCE DATA		35,011-5		
Peak inverse voltage	Va invp	=	max.	15	kV
Peak forward voltage	v_{a_p}	=	max.	15	kV
Output current	I _o	=	max.	10	A
Peak anode current	I_{a_p}	=	max.	45	A
Peak grid voltage	v_{g_p}	=	max.	600	V

CATHODE: oxide-coated

HEATING: indirect, cathode connected to heater

Heater voltage	V_{f}	=		5	V
Heater current	I_f	=		14	A
Cathode heating time	T_{W}	=	min.	10	min.

After transport and after a long interruption of service a waiting time of at least 45 minutes between the switching on of the heater voltage and the switching on of the anode voltage should be observed. Moreover, 10 minutes after having switched on the heater voltage, preheating of the anode must be started by connecting the anode to a supply voltage V_b = max. 500 V via a resistor limiting the current I_0 to 6 A.

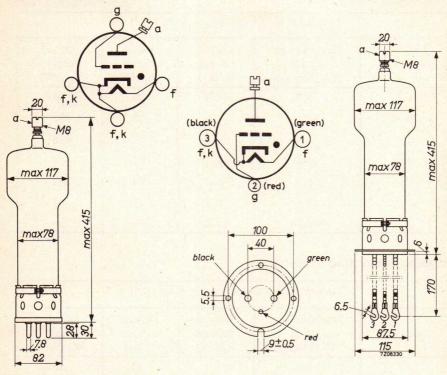
TYPICAL CHARACTERISTICS

Arc voltage	Va	$rc (I_a = 15 A) =$	12	V
Equilibrium condensed mercury				
temperature rise over ambient	no	load	27	oC
temperature	ful	l load	30	oC

DCG7/100 DCG7/100B

LIMITING VALUES (Absolute limits)

Peak inverse voltage (Frequency	Va invp	11 11	max.	15 150	kV Hz)
Peak anode voltage	Vap	=	max.	15	kV
Output current for continuous operation (Averaging time	I _o T _{av}	=	max.	10 10	A s)
Output current for intermittent operation (Averaging time	I _o T _{av}	= =	max.	15 10	A s)
Peak anode current	I_{a_p}	=	max.	45	A
Surge current (Duration	I _{surge} T		max.	600 0.1	A s)
Peak grid voltage	V_{gp}	=	max.	600	V
Grid resistor	Rg	=	max.	20	kΩ
Peak inverse voltage	Va invp	=	15	10	kV
Condensed mercury temperature 1)	tHg	=	25 to 60	25 to 65	°C
Ambient temperature ²)	t _{amb}	=	10 to 30	10 to 35	°C



¹⁾ If the equipment is started not more than twice daily it is permitted to apply high tension at a condensed mercury temperature of 20 °C.

²⁾ With natural cooling. The tube can be operated at higher ambient temperatures than the stated maxima, when the difference between the ambient and the condensed mercury temperature (30 °C with natural cooling) is reduced by an air flow directed at the bulb just above the base. A reduction to less than 10 °C can easily be obtained with a simple airjet.

MECHANICAL DATA

Dimensions in mm

DCG7/100

DCG7/100B

Anode connector: 40620

Mounting position: vertical with anode terminal up

Net weight: 1200 g

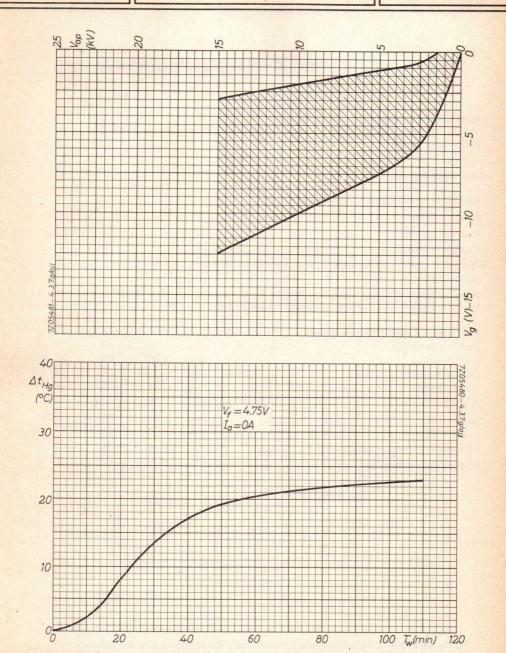
DCG7/100 DCG7/100B

MAXIMUM OPERATING CONDITIONS

Peak inverse voltage V _{a invp} = 15 kV ²)						
Circuit ¹)	Transformer voltage V _{tr} (kV _{RMS})	roltage voltage curre		Power output W _o (kW)		
a	5.3	4.8	20	96		
b	10.6	9.6	20	192		
С	6.1	7.2	30	216		
d	10.6	14.4	30	432		
e ·	5.3	6.2	60	372		
f	5.3	6.7	40	268		
g	10.6	13.5	40	540		

TYPICAL OPERATING CONDITIONS

Peak inverse voltage V _{a invp} = 15 kV ³)						
Circuit 1)	Transformer voltage V _{tr} (kV _{RMS})	Output 4) Output current V _O (kV) I _O (A)		voltage current ou		Power output W _O (kW)
a	4.8	4	20	80		
b	9.6	8	20	160		
С	5.55	6	30	180		
d	9.6	12	30	360		
е	4.8	5.15	60	309		
f	4.8	5.6	40	224		
g	9.6	11.2	40	448		


¹⁾ For circuits see page 8 in front of this section

²⁾ Transformer regulation and voltage drops in the tubes are neglected

 $^{^3)}$ This value corresponds to a nominal peak inverse anode voltage of 13.6 kV, allowance being made for mains voltage fluctuations of \pm 10 %

⁴⁾ Tube voltage drop and losses in transformer, filter, etc., amounting to 8% of the output voltage across the load, have already been deducted

HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

QUICK REFERENCE DATA

Peak inverse voltage	V _a invp	=	max.	21 kV
Output current	lo	=	max.	2,5 A
Peak anode current	lap	=	max.	10 A
HEATING: direct; filament oxide-coated		Y I		
Filament voltage	Vf	=		5 V
Filament current	If	=		13,5 A
Cathode heating time	Tw	=	min.	90 s

Phase shift of $90^{\circ} \pm 30^{\circ}$ between V_a and V_f and/or use of a centre-tapped filament transformer are recommended.

After transport and after a long interruption of service a waiting time of at least 60 minutes between the switching on of the filament voltage and the switching on of the anode voltage should be observed.

LIMITING VALUES (Absolute limits)

Peak inverse voltage (Frequency	V _a invp	=	max.	21 150	15 150	10 kV 150 Hz)
Output current (Averaging time	I _o T _{av}	=	max.	2,5 30	2,5 30	2,5 A 30 s)
Peak anode current	I _{ap}	=	max.	10	10	10 A
Surge current (Duration	I _{surge} T	=	max.	100	100 0,1	100 A 0,1 s)
Condensed mercury temperature	* t _{Hg}	=		25-45	25-50	25-60 °C
Ambient temperature **	tamb	=		15-30	15-35	15-45 °C

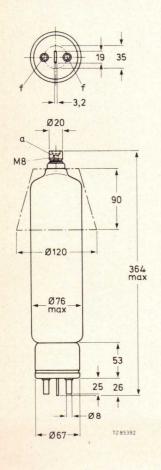
If the equipment is started not more than twice daily it is permitted to apply high tension at a condensed mercury temperature of 20 °C.

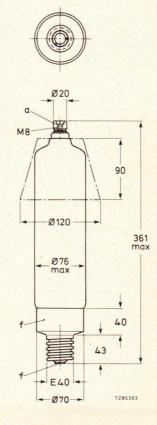
^{**} With natural cooling.

TYPICAL CHARACTERISTICS

Deionization time

Ionization time


Arc voltage


MECHANICAL DATA

Anode connector: 40620 Anode cap : 40616 Net mass : 0,75 kg

Tdion	<	500	μ
Tion	<	10	μ
$V_{arc} (I_a = 2,5 A)$	=	12	٧

Dimensions in mm

Mounting position: vertical with base down.

The anode cap 40616 must always be mounted on the tube, thus also during preheating.

DCG9/20 DCG9/20EG

OPERATING CONDITIONS

Transformer regulation and voltage drops in the tubes are neglected

peak inverse voltage Va invp = 21 kV

circuit *	transformer voltage V _{tr} (kV _{RMS})	output voltage Vo (kV)	output current I _O (A)	power output W _O (kW)
a	7,4	6,7	5	33,5
b	14,8	13,4	5	67
c	8,6	10	7,5	75
d	14,8	20	7,5	150
е	7,4	8,7	15	130
f	7,4	9,5	10	95
g	14,8	19	10	190

^{*} For circuits see page 8 in front of this section.

GRID-CONTROLLED HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBE

QUICK REFERENCE DATA						
Peak inverse voltage	V _{a invp}	max.	27	kV		
Peak forward voltage	v_{a_p}	max.	27	kV		
Output current	Io	max.	2.5	A		
Peak anode current	I_{a_p}	max.	10	A		
Negative grid voltage	-Vg	max.	300	V		
Peak grid current	I_{g_p}	max.	125	mA		

HEATING: direct; filament oxide-coated

Filament voltage	$V_{\mathbf{f}}$	5	V
Filament current	I_{f}	13.5	À
Cathode heating time	$T_{\mathbf{w}}$	min. 90	s

Phase shift of $90^{\circ}\pm30^{\circ}$ between V_a and V_f and use of a centre-tapped filament transformer are recommended

After transport and after a long interruption of service a waiting time of at least 60 minutes between the switching on of the filament voltage and the switching on of the anode voltage should be observed

CAPACITANCES

Anode to grid	C _{ag} 4	pF
Grid to cathode	C _g 13	pF

TYPICAL CHARACTERISTICS

Deionization time	Tdion	<	500	μs	
Ionization time	T _{ion}	<	10	μs	
Arc voltage	V_{arc} ($I_a = 2.5 A$	1)	12	V	

DCG12/30

LIMITING VALUES (Absolute limits)

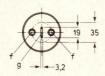
When the anode voltage Va is negative, the grid voltage must never be positive

Peak inverse vol (Frequency	tage			V _{a inv}	wp max		kV Hz)
Peak anode volta	ge			Vap	max	x. 27	kV
Output current (Averaging time	ne			I _o T _{av}	max max	20	A s)
Peak anode curr	ent			Iap	max	k. 10	A
Surge current (Duration				I _{surge} T	e max		A s)
Negative grid vo	ltage			-V _g	max	x. 300	V^{1})
Grid current (Averaging time	ne			Ig Tav	max		mA s)
Peak grid curren	nt			I_{gp}	max	x. 125	mA
	v _{a inv_p}	27	21	15	13	10	kV
	t_{Hg}^{2})	30-40	30-45	25-50	25-55	25 - 60	°C
	t _{amb} 3)	20-25	20-30	15-35	15-40	15-45	°C

¹⁾ Direct voltage; before conduction

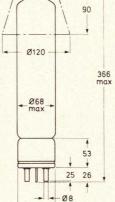
²⁾ If the equipment is started not more than twice daily it is permitted to apply high tension at a condensed mercury temperature which is 5 °C less than the values mentioned in the table

³⁾ With natural cooling


Dimensions in mm

MECHANICAL DATA

Anode connector: 40620 Anode cap : 40616


This cap must always be mounted on the tube, thus also during preheating.

Net mass: 0,75 kg

Mounting position: vertical with base down

90

Ø20

OPERATING CONDITIONS

Transformer regulation and voltage drops in the tubes are neglected

Grid voltage

Grid voltage
Grid voltage

Grid current

 $V_g (V_{a invp} = 27 kV)$

7285394

-Ø67-

 $V_g (V_{a \text{ invp}} = 10 \text{ kV})$

-50 V

-100 V

2 mA

peak inverse voltage V_{a invp} = 27 kV)

circuit *	transformer voltage V _{tr} (kV _{RMS})	output voltage V _O (kV)	output current I _O (A)	power output W _O (kW)
a	9,5	8,6	5	43
b	19,1	17,2	5	86
C	11	12,9	7,5	97
d	19,1	25,8	7,5	194
е	9,5	11,2	15	168
f	9,5	12,1	10	121
g	19,1	24,3	10	243

^{*} For circuits see page 8 in front of this section.

HIGH-VOLTAGE XENON-FILLED RECTIFYING TUBE

	QUICK REFER	ENCE DA	TA				
Peak inverse voltage	V _{a inv_p}	max.	10	kV	max.	5	kV
Output current	Io	max. 0.	25	A	max.	0.5	A
Peak anode current	Iap	max.	1	A	max.	2	A

HEATING: direct; filament oxide-coated

Filament voltage	V_{f}	2.5	V
Filament current	I_f	5	A
Cathode heating time	$T_{\mathbf{W}}$	min. 10	s

Phase shift of $90^{\circ} \pm 30^{\circ}$ between V_a and V_f and use of a centre-tapped filament transformer are recommended. In order to obtain a low ignition voltage the voltage on pin 4 should be positive with respect to pin 1 at the moment of ignition.

TYPICAL CHARACTERISTICS

Arc voltage

$$V_{arc} (I_a = 0.5 A)$$
 12 V

LIMITING VALUES (Absolute limits)

Peak inverse voltage (Frequency	V _{a invp}	max. 10 max. 150	kV Hz	max.	5 500	kV Hz)
Output current (Averaging time	I _o T _{av}	max. 0.25 max. 15	A s	max.	0.5	
Peak anode current	Iap	max. 1	A	max.	2	A
Surge current (Duration	Isurge _\ T		A	max.	20 0.1	
Ambient temperature	tamb	-55 to +75	°C	-55 to	+75	°C

DCX4/1000

MECHANICAL DATA (Dimensions in mm)

Base

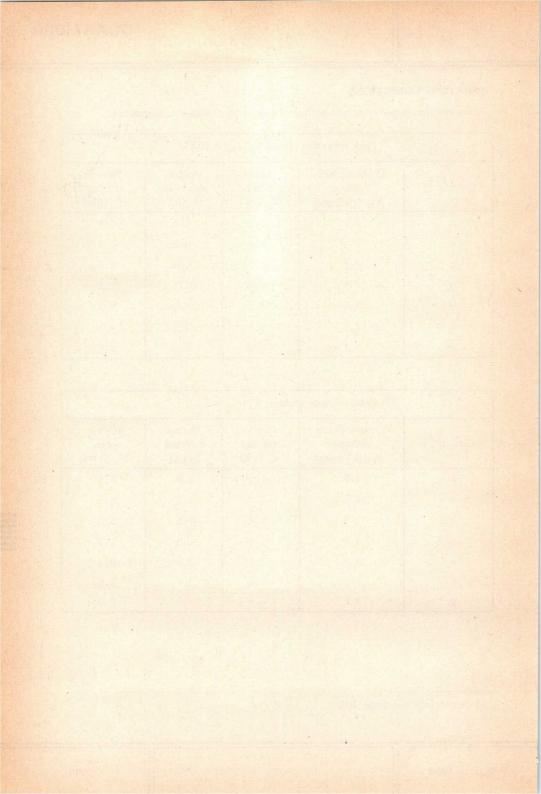
: medium 4p with bayonet

Anode

Connector: 40619 Net weight: 100 g

Mounting position: arbitrary

OPERATING CONDITIONS


Transformer regulation and voltage drops in the tubes are neglected.

Peak inverse voltage V _{a inv} _p = 10 kV					
Circuit 1)	Transformer voltage V _{tr} (kVRMS)	Output voltage V _O (kV)	Output current I _O (A)	Power output W _o (kW)	
a	3.5	3.2	0.5	1.6	
b	7.1	6.4	0.5	3.2	
С	4.1	4.8	0.75	3.6	
d	7.1	9.6	0.75	7.2	
е	3.5	4.1	1.5	6.2	
f	3.5	4,5	1.0	4.5	
g	7.1	9.0	1.0	9.0	

	Peak inverse voltage V _{a inv_p} = 5 kV						
Circuit 1)	Transformer voltage V _{tr} (kV _{RMS})	Output voltage V _O (kV)	Output current I _O (A)	Power output W _o (kW)			
a	1.8	1.6	1.0	1.6			
b	3.5	3.2	1.0	3.2			
С	2.0	2.4	1.5	3.6			
d	3.5	4.8	1.5	7.2			
е	1.8	2.1	3.0	6.2			
f	1.8	2.2	2.0	4.5			
g	3.5	4.5	2.0	9.0			

¹⁾ For circuits see page G12

HIGH-VOLTAGE XENON-FILLED RECTIFYING TUBE

QUICK REI	ERENCE DATA	
Peak inverse voltage	Vainvp max. 10	kV
Output current	I _o max. 1.25	A
Peak anode current	I _{ap} max. 5	A

HEATING: direct; filament oxide-coated

Filament voltage	$V_{\mathbf{f}}$	5	V
Filament current	I_f	7.1	A
Cathode heating time	T _w min	. 30	s

Phase shift of $90^{\circ}\pm30^{\circ}$ between V_a and V_f and use of a centre-tapped filament transformer are recommended. In order to obtain a low ignition voltage the voltage on pin 4 should be positive with respect to pin 2 at the moment of ignition.

TYPICAL CHARACTERISTICS

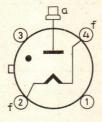
Arc voltage V_{arc} ($I_a = 1.25 A$) 12 V

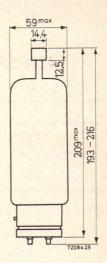
LIMITING VALUES (Absolute limits)

Peak inverse voltage (Frequency	$v_{a \text{ inv}_p}$	max.	10 150	kV Hz)	
Output current (Averaging time	I _o T _{av}	max.	1.25	A s)	
Peak anode current	I_{a_p}	max.	5	A	
Surge current (Duration	I _{surge} T	max.	50 0.1	A s)	
Ambient temperature	t _{amb}	-55 to	+70	°C	

MECHANICAL DATA (Dimensions in mm)

Base


: Jumbo 4p


Socket

: 2422 511 02001

Anode connector: 40619

Net weight : 190 g

Mounting position: arbitrary

OPERATING CONDITIONS

Transformer regulation and voltage drops in the tubes are neglected.

	Peak inverse voltage V _{a invp} = 10 kV							
Circuit 1)	Transformer voltage V _{tr} (kV _{RMS})	Output voltage V _O (kV)	Output current I _O (A)	Power output W _O (kW)				
a	3.5	3.2	2.5	8				
b	7.1	6.4	2.5	16				
c	4.1	4.8	3.75	18				
d	7.1	9.6	3.75	36				
e	3.5	4.1	7.5	31				
f	3.5	4.5	5.0	22.5				
g	7.1	9.0	5.0	45				

¹⁾ For circuits see page G12

GRID-CONTROLLED HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBES

QUICK REFERENCE DATA						
Peak inverse voltage	Va invp	max. 21	15	2.5	kV	
Peak forward voltage	V_{a_p}	max. 21	15	2.5	kV	
Output current	Io	max. 2.5	3	5	A	
Peak anode current	I_{a_p}	max. 10	12	20	A	

HEATING: direct; filament oxide coated

Filament voltage	$V_{\mathbf{f}}$		5	V	1)
Filament current	I_f		13	A	
Waiting time	$T_{\mathbf{W}}$	min.	90	S	2)

TYPICAL CHARACTERISTICS

Deionization time	T _{dion}	<	500	μs	
Ionization time	Tion	<	10	μs	
Arc voltage	V_{arc} (I _o = 3 A)		12	V	

LIMITING VALUES (Absolute limits)

Peak inverse voltage	V _{a invp}	max. 21	15	2.5	kV 3)
Peak forward voltage	Vap	max. 21	15	2.5	kV
Output current	Io	max.2.5	max. 3	max. 5	A 4)
Peak anode current	I_{a_p}	max. 10	max. 12	max. 20	A
Surge current	Isurge	max.100	max.120	max.200	A 5)
Negative grid voltage	-V _g	max.300	max.300	max.300	v 6)
Grid circuit resistance	Rg	min. 10 max.100	min. 10 max.100	min. 10 max. 100	$k\Omega^{7}$) $k\Omega$

TEMPERATURE LIMITS (Absolute limits)

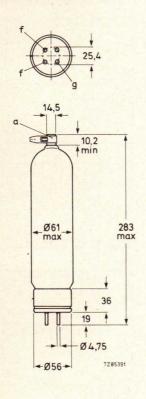
Peak inverse voltage	Va invp	21	15	10	2.5	kV
Condensed mercury temperature	t _{Hg}	25-45	25-55	25-60	25-75	oc 8)
Ambient temperature	tamb	15-30	15-35	15-40	15-55	°C 9)

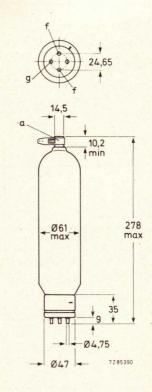
After transport and also after a long interruption of service a longer waiting time is required before anode voltage is applied to ensure proper distribution of the mercury. In general, a time of 60 minutes will be sufficient.

- 3) f max. 150 Hz
- 4) T_{av} max. 30 s
- 5) T max. 0.1 s
- 6) Direct voltage; before conduction
- 7) Recommended value 33 k Ω
- 8) If the equipment is started not more than twice daily it is permitted to apply high tension at a condensed mercury temperature of 20 °C.
- 9) Approximate values with natural cooling.

The ambient temperature is defined as the temperature of the surrounding air and should be measured under the following conditions:

- a. normal atmospheric pressure
- b. the tube should be adjusted to the worst probable operating conditions
- c. the temperature should be measured when thermal equilibrium has been reached
- d. the distance of the thermometer from the envelope shall be 75 mm (measured in the plane perpendicular to the main axis of the tube at the height of the condensed mercury boundary)
- e. the thermometer shall be shielded to avoid direct heat radiation.


 $^{^{1}}$) Phase shift of $90^{\circ} \pm 30^{\circ}$ between V_{a} and V_{f} and/or use of a centre-tapped filament transformer are recommended.


²⁾ For average conditions, i.e. temperature within limits and proper distribution of mercury (see page 5).

MECHANICAL DATA

Net weight: 0,75 kg

Dimensions in mm

: Base Jumbo with bayonet Base:

Socket

: 2422 511 01001

: Jumbo 4p with bayonet Base Socket : 2422 511 02001

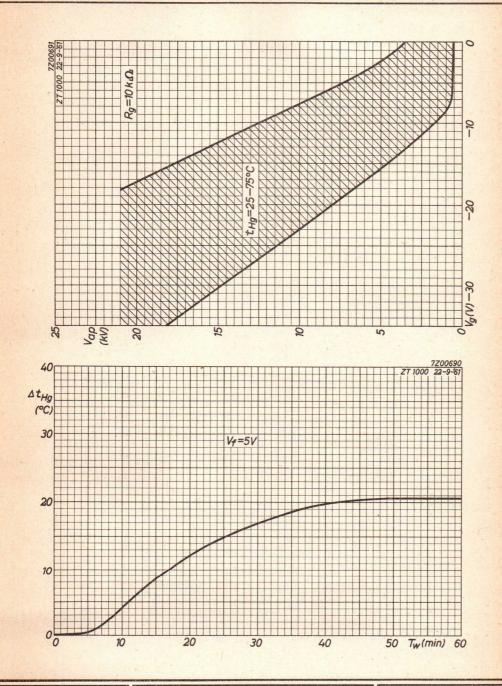
Anode connector: 40620 : 40616 Anode cap

Anode connector: 40620 : 40616 Anode cap

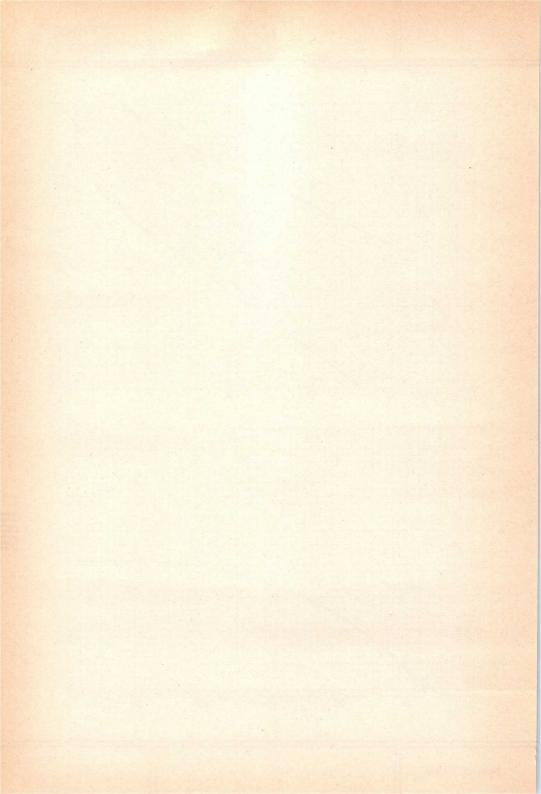
Mounting position: vertical with base down

The anode cap 40616 is not delivered with the tube but must always be mounted on the tube, thus also during preheating.

OPERATING CONDITIONS


Transformer regulation and voltage drop in the tubes have been neglected

		N. A. S.	
Grid voltage	$V_g (V_{a invp} = 21 kV)$	-100	V
'Grid voltage	$V_g (V_{a inv_p} = 10 kV)$	-50	V
Grid current	$I_{\mathbf{g}}$	2	mA


	Peak anode invers	se voltage Va i	nvp = 21 kV	
Circuit 1)	Transformer voltage	Output voltage	Output current	Output power
Circuit)	V _{tr} (kV _{RMS})	Vo (kV)	I ₀ (A)	Wo (kW)
a	7.4	6.7	5	33.5
b	14.8	13.4	5	67
С	8.5	10	7.5	75
d	14.8	20	7.5	150

	Peak anode invers	se voltage Va i	nvp = 15 kV	
Circuit ¹)	Transformer voltage	Output voltage	Output	Output power
	Vtr (kVRMS)	Vo (kV)	I _O (A)	Wo (kW)
a	5.3	4.8	6	28.8
b	10.6	9.6	6	57.6
C	6.1	7.2	9	64.8
d	10.6	14.4	9	130

¹⁾ See page G12

HIGH-VOLTAGE MERCURY-VAPOUR RECTIFYING TUBES

QUIC	K REFERENCE DA	TA			
Peak inverse voltage	Va invp	max.	13.5	7	kV
Output current	Io	max.	1.5	1.75	A
Peak anode current	Iap	max.	6	7	A

HEATING: direct; filament oxide coated

Filament voltage	v_f		5	V	
Filament current	$I_{\mathbf{f}}$		7	A	
Waiting time (t _{Hg} > 25 °C)	$T_{\mathbf{w}}$	min.	30	S	

A phase shift of $90^{\circ} \pm 30^{\circ}$ between V_a and V_f and the use of a centre-tapped filament transformer are recommended.

When the condensed mercury temperature tHg < 25 °C the waiting time can be found with the aid of the curve on page A.

After transport or after long interruptions of operation the waiting time need not be prolonged.

TYPICAL CHARACTERISTICS

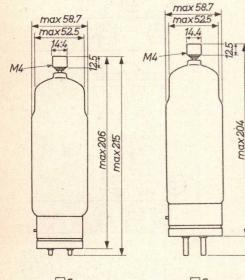
Arc voltage

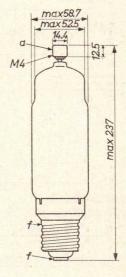
 $V_{arc} (I_0 = 1.5 A)$ 12 V

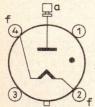
LIMITING VALUES (Absolute limits)

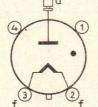
Mains frequency	f	up to 150	150	Hz
Peak inverse anode voltage	Vainvp	max.13.5	7	kV
Output current (Averaging time	I _O	max. 1.5	1.75	A, s) .
Peak anode current	Tav	max. 6	7	
Peak surge current	I _{ap}	max. 50	50	
(Duration	T	max. 0.1	0.1	
Condensed mercury temperature	t _{Hg}	25 to 55	25 to 70	
Ambient temperature	tamb	10 to 30	10 to 45	°C 2)

¹⁾ If the equipment is started not more than twice daily, it is permitted to apply the high tension at a condensed mercury temperature of 20 °C.


²⁾ Approximate values with natural cooling. The tube may be operated at higher ambient temperatures than the stated maxima, provided the difference between ambient and condensed mercury temperature (approximately 25 °C with natural cooling) is reduced by an air flow directed to the bulb just above the base. A reduction of the difference to less than 10 °C can easily be obtained with a simple air jet. Maximum life and best performance will be obtained when the condensed mercury temperature is kept at approx. 35 °C.


Net weight: 200 g




ZY1001

ZY1002

Base: Jumbo 4p with bayonet

Socket: 2422 511 02001

Anode

connector: 40619

Base : Super Jumbo

with bayonet

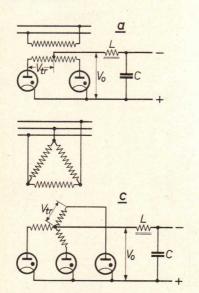
Socket: 2422 511 01001

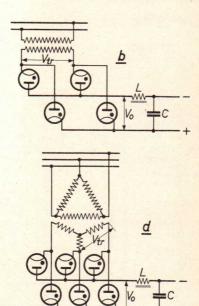
Anode

connector: 40619

Anode

connector: 40619


Base : Goliath


Mounting position: vertical with base down

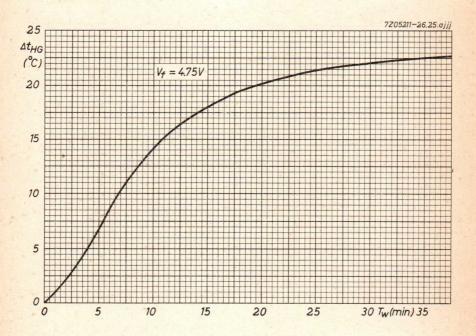
OPERATING CONDITIONS

Rectifier circuits

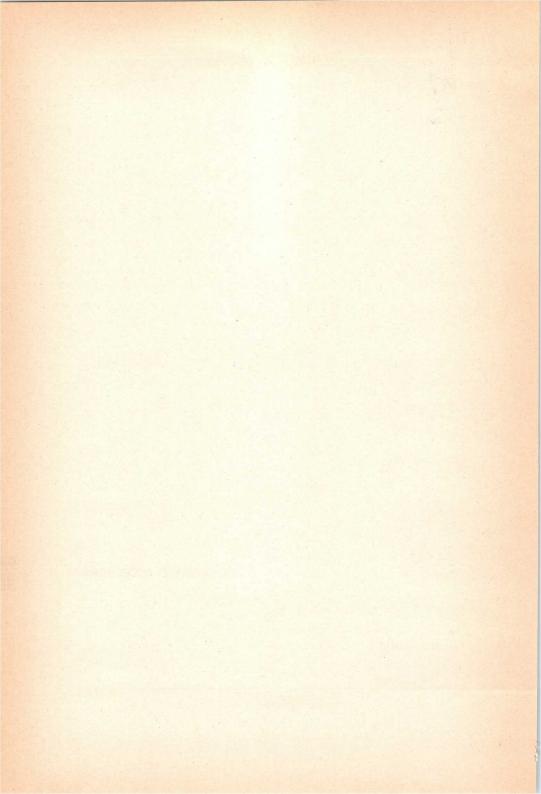
Maximum operating conditions

Transformer losses and voltage drops in the tubes have been neglected.

	Peak inverse vo	ltage Va invp	= 13.5 kV	
Circuit	Transformer voltage	Output voltage	Output current	Output
	V _{tr} (kV, RMS)	V _O (kV)	I _o (A)	W _o (kW)
a	4.75	4.3	3.0	12.9
b	9.55	8.6	3.0	25.8
С	5.50	6.45	4.5	29
d	9.55	12.9	4.5	58


OPERATING CONDITIONS (continued)

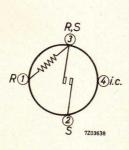
Typical operating conditions

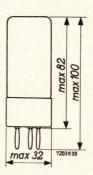

Pe	ak inverse voltage V	$a inv_p = 12.3 kV$	(max.13.5 kV	1))
Circuit	Transformer voltage	Output voltage 2)	Output current	Output power
	V _{tr} (kV, RMS)	V _O (kV)	I ₀ (A)	Wo (kW)
a	4.35	3.6	3.0	10.8
b	8.7	7.2	3.0	21.6
С	5.0	5.4	4.5	24.3
d	8.7	10.8	4.5	48.6

¹⁾ Corresponding with mains voltage fluctuations of 10%

²⁾ Tube voltage drops and losses in transformer, filter, etc., amounting to 8% of the voltage across the load, have already been deducted.

BIMETAL RELAY


Bimetal relay


QUICK REFER	RENCE DATA			
Heater current	Ir	85 to	115	mA
Timing		150 to	30	s

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Base: A

HEATING

Heater current $I_{r} = 85 \text{ to } 115 \text{ mA}$ At $t_{amb} < 25$ °C the recommended min. value is 95 mA $Resistance \ of \ the \ heating \ element \ R = 370 \ \Omega$

OPERATING CHARACTERISTICS at t_{amb} = 25 °C

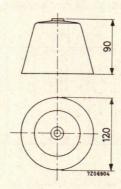
For dependency of temperature see page B

Heater current I_r 85 95 115 mA Timing max. 150 55 to 85 min.30 s

LIMITING VALUES	(Absolute	max.	rating system))
-----------------	-----------	------	----------------	---

I_r max. 125 mA Heater current tamb max. +60 °C Ambient temperature -10 °C tamb max. Current

Maximum current

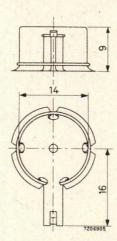

	When switching on	When switching off
Mains voltage	A CHANGE TO COMPANY A	
220 V=	1,5 A	250 mA
220 V~	1,5 A	250 mA
380 V∼	0,7 A	75 mA

- ACCESSORIES

2422 512 02001 Socket

40616

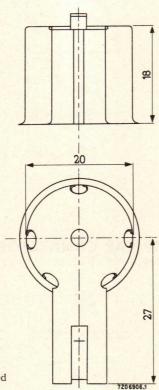
ANODE CAP



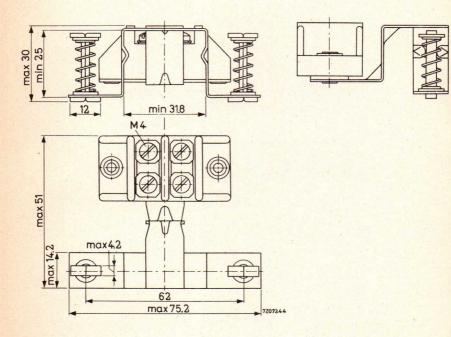
Material: phenolic

40619

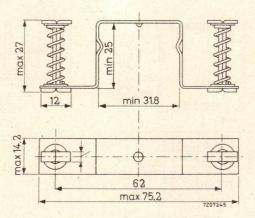
TOP CAP CONNECTOR


for top caps with 14,38 mm diameter (IEC 67-III-1b, type 3)

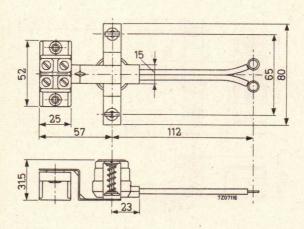
Material: brass, nickel plated


TOP CAP CONNECTOR

for top caps with 20, 32 mm diameter (IEC 67-III-1b, type 4)


Material: brass, nickel plated

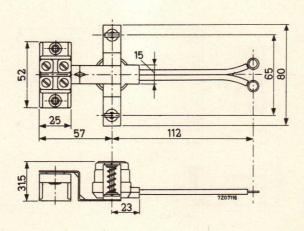
STRAP FOR THERMOSTAT



STRAP FOR THERMOSTAT

WATER SAVING THERMOSTAT

The thermostat has a normally open contact which closes at a typical plate temperature of 35 ±3 $^{\rm o}{\rm C}$ and reopens at 30 ±3 $^{\rm o}{\rm C}$

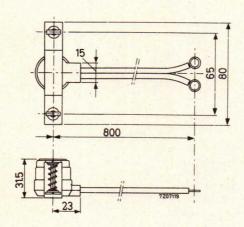

Contact ratings

30	Vdc	10	A
125	Vrme	10	A
250	Vrms	8	A
600	Vrms	0.5	A

Max. voltage between ignitron and thermostat 600 V_{rms}

PROTECTING THERMOSTAT

The thermostat has a normally closed contact which opens at a typical plate temperature of 52 ±3 $^{\rm o}{\rm C}$ and recloses at 41 ±3 $^{\rm o}{\rm C}$

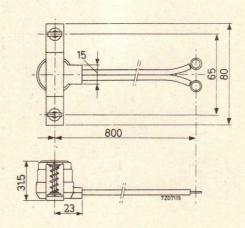

Contact ratings

30	Vdc	10	A
125	Vrms	10	A
250	Vrms	8	A
600	V _{rms} V _{rms} V _{rms}	0.5	A

Max. voltage between ignitron and thermostat 600 V_{rms}

WATER SAVING THERMOSTAT

The thermostat has a normally open contact which closes at a typical plate temperature of 35 \pm 3 °C and reopens at 30 \pm 3 °C


Contact ratings

30	Vdc	10	A
	V _{rms}	10	A
250	Vrms	8	A
600	V _{rms}	0.5	A

Max. voltage between ignitron and thermostat 600 V_{rms}

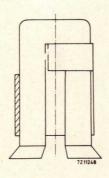
PROTECTING THERMOSTAT

The thermostat has a normally closed contact which opens at a typical plate temperature of 52 ± 3 °C and recloses at 41 ± 3 °C

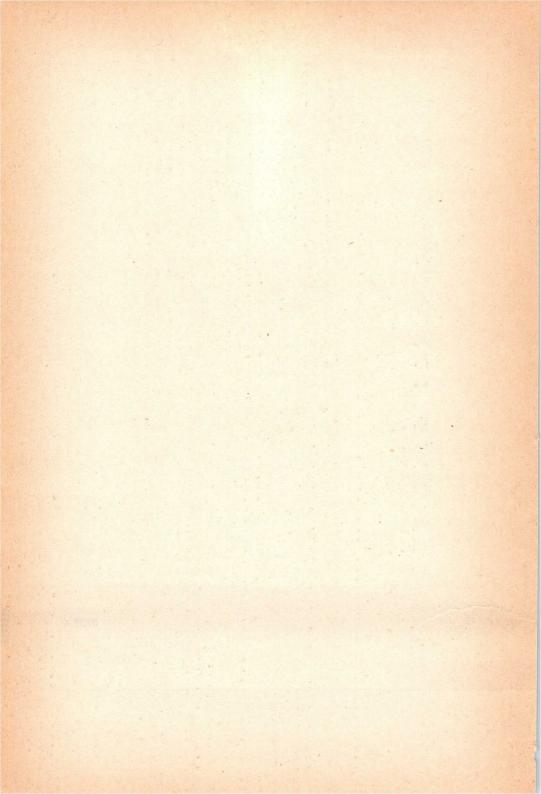
Contact ratings

		- PANTAL PROPERTY	
30	V _{dc}	10	A
125	Vrms	10	A
250	V _{rms}	8	A
600	Vrms	0.5	A

Max. voltage between ignitron and thermostat 600 V_{rms}



IGNITOR CABLE



IGNITOR CONNECTOR

INDEX OF TYPE NUMBERS

type number	page	type number	page
AGR9950	G13	ZM1550	А3
DCG4/1000	G15	ZM1551	A9
DCG5/5000	G19	ZM1560	A11
DCG6/18 DCG6/6000	G21	ZM1564	A17
	G27	ZM1570	A21
DCG7/100, B	G31	ZM1571	A22
DCG9/20 DCG12/30	G37	ZT1000	G49
DCX4/1000	G39 G43	ZT1001	G49
DCX4/5000	G43 G47	ZX1051 ZX1081	F11 F23
PL2D21			
PL3C23A	D9 D15	ZX1082	F27
PL105	D19	ZY1000 ZY1001	G55
PL255	D27	ZY1001 ZY1002	G55 G55
PL260	D31	1010	E3
PL1607	D37	1037	
PL5544	D37	1119	E3
PL5545	D43	1138	E3
PL5551A	F10	1163	E3
PL5557	D47	1164	E3
PL5559	D51	1177	E3
PL5684/C3JA	D55	1738	E3
PL5727	D59	1749A	E3
PL6574	D67	4152/02	H3
RI-22	C5	40616	H5
RI-22AAA	C13	40619	H5
RI-23	C19	40620	Н6
RI-42	C27	40713	H7
RI-43	C31	40714	Н8
TE1051b	H2	55305	Н9
TE1051C	H2	55306	H10
ZM1040	B5	55317	H11
		55318	H12
		55351	H13
		55357	H14

GAS-FILLED TUBES

- A SEGMENT INDICATOR TUBES
- **B** INDICATOR TUBES
- C DRY REED CONTACT UNITS
- **D** THYRATRONS
- E INDUSTRIAL RECTIFYING TUBES
- F IGNITRONS

- G HIGH-VOLTAGE RECTIFYING TUBES
- H ASSOCIATED ACCESSORIES
- K INDEX

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88,

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 7, rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 242 7400.

Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.

Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KØBENHAVN NV., Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. 12-2451 21.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Ramon House, 169 Backbay Reclamation, BOMBAY 400020, Tel. 295144.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Panim Bank Building, 2nd Fl., Jl. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 716 131, Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.

(IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tei. 794-4202. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11.

Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80,

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, 5600 PB EINDHOVEN, Tel. (040) 79 33 33.

New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 894-160.

Norway: NORSK A/S PHILIPS, Electronica Div., Sørkedalsveien 6, OSLO 3, Tel. 46 38 90,

Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 62 85 99.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.

Portugal: PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 25 38 811.

South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.

Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: A.B. ELCOMA, Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-488 22 11.

Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel, (02)-5631717,

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 SIIOM Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Avda Rondeau 1576, piso 5, MONTEVIDEO, Tel. 91 43 21,

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centró Colgate, CARACAS, Tel. 36 05 11.

For all other countries apply to: PHILIPS INDUSTRIES, Electronic Components and Materials Division, Marketing Communications, Building BA, 5600 MD EINDHOVEN, THE NETHERLANDS, Telex 35000, Tel. (040) 723142

© 1982 N.V. Philips' Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands