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in active preparation

The design and construction of LF.
amplifiers with transistors for radio,
television and radar receivers is the
subject of this work. The properties of
the transistors are assumed to be ex-
pressed in the admittance parameter
system. These parameters are considered
in detail as regards their dependence on
the d.c. operating point as well as
environmental conditions.

A survey of the theory of designing
transistor I.F. amplifiers is presented,
from which a practical design procedure
is developed making use of special
design charts. The book contains a large
number of these normalized design
charts which facilitate a rapid evaluation
of the transducer gain, the amplitude
response curve and the envelope delay
curve of the complete amplifier when
the number of transistors in the ampli-
fier, their biasing points and the types
of interstage networks have been chosen.
The design charts moreover present the
necessary information for constructing
single or double-tuned interstage networks
by a simple conversion of the normalized
variables to real variables.

A separate chapter deals with automatic
gain control in transistorized amplifiers
in relation to both forward and reversed
biased gain control methods.

The design procedures described are
elucidated by means of six fully worked-
out examples.
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The theory of analysis and design of
selective amplifiers as used in the LF.
parts of radio, television and radar
receivers, is here dealt with, especially
in relation to the application of tran-
sistors.

Use is made of a four-terminal network
representation of the transistors (or
vacuum tubes) which facilitates a mathe-
matical description of the performance
of the complete amplifier by means of
a single determinant. The properties of
the transistor are assumed to be ex-
pressed in the small signal admittance

— or hybrid — & parameters.

Single-stage amplifiers as well as multi-
stage amplifiers, with arbitrary types of
interstage or terminating networks are
treated in detail as regards stability,
power gain, amplitude response curve
and envelope delay curve: also neutra-
lization of the transistor internal feed-
back and problems associated with
spreads in transistor parameters.
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PREFACE

During recent years the transistor has achieved great importance for use as
amplifying element in bandpass amplifiers. Although the design of bandpass
amplifiers equipped with transistors follows the same lines as comparable
amplifiers equipped with electron tubes there are a number of differences
which justify the analysis of transistor bandpass amplifiers presented in this
book.

If both transistors and electron tubes are considered as four-terminal
networks with their inherent parameters the design of the bandpass amplifiers
differs mainly in the magnitudes of the parameters of both devices. It are
those differences which render the design of bandpass amplifiers equipped
with transistors — or, more specifically, amplifiers the interstage coupling
of which consists of single or double-tuned bandpass filters — more diffi-
cult than that of similar amplifiers equipped with electron tubes.

In the first place, the input- and output dampings of the transistor usually
load the tuned circuits of which the bandpass filters are composed to such
an extent that the resulting increase in bandwidth and loss in power gain are
by no means negligible. Secondly, no matter which electrode is chosen as the
common terminal, considerable feedback is present in the transistor, and
this also influences the bandwidth and the power gain, and possibly even the
tuning. Thirdly, like in all circuits with feedback, there is a risk of instability
or considerable asymmetry in the response curve when the circuit is on the
verge of becoming unstable. Special measures must therefore be taken to
ensure stable operation of the amplifier circuit.

The above aspects, here summarized in only a general form, must be taken
into account when designing bandpass amplifiers equipped with transistors.
The main design parameter is obviously the stability, the other parameters
being the adjacent channel selectivity (especially in I.F. amplifiers) and/or the
3 dB bandwidth and the powergain, whilst in some cases consideration must
also be given to the envelope delay curve. Since all these points depend more
or less on the method of aligning the amplifier, the tuning procedure must
also be investigated.

The points mentioned above also apply to tube amplifiers to some extent.
However, if modern penthodes are used and the signal frequency is not very
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high the influences of these effects on the performance of the amplifier are
much less than in amplifiers equipped with transistors.

The stage gain obtainable with a transistor amplifier is limited by the pro-
perties of the transistor with which the stage is equipped and by the gain
which is permissible in view of the stability requirements of the amplifier.
To obtain the specified overall gain of the amplifier with the smallest number
of stages, the amplifier must so be designed that each individual stage gives
the maximum obtainable gain. Moreover, stability must be ensured and
the requirements as to the 3 dB bandwidth and adjacent channel selectiv-
ity must be satisfied. As a rule, it will be necessary to seek a compromise
between power gain and 3 dB bandwidth and/or adjacent channel selectiv-
ity requirements.

As already referred to, in the analyses presented in this book, the transis-
tor will be considered as a four-terminal network specified by either the ad-
mittance or hybrid-h parameter matrices. Various aspects of this four-ter-
minal network representation are considered in Chapter 1.

To obtain a clear picture of the various design aspects and of their conse-
quences, in Chapter 2 a detailed discussion is given of a single-stage ampli-
fier. Although such an amplifier is of little practical use except for some
specialized cases, its analysis will be most helpful in defining a number of
quantities and concepts, the understanding of which is essential for the
investigation and design of more complex amplifier arrangements, to be
considered in later chapters.

The specialized design aspects of neutralization or unilateralization is
dealt with in Chapter 3.

Chapter 4 is devoted to a further analysis of the single-stage amplifier
with two single-tuned bandpass filters of Chapter 2. In this chapter especial-
ly the problem of optimization of power gain is considered.

The considerations of Chapters 2 and 4 regarding an amplifier stage with
two single-tuned bandpass filters are extended in Chapter 6 to an amplifier
with two double-tuned bandpass filters.

Chapters 5, 7, 8 and 9 are devoted to the analysis of general n-stage
amplifiers with single-tuned bandpass filters, double-tuned bandpass filters
or combinations of both. The mathematical formulation of the complete
amplifier design problem obtained facilitates the complete calculation of the
stability, the gain and the amplitude response and envelope delay curves.

Spreads in transistor parameters and their influences upon the amplifier
performance are considered in Chapter 11.

The last chapter deals with problems associated with the influences of prac-
tical taps on the tuned circuits of the performance of the amplifier. The taps
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on the tuned circuits, which are used as impedance transforming devices,
are considered as transformers which depart more or less from an ideal trans-
former.

The theory of transistor bandpass amplifiers presented in this book forms
the basis for a second book by the autor entitled “Designing Transistor I.F.
Amplifiers”” which comprises a complete description of the practical design
procedure of I.F. amplifiers. The latter book (Book II) contains a large num-
ber of “design charts” with which an optimum design of an I.F. amplifier
can be ascertained with great ease and accuracy. These design charts are cal-
culated making use of the theory presented the underlying volume.

This book is based on research carried out during the last years in the
Philips Semiconductor Application Laboratory at Nijmegen, Netherlands,
under the leadership of Mr. H.H. van Abbe.

The subject-matter of this book forms an extension of early unpublished
work carried out by Messrs. C. le Can and A. H. J. Nieveen van Dijkum
of this laboratory and of research carried out by Mr. C. J. McCluskey
of Philips Electrical Industries, Ltd, Ontario, Canada.

The author wishes to express his gratitude towards his colleagues for
the many stimulating discussions and the helpful suggestions. In this
respect, he especially wishes to mention Mr. A. H. J. Nieveen van Dijkum,
Mr. J.J. Rongen, and Mr. R. J. Nienhuis.

June 1964
The Author
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CHAPTER 1

REPRESENTATION OF TRANSISTORS
BY A FOUR-TERMINAL NETWORK

In order to facilitate the design of amplifiers equipped with transistors a
method must be found of representing the transistor. For bandpass ampli-
fiers which are to be considered in this book the method chosen must be
suitable for solving problems of stability, gain, amplitude response and phase
response of the amplifier. The amplifier characteristics mentioned depend,
as far as the transistors are concerned, only on the external electrical
properties of these active devices. To design or analyse such an amplifier
only the current and voltages at the input and output terminals of the tran-
sistor need thus be investigated. The transistor may therefore be represented
as a “black box” with a number of terminals.

1.1 The Transistor as a Four-Terminal Network

The transistor, which is basically a three-terminal device, may thus be consid-
ered as a “black box™ provided with two pairs of terminals as represented
in Fig. 1.1. One terminal of the transistor is used as a common terminal in
forming input and output pairs of terminals. Depending on which terminal
is taken as common, the transistor is said to be connected in either the com-
mon-base, the common-emitter or the common-collector configuration.

O -0
input output
terminals terminals
Fig. 1.1. The transistor as a four-ter-
© ° ° minal network

For our amplifier design or analysis we may therefore consider the tran-
sistor as a two-terminal pair network (or four-terminal network) to which the

results and methods of four-pole theory may be applied. Fig. 1.2 represent-
ing such a “black box™, gives the notation of instantaneous currents and

voltages. The arrows for the currents indicate positive directions, whereas
the arrows for the voltages point to terminals at which the voltage is posi-
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it 2
o—— o
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Fig. 1.2. “Black box” representation of a transistor showing the notation of the instan-
taneous currents and voltages. The arrows for the currents indicate positive direction and
the arrows for the voltages point to terminals at which the voltage is positive.

tive. This method of indicating the signs of currents and voltages will be
adopted throughout this book.

For this black box or fourpole, six different combinations of functions can
be written down which relate the quantities /1, V1, Iz and V> in various ways
depending on which of the two quantities is taken as the independent va-
riables and which as the dependent variables. Of these six combinations of
functions four combinations are of interest for our amplifier considerations.
These combinations are:

Vi = Zi(h, 1), I = Yi(V1, Va), ]
Ve = Zs(1, Iy), Iy = Yo(V1, Vo),
(1.1.1)
V1 - Hl(Il, Vz), 11 = Kl(Vl, IZ),
Iy = Hy(Ih, Va), Ve = Ka(V1, I2).

Fundamentally these four combinations of functions are all suited for
representing the transistor. Depending on the type of application of the
transistor, however, it may happen that a certain combination of functions
characterizes the transistor four-terminal network better than other com-
binations. Furthermore there might be a preference for a certain set of com-
binations because of the circuitry around the transistor. Both cases will be
dealt with in the following sections.

The relations between the voltages and currents at the input and output
pairs of terminals of the transistor are generally non-linear functions. In the
bandpass amplifiers under consideration, only small signal operation has to
be dealt with. The signals can then be considered as incremental variations of
the direct currents and voltages at the terminals and the increments can be
expressed by means of a Taylor series.

1.1.1 ADMITTANCE PARAMETER REPRESENTATION

To investigate the functions describing the electrical behaviour of the tran-
sistor as given by Eq. (1.1.1) in more detail we first consider the combination:
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L = Yy,(Vy, V2) )

I> = Yo(V1, Va). S (1.1.2)

Assuming that the increments 61 and 8V of V1 and V> respectively are
small, the increments 8/; and 81> of /1 and I» respectively can be expressed
in a Taylor series for two variables as:

SI — o1 SV, 4 o1 N 1 92 SV2 4 1 02 Vo2 1
Y5 e D 2aw C O pamE ¢
N 1an oh o M

20V1 0Vs b ? R

) ) (1.1.3)
oy ol 1 22, 1 02l
Bfs = — « $P L — 3P L - 2 Va2 4
2= T T e Y T s -
10l ol

e L SPr BV v s

SoF, &, Crusther

Since it is sufficient for our purpose to consider small variations of the
quantities /1, /2, V1 and V5, to represent the d.c. values at the chosen work-
ing point, the higher order terms in Eq. (1.1.3) may be disregarded:

sh— o sy, o0 sy
1 = OVl T =)= 0—172 2, 2
. (1.1.4)
st = 22 sy, 1 O gy S
= o ! oV o

The partial derivatives are thus proportionality constants relating the incre-
ments of /1 and I3 to those of V1 and V. The proportionality constants have
the dimensions of admittances and are dependent on the values of the direct
currents and voltages applied to the terminal pairs.

Furthermore, the currents in Eq. (1.1.4) are generally periodical functions
of time and hence, the proportionality constants are dependent on the com-
ponents constituting the current functions. Using a Fourier expansion these
periodical functions may, however, be expressed as a sum of components of
different frequencies. Considering the first current of the right hand side of
Eq. (1.1.4) we may put:
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o =
1V = Y ina(w) - exp (jrof) . (1.1.5)
bVl n=1

The Fourier coefficients 71,,(w) are functions of frequency only. Also 6¥; may
be expanded into a Fourier series as:

Vi= 3 vim (o) exp (juot) . (1.1.6)
—1

n

Hence the proportionality constant, which has the dimension of an admittan-
ce becomes:

0l; ® i1,n (w) B

i — ¥ sl 1.7
71 = 2 v @) El Y1 (@) (1.1.7)

The proportionality constant is thus a function of frequency and not of times.
It comprises an admittance y1,, for a signal component of frequency nw.
The other proportionality constants of Eq. (1.1.4) may be considered in an
analogous way.

By putting:
0f1 - o1 B
N7 = Yi1s Vs = )12,
(1.1.8)
ols - [J £
bVl —y21, sz _y225

and considering 811, 815, V1 and 8V as small alternating currents and volt-
ages superimposed on much larger direct currents and voltages, we may
write for Eq. (1.1.4):

i1 =yn v+ yizve,
(1.1.9)

iz = y21 V1 + Y22 V2 .

Here i and v denote the alternating currents and voltages of frequency w at
which y11, y12, y21 and ye22 are measured or specified.

The proportionality constants yi1, y12, y21 and yg2 are referred to as the
admittance parameters or y-parameters of the four-terminal network (tran-
sistor) under consideration. These admittance parameters, which are small-
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i H
o—= 1 ——
o ‘ l 22 |2

Fig. 1.3. Admittance parameter equivalent circuit. lyo%s
signal quantities, are shown to be dependent on the biasing point of the
transistor as well as on the frequency.

According to Eq. (1.1.9) the transistor can be represented by the equiva-
lent four-terminal network as shown in Fig. 1.3. It follows from this figure
and from Eq. (1.1.8) and (1.1.9) that:
y11 is the small-signal input admittance of the transistor four-terminal net-
work with the output terminals short-circuited (vs being zero of V> being
constant);

Yoo 1s the small-signal output admittance of the transistor four-terminal net-
work, with the input terminals short-circuited (v1 being zero);

y12 is the small-signal reverse transfer admittance of the transistor four-ter-
minal network, that is to say the ratio of the short-circuited input cur-
rent to the output voltage (v1 being zero);

o1 Isthe small-signal forward transfer admittance of the transistor four-ter-
minal network, that is to say the ratio of the short-circuited output cur-
rent to the input voltage (vs being zero).

We thus have:

i1 iz

yi1 = — s Yi2 = — s
V1 lye=0 U2 |py1=0

y (1.1.10)

i2 iz

yo1 = — s Yo2 = — .
V1 jpe=0 V2 |p=0 ,

The quantities y11, y12, y21 and y22 are generally complex in character, so
that each should be split up into a real and an imaginary part:

yi1 = g1 + jbi1 = g1 + jwCi, (1.1.11)
Y1z = g1z + jb12 = |y12| exp (j arg yi2), (1.1.12)
Y21 = go1 + jba1 = |ya1] exp (j arg ya1), (1.1.13)
Yoz = goa + jbas = goo + jwCaa. (1.1.14)

In practical amplifiers the parameters y11 and ye2 are always considered in
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connection with the tuned input and output circuits respectively. These tuned
circuits are so designed that the imaginary parts of y11 and ys2 are included
in the tuning susceptances. The real parts gi1 and g22 act as a damping on
the tuned circuits due to the transistor. This explains why y11 and ys2 have
been expressed in the form of (g + jb) in the above expressions.

The admittances y12 and yg; are transfer properties of the four-terminal
network, and can most conveniently be expressed in terms of modulus and
argument because their product must be evaluated in order to analyse the
amplifier.

1.1.2 HYBRID-H PARAMETER REPRESENTATION

Analogous to the method of obtaining the admittance parameters of the
transistor presented in the preceding subsection, we may derive from the
combinations of functions (see Eq. (1.1.1) and Fig. 1.2):

Vi = Hi(l, V2), (
‘ (1.1.15)
Iy = Hy(I1, V2) , \
the relations:
v1 = hi1 i1 + hiz2 vz,
(1.1.16)

o = ho1 i1 +ho2 va .

In these relations the quantities /11, A2, h21 and heg are the small signal

hybrid-h parameters or, shorter, h-parameters of the transistor which are defin-

ed as:

hi1 is the small-signal input impedance of the transistor four-terminal net-
work with the output terminals short-circuited (ve being zero);

hso is the small-signal output admittance of the transistor four-terminal
network with the input terminals open-circuited (i1 being zero);

hi2 is the small-signal reverse transfer voltage ratio of the transistor four-
terminal network which equals the ratio of the open-circuited input
voltage and the output voltage (i1 being zero);

h21 is the small-signal forward transfer current ratio which equals the ratio
of the short-circuited output current and the input current (v being

Zero).
Summarizing:

V1 l V1

gz = - > hip = — 5
1 |pa=0 V2 [i;=0

(1.1.17)

i2 i2

h21 = == s ]722 = =
11 |v2=0 V2 |i=0
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Ui i
o—nT 1 —0
! hyy hatls
v } haz |12
Fig. 1.4. Hybrid-H parameter equivalent v 1
circuit. . 22 .

Fig. 1.4 represents an equivalent circuit based on Eqs. (1.1.16) and (1.1.17).
Because of the arrangement of elements in this equivalent circuit the A-
matrix is often referred to as the series-parallel matrix.

The quantities /11, A2, h21 and hs thus depend on the biasing point of
the transistor as well as on the signal frequency. Moreover, they are gen-
erally complex in character so that each should be split up into a real and an
imaginary part:

hi1 = Re (h11) + j Im(h11), (1.1.18)
hiz = |hia| - exp(j - arg hi2), (1.1.19)
ho1 = |h21| - exp(j - arg h21), (1.1.20)
has = Re(hzs) -+ jIm (hss). (1.1.21)

The four /-parameters thus contain an impedance, an admittance and two
dimensionless quantities, which explains the term “hybrid” used in connec-
tion with these parameters.

1.1.3 IMPEDANCE PARAMETER PRESENTATION

Considering the combination of functions:

Vi = Z1 (I, I), /
j (1.1.22)
Vo = Zs (11, I2), \
from Eq. (1.1.1), we may obtain the relations:
v1 =z i + zZig dg, /
(1.1.23)
Vo = Zo1 i1 -} Zo22 ia . \

The quantities z11, z12, z21 and zzp represent the small-signal impedance para-
meters or z-parameters of the transistor and are defined as:
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it D
o | I, I Z2IVI 1 F O
] 22
222
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Fig. 1.5. Impedance parameter equivalent circuit.

v1 1
211 == > 212 = —— ’
I |ig=0 2 |ij=0
(1.1.24)
Vo V2
Z91 = — 5 Zgg = — .
i |is=0 2 |ij=0

Fig. 1.5 shows and equivalent circuit based on the relations (1.1.23) and
(1.1.24).

1.1.4 HYBRID-K PARAMETERS 1)

From the combination of functions:

L = Ku(Vy, Ip) ,
(1.1.25)
Ve = Ko(V1, I),

from Eq. (1.1.1) it follows:

i1 =knv + kiziz,
(1.1.26)

vy = ko1 v1 + koo iz .

Here the quantities k11, k12, ko1 and koo are the hybrid-k parameters or,
shorter, k-parameters of the transistor which are defined as:

. . |
11 n
k11 =— ; kiz = — ,
V1 |ip=0 i2 |y;=0
(1.1.27)
|
V2 V2
k= — s kos = —
V1 |ig=0 2 lpy3=0

In Fig. 1.6 an equivalent circuit based on these relations is shown. Because
of the arrangement of elements in the equivalent circuit the k-matrix is re-
ferred to as the parallel-series matrix.

1) Often the symbol g is used for this set of parameters. In this book we prefer to use the
symbol k because the symbol g is employed to denote conductances.
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Fig. 1.6. Hybrid-K parameter equivalent circuit.

1.1.5 DEPENDENCE OF TRANSISTOR PARAMETERS ON TEMPERATURE

In the preceding sub-sections we have considered the transistor as a black
box with two pairs of terminals, containing an unspecified electrical network
and we have derived relations describing what happens when currents and
voltages are applied to the terminals. Generalizing, it has been accepted that
for small signals the relations are linear functions with parameters dependent
on the biasing point and on frequency. So far it has not been necessary
to consider the contents of the black box in more detail. Inside the black box,
however, there is the transistor material in which the electrical phenomena
are strongly dependent on temperature.

Hence, the electrical parameters measured at the terminals are also more
or less dependent on this temperature. In Book 11, Chapter I curves are given
showing the dependency of the admittance parameters of a certain type of
transistor on junction temperature.

1.2 Characteristic Matrices

As follows from Section 1.1 a transistor may be represented by the admittan-
ce matrix, the impedance matrix, the series-parallel matrix or the parallel-
series matrix. In Figs. 1.3, 1.5, 1.4 and 1.6 four-terminal network equivalent
circuits are shown for the various matrices. The choice of matrix to
actually represent the transistor depends upon which equivalent fourpole
forms the best equivalent representation of the electrical behaviour of the
transistor. This might become apparent from the following considerations:

A transistor suitable for use in high-frequency bandpass amplifiers and
connected in either the common base or the common emitter configuration
will generally have an output impedance which is larger than or in the same
order of magnitude as that of the tuned circuit connected to its output ter-
minals. The output side of such a transistor can therefore best be character-
ized by a current source in parallel with an admittance (the output self-admit-
tance) as is the case in the equivalent fourpole circuits for the y- and s-ma-
trices.
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Considering the input side of a transistor it follows that it may either be
“voltage-driven’ or “current-driven’ depending on the relative magnitudes
of the input impedance Z; of the transistor and the internal impedance Zs of
the driving source. If the transistor is said to be current-driven the matrix
most suitable for this case is the A-matrix in which the /21 parameter then re-
lates the current through the load and the current determined by the driving
source. If, on the other hand, Z; < Z;, the transistor is voltage-driven and the
most representative matrix is the y-matrix.

It thus follows that, depending on the electrical behaviour of the transistor,
the 21 parameter of a certain matrix gives a better description of the proper-
ties of the complete transistor than the 21 parameters of other matrices do.
The matrix that gives the best description is called the characteristic matrix
(see Bibliography [1.6] and [1.7]).

Taking into account the considerations regarding the output of transistors
suitable for use in high-frequency bandpass amplifiers, the characteristic ma-
trix will either be the y-matrix or the A-matrix. Whether the y-matrix or the
h-matrix is characteristic depends on the properties of the input side of the
transistor which in turn depend on the type of transistor, the frequency of
operation, the transistor configuration (common-base or common-emitter)
and on the circuitry at the input side.

Because no general conclusions can be drawn with respect to these points
both matrices will be considered in this book.

1.3 The Y- and H-Matrices of the Transistor and the External Circuitry

In bandpass amplifiers tuned circuits or combinations thereof are used as
coupling elements between the various transistors. In most cases the tran-
sistor input and output terminals are connected to taps on these tuned cir-
cuits as shown in Figs. 1.7 a and b. Assuming that the inductive or capaci-
tive taps on the tuned circuits behave as ideal transformers, the tuned cir-
cuits are effectively in parallel with the transistor terminals. In these cases it
is very convenient to express the properties of transistors as well as those of
the tuned circuits in terms of admittance parameters. The total admittance
of the tuned circuit and the transistor admittances connected in parallel can
then be evaluated by simply adding the individual admittances, taking into
account the proper transformer ratios.

In practical amplifiers the output terminals of the transistors will in most
cases be connected directly across the whole circuit so that no tap is neces-
sary at all. If, however, a tap is required the tapping ratio will be such that it
can easily be realized. At the input side of the transistor, however, large
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Fig. 1.7. In practical amplifiers the transistor input- and output terminals are connected to
taps on the tuned circuits which form (part of) the coupling element between the various
stages of the amplifier. Fig. 1.7.a shows an inductive tap on the tuned circuits whereas
Fig. 1.7.b shows the capacitive method of tapping.

tapping ratios are usually required because of the small input impedance of
the transistors or for reasons of stability. As will be considered in detail in
Chapter XII the required tapping ratios can easily be realized at rather low
frequencies. At higher frequencies, however, considerable differences be-
tween the behaviour of such a tap and that of an ideal transformer may be
found. These differences are due to the “spread-inductance” or “spread-ca-
pacitance’ (see Chapter X1I) of the tap and the heavy load presented to it by
the transistor. In these cases it will often prove to be advantageous to use a
series-tuned circuit at the input side of the transistor (provided the real part
of the input impedance is sufficiently low to reach the required quality factor
of the tuned circuit).

When a series-tuned circuit is used at the input side of the transistor (and
a parallel-tuned circuit at the output side) it is convenient to express the pro-
perties of the transistors in terms of the series-parallel matrix (h-parameters).

Then the impedances of the transistor can easily be combined with those of
the tuned circuits. If the #z-matrix is characteristic of the transistor to be used in

the amplifier (see Section 1.3), application of a series-tuned input circuit is
especially advantageous.
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1.4 Further Considerations on the Choice of a Fourpole Parameter System
for the Transistor

Apart from considerations regarding the matrix which is characteristic for
the transistor and the matrix most suitable for the transistor in connection
with its external circuitry, there are other aspects which might also influence
the choice of a particular matrix. One of these aspects is that the fourpole
parameters chosen to characterize the transistor must be measured on the
device itself using a not too complicated measuring gear. The most suitable
matrix in this respect is the admittance matrix because only short-circuits
need to be provided at certain terminals to measure these parameters.
Such short-circuits are easier to realize than the open circuits required at
certain terminals for measuring other matrix parameters, see Bibliography
[1.7] and [1.8].

Another aspect of the choice of a parameter system is its relation to the
complete electrical equivalent circuit of the transistor derived from its phys-
ical operation. The parameters of the matrix chosen should preferably de-
fine single elements of the equivalent circuit as accurately as possible. This
point will, however, not be dealt with further, because electrical equivalent
circuits are considered to be beyond the scope of this book (see Bibliography

[1.8]).

1.5. Transistor Parameter Nomenclature

At presentitis customary to use for transistors the symbols according to the
LLE.E.E.-standards, see Bibliography [1.9]. These symbols include an indica-
tion as to which of the three transistor terminals is common to both the in-
put and output circuits. This may be either the base, the emitter or the collec-
tor. The indication is given by using the letter b, e or ¢ respectively as the
second suffix in the symbol denoting a given fourpole parameter. The first
suffix of these symbols indicates which of the fourpole parameters is re-
ferred to, the input, reverse transfer, forward transfer and output parameters
being denoted by the suffixes 7, r, f'and o respectively. The symbol y;, thus
denotes the input admittance parameter of a transistor in common emitter
configuration, and so forth.

The table below gives a survey of the notations using y- and /-parameters.

Instead of using these symbols in this book, preference is given to the more
general symbols y11, y12, y21 and yss or i1, hiz, he1 and hze. In so doing, the
results of the analyses are applicable to transistors irrespective of which
terminal is chosen as the common one. In fact, these results may even be
applied to circuits using electron tubes.
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SYMBOLS OF TRANSISTOR PARAMETERS ACCORDING TO THE L.E.E.E.-
STANDARDS

admittance parameters common| common common general

base emitter collector symbols
input parameter YVib Yie Yie yi1
reverse transfer parameter Yro Yre Yre Y1z
forward transfer parameter Yfb Yre Yfe yo1
output parameter Yob Yoe Yoc Yoz

hybrid h-parameters

input parameter hip hie hic h11
reverse transfer parameter hrp hre hre hi2
forward transfer parameter hgp hye hye h21
output parameter hov hoe hoc ha2

1.6 Relations between the Fourpole Parameters of a Transistor in the Differ-
ent Configurations

A transistor may be used in an amplifier either in common base, common
emitter or common collector configuration. Obviously, if a set of fourpole
parameters is specified for any of these configurations, the parameters for
the other configurations can be calculated.

1.6.1 ADMITTANCE PARAMETERS

A transistor is basically a three-terminal device for which, according to
Appendix I, the indefinite admittance matrix can be written as:

| yu oy s
|
B
Using the parameter nomenclature of the preceding section and the nota-
tion of Fig. 1.8 we may write for Eq. (1.6.1):

21 Y22 Y23 (1.6.1)
31 32 ys3 |

{i Yie = Yic Yre Yre ”
‘ Yre Yob = Yoe Yrv ‘ (1.6.2)
) Yre Yro Yib = Yoc
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Fig. 1.8. The transistor as a three-terminal network.

An indefinite admittance matrix has the property that each row and each
column adds to zero (see Appendix I). Applying this property to Eq. (1.6.2)
the parameters of either of the three transistor configurations can be related
to those of the others. Table 1.1 presents the relationships between these
parameters interrelations.

TABLE 1.1 ADMITTANCE PARAMETER RELATIONSHIPS

COMMON BASE

COMMON EMITTER

COMMON COLL.

b e e

yiv Yie = 2y Yie = Zyp
Yi Yib = Zye Yie Yie = Yie

Yiv = Yoc Yie = Yic Yie

Yrb yre = —(ro + Yob) yre = —(iv + ysv)
»r yro = —(re + Yoe) Vre yre = —(yie + yre)

yro = —(¥se + Yoc) yre = —(Yic + Yre) Yre

Yiv Yre = —r + Yob) yre = —(iv + yrv)
yr Yo = —(se + Yoe) Ve e = —(ie + yre)

Yo = —(re + Yoc) Yre = —ic + Ysc) Yfe

Yob Yoe = Yob Yoc = Yiv
Yo Yob = Yoe Yoe Yoc = Zye

Yoo = Zye Yoe = Zye¢ Yoc

Ay, = yib Yob — YroVo

A.Ve = Yie Yoe — Yre Vfe

AJ’c = Yic Yoc — Yrec Yfe

Zyv=yw~+yro+Yro+yo»

Zye=Yie+Yre+Yre+Yoe

Z‘yc = Yie+Yre +yfc “+Yoe

1.6.2 HYBRID H-PARAMETERS

The relationships between the A-parameters for a transistor in the three
transistor configurations can be obtained by calculating the required set of
parameters of another ( given) set of parameters using the equations (see Fig.
1.9): for the common base configuraton:
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Fig. 1.9. Various currents and voltages at the three terminals of a transistor. Taking into
account these currents and voltages the parameters of either the common base, common
emitter or common collector configuration can be calculated if these parameters for one

configuration are given.

Veb = hip * Te + hro* Vep , z

ic = hyp +ie + hov* v,
for the common emitter configuration:

Ve = hie * Iy + hre * Vee

i :hfe'ib + hoe " Vee
and for the common collector configuration:

Ve = hic* iy + hre* Vec, )

ie = hfe iy + hoc* Vec . s
Furthermore:

ip + ic + I = 0,

and:

Vpe + Vep + Vee = 0.

The results of these calculations are compiled in Table 1.2.

(1.6.3)

(1.6.4)

(1.6.5)

(1.6.6)

(1.6.7)

1.7 Transistor Fourpole Parameters and Narrow Band Amplifier Analysis

In the preceding sections it has been shown that the fourpole parameters of
a transistor are dependent on the frequency of operation. The bandpass ampli-
fiers with relatively narrow bandwidth as analyzed in this book have frequency
characteristics which are mainly controlled by tuned circuits external to the
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TABLE 1.2 HYBRID-H PARAMETER RELATIONSHIPS
COMMON BASE COMMON EMITTER | COMMON COLLECT.
b e c
h hi
hiv hie = }%: hic = FI;
hi
hi hip = 1’_;‘2 hie hic = hie
hi
hipy = }%z hie = hic hic
- Ahpy—hrp - 1+hgp
hrb hre = T hrc — Hy
Ahe—h
hy hry = —% hre hre = 1 — hye
1+h
hrb = —_']_{c—fc hre =1- hrc hrc
hﬂ;—l—Ahb - hep— 1
hyv hfe = — H hfe = o
h 4h
b | k=Tl g, he = —(1+hge)
e
hre— 1
hpp = = hie = —(1 + hye) hye
He
ho h
hob hoe = H: hoc == ;;:
ho hop = i hoe hoc = hoe
H,
h
hnb = H_a: hue = hac hoc

dhy = hiv hoo — hrv hsy

Adhe = hte hoe — hre hfe

Ahc — hic hoc — hre hfc

Hy = I+hpp—hro+4hy

H; = 1+hfe'—hre+Ahe

He=1 +Ilfc_hrc+Ahc

transistors. The variation with frequency of the transistor parameters is of
minor significance in determining the performance of the amplifier. There-
fore it will be assumed that the input and output parameters of the transis-
tors are constant over the frequency range in which the amplifier gain is
significant in so far as their dampings and capacitances are concerned. More-
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over, the transfer parameters are assumed to be constant over this frequency
range as far as their modulus and argument are concerned. Under these
assumptions the amplifier analysis can be carried out in terms of circuit pa-
rameter values at the centre frequency.

1.8 General Parameter Notation

At some places in the following chapters it will be desirable not to restrict the
amplifier analysis to a particular parameter system. In these cases a general
notation will be used as shown in Eq. (1.8.1):

ai1 = yuf1 + y12B2,
(1.8.1)

a12 = y21P11 + y22P2 .

In these equations the general symbols y refer to the parameters of either
the y, z, h or k-matrix equations. Furthermore, the symbols 1, and fs
denote the independent variables and a; and as the dependent variables of
the general matrix equation.
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CHAPTER 2

THE VARIOUS ASPECTS OF BANDPASS
AMPLIFIER DESIGN

This chapter deals with definitions and the interpretation of those terms and
concepts which are essential for the design of transistorized bandpass
amplifiers.

The general survey in the preface showed that when designing band-
pass amplifiers a large number of problems must be faced. Of these pro-
blems, the most important is that of achieving sufficient protection against
self-oscillation of the amplifier. In this chapter the investigation of this stabil-
ity problem is confined to the comparatively simple case of a single-stage
amplifier with single-tuned circuits, both at the input and at the output termi-
nals. This case is dealt with in great detail, and a number of concepts regard-
ing the stability problem are explained. This will facilitate a general under-
standing of this problem, which will prove to be of great advantage when
dealing with similar problems in the more complex amplifiers to be dis-
cussed later.

Other problems encountered in bandpass amplifier design are those of
gain, amplitude response and phase response. Since in the amplifiers dealt
with there is a certain amount of feedback, that is to say a return of a portion
of the amplifier output power to the input, the method of alignment must also
be investigated in detail, since in such an amplifier the tuning of one resonant
circuit influences the properties of all other circuits.

In most treatises on bandpass amplifiers the problem of how to align the
amplifier is not discussed. It will become clear from the analyses given below
that this omission is due to the fact that in these treatises it is generally
assumed that the amplifiers are tuned according to one particular method,
which we will refer to as method A.

There are, however two other methods of aligning an amplifier, which
yield well-defined results. As a matter of fact, these methods — to be termed
methods B and C — offer distinct advantages over method A, as regards both
the performance of the amplifier and ease of alignment.

Because the method of alignment has considerable influence on the fre-
quency-dependent properties of the tuned circuits of the amplifier, its ampli-
tude and phase response must be investigated for each of these three methods
of alignment.
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Here again, these points are analyzed in detail for a single-stage amplifier.
The various problems present themselves most fundamentally for such an
amplifier, so that a clear picture is easily obtained. The following analysis
may thus be considered as an introduction to the various aspects of practical
bandpass amplifier design as applied to the analyses of more complex ampli-
fiers.

As already referred to in Chapter 1, in order to analyze the amplifiers, the
transistors and their associated circuitry will be expressed in an “Y-matrix
environment™!) as well as an “ H-matrix environment”’. Both matrix environ-
ments will prove to be very useful in analyzing practical amplifier configu-
rations. To keep the analyses as practical as possible, both systems will be
treated separately. The calculation based on Y-matrices will be carried out
first. For the case of H-matrices the results of the calculations are derived
by means of analogies.

2.1 Single-Stage Amplifier with Single-Tuned Circuits
2.1.1 GENERAL AMPLIFIER CIRCUIT

To analyze a single-stage amplifier (containing one active element) the pro-
perties of the active element as well as those of the passive elements can,
according to Chapter 1, be expressed using either the Y, Z, H or K-matrices.
In Fig. 2.1 the four basic matrices of the single-stage amplifier are shown.

The analysis can be based on each of the four matrices of the amplifier. For
practical reasons, however, only the Y- and H-environments will be con-
sidered in detail.

2.1.2 AMPLIFIER CIRCUIT BASED ON ADMITTANCE PARAMETERS

Fig. 2.2 shows a schematic circuit diagram of a single-stage amplifier com-
prising two single-tuned circuits. This amplifier circuit can most readily be
analyzed by means of the admittance matrix system. The current source
which drives the amplifier is assumed to have an admittance Y, and the
amplifier is loaded by an admittance Yz. Usually, the latter admittance is
formed by the input admittance of a following amplifier stage.

For the sake of simplicity the tappings on the tuned circuits, which are
necessary in a practical amplifier for the impedance transformations, have
been omitted.

The admittance of the tuned circuit formed by Li*, C1* and G1* will be
denoted by Y1*, and that of the tuned circuit formed by L»*, C2* and G2* by
Yo*.

1) The term “matrix environment” is used to express that the equivalent four-termi-
nal network of the transistor together with the circuitry at its in out- and output
side are arrranged in a manner inherent to the respective matrix.
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Fig. 2.1. Basic matrix environments of the single-stage amplifier. The respective environ-

ments will be referred to as

a. the Y-matrix environment (parallel-parallel matrix),

b. the Z-matrix environment (series-series matrix),
c. the H-matrix environment (series-parallel matrix),
d. the K-matrix environment (parallel-series matrix).

The following relations hold for the circuit of Fig. 2.2:

i1 = (Ys + Y1* + yu)v1 + yieve, |
is = yo1v1 + (Yoo + Yo* + Yr)ve. S

By putting

and

Y1 =Ys+ Yi* + y11,
Yo = yoo + Yo* + Y1,

(2.1.1)

g 2.1.2)
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Eq. (2.1.1) is simplified to:

i1 = Y101 + y1avs,
(2.1.3)
iz = y21v1 + Yava.

Here Y1 and Y: defined by Eq. (2.1.2) represent the admittances of single-
tuned circuits. According to Appendix II:
Y =G(1 + jx), (2.1.4)

in which x represents the normalized detuning of the circuit with respect to
resonant frequency (at which x = 0) and equals

x = BO. 2.1.5)

In this expression f is the relative detuning of the circuit with respect to the
resonant frequency fo:

B = I ——JE) (2.1.6)

h f
and Q is the quality factor of the circuit. With Eq.(2.1.4), Eq.(2.1.3) becomes:

ih = Gi(l + jX1)’U1 -+ y12v2,

Fig. 2.2. Schematic diagram of a single-stage amplifier with single-tuned circuits at the
input and output terminals. The active fourpole represents the transistor or electron
tube; Ys denotes the admittance of the current source which drives the amplifier, and
Y1 the load admittance of the amplifier.

(2.1.7)
iz = ya1v1 + Ga(l + jxo)ve,
or, using a matrix notation:
active fourpole
=2 3
Om= =0 0= =0 Omm= O —0== =0
Y2 1o
%y G ¢ ¢ lE N
i Yoz
—Om O O == O===0r O===0
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i Gi(1 + jx1) Y12 v1

: (2.1.8)
iz o1 Ga(1 + jx2) Vs |

The determinant of Eq. (2.1.8), to be denoted by 4, can be simplified to:

1+ jx1 meJ();zl
2 = ity el (2.1.9)
1 1+ jxo

The determinant in Eq. (2.1.9) will further be referred to as the reduced
determinant 8, so:

1+ jX1 me)ém
8 = = (2.1.10)
1 1+ jxe

Because both y12 and ys; are generally complex quantities, it will be useful
to introduce:
_ |yreyz]
Y = Gl Gz B

2.1.11)

and:
0, = arg y12 + arg yo1. (2.1.12)
The quantities 7" and @ will be termed the regeneration coefficient and the

regeneration phase angle of the amplifier stage respectively. The quantity
8y, can now be written:

1+ jx1 Ty exp (jOy)
Sy = (2.1.13)
I 1 1+ jX2 ‘
Thus Eq. (2.1.8) becomes:
i1 v1 ’
= Gy~ By - (2.1.14)
ig ' Vo

If the output terminals of the circuit according to Fig. 2.2 are open cir-
cuited (the load of the amplifier is already accounted for in Y3), iz = 0.
Since 7 is also equal to the source current is, the output voltage may,
according to Eqs. (2.1.8) to (2.1.13) be expressed by:
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Yyaiis
G]_Gz € Sy

Or, since the ratio wve/is represents the transimpedance of the complete
amplifier:

Vg =

(2.1.15)

yoar 1
Zy = — — 2.1.16
T T GG &y talk)

2.1.3 GENERAL AMPLIFIER CIRCUIT BASED ON HYBRID H-PARAMETERS

Fig. 2.3 shows a schematic circuit diagram of a single-stage amplifier with a
series tuned circuit at its input side and a parallel tuned circuit at its output
side. This amplifier circuit can most easily be analyzed using the A-parameter
system.

The amplifier is driven from a voltage source with source impedance Zs and
is loaded by a load of admittance Y. The impedance of the tuned circuit
formed by Li1* ,C1* and Ri* will be denoted by Z1* and that of the tuned
circuit formed by Ls*, Co* and Ga* by Ya*.

By putting:
Zy=2Zs+ Z1* + hu, _—
Yo = ho + Yo* + Y1, h
the following relations are obtained for this circuit:
v1 = Z1 i1 + hiave, @.118)
iz = h21 11 + Yovs .
Considering that:
Z1 = Ri(1 + jx1),
and J ? (2.1.19)
Y = Go(1 + jx2), g
Ul i_ ______________ 1: v
o000 —] - : . —0--0- OO —0
Zs R* L* la?? : by !
i 1
% % h2;2 CS‘T_ L || %
: V2 i

active fourpole

Fig. 2.3. Schematic diagram of a single-stage amplifier with a series-tuned resonant circuit
at the input side and a parallel-tuned resonant circuit at the output side. The amplifier is
driven from a voltage source with source impedance Zs and loaded by an admittance Yr.
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in which :

R1 = Re(Zs) + Ri* + Re(hn), (2.1.20)
and

G2 = Re(hs2) + Go* + Re(Y1), (2.1.21)

Eq. (2.1.18) can be written, in analogy with the preceding sub-section:

1 iz
= R1G3 - &y * . (2.1.22)

] il Vo

The reduced determinant 8; equals:

1+ jx1 Th exp (j@h)

I 5 (2.1.23)
| 1 1 —I— jX2
in which:
|h12 * hail
Tn = G, (2.1.24)
and
Oy = arg his + arg hoi. (2.1.25)

According to Egs. (2.1.22) to 2.1.25) the output voltage of the amplifier
of Fig. 2.3 becomes, provided the output terminals are open-circuited:

/’l21vs 1

vy = — — 2.1.26
? RG> 8y ( )
The forward voltage gain of the amplifier then follows from:
h 11
K- ) (2.1.27)

'U_S——RIGZ'S—I;.

2.1.4 THE TRANSFER FUNCTION OF THE AMPLIFIER

The forward transfer impedance, or transimpedance, of the amplifier circuit
of Fig. 2.2 as derived in sub-section 2.1.2 and the forward transfer voltage
ratio, or voltage gain, of the amplifier circuit of Fig. 2.3 as derived in sub-
section 2.1.3 are important quantities. Investigation of these quantities
leads to conclusions regarding the stability, the gain and the frequency

1) The symbol K; for forward voltage transfer ratio (voltage gain) is chosen as analogous
to the symbol Z; which denotes the forward transfer impedance or transimpedance.
Similarly, ¥; denotes the transadmittance and H; denotes the current gain of an am-
plifying system.
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response of the amplifier. These points are dealt with in succession in the
following sections.

2.2 Stability

The problem of self-oscillations occurring in bandpass amplifiers is often
encountered by designers. These oscillations are always due to some form of
feedback from the output to the input. This feedback may arise from a com-
mon power supply; from coupling caused by “earth currents” when the
chassis does not constitute an ideal mass; from stray capacitance and mutual
inductance linkages between interstage coupling elements; or from reverse
transmission occurring within the transistor or electron tube.

The latter cause of feedback is the most serious because, unlike the other
causes, it cannot be avoided or reduced by careful layout of the amplifier;
the feedback which exists within transistors or electron tubes being a proper-
ty of the device itself. There is no possibility of remedying it simply by de-
coupling or shielding, so that steps must be taken in advance. In all ampli-
fier designs it is therefore necessary to investigate the internal feedback of
the transistors or electron tubes that are to be used, and to ascertain to
what extent this internal feedback may affect the stability of the amplifier.
The problem of securing satisfactory stable operation of the amplifier is of
prime importance; an amplifier which is barely stable, that is to say not suffi-
ciently stable, is useless.

2.2.1 STABILITY OF SINGLE-STAGE AMPLIFIERS

In a single-stage amplifier as discussed in Section 2.2 the output voltage vs
becomes infinite for a finite value of is or vs if the determinant & becomes
zero (cf. Eq. (2.1.15) and (2.1.26)).1) The amplifier is then on the verge of
oscillation. The condition 8 = 0 will therefore be considered as the boundary
of stability of the amplifier.

It may thus be written that the amplifier is at the boundary of stability
when

1+ix T exp (jO)
5 — e R @2.2.1)

1 1 + jxs
By writing out the determinant, the quantity & can be written:

8 = (1 + jx1)(1 + jx2) — T exp (jO). 2.2.2)

1) Provided Ri, G1 and G2 (see Eqgs. (2.1.15) and (2.1.26)) have positive values (R1>0,
G1 > 0 and G2 > 0).
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This quantity is obviously composed of the two vectors

(1 + jx)(d + jxo),
and
T exp (jO),

so that it can be ascertained graphically by constructing these two vectors
and determining their difference. This procedure, which gives a clear indi-
cation of the stability properties of the amplifier, will be illustrated by dis-
cussing in succession single-stage amplifiers with two identical synchronously
tuned resonant circuits and with non-identical resonant circuits.

2.2.2 SINGLE-STAGE AMPLIFIER WITH TWO IDENTICAL SYNCHRONOUSLY
TUNED RESONANT CIRCUITS

In the case of x1 = xg = x the first term of Eq. (2.2.2) becomes:
(14jo2=1—x24 j2x. (2.2.3)

It can be shown that the locus of (1 + jx)2, plotted in the complex plane, is a
parabola with its focus at the origin and a directrix perpendicular to the
real (horizontal) axis in the point (2.0). Fig. 2.4 shows such a parabola.

=25 i {l))

Jjé
x=15 3
2 x=1
Jji x=05

A\

n 2—
| Re (7+jx,)(1+j)% )}
J1 x=-0.5

x=-1

82

xX=-2 _j 4

x=-25 =5

Fig. 2.4. Parabola representing (1 + jx)2, and vector T, illustrating how & can be deter-
mined.
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x=1
.
&
jil Ak=05
@I
@ x=0
-6 5 4 -3 -2 - T 2
@3‘ Tg3
-1 x=-0.5

%=-25 -5

Fig. 2.5. Parabola representing (1 + jx)2, and several vectors Ty applicable to three ampli-
fiers with particular values of @ on the boundary of stability.

The vector T'is now drawn for an arbitrary angle 0, and is constructed for
the normalized frequencies x = — 0.5 and x = — 2.0.

It follows from Eq. (2.2.1) as well as from Fig. 2.4 that the boundary of
stability of the amplifier will be reached when the top of the vector T coin-
cides with the locus of (1 4 jx)2. This value of 7" will be denoted by Tj.
By way of example three different values of T, have been plotted in Fig. 2.5
for different angles 6.

The locus of Ty as a function of @ thus represents the boundary of stabili-
ty. In following chapters dealing with more complicated amplifiers, the ad-
vantage of defining the stability boundary as the locus of T, will become
clear.

Egs. (2.1.15) and (2.1.16) reveal that at a constant magnitude of the
source current is the output voltage ve of the amplifier increases as 8 de-
creases. At 8 = 0, vy becomes infinitely large. The region of the complex
plane of Fig. 2.4 for which 8 > 0 thus corresponds to the region of stable
operation of the amplifier. In the case under consideration this is the region
within the parabola for which 7 is smaller than 7.

Since at § = 0, thatisat 7' = Ty, the amplifier is at the boundary of stabili-
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ty, the region outside the parabola corresponds to the region of unstable
operation of the amplifier; in this region 8§ << 0 or 7' > 7. Since amplifiers
must necessarily be stable, they must be so designed that T lies within the
parabola.

By means of Eq. (2.2.2) it is possible to express Ty in terms of @. On the
boundary of stability 6 = 0, whence:

(1 + Jer)(1 + jxa) — Ty exp (j6) = 0. (2.2.4)

Putting x; = x2 = x and separating the real and the imaginary parts of
this expression gives:

1—x2=Tycos O, 2

and (2.2.5)
2x =Ty sin O, s
whence, by eliminating x:
2
= 2.2:6
! (1 4 cos 0) ( )
from which it follows that an amplifier is stable, provided:
T < —, 2.2.1
(1 + cos O) ( )

2.2.3 SINGLE-STAGE AMPLIFIER WITH TWO NON-IDENTICAL RESONANT
CIRCUITS

In an amplifier there may be differences between the tuned circuits either
because they are not tuned to the same frequency or because they have
different quality factors, or for both reasons. In the single-stage amplifier
under consideration this results in x; and xp having different values (x =
= BQ). In discussing this case distinction will be made between the input
and output circuits having different quality factors and/or different resonant
frequencies.

2.2.3.1 Different Quality Factors, Equal Resonant Frequencies

‘When the quality factor Q1 of the input circuit differs from the quality factor
Q- of the output circuit, this may be expressed by (assuming « to differ from
unity):

aQ1 = Qz, (2.2.8)

whence:

(I +jBON(1 + jBQ2) = 1 —a(BQ1)? + jBO:(1 + a).
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By putting Q1 = x1 and fQ2 = X2, this expression becomes:
(I +jx)d +jx2) =1 + jx 4+ jax1) =1 —ax12 + jxi(1 + a). (2.2.9)

The locus of Eq. (2.2.9) is again a parabola; its vertex coincides with that of
the parabola representing (1-jx)2. Both theselocihave been plottted in Fig. 2.6.
For the parabola representing Eq. (2.2.9), ais given a value of either 0.5 or 2.
This curve intersects the imaginary axis at the points (0, = j(1 + a@)/}/a).
For a # 1 the curve thus lies outside the parabola representing
(1 -+ jx)2, except at the vertex where the two curves coincide. Thisimplies that
if a is given a value differing from unity, the vector T exp (j@) remaining
constant, the stability will slightly increase.

2.2.3.2 Different Resonant Frequencies, Equal Quality Factors

If the resonant frequency of the input and that of the output circuit of the
single-stage amplifier differ, this may be expressed by putting:

- = (14x)*

(H4x) (Hjax))
(a=05 or2) j5

- -j5

Fig. 2.6. Loci of Eq. (2.2.9) with @ = 0.5 or a = 2 (fully drawn curve) and of the function
(1 + jx)? (broken curve). At values of a differing from unity the former curve is always
located outside the latter curve.
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b
Bz = 1+ ik (2.2.10)

whence:
(1 4+ jBrO)1 + jB2Q) = 1 — (B1Q)> — B10b + j(21Q + b).
By putting 10 = x1, this expression becomes:
A+je){l +jo1+ b))} =1 —x12—x1b + j@2x1 + b). (2.2.11)

The locus of Eq. (2.2.11) is also a parabola lying outside the parabola
representing (1 4 jx)2. It intersects the positive real axis in the point
((1 4 b2/4), 0) and the imaginary axis in the points (0, 4-j}/62 + 4). Two of
these loci, namely those for b = +0.5 and for & = +1.0, have been plotted
in Fig. 2.7. It is seen that due to the tuning frequencies of the circuits being

(i) {rx+0)
b=%1 J6

i bz #05

Fig. 2.7. Loci of Eq. (2.2.11) with b = + 0.5 and b = -+ 1.0. These loci lie outside the
parabola (1 +- jx)2, which implies that for the same value of T the stability of the amplifier
is increased if b has a value other than zero.
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different, the stability of the amplifier has slightly increased in this case also.
The greater the difference in tuning frequencies the greater will be the in-
crease in stability.

The case of the resonant frequencies of the two tuned circuits being differ-
ent is of particular importance in connection with the method of aligning
the amplifier, as will be shown in Section 2.3.

2.2.3.3 Different Quality Factors, Different Resonant Frequencies

When both the quality factors and the resonant frequencies of the tuned
circuits of the single-stage amplifier differ, and the same notation is used as
before, it may be written:

(I 4 je){1 + jlax1 + b)} = 1 —ax12 —bx1 + j{(a + Dx1 + b}. (2.2.12)

As shown in sub-sections 2.2.3.1 and 2.2.3.2 the curve representing
(1 + jx1)(1 4 jx2) will be symmetrical with respect to the real axis if either
only the quality factors or only the resonant frequencies differ. When,
however, both the quality factors and the resonant frequencies differ the
curve, representing Eq. (2.2.12), will be asymmetrical with respect to the
real axis.

In Fig. 2.8 such curves have been plottted fora =2 ora =0.5and b =1
and b = — 1.For the sake of comparison the parabola representing (1 +jx)?,
applicable to the condition ¢ = 1 and b = 0, has also been plotted. Both
curves according to Eq. (2.2.12) are seen to lie outside the latter parabola.
This means that by suitably choosing a and b in a particular amplifier design,
it is possible to improve the stability, which, in turn, influences other pro-
perties of the amplifier.

2.2.4 STABILITY FACTOR

Sub-section 2.2.1 indicated in which region of the complex plane 7 should
be located to ensure stable operation of the amplifier. It was shown that T
should lie within the parabola which represents the boundary of stability.
It was further shown that for single-stage amplifiers with non-identical tuned
circuits (or with identical circuits tuned to different frequencies) the boundary
of stability is situated just outside the parabola which is valid for the case of
two identical, synchronously tuned circuits. It is, however, generally re-
quired that alignable amplifiers do not become unstable over the entire
alignment range. This means that stability of such an amplifier has to be
considered at the worst possible conditions that might occur during align-
ment. Following from the considerations in sub-section 2.2.3, the worst
possible condition in view of stabilityis the case of equal resonant frequencies
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(1+jx,) {I+ Jj (ax,+b)}

— = —g=2 or 05, b=1

—-—qa=2 or 05, b=-I .
s a=1 b=0 5

Fig. 2.8. Loci of Eq. (2.2.12). The curves are not symmetrical with respect to the real axis,
in contrast to those applying to the case in which either a or b is zero.

and equal quality factors of both tuned circuits. If, therefore, an amplifier is
designed such that for correct operation the tuned circuits have different
resonant frequencies, the stability of the amplifier should be considered
taking the resonant frequencies as equal because during alignment the
situation of equal resonant frequencies may actually occur. Further investi-
gation of the stability of the single-stage amplifier will therefore be confined
to the case of an amplifier with two identical tuned circuits. The boundary of
stability which is valid in this case (cf. sub-section 2.2.2) will be considered
as the basic boundary of stability. In dealing with more complex amplifiers
later, it will be seen that this boundary of stability is indeed very basic.
Hence, if the top of the vector T is situated within the parabola (1 + jx)?2
the amplifier will be stable or, in other words, it will not oscillate by itself.
The location of T inside this parabola is, however, not a sufficient condition
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for the stability of a practical amplifier. This may be illustrated by Fig. 2.9
in which the vector 7" is applicable to an amplifier which is barely stable
because 7" is only slightly smaller than 7. If due to variations of tempera-
ture, supply voltage or other conditions, 7" is slightly increased so that it
approaches Ty more closely, or even becomes equal to it, the stable ampli-
fier will have become unstable as a result of environmental conditions. To
ensure that the amplifier remains stable over a wide range of environmental
conditions, T should be given a sufficiently small value. It is also necessary
to keep 7 small with respect to 7y in order to make allowance for spreads
in transistor parameters. For this purpose the amplifier is normally designed
for a transistor having average values of parameters, but it must also remain
reasonably stable when equipped with a transistor of the same type having
the most unfavourable combination of parameters.

It may thus be concluded that in order to avoid the risk of instability,
practical amplifiers should be so designed that 7 is smaller than 7, by a
certain factor, the stability factor. In a practical design this factor, defined as:

J&
A boundary of :
stability Jb

\

boundary of sufficient
) stability

J3

Y

) \\\\\\\\ -j4
-j5

Fig. 2.9. The vector T’ applies to an amplifier which, due to a small change in environmental
conditions, may become unstable, revealing that the design was not adequate. To ensure
that the amplifier is sufficiently stable, 7" should be located within or on the parabola re-
presenting the boundary of sufficient stability.
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5= o (2:2:13)
should be so chosen that not only will the amplifier be sufficiently protected
against self-oscillation under the most unfavourable conditions, but certain
requirements concerning the response curve are also satisfied. This point
will be dealt with in sub-section 2.5.2.

In Fig. 2.9 the curve representing 7,/s as a function of @ has been plotted
together with the locus for Ty. It can be shown that the curve Ty/s = f(O) is
also a parabola, confocal with the parabola for Ty, its vertex lying at the
point (1/s, 0).

The region within the parabola for T,/s may thus be considered as the
region of sufficiently stable operation of the amplifier, the parabola itself
representing the boundary of sufficient stability of the amplifier.

2.2‘.5 POTENTIAL UNSTABILITY AND INHERENT STABILITY

In the preceding comments it was investigated under what conditions insta-
bility might occur in a single-stage amplifier. It was shown that it depends
on the magnitudes of T and @ whether or not an amplifier is stable. The
stability of an amplifier can therefore be governed by modifying 7' and/or 6.

Egs. (2.1.11) and 2.1.12) reveal that both 7" and @ can be modified by
changing the product y12y21. This can be achieved by different d.c. biasing
of the transistor or by applying neutralization. Moreover, it is possible to
modify T, as appears from Eq. (2.1.11) by controlling the product G1Ga.

According to Fig. 2.2 the product G1G» can be varied by modifying either
the dampings G* of the tuned circuits, or the source and load dampings
Gs and G respectively. If y12 and ye; are left unchanged 7" will reach an upper
limit when Y, Y1*, Y2* and Y7, are made purely susceptive (Gs, G1*, G2* and
Gy, being made zero). It may then be written:

G = ) (2.2.14)
Gz = go2. 5

Identical comments apply to an amplifier in the H-matrix environment.
If in the circuit of Fig. 2.3 the impedance Zs and Z:* and the admittances
Y2* and Y, are made purely susceptive, we obtain according to Eqgs. (2.1.20)
and (2.1.21):

R1 = Re(h11) , ?

> 2.2.15
G2 = Ry(h22) " s : :
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Combining Eq. (2.2.14) with Eq. (2.1.11) and Eq. (2.2.15) with Eq.
(2.1.24) it follows 1):

[yieyaa| |h12h21] B
gugee  Ro(h11) * Re(heg)

The quantity ¢ will be called the intrinsic regeneration coefficient of the
transistor. The value of 7 is independent of the matrix in which the proper-
ties of the transistor are expressed. This might be seen either from considering
the physical operation of the transistor or from inspecting a matrix conver-
sion table. This coefficient has been plotted in Fig. 2.10 for a particular case.
In this graph the regeneration coefficient 7" of the amplifier stage and the
boundary of stability 7, have also been drawn. In all practical cases ¢ will
obviously exceed 7.

(2.2.16)

Uyl

t -j6

Fig. 2.10. A transistor is said to be potentially unstable when its intrinsic regeneration co-
efficient 7 lies outside the parabola representing the boundary of stability 7, : The regener-
ation coefficient 7" of a practical amplifier stage equipped with this transistor is gener-
ally much smaller than ¢ (and also smaller than 7).

1) Assuming gi11 > 0, g22 > 0, Re(h11) > 0 and R.(hs2) > 0.
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It will be clear that there is no risk of instability occurring in an amplifier
unless the intrinsic regeneration coefficient 7 is of such magnitude that the
transistor with purely susceptive terminations may itself become unstable.
This will be the case when 7 is located outside the parabola which represents
the boundary of stability. The transistor is then said to be potentially unstable.
According to Fig. 2.10 potential instability occurs when:

t > Ty, (2.2.17)

whereas an amplifier cannot become unstable when:
t < Ty (2.2.18)

In the latter case the transistor is said to be inherently stable.

It thus depends on the four-terminal network parameters of the transistor
whether it is potentially unstable or inherently stable. Since these parameters
are frequency-dependent, a transistor may be potentially unstable over a
certain range of frequencies (usually the mid-range) and inherently stable
over other ranges (usually the very low and very high ranges). A statement
that a transistor or any other active device is potentially unstable is therefore
incomplete unless the frequency range to which this statement applies is also
specified.

It may thus be concluded that if an amplifier is designed for using poten-
tially unstable transistors (or electron tubes), provision must be made for
the ultimate amplifier design to be sufficiently stable. It is only when the
transistors are inherently stable to such an extent that ¢ is located within the
region of sufficient stability that no stability considerations are required.
This will thus be the case when:

t < Tyfs. (2.2.19)

2.3 Tuning Procedure of the Amplifier

The frequency response of an amplifier depends on the properties of its
tuned circuits, whilst the method of alignment largely determines the
influence of these frequency-dependent properties on the performance of
the amplifier. It is therefore necessary to investigate the various methods
of aligning an amplifier insofar as they may lead to different results.

Three methods of tuning ) amplifiers with feedback will be discussed.

1) A resonant circuit is said to be tuned when it gives the excepted response at the
desired frequency, i.e. at the tuning frequency. Note that the term “expected response”
does not necessarily imply “maximum response’’.
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These tuning methods are closely related to the matrix environment in
which the properties of the amplifiers are expressed and the way in which
the various tuning methods are carried out in practice agrees with defini-
tions of the four-terminal network parameters used to analyze the amplifier
(see sub-section 2.3.6).

Although the advantages and disadvantages of the tuning methods become
more apparent in amplifiers which comprise a large number of tuned circuits,
the different methods will be investigated here with reference to a single-
stage amplifier with two single-tuned circuits. In this way the consequences
of the tuning method on the mathematical analysis of the amplifier perform-
ance can easily be explained. The results thus obtained can readily be
applied to more complex amplifiers, as will be shown later.

To ascertain the influences of the various methods of tuning an amplifier
the admittance parameter representation will be considered. In a later sub-
section the consequences of the tuning methods are derived for an amplifier
using a hybrid-H parameter representation.

2.3.1 GENERAL CONSIDERATIONS REGARDING THE METHOD OF TUNING
AN AMPLIFIER IN THE Y-MATRIX ENVIRONMENT
The transimpedance function of the single-stage amplifier based on admit-
tance parameters according to Eq. (2.1.16) was obtained by assuming both
x1 and xs to be zero at the tuning frequency; for in that case, by definition,
x = BQ and B = 0 at resonance (cf. Appendix II).

To appreciate the consequences of these assumptions, which were made
without taking into consideration other factors introduced by the transistors,
it is necessary to ascertain the admittances presented by the input and out-
put terminals of the transistor in the amplifier.

It will be assumed that a transistor fourpole, defined by the parameters
Vi1, Y12, yo1 and yeg, together with its tuned output circuit and load admit-
tance, is connected as shown in Fig. 2.11. In this circuit the following relations
apply:

i1 = y1uv1 + yieve, )

| @2.3.1)
iz = ya1v1 + (ye2 + Yo* + Yr)ve. S

When iz = 0 (i.e. when the output terminals are open-circuited) the input
admittance is:

v Yi2yel
Yoo + Yo* + ¥’

Yin :l— = Vi
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Fig. 2.11. Circuit arrangement for calculating the admittance presented by the transistor
input terminals.

or, from Eq. (2.1.2):

T . 2.3.2)
Y

The first term of this equation represents the transistor self-admittance y11,

whilst the second admittance term — y12y21/Y2 accounts for the presence

of the feedback parameter yi12 of the transistor.

The output admittance presented to the transistor output terminals in
the single-stage amplifier can be calculated in an analogous way. The ad-
mittance of the tuned input circuit, Y1*, and the source admittance Ys are
now connected to the transistor input terminals in the normal way as shown
by Fig. 2.2. The output admittance then is:

Yi2)21
Yout = yaz — ;2 . 2.3.3)
1

Apart from the first term yoo, representing the transistor self-admittance
parameter, the output admittance contains a term — yiaya1/Y1.

Eqgs. (2.3.2) and (2.3.3) reveal that the input and output admittance of the
transistor in the amplifier depend on the complex values of Y2 and Y7 respec-
tively, and hence on the tuning of the amplifier.

Now, according to Eq. (2.1.2):

Y1 =yu + n* + Y, d
and (2.3.4)

Y1 = yee + Yo* + Y1 S

It is thus seen that the admittance Y1, as defined here, only contains the
part y1; of the transistor input admittance, whereas the input admittance it-
self comprises, apart from yi1, a term — y12y21/Ys. The latter term can,
however, be reduced to such an extent as to become negligible by making Y2
very large. This can be achieved either by heavily damping or detuning the
output circuit of the amplifier.

According to Eq. (2.1.4):
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Y1 =Gi(1 + jxl),

in which x; must disappear at the tuning frequency, as stated earlier. This
will therefore be the case only when the influence of the term — yiays1/Ys
on the input admittance is negligible. It may thus be concluded that Ys
should be made very large in order to align the input circuit of the amplifier,
or, in other words, to adjust its circuit elements so that x; = 0 at the tuning
frequency (The expected response of the tuned circuit is that which is
obtained when x; = 0).
The same argument holds for the output tuned circuit. In this case:

Y2 = Ga(1 + jx2),

in which the condition x2 = 0 at the tuning frequency cannot be satisfied
unless the output circuit is tuned with the input circuit heavily damped or
detuned.

Stringent requirements are therefore imposed on the method of tuning
the amplifier if the properties of the resonant circuits are to be defined by
Gi(1 + jxl) and Gao(1 + jX2).

2.3.2 TUNING METHOD A

Cne way of tuning the single-stage amplifier —to be termed “method A” —
therefore consists in tuning each of the two tuned circuits with the other
circuit heavily damped or detuned.

In practice, the tuning can be carried out by feeding a signal of the tuning
frequency to the circuit to be tuned, via a high impedance and measuring
the voltage produced across the circuit by means of a vacuum tube volt-
meter. The circuit elements are then so adjusted that the voltmeter reading is
at a maximum. Care should be taken that the instruments used for tuning
this circuit do not introduce any noticeable damping or detuning.

Both tuned circuits of the single-stage amplifier can easily be adjusted in
this way. However, if the amplifier contains a considerable number of tuned
circuits, this procedure is rather laborious and takes much time. In fact, each
circuit must be aligned separately, and during this operation at least the pre-
ceding and the following circuits must be heavily damped or detuned. This
method was assumed to be applied in the single-stage amplifier considered
hitherto. The results thus obtained remain valid, however, provided tuning
method A is applied.

2.3.3 TUNING METHOD B

Another method of tuning the single-stage amplifier, termed “method B”,
consists in first tuning the output circuit with the input circuit heavily
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damped. The admittance of the output circuit as a function of the frequency
can then be expressed by:

Y2 = Ga(1 + jx2).

Subsequently the input circuit is tuned so that the reading of a vacuum tube
voltmeter connected to the output terminals is at a maximum, the tuning of
the output circuit being left unchanged.
According to Eq. (2.3.2) the input admittance of the transistor at the tuning
frequency is:
Y1221
G2

Yin = Y11 —

2

provided the output circuit has already been tuned (x2 = 0).
The total admittance at the input terminals of the transistor, includin g
the tuned circuit admittance Y1* and the source admittance Y, then becomes :

Yi2)21

Yintot = Ys + Y1* 4 y11 — G (2.3.5)
2
which can also be written:
Yin tot = Y1 — il , (2.3.6)
G2
or
. Yi2ya1
Yin tor = G <1 1 — ) 357
in tot {1+ Jx1 G1Gs ( )
Substitution of Eqs (2.1.11) and (2.1.12) gives:
Yin tot = G1(1 + jx1 — T cos © — jT sin O). (2.3.8)

When the input circuit is being tuned the reading of the voltmeter will be
at a maximum if the admittance of this circuit as a function of the normalized
detuning, as defined by Eq. (2.3.8), is at a minimum. This will be the case
when the imaginary part of this expression is zero, that is to say when:

x1—Tsin @ =0,
or
x1 = T sin 6. (2.3.9)

When the input circuit is tuned in this way it is essential for x1 to have
the value given by Eq. (2.3.9) at the tuning frequency so that, at this frequen-
cy, the total susceptance of the circuit is zero. The quantity x = Q has,
however, already been so defined that x itself becomes zero at the tuning
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frequency. In order to keep this definition of x valid for the method of tuning
described here, the quantity x;" will be introduced:

x1’ = T sin 6, (2.3.10)
The total susceptance of the input tuned circuit will therefore be defined as:
Gi(x1 + x1'). (2.3.11)

The input tuned circuit thus gives the expected response when at the
tuning frequency its susceptance equals

G1x1’ = G1 - T sin @,

in accordance with Eq. (2.3.8).

If the single-stage amplifier is aligned according to method B, that is by
firstly tuning the output circuit with the input circuit heavily damped and
subsequently tuning the input circuit with the output circuit unchanged,
the total admittance of the output tuned circuit will therefore be:

Ys tot = Ga(1 + jxo). (2.3.12)
The total admittance of the input circuit will be:
Y1 tot = G1{l + j(x1 + x1")}. (2.3.13)

It should be recognized that the conductive term of this admittance has
remained unchanged. This is due to the fact that Eq. (2.3.13) clearly expresses
the admittance of the input circuit without the influences of the feedback of
the transistor on this circuit. The conductance therefore remains Gi, but the
susceptance is increased by Gix1’ in order to render the total susceptance,
including that due to the transistor feedback, equal to zero at the tuning
frequency, as required by the tuning procedure adopted. In other words, if
tuning method B is followed the susceptance must be corrected by an amount
Gix1'. The term x1” in Eq. (2.3.13) will therefore henceforth be referred to as
the tuning correction term.

In practice, tuning method B is very convenient for amplifiers containing
a large number of tuned circuits. An output voltmeter having a very high impe-
dance is connected across the output circuit and a low-impedance signal
generator feeds a signal having the desired frequency to the penultimate tuned
circuit of the amplifier, after which the output circuit is tuned to maximum
deflection of the output meter. All other tuned circuits of the amplifier are
then aligned in succession in the same way, the output circuit having been
tuned first. The signal generator is always connected to the circuit that pre-
cedes the one to be tuned.
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Compared with method A, this method of tuning is therefore more con-
venient and time-saving. Moreover, the consequences of the tuning procedure
on the performance of the amplifier can easily be taken into account in a
mathematical analysis. This has already been shown in the foregoing ana-
lyses, and it will be seen later that similar results are obtained for more
complex amplifiers. Another point is that, with tuning method B, better
amplitude response and envelope delay curves are usually obtained, which
will also be discussed later.

2.3.4 TUNING METHOD C

An alternative method of tuning, “method C”, is as follows. First the input
circuit is tuned to the desired frequency with the output circuit heavily
damped or detuned. This damping or detuning of the output circuit can
conveniently be achieved by using a low-impedance output meter, for
example a vacuum-tube voltmeter the input probe of which is shunted by
a large capacitance. Under these conditions the input admittance of the
transistoris y11, which implies that the total admittance of the input circuit is:

Y1 tot = G1(1 + jx1).

After the input circuit has been tuned, the output circuit is aligned, the
input circuit remaining unaffected. The signal required for tuning the out-
put circuit is thus obtained from the current source connected to the input
circuit. A tube voltmeter, which must not introduce any noticeable damping
in this case, is connected to the output terminals.

In analogy with the comments in sub-section 2.3.3, the total admittance of
the output circuit, with the input circuit correctly tuned, is:

Yi2ye1
Yout tot = yo2 + Yo* 4 Y — .
G
or
Y12)21 " Y1221
Yout tot = Yo — =Gz<1+_]xz— Gle)'
Substitution of Eqgs. (2.1.11) and (2.1.12) gives:
Yout tot = Ga(1 4 jx2 — T cos @ — jT sin 0). (2.3.14)

It can be shown in a similar way as in sub-section 2.3.3 that with this
method of tuning the total admittance of the output circuit is
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Y2 tot = Gofl + j(x2 + x2"')}, (2.3.15)
in which the tuning correction term x"’ equals 1)
x9'' =T sin @ (2.3.16)

Similar to tuning method B, method C is particularly useful for aligning
amplifiers (with feedback) which comprise a large number of tuned circuits.
In this case, too, the circuits are tuned in succession, but here the input
circuit is tuned first.

2.3.5 BASIC DEFINITIONS OF THE VARIOUS TUNING METHODS

The various tuning methods of selective amplifiers with feedback are consi-
dered in the preceding paragraph by analyzing an amplifier in the Y-matrix
environment. As already referred to, the tuning methods and their practical
execution are closely related to the matrix environment of the amplifier. This
means that there may be differences between corresponding tuning methods
for amplifiers in the Y- or H-matrix environments although the basic defini-
tions are the same. This will become apparent by considering these basic
definitions which will therefore be stated here explicitely.

2.3.5.1 Tuning Method A

The resonant circuits of a single-stage amplifier are said to be tuned according
to method A when, during alignment, the total immittance of the circuit at
the input terminals of a transistor only contains the input self-immittance
(either y11 or /111) of this transistor and the total immittance of the circuit
at the output terminals of this transistor only contains its output self-
immittance (either yag or Asz).

2.3.5.2 Tuning Method B

A single-stage amplifier is said to be tuned according to method B when
the resonant circuits are tuned in succession starting at the output side and
the tuning is carried out such that, during alignment, the total immittance
of the circuit connected to the output terminals of a transistor only contains
the output self-immittance (y22 or hg2) of this transistor.

2.3.5.3 Tuning Method C
A single-stage amplifier is said to be tuned according to method C when

the resonant circuits are tuned in succession starting at the input side and

1) The double dash which is used here distinguishes the tuning correction term from that
used for tuning method B.
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the tuning is carried out such that, during alignment, the total immittance
of the circuit connected to the input terminals of a transistor only contains
the input self-immittance (either y11 or /11) of this transistor.

Due to the different definitions of ys2 and A2 (input terminals of the tran-
sistor short-circuited or open-circuited respectively), the way in which
tuning methods A en B must be carried out in amplifiers in either the Y or
H-matrix environment is completely different.

2.3.6 VARIOUS TUNING METHODS FOR AN AMPLIFIER IN THE H-MATRIX
ENVIRONMENT

For the single-stage amplifier in the H-matrix environment the total input
self-immittance is the impedance Z; and the total output self-admittance is
the admittance Y2. In analogy with the preceding paragraphs, tuning correc-
tion terms are required for tuning methods B and C.

2.3.6.1 Tuning Method A

For the single-stage amplifier tuned according to method A we may write,
see Eq. (2.1.19):
Zy = Ri(1 + jx1), )

Ye = Gao(l + jxz).

From the basic definition it follows that for an amplifier in the A-matrix
environment the output circuit should be short-circuited to tune the input
circuit and the input circuit should be open-circuited to tune the output
circuit. The latter condition is sometimes difficult to fulfil in a practical
amplifier because the tuning signal should be supplied to the transistor via an
impedance which is large compared with /11 1).

and (2.3.17)

2.3.6.2 Tuning Method B

For the same reasons as tuning method A4, tuning method B is less practical
for amplifiers in the H-matrix environment 2). For completeness of the
theoretical analysis, however, suppose that an amplifier is tuned according
to this method. Thus, in analogy with sub-section 2.3.3, a tuning correction
term x’ appears in the equation for the total input impedance Z; of the am-

plifier whereas no tuning correction term appears in the total output ad-
mittance Y2. With Eqs. (2.1.17) and (2.1.19):

1) The same conclusions can be drawn for amplifiers in the Z-[and K-matrix environ-
ments.

2) The same applies to amplifiers in the Z-matrix environment. For amplifiers in the
K-matrix environment, however, tuning method B will prove to be the most practical
method.



2.3] TUNING PROCEDURE OF THE AMPLIFIER 45
Zy = Ri{l + j(x1 + x1")}, 2

and )
Y2 = Gao(l + jxz). |

(2.3.18)

2.3.6.3 Tuning Method C

According to the basic definition of tuning method C in sub-section 2.3.5
a single-stage amplifier in the H-matrix environment should be tuned as
follows:

Firstly the input circuit is tuned. Because /11 is defined with the output ter-
minals of the transistor short-circuited, the output circuit of the amplifier
must be heavily damped or detuned for tuning the input circuit. Next, the
output circuit is tuned with the (already tuned) input circuit left operative.
With this tuning operation no practical difficulties are encountered and it
may thus be concluded that tuning method C is very useful for amplifiers
in the H-matrix environment 1).

In analogy with sub-section 2.3.4 a tuning correction term Xz’ appears in
the total output admittance Y» of the amplifier whereas no tuning correction
term appears in the total input impedance Z;. With Egs. (2.1.17) and
(2.1.19) we then obtain:

Z1 = Ri(1 + jx1), (

(2.3.19)
Yz = Go{l + j(x2 + x2")} . s

2.3.7 INFLUENCE OF THE METHODS OF TUNING ON THE REDUCED DETER-
MINANT

It has been shown that for tuning method B a tuning correction term xi’
must be introduced for the immittance of the input circuit whereas for the
output circuit no correction term is required. For tuning method Cthe reverse
applies, and for tuning method A no tuning correction term is necessary at
all.

The three tuning methods may be represented by one set of equations
giving the immittances of the input and output circuits:

Y1 = Gi{l + jox1 + p1x1” + pex1”)}, (2.3.20.a)
Z1 = Ri{l + j(x1 + p1x1’ + p2x1”)}, (2.3.20.b)
Y2 = Go{l + j(x2 + p1x2’ + pax2")}. (2.3.20.¢)

Equations @ and ¢ are valid for amplifiers in the Y-matrix environment

1) Further consideration of tuning method C leads to the conclusion that it is less practical
for amplifiers in the Z- and K-matrix environment.
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whereas equations b and ¢ apply to amplifiers in the H-matrix environment.
In Eq. (2.3.20) the tuning correction terms are:

x1’ =T'sin O 5 xl” = 0, )

: (2.3.21)

xo' =0, x3' =Tsin O, 5

while p1 and pe would furthermore be given the values tabulated below:

Table tuning tuning tuning
2.1 method A method B method C
p1 0 1 0
D2 0 0 1

The reduced determinant of the single-stage amplifier becomes with
Egs. (2.3.20) and (2.3.21):
1+ j(x1 4 prx1” + pexa”) T exp (j©)

§a= ‘ . (2322)
1 1 + j(x2 + p1xe’ + pax2")

Since 8 contains all frequency-dependent terms of the transfer function of
the amplifier, see Egs. (2.1.16) and (2.1.27), Eq. (2.3.22) can be used univer-
sally to investigate the gain, the amplitude response and the phase response
of the single-stage amplifier, the table above being employed to account for
the different methods of tuning.

2.3.8 INFLUENCE OF THE METHODS OF TUNING ON THE STABILITY OF
THE AMPLIFIER

With tuning methods B or C the input and output circuits of the amplifier

are detuned with respect to each other by an amount 1)

x1" = x2'’ = T'sin 0.

At x1 = x2 = x the reduced determinant, as given by Eq. (2.3.22), be-
comes:
(I + jx)(1 + jx + jT sin ®) — T exp (jO). (2.3.23)

1) It should be recognized that, although the amplifier is synchronously tuned, which
means that a signal of the same frequency is used for aligning both circuits, it is in-
herent to tuning methods B and C that the circuits resonate at different frequencies.
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At the boundary of stability this determinant becomes zero. Denoting the
value of T at this boundary by 7, gives:

(14 %)%+ (1 4 jx) - jTsin @ — T/ exp (j0) = 0.  (2.3.24)

The real and imaginary parts of this expression can be separated, which
gives:

1 —x2—xTsin © =T, cos 0O, (2.3.25)
and
2x + T'sin @ = T,' sin O, (2.3.26)
. v il
or, since T=—,
s
1 .
Tx = (1 _ -) T, sin 6. (2.3.27)
8

This equation is now substituted for x in Eq. (2.3.25), so that after some
rearrangement a quadratic expression for 7, is obtained of which only the
(largest) positive root has significance:

2

Ty =— — : (2.3.28)
1
cos O - l/ cos2 @ + (1 _‘5) sin2 O
S
With tuning method A the value of 7, becomes:
2
Ty = (2.3.29)

"~ cos ©— Veos? @ —sin? 6
(cf. sub-section 2.2.2, Eq. (2.2.6).

Comparison of Eqs. (2.3.28) and (2.3.29) reveals that 7} is slightly larger
than T,. This confirms that, due to the tuning methods B and C, the stabili-
ty of the amplifier is slightly improved, as was already shown in sub-section
2.2.3.2 and in Fig. 2.7 (now b = T sin 0).

Considering that in a practical amplifier only the value of 7' = Ty/s is of
importance, this small increase in stability will be neglected henceforth.
Moreover, the condition that during alignment the tuned circuits may
resonate at the same frequency (see sub-section 2.2.4) must also be taken into
account. As a matter of fact the tuning procedure affects only the stability
factor s, the exact value of which is of secondary importance.

2.4 Gain

The method of expressing the gain of amplifiers equipped with electron tubes
in terms of voltage gain has been abandoned for transistor amplifiers, the
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gain of which is as a rule expressed in terms of power gain. The reason for
this is the difference in input admittance of the two types of amplifying devices.

Provided the frequency of the signal to be amplified is not extremely high,
the real part of the input admittance of electron tubes is negligible, so that
no signal-frequency power is required to produce a certain signal across the
impedance in the output circuit, it being sufficient to apply a certain voltage.
In bandpass amplifiers the relevant stage equipped with an electron tube is
usually followed by another stage also provided with an electron tube, which
again requires only a voltage to drive it. This explains why the gain of a
tube amplifier is expressed in terms of voltage gain.

On the other hand, the real part of the input admittance of transistors is
by no means negligible even at low frequencies. A certain amount of input
power is therefore required to drive the transistor.

Furthermore, the impedance levels may be different at various points in
the amplifier between which the gain is to be specified. It is therefore con-
venient to express the gain of transistor amplifiers in terms of power gain, it
then being superfluous to state the different impedance levels. Expressing
the gain in terms of power gain is, moreover, very useful because the follow-
ing transistor also requires some driving power.

2.4.1 TRANSDUCER GAIN

The definition of the power gain of an amplifying circuit will now be dis-
cussed. It should be such that the gain figure gives a proper indication of the
function of the circuit.

Fig. 2.12 represents an amplifier which delivers power into a load having
an admittance Yz = G + Br. The amplifier is driven by a current source is
having an admittance Ys = Gs -+ jBs.

The power supplied to the load by the amplifier is:

Py = l'vo|2 G (241)

amplifier

Fig. 2.12. Amplifier with load and source admittances. The power delivered to the load
amounts to vo2Gz, whilst the available power of the source is is2/4Gs. The ratio of these
two powers is termed the transducer gain @;.
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The power supplied to the input admittance of the amplifier by the current
source depends on the matching between the source and the amplifier.

Optimum matching can always be achieved by means of an impedance
transforming network incorporated in the input circuit of the amplifier, so
that its gain can best be related to the power that the source can deliver
under matched conditions. This power, termed the available power of the
source, equals:

; 2
Psy — (@) L L 242)
S

The ratio Po/Psq is termed the transducer gain of the amplifier. Hence,
from Egs. (2.4.1) and (2.4.2):

2

5 (2.4.3)

Vo

@t = 4GSGL B

Ls

or, as the ratio vo/is represents the transimpedance Z; of the complete
amplifier circuit:

D = 4GsGL - | Z)2. (2.4.4)

By means of the Thevenin-Norton theorem, the current source of Fig. 2.12
with admittance Ys can be replaced by a voltage source with impedance Zg,

see Fig. 2.13.
If
Zs = Rs + ] Xs, (2.4.5)
the available power from the source is:
lvs|?
Psg =——. 4.6
8= IRs (2.4.6)

With Eq. (2.4.1) the transducer gain then becomes:

amplifier
i_ __________ — |
- | |
+J.
y oy G T N R
YVS | |
L _

Fig. 2.13. Alternative amplifier arrangement for defining transducer gain. The current
source is with admittance Y5 of Fig. 2.12 has been replaced by a voltage source with an
impedance Zg.
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®t=:4RSGL‘zE2::4RSGL'|Kﬂ2. (2.4.7)
S

It will be obvious that Fig. 2.12 and Eq. (2.4.4) apply especially to ampli-
fiers in the Y-matrix environment whereas Fig. 2.13 and Eq. (2.4.7) are
applicable to amplifiers in the H-matrix environment.

Egs. (2.4.4) and (2.4.7) thus give the power gain of an amplifier between
a given load admittance having a damping G, and a given signal source
having a damping Gs or resistance Rs respectively. This gain figure is the
best indication of the properties of the amplifier, provided that G, and G
or Rg are independent of the design of the amplifier. Definitions of trans-
ducer gain and other methods of expressing gain in power are presented in
Appendix IV. Furthermore, the relative merits of the various methods of
defining gain in power will be considered in Chapter 4.

2.4.2 POWER GAIN

It has been shown that the transducer gain is a very useful measure of the
amplification of an amplifier as a whole. However, it is very often necessary
to express the gain of the individual stages of an amplifier in order to judge
their amplifying properties. For this purpose another gain figure, the power
gain per stage of the amplifier, is used. This power gain is defined as the
ratio of the amount of power fed to the load of the stage (usually the input
impedance of the following stage) to the amount of power fed to the input
impedance of the stage itself (see also Chapter 4). In the circuit of Fig. 2.12
the power gain is therefore given by:

lwo|? - Gi,
= - ’ (2.4.8)
[vi|? * Gia
and in the circuit of Fig. 2.13:
246G
@:Eﬁ.L (2.4.9)
|vg?
Ri’ll

2.4.3 TRANSDUCER GAIN OF THE SINGLE-STAGE AMPLIFIER

Egs. (2.4.4) and (2.4.7) give the transducer gain of an amplifier in the Y- or
the H-matrix environment respectively. Together with Eq. (2.3.22) and
Egs. (2.1.16) resp. (2.1.27) the transducer gain of the single-stage amplifier
at x = 0 becomes:
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[y2112 1
@; = 4GsGy, - —_—
¢ s a6, 150]2
or ? (2.4.10)
lha1l> 1
@&y =4RsRy, " —— ——,
' ST R2G? [80/2
in which:
[ 1 —+ j(p1x1" + pox1”’) T exp (jO)
8o = .(2.4.11)
1 1 + j(p1x2” + pax2”)
When tuning method A is applied, 8y becomes:
80 = 1—T(cos @ + jsin 0), (2.4.12)
whilst with tuning methods B and C:
8 =1—Tcos 6. (2.4.13)

These expressions reveal that (because of the term 7sin @ in Eq. (2.4.12))
tuning methods B and C usually yield a slightly higher transducer gain at
x = 0 than method A.

Eq. (2.4.10) can also be written:

[y21/? 4Gsgn 4ga0G,
s : . _
dg11g22 (Gs + g11)? (go2 + GL)?

(Gs +gn)® (ge2 + Gr)* 1

— 4.14,
Gr? FERNNTNE S
or:
|h21]? 4R5s * Re(h11) 4R h22) - GL.
e ' s )
4Ro(h11) * Re(h22) {Rs + Re(h11)}2 {Re(h22) + GL}?
.R Re h 2 ;Rg ] G 2 l
ARs + R 1)} A{Relh22) + L} _ (2.4.14.b)

R:? G2? (802

According to Appendix V, the first factor of these expressions denotes the
maximum unilateralized power gain of the transistor, which will be denoted by
@,nr. The second and third factors denote the mismatch losses 1) between the

1) Strictly speaking, the term “mismatch losses’ is used here incorrectly because the
input and output self immitances are not the actual input and output immittances in case
the transistor is non-unilateral. The influence of the transistor feedback on the trans-
ducer gain is, however, completely accounted for by the factor @;. The remaining fac-
tors in the expression for the transducer gain (Eq. 2.4.14) only refer to a “unilateralized”
transistor. This explains the term “mismatch losses’™ in the sense as used here.
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real parts of the generator immittance and transistor input self-immittance and
those between the real parts of transistor output self-immittance and load
immittance respectively (see Appendix II); these mismatch losses will be
denoted by @Pmm1 and Pmme respectively. According to the same appendix,
the last two factors of Eq. (2.4.14) represent the insertion losses of the
first and second tuned circuit of the amplifier, to be denoted by @;; and @;2
respectively. The factor |1/80/2 represents the losses due to the feedback of
the transistor at the tuning frequency. These losses will be denoted by @;.
Eq. (2.4.14) may thus be written:

Dy = Dum * Pm1 * Pmma * Pix * iz * (pf. (2415)

The quantity @y n depends solely on the transistor properties and the chosen
biasing point.

For tuning methods B and C, @, can be written with Eq. (2.4.13) as:
B 1
(1 —Tcos 0)2°
For amplifiers in the admittance matrix environment, Eq. (2.4.16) can be
written as:

®; (2.4.16)

Gl (2
[y12y21] cos O s . (2.4.17)
G2 ‘

Dr =

G1

The denominator of this expression represents the total damping at the input
terminals of the transistor including the influences of the feedback whereas
the numerator represents this damping without feedback influences. Now,
for a certain output current of the transistor a certain voltage has to be
produced at the input terminals (io = y21 - vs). (Eq. 2.4.16)) then represents
the square of the ratio of the sum of the input currents through the various
dampings for the cases with and without feedback required to produced the
same input voltage v;. This squared ratio equals the influence due to the
feedback on the gain in power of the amplifier.
For tuning method A, @, can be expressed as:

G112
|y12y21| cos ©)2
Ge T

By = (2.4.18)

|y12y21| sin 0)2 ?

G
1 Gs

which reveals that the feedback losses are larger for tuning method A than
for tuning methods B and C.
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For amplifiers in the H-matrix environment similar arguments hold for the
influence of the feedback.

The remaining factors constituting @; depend on the design of the amplifier
and are determined by the stability and response curve requirements.

Since it is not intended to discuss in this chapter an actual design of an
amplifier of the type considered, but merely to define and explain several
terms which are to be used later, the problem of obtaining maximum trans-
ducer gain will not be dealt with here. Chapter 4 will mainly be devoted to
this problem together with some other points.

2.5 Frequency Response of the Amplifier

The only frequency-dependent term in the transfer function of the amplifier
is the reduced determinant & which, including the influences of the tuning
procedure, is given by Eq. (2.3.22). From this reduced determinant the
the complex response curve, the amplitude response curve and the phase
response curve can be derived.

2.5.1 THE COMPLEX RESPONSE CURVE

The complex response curve of an amplifier is defined as the curve which
gives the combined responses of the amplifier with respect to amplitude
and phase, both as functions of frequency. This response corresponds to the
transfer function of the single-stage amplifier, including influences of the
tuning procedure, hence to the reciprocal of:

1+ j(x1 + prx1’” + pax1”’) T exp (jO)
8= A2:5.1)
1 1+ j(x2 4 p1x2’ + pax2”’)
in which p; and ps follow from Table 2.1, and x" and x"" are the tuning
correction terms (see sub-section 2.3).

Since x; is related in a simple manner to x», it is possible to express Z;
asa function of either x; or x2 or, for example, as a function of the geometric-
al mean of the normalized detunings x1 and x». Preference is given here
to the latter method, and for this purpose a new normalized detuning

x = Vxixa, (2.5.2)

will be introduced. It is now possible to plot & as a function of x in the
complex plane. Fig. 2.14 shows such a graph for a single-stage amplifier
having the following data: x1 = x2, T =2, ® = 225° p; =1 and p2 =0
(tuning method B).

Both the amplitude and the phase response can be determined from this
complex response curve. The length of the line |8| is a measure for the reci-
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Fig. 2.14. Complex response curve of a single-stage amplifier with two single-tuned circuits
having the following data: x1 = x2 = x, 7 = 2, @ = 225° p1 = 1 and p2 = 0 (tuning
method B). The length of the line |3| is the reciprocal of the transimpedance at x = 1,
whilst @ denotes the phase angle of the transimpedance function at this frequency.

procal of the amplitude response for a normalized frequency x = -+ 1,
whilst angle ¢ represents the phase angle of 6 at that frequency.

In most cases it is, however, more convenient to judge the amplitude and
phase responses of the amplifier from separate curves. The amplitude
response can then be obtained by determining the modulus of 1/6, whilst
the phase response follows either from the phase angle of 1/8 or from a
derived function of this phase angle.

2.5.2 THE AMPLITUDE RESPONSE CURVE

2.5.2.1 The Amplitude Response Curve of the Single-Stage Amplifier

The amplitude response of the single-stage amplifier as a function of the
normalised detuning x follows from the modulus of 1/8. The most important
information to be given by an amplitude response curve is the ratio of the
gain of the amplifier at a certain normalized detuning x to the gain at x = 0.
This ratio is expressed by the relative transfer function ') a of the amplifier
do

r (2.5.3)

a —=

in which 8¢ is the magnitude of 8 at x = 0.
The amplitude response can be determined from the parabola which
forms a geometrical representation of the frequency-dependent part of 8.

1) By this term is understood the magnitude of the transfer function of the amplifier,
relative to that at x = 0.
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Fig. 2.15. The amplitude response of the single-stage amplifier is proportional to the reci-
procal of the distance between the top of the vector T and the parabola (valid for the case
of tuning method A).

In Fig. 2.15 such a parabola is shown for a single-stage amplifier tuned
according to method A with x; = x3 = x. The amplitude response of the
amplifier is proportional to the reciprocal of the distance between the top
of the vector 7" and the parabola. In Fig. 2.15 the amplitude responses for
x = 0 (which equals 8p) and x = 2.5, x = — 0.5 and x = — 1.5 are indi-
cated. It appears that the amplitude response curve as a function of the
normalized detuning x will be asymmetrical because the extremity of 7'is not
located on the symmetry axis of the parabola.

The parabolic presentation is also very useful to illustrate the influences
of the various methods of tuning on the amplitude response of the amplifier.
In Fig. 2.16 parabolas applicable to tuning methods A (curve 1), B (curve II)
and C (curve III) for an amplifier for which 7= 2, ® = 225° and x2 = 2x1
are given. These parabolas are based on the relation

{1 4+ jlx1 + px1” + poxi’HH1 + j(xa + pixo’ + poxo”)},  (2.5.4)

which is the frequency-dependent part of Eq. (2.3.22). Inspection of Fig. 2.16
shows that curve III gives a less asymmetrical amplitude response curve
than curves I and II because the top of the vector 7 lies closest to the symme-
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Fig. 2.16. Parabolas for single-stage amplifier with 7= 2, ® = 225° and x2 = 2x1. Curves
I, II and III are valid for tuning methods A, B and C respectively. The axis of symmetry of
curve III lies closest to the top of the vector 7. Hence the amplitude response curve ob-
tained with tuning method C has the less asymmetrical from, see also Fig. 2.17.

try axis of the first parabola. The amplitude response curve can be calcu-
lated from Eqgs. (2.3.22), (2.4.11) and (2.5.3) from which:

1 + j(p1x1” 4 pax1”) T exp (jO)
1 + j(p1x2’ + pax2”)
1+ j(x1 + p1x1” + pax1”) T exp (jO)
1 I+ j(x2 + pixe’ 4 pax2”)
According to Table 2.1 the relative amplitude response curve will, in
the case of tuning method A, assume the form:

a=|80/8|= . (2.5.9)

50 1 — T exp (j©)
—| = - ) - , 2.5.6
4 (1 + jxo)(l + jx2) — T - exp (jO) Qe
and in the case of tuning method B:
So 1—Tcos O
Sl _ _ , _ |, (257
5 {(1 + j(x1 + T'sin O)}(1 + jxz2) — Texp (jO)

whilst in the case of tuning method C:
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3o
s

B | 1—Tcos &
(1 + jx){( + j(x2 + Tsin ©)} — T exp (jO)|

(2.5.8)

Calculated amplitude response curves of a single-stage amplifier have
been plotted in Fig. 2.17 for the three different methods of tuning. It was
assumed for this case that the regeneration coefficient 7 = 2 and the regen-
eration phase angle @ = 225°; the quality factor of the output tuned circuit
was assumed to be twice the value of that of the input tuned circuit. In so
doing, the different results of tuning methods B and C clearly stand out. If
x1 had been chosen equal to x2 the curves representing the results of tuning
methods B and C would coincide.

In this graph the normalized amplitude response curve for an amplifier
without feedback (7" = 0) has also been drawn. This curve is obviously
symmetrical.

The curves in Fig. 2.17 are all plotted as functions of x = V@

The various parameters of the four curves plotted in Fig. 2.14 are tabu-
lated below.
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Fig. 2.17. Normalized amplitude response curves for a single-stage amplifier with two
single-tuned circuits having the following data: @ = 225°, T = 2, and Q2 = 2Q1. Curves
I, IT and III show the results obtained with tuning methods A, B and C respectively. Curve
1V represents the curve applicable to 7" = 0.
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curve tuning p1 P2 transfer
method function
I A 0 0 (2.5.6)
1I B 1 0 (2.5.7)
111 C 0 1 (2.5.8)
v A, BorC — — —_

Comparison of curves I, IT and III with curve IV reveals that the presence
of feedback in the amplifier has considerable influence on the response curve.
Comparison of curves I, II and 111 also reveals that tuning methods B and C
result in less asymmetry of the response curve than tuning method A. This
is to be attributed to the more symmetrical location of the extremity of the
vector T for tuning methods B and C, see Fig. 2.16.

Itis seen that the best results are obtained with tuning method C (curve Iil)
in which the circuit having the smallest quality factor is tuned first. The tuning
correction term 7 sin @ is then applied to the output tuned circuit on which
the extra susceptance due to this tuning correction term is half as large as
that occurring on the input circuit with tuning method B because

Qz = 2Q1 or 2G-z = G1,
and hence,
1 1

Gax™ == o -
G1 X1

N =

see sub-sections 2.3.3 and 2.3.4.

2.5.2.2 Conditions for Symmetrical Amplitude Response Curve

As pointed out in the preceding sub-section the amplitude response curve of
the single-stage amplifier for 7" 7 0 will generally be assymmetrical. For a
particular combination of the tuning frequencies and the quality factors of
the input and output circuits a symmetrical response curve can be obtained.
By putting:

Q2 = aQa, (2.5.9)
=g+
1 = Ql s
(2.5.10)
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and

S fo
== ——, 2.5.11
B 57 ( )

we obtain for the normalized detunings of the tuned circuits:

x1 = B1Q1 = BO1 + b1 = x + by, /
X2 = B2Qs = B aQ1 + bz = ax + ba. s

Here the quality x is the normalised frequency with respect to the centre
frequency fo. Now, the reduced determinant 6 may be written:

8 = {1 + j(x + by)}H{1 + jlax + b2)} — T exp (jO). (2.5.13)

(2.5.12)

Then:
18|12 = {1 — b1bs — T cos O — x(ab1 + b2) — ax?}?
+ {b1 4+ bs—Tsin O 4 (a + Dx}2. (2.5.14)

Now |8|2is a measure for the amplitude response curve of the amplifier which
will be symmetrical with respect to x = 0 (f = fo) when the terms with x
and x3 vanish from expression (2.5.14). That is when:

{2(1 4 a)(b1 + bz — T sin O©) — 2(ab1 + b2)(1 — bibs — T cos O)}x +
+ 2a(aby + b2)x3 = 0. (2.5.15)
A symmetrical response curve is thus obtained for:

_Tsin@

§ =

5 (2.5.16)
l—a

and

T sin O

bs (2.5.17)

P
a

It follows that a symmetrical response curve is only possible for a # 1,
i.e. for Q1 # Q2. To achieve symmetry the tuned circuits of the amplifier
must each be tuned to such a frequency that b1 and b2 have values given by
Eqgs. (2.5.16) and (2.5.17). This can readily be accomplished by means of
tuning method A but also tuning methods B or C lead to the desired result
provided the circuit to be tuned first is given the proper value of b and the
second circuit is tuned with the signal generator adjusted at fo. This will be
shown for tuning method B.
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Firstly the output circuit is tuned to such a frequency that has the value
given by Eq. (2.5.17). Then the input circuit is adjusted, according to method
B, to such a frequency that x = 0, that is, to a frequency fo.

The tuning correction term x1 then follows from:

1+ jx1’ T exp (jO)
I aTsin® | =0,
1 1+j——
a—1
Tsin O
or x1 = ’ (2.5.18)
1l—a

which equals the value of b given in Eq. (2.5.16).

2.5.2.3 Influence of the Stability Factor on the Amplitude Response Curve

As pointed out in sub-section 2.2.4, the value of the regeneration coefficient
T of a practical amplifier should be so chosen that it ensures a certain stabili-
ty factor. This stability factor should be sufficiently large to accommodate
possible changes in environmental conditions and spreads in transistor para-
meters. However, the response curve of the amplifier also imposes certain
requirements on the minimum value of the stability factor.

In Fig.2.18 a set of amplitude response curves of the single-stage amplifier
(valid in the case of tuning method A being applied) has been plotted for
several values of 7. For the amplifier under consideration Ty, = 5.07 so that
instability occurs at 7' > 5.07. This is evidenced by the curves for 7 = 6. The
curve for 7' = 0 represents the idealized case in which no feedback is pre-
sent. The curves for T = 1, 2 and 4 show an increasing departure from the
symmetrical curve for 7 = 0.

Now the designer of an amplifier must base his design on such a value of
T that the requirements regarding the symmetry of the response curve are
fulfilled. The value of T that fulfils these requirements best can most easily
be ascertained by means of a family of curves for various values of T, as,
for example, that shown in Fig. 2.18.

Since the asymmetry of the response curves increases with increasing
value of T, that is to say with decreasing value of the stability factor, it is
possible to define a lower limit of s at which the asymmetry in a particular
case is still acceptable. It should, however, be keptin mind that the same value
of s will generally give a different amount of asymmetry in different amplifier
arrangements.

This point will be discussed later.

It may thus be concluded that, although the value of s gives a rough
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Fig. 2.18. Amplitude response curves of an amplifier with the value of T as parameter. At
T = T, = 5.07 this particular amplifier (@ = 225°, xo = 2x1) becomes unstable. This
graph clearly shows that the stability factor s = T'y/T has great influence on the asymmetry
of the curves.

indication of the amount of asymmetry that may be expected in a certain
amplifier design, the acceptability or otherwise of this asymmetry can be
judged only by plotting the response curve of the amplifier for the chosen
value of 7. The latter method will therefore be used in this book, especially
for the more complex amplifiers.

2.5.3 PHASE RESPONSE CURVE
2.5.3.1 General

In radio receivers for amplitude modulated signals it is important that
every frequency component of the audio signal is amplified to the same
extent, but phase shifts in the components of different frequencies of the
signal have little influence on the quality of reproduction. This is because the
human ear is sensitive to the amplitudes of the various frequency components
which, together, constitute the signal, but not to the phase of these com-
ponents.
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Fig. 2.19. Example of phase distortion.

a) Input signal of a network. The signal is composed of two components of angular
frequency w and 2w, as shown by the broken lines.

b) Output signal of the same network. The phase delay 7,1 of the component of angular
frequency w is assumed to exceed the phase delay 7pn2 of the component of angular fre-
quency 2w, as a result of which considerable (phase) distortion occurs in the composite
waveform.

In radio receivers for frequency modulated signals, phase shifts occurring
in the signal before detection are of importance because this detector is
principally a phase-sensitive device. Phase shifts may therefore lead to a dis-
torted output of the detector.

Furthermore, in television receivers phase shifts occurring in the video
circuits have an important effect on picture quality. This is because the hu-
man eye is sensitive to the instantaneous amplitude of the complete signal.
This means that stringent requirements are imposed on both the amplitude
and the phase responses of the amplifiers and, in fact, of the whole network
through which the video signal is transmitted. The video signal, which con-
tains pulse-shaped intelligence, can be resolved by means of Fourier analysis
into a large number of sinusoidal components. For a faithful transmission
of the video signal through a network it is therefore essential that neither
the relative amplitudes nor the relative phases of these components are
distorted by the network.

This is ilfustrated in Fig. 2.19. The upper oscillogram represents the input
signal of a network. This signal can be resolved into two components of
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angular frequencies w and 2w. The lower oscillogram represents the output
signal. The two components which constitute the signal are shifted by differ-
ent amounts along the time axis. It is clearly seen that due to these differing
time delays serious distortion is introduced.

It is obvious that no phase distortion will occur in the network if the time
delay is independent of the frequency. The delay involved in the phase dis-
tortion considerations may either be normal phase delay or modulation phase
delay, depending on whether the signal passes through the network directly
or in the form of a modulated carrier.

It is the purpose of the following sub-sections to illustrate that the enve-
lope delay characteristic of a network is a very good measure of the phase
distortion occurring in that network.

2.5.3.2 Phase Delay

If a sinusoidal signal of angular frequency w is applied to the input terminals
of a network the phase of the output will be delayed by a certain time 7z,
see Fig. 2.20. The output voltage of the amplifier thus lags with respect to
the input voltage by an angle:

@ =—tlpm" (2.5.19)

vt network v ',/\ ¢
— — N

—

Q
1o

Fig. 2.20. Phase delay of a network (@) to which a sinusoidal input signal v; is applied ().
The output signal vo (see c) is delayed in phase by the phase delay time 7,5, which corre-
sponds to a lagging phase angle ¢ = wtpn (see d).

Fig. 2.21 shows the phase characteristic and the phase delay characteristic
of a network in which phase distortion occurs. Since the phase characteristic
is not a linear function of the frequency, the phase delay characteristic is not
a horizontal line. In an amplifier which introduces no phase distortion
the phase delay is independent of the frequency, as shown in Fig. 2.22a.
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tph =
-0

b

Fig. 2.21. (@) Phase characteristic of a network introducing phase distortion (fully drawn
curve) and that of a network introducing no phase distortion (broken line). (b) Phase delay
characteristics derived from the phase characteristics drawn in (a).

The phase delay characteristic is then a straight line passing through the
origin or a straight line with a zero frequency intercept equal to an integral
multiple of 7 radians, as shown in Fig. 2.22b. This zero frequency intercept is
caused by the phase reversals occurring in the signal when the output signal
current of the transistors or tubes in the network is converted into a voltage
across their load; it does not introduce any phase distortion because the
phase reversals do not require any time.

The phase shifts which occur in the various frequency components of the
signal during their transmission through the network may be quite consider-
able. It is therefore difficult to determine small discrepancies of the phase
characteristic from the linear phase versus frequency relation required for an
undistorted transmission of the signal. A much better method of judging the
phase distortion of the network therefore consists in determining its enve-
lope delay, which will be dealt with in the following sub-sections.
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Fig. 2.22. At a constant phase delay time 7p; the phase angle ¢ is proportional to the
frequency (see a). The phase characteristic then assumes the form of a straight line through
the origin or a line parallel to it, intersecting the vertical axis at — ¢ = nr (see b). The
constant phase angle ¢o is the result of the frequency-independent phase reversals occur-
ring in the network under consideration.

2.5.3.3 Envelope Delay

It follows from the above that a network introduces no phase distortion
when its phase characteristic has a constant slope. An obvious method of
judging the phase response of a network therefore consists in determining
the slope of the phase characteristic as a function of the frequency. Small
discrepancies from the linear characteristic of phase versus frequency result
in large differences of slope.

This phase slope, which is usually referred to as the envelope delay or
group delay of the network, is defined as:

te = — do/dw. (2.5.20)

The difference between the phase delay and the envelope delay is shown
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Fig. 2.23. Geometrical significance of the phase and envelope delays. At an angular fre-
quency f the phase delay is determined by tan a and the envelope delay by tan .

by Fig. 2.23. The phase delay of the network is determined by tan o, whereas
the envelope delay is equal to tan .

To illustrate the meaning of the term envelope delay, it will be assumed
that the input signal v; of the network consists of a carrier wo, modulated
in amplitude by a signal of angular frequency ws,. Then:

vy = IA/i(l -+ m cos wpyt) * cos wot, (2.5.21)

in which m denotes the modulation depth.

If w;m < wo the phase characteristic of the network in the range of
(wo — wm) to (wo + wn) may be considered as being linear, see Fig. 2.24.
Therefore, if the network causes a phase lag equal to — ¢ for the carrier
frequency and phase lags equal to — (¢ + 4¢) and — (p — 4¢) for the
upper and lower side bands respectively, the output signal will be:

vy = Vo |cos (wot — ) + % cos {(wo — wm)t — (p — Ad)} +

i g cos {(wo -+ wm)t — (¢ + 492} , (2.5.22)

= Vo{l + m cos(wnt — 4@)} cos (wot — @), (2.5.23)
whence: vy = IA/O{I + m cos wp(t — Ad@jwn)} cos wo(t — tpr). (2.5.24)

This equation shows that the carrier is subject to a phase delay 7pr = — @/wo,
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Fig. 2.24. Phase characteristic of a network. Provided 4w <« wq, the phase characteristic
may be considered to be linear over the range from wo — wp to wo + wmn.

whilst the modulation signal is delayed in phase by dg/wy; this means that
the envelope of the modulated carrier is delayed by a time d¢/wy, = dg/dw.
Now, according to the definition of envelope delay:

dp

_dg
dg _ =

= lim
dw

Aw — 0

te (2:5.25)

The phase diagrams of the input and output signals according to Egs.
(2.5.21) and (2.5.23) for the point T of the envelope curve of the input signal
have been plotted in Fig. 2.25. These phase diagrams, together with the
modulated carriers, also illustrate the meaning of envelope delay; this may
thus be interpreted physically as the time required for a point 7 stituated on a
sinusoidal envelope curve of a modulated carrier to travel through the
network.

2.5.3.4 Relation between Phase Delay and Envelope Delay
It has been shown that the phase delay of a network is given by:
g 5, (2.5.26)
w

whence:
@ = tprw. (2:5.27)

Furthermore, the envelope delay of the network was defined by:
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Fig. 2.25. The envelope of a modulated signal (@) fed to a network undergoes a delay in
this network equal to 7., as shown in b, representing the output signal. The phase diagrams
of the signals corresponding to point 7' in a and b are shown in ¢ and d respectively. The
sideband phasors are both delayed in phase by an angle dp = 7, dw.

de
te =—, 2.5.28
e =4 ( )
or
tg :d—a,'(tph'w),
whence :
dt
to = tyn + @ — (2.5.29)
dow

Comparison of Eqgs. (2.5.26) and (2.5.29) reveals that the envelope delay
differs from the phase delay of the network only by the term which accounts
for the speed with which the phase delay varies with the frequency. This
illustrates once again why the envelope delay is a more accurate measure
of the phase response of a network than the phase delay.

It is true that the phase response of a network can conveniently be expres-
sed in terms of envelope delay, but to judge the performance of the amplifier
it is important to know the phase response itself. Now, the envelope delay is
the derivative of the phase response, which implies that the zero frequency
intercept of the phase/frequency characteristic does not occur in the enve-
lope delay curve. This zero frequency intercept should be zero or an integral
multiple of 7 radians to ensure faithful transmission of a signal through the
network. Therefore, if the phase characteristic is specified only in terms of
envelope delay the assumption is tacitly made that the phase intercept dis-
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tortion for the range of significant frequencies is either zero or negligible. For
a signal passing through the network as a modulation on a carrier, there is,
however, no need for the phase characteristic to fulfil this phase intercept
requirement. In fact, only the phase characteristic over the band occupied
by the modulated signal is then of importance.

For the bandpass amplifiers under consideration, therefore, the envelope
delay fully characterizes that part of the phase response of the amplifier
which is of interest. For low-pass amplifiers, for example, this would not be
the case.

Hitherto the term “envelope delay” has been used for dg/dw. This term
suggests that the signals under consideration are modulated in amplitude,
and although it has a main significance in this field, the definition 7z, = dg/dw
refers only to the slope of the phase/frequency characteristic. The envelope
delay is therefore very frequently referred to as “group delay”. This term
indeed seems to be more appropriate because group delay — physically to
be interpreted as the time delay of a small group dw of frequencies situated
around wy in passing through a network — is a more general term which
refers neither to modulated nor to unmodulated signals. The present treatise,
however, is confined to bandpass amplifiers in which the transmitted signals
are normally modulated, so that there is no reason why the term envelope
delay should not be used in the context of this book.

2.5.3.5 Envelope Delay as a Function of the Normalized Detuning

The envelope delay 7, = dg/dw of a network may also be written:

_dg dx

= a 'a{; s (2.5.30)

le

in which x denotes the normalized detuning. Now dx/dw is a constant equal
to:

2. (2_=g :<i +2,

do \wg o wy  w?
whence:
dx 0 | /wo) 2
= = i " 2.5.31
do wo 3 + (w> g ( )

The envelope delay is then:
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2)d
=2 1+<ﬂ) o) (2.5.32)
wQ w dx
Provided wo/w ~ 1, this expression reduces to:
20 d
2247 (2.5.33)
wQ dx

The envelope delay of a network can thus be ascertained by determining
dg/dx, which is in turn given by the transfer function of the network. In
order to investigate the envelope delay of a bandpass amplifier, it is thus
sufficient to consider the differential quotient dg/dx, the factor

2 2
_Qg () § ~ 20
wo w wy
merely influencing the envelope delay as a scale factor.
For a single-tuned circuit, for example, the phase angle equals:

@ = tan'l(— x). (2.5.34)
Hence:
d 1
i | (2.5.35)
dx 1+ x2
and
2 1
2. _1 (2.5.36)
wo 1 -+ x2

For amplifiers or networks, the transimpedance function of which has a
complex character, dp/dx would become even more complex.
This differential quotient can then be approximated by 4g/4x, in which
A is derived from the phase versus x characteristic. For a given value of x:

¢ = tan [ In{ Z«(x)}/Ro{ Zdx)}]. (2.5.37)

Provided ¢ is determined with sufficient accuracy and the intervals 4x
are chosen small enough, dg/4x will very closely approximate dg/dx.
Assuming this to be the case, and putting:

A4
Z% — (2.5.38)
Eq. (2.5.20) becomes:
dx
te =Te" — (2.5.39)

do’



2.5] FREQUENCY RESPONSE OF THE AMPLIFIER 71

or:
. 2Q

wo

e =7¢

(2.5.40)

It is thus seen that a very simple relation exists between the quantity 7,
(expressed in terms of radians) and the actual envelope delay 7, of the am-
plifier. Now 7, can be evaluated as a function of the normalized detuning x
bymeans of Egs. (2.5.37) and (2.5.38), so that it is possible to plot curves which
represent the envelope delay of the amplifier, except for a scale factor dx/dw.
These curves can then be used universally for various values of w, wg and Q.

2.5.3.6 Envelope Delay of the Single-Stage Amplifier

The quantity 7. can now be calculated according to the method outlined
above for the single-stage amplifier with two single-tuned circuits, it being
assumed that tuning is achieved by method A, B or C. The parameters of
the amplifier are taken to be identical to those mentioned in sub-section
2.5.2.1 (Fig. 2.14).

Fig. 2.26 shows the results thus obtained, curves I, 11, and III being appli-
cable to tuning methods A, B and C respectively. For the sake of comparison
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Fig. 2.26. Curves representing the envelope delay, except for a scale factor, of a single-stage
amplifier with two single-tuned circuits (7" = 2, ® = 225°, x2 = 2x1). The curves show
the great influence of the method of tuning on the trend of these curves (curves I, II and 11T
apply to tuning methods A, B and C respectively, curve IV to 7' = 0.)
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the curve for 7' = 0 (curve IV) has also been plotted. It is seen that, so far as
the envelope delay is concerned, tuning method C gives the best results for
this amplifier (see curve III). As previously shown (sub-section2.5.2.1) this
also applies to the amplitude response curve.
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CHAPTER 3

NEUTRALIZATION

As was seen from the analysis of the single-stage amplifier in Chapter 2,
the internal feedback of the transistor has a large influence upon the perform-
ance of the amplifier. In the case of a potentially unstable transistor, its
feedback may lead to instability of the amplifier unless special measures are
taken. If the internal feedback does not result in instability, it may have a
detrimental effect upon the amplitude and phase response of the amplifier.
This may even occur when the transistor is inherently stable.

In many cases it will therefore be desirable to eliminate this feedback.
This may be achieved by applying a technique referred to as neutralization.

Considering the transistor as a four-terminal network, this amounts to
eliminating the reverse transfer parameter. This process is known as unila-
teralization.

By definition, a four-terminal network is unilateral if an excitation applied
to one of its pairs of terminals produces a response at the second pair, whereas
an excitation applied to the second pair does not produce a response at the
first pair, or vice-versa.

Worded differently: in a unilateral network, no “backward transmission’
is possible. This implies that only a perfectly neutralized transistor may be
said to be unilateral.

Because in practical amplifiers the neutralization will often not be perfect,
preference is given to the term “neutralization” 1) to describe the technique
to reduce or to cancel the internal feedback of the transistor.

3.1 Principle of Neutralization

If the relation between input and output currents and voltages of the
equivalent transistor four-terminal network are expressed in terms of either
the Y, Z, H or K-matrices, we can generally write:

1) Unilateralization is always a kind of neutralization but the reverse need not necessarily
be the case.
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‘ a1 r Y11 Y12 B
— . : G.1.1)
ag ' vl Y22 B2

in which the symbols « and 8 depend on the matrix environment chosen.
Furthermore, we assume that another network in the same parameter
system may be described by:

ar’ ] | I'y I'is B’

! . (3.1.2)

I';y Isp B2 |

If these networks are interconnected in such a way that 1" = 1 and
B2’ = Bs, without disturbing the relationships between currents and volt-
ages in the original networks, see Appendix I, the combined network can
be described by:

’
a |

a; + a1’ ‘ yu + I'n yiz + T2 } B1

(3.1.3)

ag + ag’ ‘ yo1 + I'21 yoe + I'22 ) B

It is now said that the combined network is unilateral or perfectly neu-
tralized if:

yiz2 + T2 = 0. (3.1.4)

This means that a transistor can be perfectly neutralized by correctly connect-
ing to the transistor a second network with properties such that Eq. (3.1.4)
is satisfied.

3.2 Basic Neutralizing Network Connections

There are four basic methods of connecting a neutralizing four-terminal
network to the transistor. These methods differ in the way in which the input
and output terminal pairs of both networks are interconnected. This may
be either in

parallel — parallel,

series — series,
series — parallel,
or parallel — series.

To satisfy the condition imposed in the preceding section on the independ-
ent variable () of the matrix equations, it is required that both networks
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TABLE 3.1.

Basic neutralizing network connections

Y-neutralization Z-neutralization

vl 2 ‘ —_—
(R4 Iz
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H-neutralization K-neutralizotion
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are expressed in the correct parameter system depending on the method of
interconnection. According to Appendix I, this is the Y, Z, H or K-parameter
system respectively.

InTable 3.1 the four methods of interconnection are shown. These methods
will further be referred to as

Y-neutralization, Z-neutralization, H-neutralization,
and K-neutralization.

3.3 Y-Neutralization
3.3.1 GENERAL

For a Y-type neutralization, both transistor and neutralizing networks are
connected in parallel at the respective input- and output terminals. If the
transistor parameters are indicated by lower case y’s and those of the neutral-
izing network by capital Y’s, for perfect neutralization (see Eq. (3.1.4)):

yiz + Y12 = 0.

Since the y12 parameter of a transistor suitable for use in I.F. amplifiers lies
in the 3rd or the 4th quadrant, (see Book II, Chapter 2) Y12 must be situated
in the Ist and 2rd quadrants to enable Eq. (3.1.4) to be satisfied (see Fig.
3.1). In practice it is required that the neutralizing network should consist
of passive elements only. Because of the sign conventions adopted the Y12
parameter of such a network always lies in the 2nd or 3td quadrant. Therefore
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Fig. 3.1. Location of the y12 parameter of the transistor and of the Y12 parameter of the
neutralizing network required to achieve neutralization.

a phase inverting transformer is necessary between the neutralizing network
and the transistor in case the latter has its y12 parameter situated in the 3rd
quadrant. No transformer is required for transistors in which the y12 para-
meter lies in the 4" quadrant.

For further considerations on Y-neutralization we will confine ourselves
to transistors having y12 parameters in the 34 quadrant. The complete Y-
neutralizing circuit then becomes as shown in Fig. 3.2. The polarity of the
phase inverting transformer is indicated by means of dots.

Furthermore, this transformer which is assumed to be ideal, has a trans-
former ratio of 1 : n. This implies that for perfect neutralization:

nY12 + y12 = 0. (3.3.1)
practical
—2 neutralizing [°
n
vl 2] s 1
. phase
inverting
transformer
O—sg °
transistor
" four-terminal =9
 CO— S neﬁw'frk —
¥ N

Fig. 3.2. Interconnection of a transistor four-terminal network of which it is assumed that
the y12 parameter is situated in the 3r@ quadrant and of a practical neutralizing network.
The phase inverting transformer enables that the neutralizing network consists of passive
elements only. The dots indicate the polarity of primary and secondary windings.
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O -0

Fig. 3.3. Y-neutralizing network.

3.3.2 NEUTRALIZING CIRCUIT

The Y-neutralizing network may consist of a single admittance Y as shown
in Fig. 3.3. It is required that the Y12 parameter of this fourpole should be
in the 3'@ quadrant; so ¥ may consist of either a series or a parallel combi-
nation of a capacitance and a resistance. In practice, the series combination
is used in most cases because then the capacitor also separates the d.c.
circuits at the transistor input- and output terminals.

Including an ideal phase-inverting transformer, the admittance parameters
of the neutralizing circuit become (see Fig. 3.4):

Y11 = Y, le = }'lY, 2
(3.3.1)
Y21=I’ZY, YzzznZY, }
With the condition for perfect neutralization
yiz +n¥ =0, (3.3.2)
the admittance matrix of the combined network becomes:
12
yi1— i 0
Hy ” = R (3.3.3)
Yo1— )12 Yoz — Hn)y12
from which we find the maximum unilateralized power gain:
, [ye1— y12/2 D)
(puM = y y .
12
4 Re <y11 — y—n—> * Re(ya2 — ny12)
7 n
Fig. 3.4. Y-neutralizing circuit including ideal trans-
° former.
O O e}

) The quantity @un’ indicates the maximum unilateralized power gain of a transistor
when perfectly neutralized by means of a practical network. The quantity @uy (without
dash) refers to the case of unilateralization by means of an ideal (loss-free) network,
see Appendix V.
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Fig. 3.5. Equivalent circuit diagram of a
o o practical transformer.

For a certain value of n, ®,n’ becomes maximal. This value is found by
putting:

(dj I) — O
l uM ’

g g. (3.3.4)

3.3.3. NON-IDEAL TRANSFORMER
The transformer used in practical neutralizing circuits at high frequencies
suffers from various defects which result in a performance different from
that of an ideal transformer. These defects, which will be considered separa-
tely, are

a. non-unity coupling coefficient,

b. losses, and

c. stray capacitances.

3.3.3.1 Non-Unity Coupling Coefficient

A practical transformer, of which the primary and secondary open circuit
inductances are denoted by L, and Ls and the mutual inductance by M,
can be represented by the basic equivalent circuit given in Fig. 3.5.

For this equivalent circuit, the open circuit voltage ratio follows from:

U2¥M_k /IE_

= _L_p = L’ (3.3.5)
in which the coupling coefficient & is given by:
M
fo= VL L (3.3.6)

By putting:

n= V? (3.3.7)
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ideal transformer
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Fig. 3.6. Equivalent circuit of a practical transformer derived from that of Fig. 3.5.

the transformer ratio according to Eq. (3.3.5) becomes:

Vo k
—=— (3.3.8)
V1 n
Furthermore, the open circuit input inductance of this equivalent circuit
equals Ly, whereas the short-circuited input inductance equals:
M(L; — M)
L,— M + — e = Ly(1— k?). (3.3.9
8
These calculations reveal that another equivalent circuit, equal to that of
Fig. 3.5 is as shown in Fig. 3.6. The inductance k2L, at the neutralizing net-
work side of the transformer, see Fig. 3.6, may be transformed to the transis-
tor side as shown in Fig. 3.7.
This inductance then becomes, using Egs. (3.3.5) and (3.3.7):
n2

kng"k—z—T—Ls.

3.3.3.2 Influence of Losses and Stray Capacitances

The losses associated with the transformer merely consist of parallel
dampings which can be represented by a single damping gs across the tran-
sistor side. There are also losses associated with the spread-inductance

ideal transformer

n
21 -0
k
Lp(1-k?)
Fig. 3.7. Modification of the equivalent o -0

circuit of Fig. 3.6.  eememeeeeee-
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Fig. 3.8. Complete equivalent circuit of the transformer used in the Y-neutralizing circuit
showing all parasitic effects.

Ly(1— k?) but these are negligibly small in most cases. For completeness,
however, they may be represented by a resistance r,, in series with L, (1— k2).
Furthermore, the stray capacitances of the transformer may be represented
by a capacitance Cs on the transistor side of the transformer and a capaci-
tance C, (the influence of which can be neglected) on the other side.

The complete equivalent circuit of the transformer then becomes as shown
in Fig. 3.8.

3.3.4 PRACTICAL Y-NEUTRALIZED AMPLIFIER CIRCUIT

In practical amplifier circuits the output tuned circuit is used as the phase
inverting transformer.

In Fig. 3.9 a Y-neutralized single-stage amplifier with two single-tuned
circuits is shown.

It appears that the inductance L; of Fig. 3.8 forms the tuning induct-
ance of the output circuit whereas the parasitic effects of losses and stray
capacitances may be included in its damping and tuning susceptance. This
means that only the term Ly(1 — k2) due to the non-unity coupling of the
transformer need to be taken into account when designing the neutralizing
circuit.

The effective admittance of the neutralizing circuit then becomes with
Eq. (3.3.8) and Fig. 3.7:

19 [s uer+ —@z% N

n

i

Y

Fig. 3.9. Neutralized one-stage amplifier circuit. The quantities ¥’ and »’ follow from Y
and » taking into account the effects of a non-ideal transformer.
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1
P , (3.3.10)

1
3 TjeLs - n(1—k?)

in which Ly is the tuning inductance of the output circuit of the amplifier.
Furthermore the effective transformer ratio equals:

’

n =

" (3.3.11)
P -3
These values for Y’ and n’ substituted in Egs. (3.3.1) to (3.3.4) give for per-
fect neutralization:

Yz %Y’ =0, (3.3.12)
and for optimum Py, :

- ]/é (3.3.13)

n
k g1

3.4 H-Neutralization
3.4.1 GENERAL

As appears from sub-section 3.2, with an H-type neutralization the input
terminals of transistor and neutralizing networks are connected in series
whereas the output terminals are connected in parallel, see Fig. 3.10. The
elements contained in the neutralizing network should be arranged such
that the interconnection with the transistor, which is in fact a three-terminal
device, is permissible, see Appendix I.

transistor four-terminal
network

e
L —

neutralizing
network

Fig. 3.10. Connection of a neutralizing network to a transistor for H-neutralization.Because
the transistor is a three-terminal device care must be taken in arranging the elements of the
neutralizing network in order that the interconnection of both networks is permissible.
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Again capital letters are used to denote the parameters of the neutralizing
network and lower case letters to denote those of the transistor.
For perfect neutralization:

hi2 + Hi2 = 0. (3.4.1)
3.4.2 NEUTRALIZING NETWORK
The H-neutralizing network consists of an impedance Z and an admittance
Y as shown in Fig. 3.11. The elements of Z and Y are arranged such that a
permissible connection is obtained when this neutralizing network is con-
nected to the transistor as indicated in Fig. 3.10.
For this fourpole, the H-parameters are:

Z
Hi=——, 3.4.2
0=y (3.4.2)
His = H» = rz (3.4.3)
12 = 21 = YZ—f—I’ o
Hss = r (3.4.4)
2=y 4.

By suitably choosing Y and Z, the Hi» parameter can be given any re-
quired phase angle. Hence, condition (3.4.1) can always be satisfied without
the use of a phase inverting transformer as is necessary in the Y-neutralizing
system.

For perfect neutralization the H-parameters of the combination of tran-
sistor and neutralizing network become, using a determinant notation:

hie
h —_ 0
11 + G
(3.4.5)
h
h21 + hi2 has + ;
'——>l1 i2 R
© b
. :
O— ‘o)

Fig. 3.11. H-neutralizing fourpole with elements Z and Y arranged in such a way that
interconnection with the transistor as indicated in Fig. 3.10 is permissible.
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According to Eq. (3.4.3), for perfect neutralization:

y 7z M (3.4.6)
T 4.
By putting
his = |hi2|{cos (arg h12) + j sin (arg h12)},
Eq. (3.4.6) can be written as:
h hi2) — |h12|2
Re(Y Z) — |h12| cos (arg hig) — |ha ,
1 — 2|h12| cos (arg hiz) + |h12/2
and
his| si h
Im(Y Z) = o] sin (arg hz) .
1 — 2|h1s| cos (arg hiz) + |h1a|?
Because |h12| < 1, these two equations can be written:
Re(YZ) = |hia| cos arg (hi2) — |h12]2,
(3.4.7)
Im(YZ) = |hia] sin (arg hio).
If furthermore |h12| cos (arg hi2) > |h12|2, Eq. (3.4.7) becomes:
Re(YZ) = |h12| cos (arg hi2), E
(3.4.8)

Im(YZ) = |hie] sin (arg hi2). S

There are two practical methods for realization of the H-neutralizing
circuit, viz:
1. Zis made resistive and the necessary phase shift is obtained by means of
Y, or
2. Y is made conductive and the phase shift is obtained by means of Z.
When, however, either Z or ¥ is made purely real the phase angle arg His
of the neutralizing network becomes situated in the 27 or 3rd quadrant,
which implies that only transistors with the argument of 412 in the 15t or 4t
quadrant can be neutralized.

3.4.2.1 Z is chosen to be purely resistive

If Z is made resistive and equal to R, the parameters of the combined
fourpole become with Egs. (3.4.5) and (3.4.6):
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hi1 + (1 .- hlz)R 0

b |- (3.4.9)
ha1 4+ hig hag + T

The maximum unilateralized power gain of the combined fourpole reaches
an optimum value for:

Re(h11) « Re(h
Ropt = l/ o) - Relhnz) (3.4.10)
Re(l = h1z) . Re(hzz)
or, considering that 419 < 1:
Re(h11) Re(h
Ropt = ]/M (3.4.11)
Re(ha2)

3.4.2.2 Y is chosen to be purely conductive

If Y is made purely conductive and equal to G the parameters of the combi-
nation transistor and neutralizing fourpole become with Eqs. (3.4.5) and
(3.4.6):
h
hi + e 0
G (3.4.12)

h21 + his hae 4 (1 — h12)G

The optimum in maximum unilateralized power gain is obtained for:

Re(ha2) Re(h
Bt = ] elhaz) Re(hia) (3.4.13)
Re(h11) - Re(1 — hie)
or because Ao < 1:
Ré’(h-zz) Re(hlz)
ot = ] e Rl 3.4.14
s / Re(hn) ( )

3.4.3 PRACTICAL H-NEUTRALIZED AMPLIFIER CIRCUIT

In Fig. 3.12 the circuit of a single-stage amplifier with an H-neutralization
network is given.

It is assumed that the Z term of the neutralizing networks is a resistance
Ry, whereas the Y term is composed of the series connection of Ry, and
Cy, a combination of elements which has been chosen quite arbitrarily. The
choice of the elements of which Z and Y are to be composed obviously
depends on the phase angle of the /12 parameter.



3.4] H-NEUTRALIZATION 85

Fig. 3.12. Practical H-neutralized single-stage amplifier.

To allow one side of the voltage source to be connected to earth, an iso-
lating transformer is used at the input of the amplifier.

An “H-type” neutralizing network may also be applied to an “Y-type”
amplifier as shown in Fig. 3.13. Here the tuning capacitance of the input
tuned circuit has been tapped such that the lower capacitance Cp forms (part
of)) the impedance Z of the neutralizing network. The design of the neutra-
lizing network can most easily be carried out by first converting the y-para-
meter of the transistor to s-parameters with the aid of Table 1.1 of Appendix
I. Then:

h2 + Hiz = 0.

PES

i

B [eiblide ) ol o |

Fig. 3.13. Y-type of amplifier with H-type of neutralizing network. The capacitor Cp» with
an extra damping Gp connected in parallel forms the impedance Z of the neutralizing
network.
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3.5 K-Neutralization

3.5.1 GENERAL

In an amplifier with a K-type neutralizing network the input pairs of termi-
nals of both four-terminal networks are connected in parallel whereas the
output pairs are connected in series. This type of neutralizing circuit can be
analyzed in an analogous way to the H-type of neutralization considered in
Section 3.4. Similar results and conclusions will be found.

3.5.2 PRACTICAL K-NEUTRALIZED AMPLIFIER CIRCUIT

A practical form of a K-neutralized amplifier stage is the circuit presented
in Fig. 3.14. Here the K-neutralizing circuit is applied to a Y-type amplifier.

)=

SR S

) IS
(e}

Fig. 3.14. Y-type of amplifier with K-type of neutralizing network. The capacitor Cp of
the capacitive tap on the output tuned circuit forms part of the impedance Z of the neu-
tralizing network.

The tuning capacitance of the output circuit is tapped and the tapping point
is connected to earth. The lower capacitance Cy, forms (part of) the impedance
Z of the neutralizing network.

The most convenient way of designing the neutralizing circuit is to convert
the transistor y-parameters to k-parameters, and putting

k12 + K12 = 0. (3.5.1)

3.6 The Intermediate-Basis Circuit

The neutralizing circuits considered above employ a four-terminal network
containing passive elements to achieve the neutralizing action.

Another type of neutralizing circuit which, basically, does not require
any extra element, is the “intermediate-basis” circuit as it is referred to in
literature (see Bibliography [3.1]). In this circuit, a tapping on either the
tuned circuit between the two input terminals or that between the two output
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Fig. 3 15. Two possible forms of intermediate-basis circuit. By way of example, a transistor

in common emitter connection is shown. Figures a and b present the K and H-interme-
diate-Basis circuits respectively.

terminals is connected to earth. In Fig. 3.15 the two possible forms of this
terminals circuit are shown.

To analyze these circuits use can conveniently be made of the K and H-
matrices respectively.

3.6.1 THE K-INTERMEDIATE-BASIS CIRCUIT

The K-intermediate-basis circuit or, as it is sometimes referred to, the
“base-emitter drive” circuit, can be considered as a combination of two
fourpoles connected in parallel at the input terminals and in series at the
output terminals, see Fig. 3.16. For the two four-terminal networks the
following equations may be written down, see Fig. 3.16.c:

i1 = kuv1 + kaals,
(3.6.1)
vy = ko1v1 + kaaia,
and
i1’ = Ki1v1 — Kiais,
(3.6.2)
vy’ = Ko1v1 — Kasia.
The complete circuit is perfectly neutralized when:
kis— K12 = 0. (3.6.3)
If n is the tapping ratio of the input tuned circuit, K12 equals:
n

Kip=—— (3.6.4)

in which £ is the coupling coefficient.
From the last two expressions:

n
- =— k. (3.6.5)
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Fig. 3.16. K-intermediate-basis circuit. In Fig. 3.16a the tapping on the tuned circuit of
Fig. 3.15.a has been replaced by a transformer with separate windings. In Fig. 3.16.b the
same circuit has been drawn in a somewhat different form separating the transistor and the
transformer. Fig. 3.16.c shows that the circuit may be considered as a K-combination of
two fourpoles.

When the transistor properties are expressed in y-parameters, (Eq. 3.6.5)
becomes, using a matrix conversion table (see Appendix I).
no yi2

3.6.6
a o (3.6.6)

It follows from Eq. (3.6.5) that, since n/k is real, perfect neutralization is
only possible if ki2 is real. According to Eq. (3.6.6), this means that the
phase angles of — y12 and y»» must be equal. If the transistor proper does
not fulfil this condition, — @12 and @22 can be made identical by increasing
artificially either the real or the imaginary part of ys2 depending on whether
@22 must be made smaller or larger respectively. This is, however, only
realizable in practice if the differences in the phase angles of (— yi2) and
ye22 are not too large.
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Fig. 3.17. H-intermediate-basis circuit with two fourpoles drawn separately.
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3.6.2 THE H-INTERMEDIATE-BASIS CIRCUIT

The H-intermediate-basis circuit as given in Fig. 3.15.b may be considered as
a combination of two four-terminal networks the input terminals of which
are connected is series whereas the output terminals are connected in parallel,
see Fig. 3.17. If the properties of the fourpoles are expressed in the H-para-
meter system, for perfect neutralization:

hig— Hiz = 0. (3.6.7)
Taking into account the normal sign convention for currents and voltages,
the Hiz parameter of the transformer equals
n

His =——, (3.6.8)

in which # is the transformer ratio and k the coefficient of coupling.
Combining the last two expressions:
n

hig =— —. 3.6.9
12 % ( )

Converting h-parameters to y-parameters gives:

Ty = — o (3.6.10)
y11
and hence:
z__r (3.6.11)
k y11

In analogy with the preceding sub-section, the phase angles of — yi2 and
y11 must be equal. If the differences are not too large, this can be achieved
by changing yi: artificially.
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3.7 Fixed-Component Neutralization

In the preceding sections various cases of perfect neutralization have been
considered. In each case the reverse transfer parameter of the neutralizing
network has been chosen such that it completely cancels the reverse transfer
parameter of the transistor under consideration.

In practice, most parameters of a transistor of a given type spread
around certain average values. This is also the case for the reverse transfer
parameter. It is therefore necessary, in order to achieve perfect neutrali-
zation, to adjust the elements of the neutralizing circuit separately for each
transistor of a given type. In practical amplifiers it is, however, often re-
quired that fixed elements are used in the neutralizing circuit. The question
then arises how to design the neutralizing circuit in order that good results
are obtained for all transistors of the type given.

With fixed component neutralization, as this method will be referred to,
perfect neutralization is achieved only for transistors which have a certain
value of the feedback parameter. If the symbol yi12 is used to denote the
reverse transfer parameter and I'12 to denote that of the neutralizing net-
work, perfect neutralization is obtained for:

yiz + I'2 = 0. B0
The amplifier is said to be “over-neutralized” if a transistor is used in the
amplifier for which

ly1el < T2, (3.7.2)
and ““under-neutralized’ in case
ly1z] > | I'1a. (3.7.3)

In Fig. 3.18 the three cases of neutralization are shown. The resulting
feedback in the case of over-neutralization as well as in the case of under-
neutralization may lead to instability of the amplifier. To ensure stability
the best values for the components of the neutralizing network are therefore
those which yield equal stability factors for the over-neutralized and the
under-neutralized cases. To determine these valuesitis required to investigate
the spreads in the y12 and y21 parameters of the transistors and to find out
which values of these parameters are most critical with respect to stability.

Furthermore, spreads occurring in the I's parameter of the neutralizing
network must also be incorporated in the design of this network.

In Chapter 11 an extensive treatment will be given of the influences of the
various spreads in parameter of transistors and neutralizing networks on the
stability of the amplifier. For the purpose of this chapter, in the following
sub-sections only the spreads in the moduli of the transfer parameters are
considered.
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3.7.1 SPREAD IN THE TRANSISTOR REVERSE AND FORWARD TRANSFER
PARAMETERS

As will be seen from Book II, Chapter 2, the spreads in the arguments of
Y12, Y21, h12 and hoy are small compared with the spreads in the magnitudes
of these quantities. To design the neutralizing circuit, it is therefore sufficient
to consider the spreads in magnitude. Using a suffix M to indicate a maximum
value of a quantity, a suffix m to indicate a minimum value and a suffix a to
indicate an average value, Table 3.2 can be compiled 1). To investigate the

T2 T12
Fa=Tp
712
T
a b
12
V-T2
712
e
Fig. 3.18.a. Perfect neutralization |y12| = | I'a|

Fig. 3.18.b. Over-neutralization |y1s| < | I'12|
Fig. 3.18.c. Under-neutralization |y12| > | I'12|

1) The 20 values are usually quoted as the extreme values of a spreading parameter where-
as the median is taken as the average value.
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reverse forward
Table 3.2 transfer transfer M = y12 y21
parameter parameter
Maximum value yiz M Y21 M Mu
Average value Y12 a Yola M,
Minimum value Y12 m Y2l m Mn

stability of a neutralized amplifier for which the product of y12 and y21 is
required, the most severe combination of these parameters must be taken
into account. Although it is not very likely that in a single transistor the
extreme maxima and the extreme minima occur simultaneously, the stability
calculation will be based on such extreme combinations. In any case this
produces a safe design and it is, moreover, the only possible approximation
of the problem because of the lack of a reasonable correlation between the
y12 and y21 parameters of the transistor of a certain type at a given frequency
and biasing point.

3.7.2 CALCULATION OF Ii2

As already stated the best value from the point of view of stability of I"12
is that which renders the stability factors of extreme (with respect to y12 and
ye1) transistors equalin the over-neutralized and the under-neutralized cases.
In the under-neutralized case, the regeneration phase angle of the transis-

tor equals
arg yiz + arg ye21 = 0, (3.7.9)

and in the over-neutralized case this phase angle becomes (see Fig. 3.18)
arg yi2— = +arg ya1 = 0 — =, (3.7.5)

If the stability factor equals s (s = Ty/T), the following condition is obtained
(see sub-section 2.2.5):



3.7 FIXED-COMPONENT NEUTRALIZATION 93
2
1+ cos @
8=
{Iy12m| — | T12|} - [ye1m]
A
2
o 1 4+ cos (O — ) , (3.7.6)
{IT12| — |y12m|} * ly21m|
A
or:
{IT12| — |y12m|} - ly21ml _ 1 +cos ) ’ 317
{lyiem| — [T12|} - y2am| 1 — cos @
from which, after some calculation:
2My + AM cos O
| T2 = : . (3.7.8)
2|yo1al + A4|y21| cos O
Furthermore, according to Eq. (3.6.1):
arg I'ip = arg A2 4 . (3.7.9)

(Theoretically the arguments of I'12 and Ajp may differ by 2k + )= in
which k is an integer. In practical amplifier circuits, however, £ = 0.)

From the general expressions (3.7.8) and (3.7.9) corresponding expressions
for admittance and hybrid parameters may be obtained by substitution. For
the Y-neutralization system as well as the intermediate-basis circuit, the
term =in Eq. (3.7.9) is contained in the phase inverting transformer.

[3.1]
[3.2]
[3.3]
[3.4)
[3.5]

[3.6]
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CHAPTER 4

SINGLE-STAGE AMPLIFIER WITH SINGLE-TUNED
BANDPASS FILTERS
OPTIMIZATION OF POWER GAIN

In Chapter 2 a single-stage amplifier with single-tuned bandpass filters
was considered merely in order to present an introduction to the various
aspects of the design of bandpass amplifiers. No attempt, however, was
made to obtain an optimum design. The various design aspects of the single-
stage amplifier are therefore considered again in this chapter but with a
view to optimizing the amplifier with respect to power gain, taking into
account the other design requirements.

4.1 The Various Kinds of Power Gain and their Significance

In Chapter 2 it was pointed out that the gain performance of an amplifier
equipped with transistors can best be characterized by its transducer gain.
The transducer gain, denoted by @ is defined as (see Fig. 4.1):

o power supplied to load Py
. _

g =—. (4.1.1)
power available from source  Pgq
The transducer gain thus relates the power supplied by the amplifier to the
load and the power that is delivered by the source when optimally terminated.
This means that the transducer gain is a measure of the efficiency obtained
by inserting the amplifier between source and load. Furthermore it follows
that the transducer gain is a function of the source immittance, the load
immittance and of the parameters of the amplifying network.

Other important quantities expressing gain in power are the power gain

@, the available power gain @, and the maximum available power gain
Doy 1).

Source with | Pgg Poa ”
source p; |Amplifier |~ p | Loa
immittance - L, | immittance

Fig. 4.1. Amplifier with source and load terminations defining various power quantities.

1) These and other quantities expressing gain in power are defined in Appendix IV.
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Fig.4.2. The power gain of an amplifier becomes maximal for a certain value of the load
immittance I'z, as shown here for the case of an amplifier having purely real parameters.

The power gain @ of an amplifier is defined as

_ power supplied to load Py,

@ (4.1.2)

power supplied to input of amplifier - P’

The power gain @, which is only defined if the input immittance of the
amplifier has a positive real part, is a function of the load immittance and
the properties of amplifying network whereas it is independent of the source
immittance. This is illustrated in Fig. 4.2 for the case of an amplifier having
purely real parameters. For a certain value of the (real) load immittance
Re(I'L)opt the power gain becomes maximal.

When the source immittance Iy is selected such that it conjugately matches
the input immittance of the amplifier, P; = Psq and @ = &;. Generally:

D = &y (4.1.3)

The available power gain @, of an amplifier is defined as:

power available from output of amplifier  Poq

D, (4.1.4)

power available from source Psa

The available power gain, which is only defined if the output immittance
of the amplifier has a positive real part thus depends on the source immittan-
ce and on the parameters of the amplifying network. It is independent of the
load immittance. This has been illustrated in Fig. 4.3 for the case that the
parameters of the amplifier are purely real. For a certain value of the source
immittance Re(I's)op¢ the available power gain becomes maximal.

Furthermore, if a load immittance is selected which conjugately matches
the output immittance of the amplifier, Po becomes equal to Py, and @y = P;.
Generally:

Dy > Py (4.1.5)



4.1]1 THE VARIOUS KINDS OF POWER GAIN AND THEIR SIGNIFICANCE 97

/
Ra(7)

Fig. 4.3. The available power gain of an amplifier depends on the source immittance I's
as shown here for an amplifier with purely real parameters.

The maximum available power gain @,m of an amplifying network is
obtainable when both load and source immittances are selected such that
maximum values are obtained for @ and @,. Then the source immittance
and the load immittance are optimally matched to the input immittance
and the output immittance of the amplifier respectively. We may write for
this case:

®aM = ¢t max — (pmax = (pa,max- (416)

The maximum available power gain is a very important property of the
amplifier. If it is finite (i.e. if the amplifier is stable) source and load termi-
nations can be selected such that the transducer gain becomes maximal and
equal to Pgu.

Fig. 4.4 gives a geometrical presentation of the conditions under which the
maximum available gain of an amplifier is achieved, again assuming purely
real parameters for the amplifier (and hence, real optimal terminations).
Intersections of the @ plane of Fig. 4.2 for Re(I'L)op: and of the @, plane of
Fig. 4.3 for Re(I's)opt are drawn in Fig. 4.4. The transducer gain becomes
maximal and equal to @4y at the point of crossing of these intersections.
Optimizing an amplifier with respect to power gain thus means that such

¢aM T@

Re (G)opt

/
R, (1)

Fig. 4.4. If load and source immittances of the amplifier are so chosen that simultaneously
the power gain and the available power gain are maximum it is said that the amplifier
delivers its maximum available power gain. This is illustrated in the figure for an amplifier
with purely real terminations.
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terminations are selected which provide simultaneously conjugate matching
at input- and output pairs of terminals. Such a power optimizing procedure
is, however, only possible when the amplifier remains stable over a wide
range of terminations which is the case for amplifiers employing inherently
stable amplifying elements (see sub-section 2.2.5) as will be proved in a
following section. Amplifiers employing potentially unstable amplifying
elements are stable only over a restricted range of source and load termina-
tions. For such amplifiers the conditions must be investigated under which
the transducer gain becomes as large as possible thereby fulfilling the stability
requirements.

Apart from the restrictions imposed upon the source and load terminations
of the amplifier when a potentially unstable amplifying element is used,
there may be other restrictions due to a prescribed method of tuning the
amplifier. The latter restrictions affect only the imaginary parts of the
source and load immittances. In this chapter, however, we will consider
only those conditions of tuning which render the transducer gain maximal.

Furthermore there may be restrictions upon the real parts of source and
load immittances due to requirements other than stability. These restrictions
occur when it is attempted to achieve as large a value as possible of the
transducer gain of an amplifier operating between a source and load having
prescribed values of the real parts of the immittances.

In cases in which the design for optimum noise performance of the am-
plifier is of prime importance, special restrictions are also imposed on
source terminations, see Section 4.4.

The various cases mentioned above will be dealt with in the following
sections. Only amplifiers in the admittance matrix form will be considered
in the analyses. When necessary, relations valid for amplifiers in the H
matrix or any other environments may be derived analogously.

4.2 Single-Stage Amplifier with Variable Regeneration Coefficient

As follows from the preceding section, the maximum transducer gain of a
single-stage amplifier is obtained for conjugate matching at input and output
terminals of the transistor. Then source and load admittances depend on the
transistor parameters. Because G5 and Gy, are thus variable the regeneration
coefficient 7 is also variable.

4.2.1 CONJUGATE MATCHING

Source and load admittances are simultaneously conjugately matched to the
input and output admittances of the transistor respectively if:
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Ys = yin* = gin— jbin, (4.2.1)
and

YL = yout* = Zout — jbout- (4.2.2)
The asterisk in yi,* and you:* denotes the complex conjugate of yin and yout
respectively.

4.2.2 INPUT AND OUTPUT ADMITTANCES OF AN AMPLIFIER UNDER
CONJUGATELY MATCHED CONDITIONS

The input and output admittances of a fourpole are given by (see Fig. 4.5):

Y12y21
— _ ey 423
= Yoz + YL ( )
Yi2ya1
i = g L 42.4
Fout =)z y11 + Ys ( )

Combining these two equations:

(Yin— y11)(ye2 + Y1) = (Yout — y22)(y11 + Ys). (4.2.5)

By equating the real parts of this expression and with Eqgs. (4.2.1) and (4.2.2)
we obtain:
(g11— gin)(g22 + gout) + (b11— bin)(bout — bas)

= (g22— gout)(g11 + gin) + (baz — bout)(bin— b11),

from which:
2g11gout’* 2ging22 =0,
or:
L (4.2.6)
g22  Zout
Furthermore, from Eq. (4.2.3):
) L)1 @.2.7)
Yi1— Yin
From Egs. (4.2.1) and (4.2.2):
Ys -+ yin = 2gin, (4.2.8)
Y V2|
s 14
Y21 V22

Fig. 4.5. Single-stage amplifier with terminations. Yin Yout
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YL + yout = 28out,
and by adding Egs. (4.2.4) and (4.2.7):

Yiz2ya1 Yiz2ya1
- + = 2 s
yu+Ys yii— yin Bt
(4) 5
yi2y21(Ys + Yin)
—. Eoe
(11 + Ys)(y11— Yin) Bou
With Eq. (4.2.8), Eq. (4.2.10) becomes:
Yiz2)21 _ 8out

O + Y)y1ui— yin)  gin
and with Eq. (4.2.6):

(11 + Ys)(y11— yin) = EE yigye1.

822
By putting (see sub-section 2.2.5):
A [y12 yoi
gugee
and
O = arg y12 + arg yo1,

[4
(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

in which ¢ denotes the intrinsic regeneration coefficient of the transistor,

Eq. (4.2.11) becomes:

(11 + Ys)(y11 — yin) = g11%t - exp (jO).

(4.2.14)

Separating real and imaginary parts and using Eq. (4.2.1) we obtain:

8112 — gin®— (b11— bin)? = g11%t cos O,
and
2g11(b11 — bin) = g112t sin 6.

Substituting (b11 — bin) from Eq. (4.2.16) into Eq. (4.2.15) yields:

gin = gu1[l — £ cos ® — 112 sin2 O],
From Eq. (4.2.16):
bin = b1 — %gllt sin O .

For the output admittance we can derive in a similar manner:

(4.2.15)

(4.2.16)

(4.2.17)

(4.2.18)
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Bs=1g,tsin@-by  \B=1g,,tsin6-b,,

Y N2
Yor Y22 e
Yin=pGyy +j(byy = 3 94y tsin @) Yout =pg,,+j(byy = Lg,,tsin6)
Fig. 4.6. Conjugately matched single-stage amplifier.
Zout = go2[1 — t cos @ — }12 sin? OF, (4.2.19)
bout = b2z — %goot sin 6. (4.2.20)
By putting:
p=[1— tcos ©®— 42sin2 OF, (4.2.21)
= [(1— 4t cos ©)2— 12}, (4.2.22)
Eqgs. (4.2.17) and (4.2.19) become:
gin = pg11, (4.2.23)
Lout = pg22. (4.2.24)

Obviously, only positive (real) values of p are significant for our amplifier
analysis. When p becomes zero the amplifier is at the boundary of stability,
see sub-section 4.2.5.1.

In Fig. 4.6 the conjugately matched amplifier is represented together with
the calculated values of input and output terminations. Obviously transform-
ers may be used to connect source and load to the transistor terminals. Then
the transformer ratios must be incorporated in the values of Ys and Y.

In Fig. 4.7, the quantity p has been plotted as a function of ¢ with @ as
parameter.

4.2.3 MAXIMUM AVAILABLE POWER GAIN
The transducer gain of an amplifier is given by (see sub-section 2.4.1):

by = 4G sGL|Zl?, (4.2.25)

in which Gs and G denote the source and load conductances respectively
and Z;, denotes the transimpedance of the amplifier at the frequency at
which the gain is required.

Now:

Zyy =—20, (4.2.26)
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Fig. 4.7. The quantity p applicable to the conjugately matched amplifier as a function of
the intrinsic regeneration coefficient # of the transistor and the regeneration phase angle
® as parameter. The quantity p relates girn = Gs to g11 and gout = GL to go2.

Y1 Yizye1
4= , (4.2.27)
1 Yo
Y1=Ys + yi1, (4.2.28)
Yo = Y1 + Y22. (4.2.29)

If source and load admittances have the conjugate matching values we may
write for Y71:

Y1 = gin— jbin + g11 + jbn1.

With Egs. (4.2.23) and (4.2.18), Y1 becomes:

Y1 = gu(l + p + j3t sin ). (4.2.30)
Similarly:

Y2 = goa(l + p + j3t sin O). (4.2.31)

With these expressions for Y7 and Ys the determinant of Eq. (4.2.27) becomes
at the frequency at which the maximum in transducer gain occurs:

4o = g11g22 * do, (4.2.32)
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1 +p+jitsin® texp(jO)

and Sy = . (4.2.33)
1 1+p+jbtsin®
Furthermore:
Gs = gin = pg11,
(4.2.34)
and GL = gout = pgae.
Then the transducer gain becomes:
[y21/2
B =4 . N
= g112g202|80/%
or:
2 1602
o, — 2l 16 (4.2.35)

 dgiiges |82

According to Appendix V, the maximum unilateralized gain @y of the
transistor equals:

2
By — |ye1l .
4g11 go2
This gives for @;:
16p2
D = Dyy-—— . 4.2.36
T T ey

Evaluating the reduced determinant 8o, we obtain from Eq. (4.2.33):
180/2 = {(1 + p)2— 112sin2 @ — ¢ cos O}2 4 pt2 sin% O.
With Eq. (4.2.21) this reduces to:
|80/2 = 8p%(1 — 4t cos O + p). (4.2.37)

Then the transducer gain ®;, which under conjugately matched condi-
tions equals the maximum available gain @4y becomes:

2

Py =Pyyy - — .
a it 1—3tcos O +p

(4.2.38)

Obviously, @,y has a significant value only if':

1—13tcos® +p >0, (4.2.39)
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Fig. 4.8. The relation between the maximum available gain and the maximum unilateral-
ized gain of a transistor is a function of # and @. This ratio is obviously maximum when
the amplifier is at the boundary of stability which is indicated by the curve for s = 1.

and furthermore, p has a real value.
For an unilateral amplifier # = 0 and p = 1. Then:

Doy = Dy (4.2.40)
The second factor of Eq. (4.2.38) is plotted in Fig. 4.8 as a function of ¢

with @ as parameter.

4.2.4 REGENERATION COEFFICIENT

The regeneration coefficient 7" of the amplifier is defined as (see sub-section
2:1.2):

7 eyl (4.2.41)
G1G2
in which:
G1 = Gs + g1,
and (4.2.42)
G2 = GL + goo.

With Egs. (4.2.12), (4.2.23) and (4.2.24) we obtain from Eq. (4.2.41) for the
conjugately matched amplifier:

L
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4.2.5 STABILITY

4.2.5.1 Boundary of Stability

In the conjugately matched amplifier under discussion the source and load
dampings have fixed values (pg11 and pgae) whereas the source and load sus-
ceptances are frequency-dependent. At the frequency at which the transducer
gain is maximum these susceptances have values as required for conjugate
matching. For such an amplifier it has been derived in Chapter 2 that the
boundary of stability is given by:

B 2
T 14cos®°

Ty (4.2.44)

The boundary of stability may also be obtained by considering that the
total input and output dampings of the amplifier become zero at this bound-
ary. According to Eqgs. (4.2.23) and (4.2.24) this is the case for p = 0. Then
it follows from Eq. (4.2.21) that:

2
fy = —— 4.2.45
7 -+ cos O ( )
in which #, is the value of the intrinsic regeneration coefficient # which ren-
ders p = 0.
Hence:
Ty=ty= (y = 21) : (4.2.46)
811822/8

and, apparently, conjugate matching in an amplifier is only possible if:

e iy,
Or:
2

&
1 + cos @

(4.2.47)

This implies that conjugate matching in an amplifier is only possible if the
transistor employed is inherently stable (see sub-section 2.2.5).

4.2.5.2 Stability Factor

The stability factor of an amplifier, defined as the reciprocal of the maximum
real loopgain of the amplifier is given by:

=—. 4.2.48
=, ( )
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Fig. 4.9. The stability factor of a conjugately matched amplifier is dependent on the tran-
sistor properties # and @. For a certain combination of 7 and @ the stability factor becomes
s = 1 which means that for this value of 0, the amplifier cannot be matched conjugately
for larger values of .

With Eqgs. (4.2.34) and (4.2.44), the stability factor becomes:

. 2(1 + p)?
t(1 +cos @)

In Fig. 4.9 the stability factor s has been plotted as a function of # with @
as parameter. For the point at which the curves for the various values of @
intersect the (horizontal) line for s = 1, we have ¢ = ¢,.

Using the plots of s in Fig. 4.9, lines of constant stability factor have been
drawn in Fig. 4.8 fors =1, s = 2 and s = 4.

As follows from Fig. 4.8 a maximum gain in amplification of 6 dB above
the maximum unilateralized gain of the transistor with ® = 0° can be ob-
tained by conjugate matching at input and output terminals. Then the ampli-
fier is at the boundary of stability (s = 1). For stability factors of s = 2 and
s = 4 the increase in transducer gain (for @ = 0) amounts to 2 dB and 1 dB
respectively.

4.2.6 INCLUSION OF TUNED CIRCUITS IN THE CONJUGATELY MATCHED
AMPLIFIER

In the preceding sub-sections the terminations of the conjugately matched
amplifier have been referred to as the admittances Ys and Yz. Obviously,
Ys and Yy, may partly be formed by the admittances of input and output
tuned circuits Y1* and Yo* respectively (in which ¥* = G* - jB*). Then
the actual values of source and load conductances become:

(4.2.49)
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Gs' = pg11— G1%,
GL' = pge2— Ga*.

By putting:
G1* G1* G1*
A T NSO . o (4.2.50)
G1 totat  Gs' + G1* +gin 2811 p
and
Go*
w0 = , (4.2.51)
2g92° p
we obtain:
Gs' = gup(l — 2wy"),
(4.2.52)

GL/ = ggzp(l = 2102').

The susceptances Bs + B1* and By, + B»* must be adjusted such that the
correct values for conjugate matching are achieved. In most cases Y5 and
Y1’ are made real and equal to Gs' and G’ given by Eq. (4.2.52) and the
tuned circuits are detuned to such an extent that the required matching sus-
ceptances are obtained.

In Fig. 4.10 such an amplifier circuit is represented. The source and load
dampings as well as the transistor input and output terminals are connected
to tappings on the tuned circuits. In determining the proper values of G’
and G’ the tapping ratios must be taken into account.

Inclusion of the tuned circuits leads to a decrease in the actual transducer
gain of the amplifier. The amount of power lost in the damping of the input
/ ] *\ 2
M) = (1—w1")2 times the total power supplied
. 2pg1n

by the current source. Hence the transducer gain of the amplifier is decreased

n n:
,E n26, — 3 n362 —
ny - ne

M\ W N
}(n—, %

tuned circuit equals

g

Ya Ja2

G e

Fig. 4.10. Circuit diagram of a conjugately matched amplifier. The matching susceptances
at input and output terminal pairs of the transistor are achieved by properly tuning the
tuned circuits.




108 AMPLIFIER WITH SINGLE-TUNED BANDPASS FILTERS [4

by this factor. Due to the damping of the output tuned circuit, the trans-

ducer gain is further reduced by a factor (1 — ws")2. The transducer gain of

the amplifier including the tuned circuits then becomes with Eq. (4.2.38) 1):
2

0} = Qyuy- (1 —w)2(1— wy')2. (4.2.53
t max uM 1—%ICOS @+P ( 1)( 2) ( )

4.2.7 EXAMPLE

To illustrate the theory presented in the preceding sub-sections the gain and
the terminations will be calculated for a conjugately matched amplifier with
a transistor having the following parameters:

gin = 10 mO by =15 mO
y12 = 0.25m0O p12 = 260
y21 =100 mO @21 = 310
g2 = 05 mO b2 = 0.5mO

It follows from these parameters:

0 = 210° t, = 149, t = 5 and P,m = 25 dB.

Because # < 14, the transistor is inherently stable (at the assumed frequency
and biasing point) and hence conjugate matching of the amplifier is possible.

For ¢t = 5, it follows from Fig. 4.9 that the stability factor s equals s = 15.

From Fig. 4.8 it follows that the maximum available gain of the transistor
is 4.2 dB below the maximum unilateralized gain. For @,y = 25 dB,
Dym = 20.8 dB.

Furthermore, from Fig. 4.7 it follows that p = 2, so that Gs = 2g11 =
= 20 mOU and G = 2g22 = 1 mO.

According to Egs. (4.2.1) and (4.2.18) the susceptive part of the source
admittances follows from:

Bs = — b11 + %glltsin@:— 15+ 12 =—3m0,
and from Eqgs. (4.2.2) and (4.2.20):
Br = — ba2 + $gostsin ® = — 0.5 4 0.125 = — 0.375mO .

1) The factors (1 — w’)2 are not identical to the insertion losses (1 — w)2 of a single-tuned
bandpass filter as derived in Appendix II. The relation between w and w’ follows from
2p

. For a unilateral amplifier w = w'.
1+4+p

w=w-
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4.3 Single-Stage Amplifier with Defined Regeneration Coefficient

In amplifiers in which potentially unstable transistors are employed measures
must be taken in order that stability of the amplifier is ensured. According to
Chapter 2 this means that there is an upper limit for the regeneration coeffi-
cient 7. In view of gain, as large a value of 7 as possible is desired. The upper
limit for 7" mentioned can therefore be considered as being fixed when
attempting to optimize the design of the amplifier with respect to power
gain.

Similar conditions occur if the amplifier must operate between a source
and load having given values of their damping. Then T is also constant.

In such an amplifier the parameters that may be varied to achieve maxi-
mum gain are the source and load susceptances only.

4.3.1 THE AMPLIFIER DETERMINANT

For an amplifier circuit as shown in Fig. 4.5 the main determinant (see sub-
section 2.1.2) can be written as:

Y1 Y12
4= : 4.3.1)
Ya1 Y
in which:
Y1 = G1 + By,
= Gs + gu + j(Bs + bn), (4.3.2)
and
Y; = Gz + jBs,
= G + go2 + j(BL + ba2). (4.3.3)
Furthermore we put:
. By ]
Y1 = Gi (1 4 E) — Gyl +jtangy), (4.3.4)
1
and
B
Ys = Ga (1 4 EZ) — Go(l +jtangn). (4.3.5)
2/

Then 4 can be written as:
4 = G1Gs2 - 8, (4.3.6)

in which:
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1 +jtan g1 T exp (jO)
8 = y 4.3.7)
1 1 +jtan ¢
4.3.2 TRANSDUCER GAIN
The transducer gain of the amplifier is given by:
Dy = 4GsGL Lﬂz (4.3.8)

G12G22(82

For the type of amplifier under consideration 7'is constant, which implies
that also the product G1G2 = A4 must be constant. To optimize @; the quan-
tities |8], G1 and G2 may thus be varied taking into account constant values
for T and A4. Because & only contains the constant 7" (the quantity O is a
transistor parameter) whereas GsGy, only contains the constant A4, the opti-
mization procedures for @; with respect to || and G1, G2 may be carried out
separately.

As stated in the introduction to Section 4.3, a certain class of amplifiers
have to operate between a source and load with fixed values of Gs and Gy.
For these amplifiers both G1 and Gz must remain constant and only |[§]
may be varied to find the optimum value for @;.

4.3.2.1 Gy and G2 are constant

As follows from Eq. (4.3.8) the maximum value of @; is obtained when
|62 has the minimum value. According to Eq. (4.3.7) the variable quantities
in 8|2 are tan @1 and tan @2. In order to find the minimum value of 5|2
we put:

——— [B]f =10,
d(tan (pl)
and (4.3.9)

A 5
d(tan ¢1)
From Eq. (4.3.7):
8 = (1 4 jtan @1)(1 + j tan g2) — T exp (jO), (4.3.10)
or:
[6]2 = (1 — tan @1 tan @2 — T cos @)2 + (tan @1 + tan g2 — T sin ©)2,
(4.3.11)

With Eq. (4.3.9) we then obtain:

— tan @2(1 — 7' cos @) + tan @1 tan2 o + tan @1 + tan g2 — T'sin © = 0,
(4.3.12)
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— tan @1(1 — T cos O) + tan2 ¢y tan @2 + tan @1 + tan o — T'sin @ = 0
(4.3.13)
Subtracting these two equations gives:

{tan ¢ tan g2 — (1 — T'cos O)}(tan g2 — tan ¢1) = 0  (4.3.14)
Hence:
tan g2 — tan g1 = 0 (4.3.15)
and

tan ¢; tan g2 — (1 — T'cos ©) = 0. (4.3.16)

The solution given by Eq. (4.3.16) may be ignored because it leads to
8 = 0 as is shown by substitution in Eq. (4.3.11). Hence only the solution
presented by Eq. (4.3.15) is useful. This indicates that the minimum value of
|8 occurs for:

tan @1 = tan @2 = tan ¢. (4.3.17)

In order to evaluate dmin, tan ¢ must first be calculated. Substitution of
Eq. (4.3.17) into Eq. (4.3.12) leads to a third order polynomial in tan ¢
which cannot generally be solved.

However, because we are mainly interested in the optimum value of the
transducer gain and hence in the minimum value of |8|, the value of tan ¢
need not necessarily be known. Then |8|min may be obtained graphically
as follows:

Substitution of Eq. (4.3.17) into Eq. (4.3.10) gives:

8 = (1 + jtan ¢)2— Texp (jO). (4.3.18)

The first term of the right hand side of this equation represents a parabola
equivalent to the parabola (I -+ jx)? considered in Chapter 2. Hence |8|min
may be found by determining the distance between the extremity of the vec-
tor T exp (j©) and the parabola as shown in Fig. 4.11. The determination of
|8|min is facilitated by Fig. 4.12 opposite page 112 in which a number of lines
have been constructed which are equidistant to the parabola. For a given
value of 7"and O the value of |8|min may be read directly from the scale
indicating the distance from the parabola to the line on which the extremity
of T'is situated.

In analogy with sub-section 2.4.3 the expression for the transducer gain
can be written as:

lya>  4Gsgu  4Grge
4gngee  (Gs + g11)?> (G + g22)*  [8°min
1

2 |3|2min

Dy = , (4.3.19)

or:

@y — Dyt * P, * Prum (4.3.20)



112 AMPLIFIER WITH SINGLE-TUNED BANDPASS FILTERS [4

S5 |2tan g

—_—
1-tan? ¢

_________ jét=2-tan Y at /6] =
\\ /Glmln

Fig. 4.11. To optimize the transducer gain of an amplifier of which the value of 7 is fixed
for stability reasons or otherwise, the minimum value of |8| must be found. This minimum
is equal to the shortest distance between the extremity of the vector 7 and the parabola as
indicated by |8|min in the figure. The shortest distance between the extremity of 7 and the
parabola is found by constructing a line through this extremity perpendicular to the para-
bola. By drawing a line parallel to the real axis through the point of intersection of the
perpendicular and the parabola the value 2 tan ¢ at which [8| = [8|mix is found on the
vertical axis.

In this expression @Pym1 and Pmme denote the mismatch losses at the input
and output sides of the transistor if the transistor is taken to be unilateral. (See
the footnote on page 51).

4.3.2.2 Gy and Gs are variable

In Eq. (4.3.8) the product GsGy, involves the variables G1 and G2 separately.
In order to optimize @; with respect to these variables we put (because the
optimum value of § has already been found):

d

GsGr) =0. 4.3.21
dGl( sGr) ( )

Now:
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GsGL = (G1— g11)(G2 — g22),

A
= (G1—gu1) * <—- — gzz) . (4.3.22)
G1
Hence we obtain for the optimum value of G :
Gy — ]/ oy, (4.3.23)
gop
and for the optimum value of G» (because G1Ga = A):
Gy = V 82 4. (4.3.24)
g11
If:
v= 22, (4.3.25)
Y12
Eq. (4.3.8) may be written:
Gs G 1
&, — 4 I N = . (4.3.26)
G1 Gz |8]2min

taking into account the optimum value of |8| obtained in the preceding sub-
section.

With:
M = |y12y21] (4.3.27)
and Egs. (4.3.22) to (4.3.24), Eq. (4.3.26) may be written:
o, =4 |1 E :
s ( _ l/ A—{g11g22> -T-N - P (4.3.28)

4.3.3 INCLUSION OF TUNED CIRCUITS IN THE AMPLIFIER
In the same way as in sub-section 4.2.6 for the conjugately matched amplifier,
tuned circuits may be incorporated in the amplifier with constant 7. The
admittances Y1* and Y»* of these tuned circuits form part of the load and
source admittances. Again we assume that the susceptive parts of source
and load admittances as required for maximum transducer gain are provided
by the tuned circuits. Then the actual source and load admittances may be
real and equal to Gs" and G1'. Now:

Gs' = G1— g11— G1%,
and

GL = G2— g22— G1*.
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By putti o
utting: w; = —,
yp =4 1 Gy
(4.3.29)
Ge* S
and wy = —,
Gs
we obtain: Gs' = Gi(1 — w1)— g1, (4.3.30)
and GL' = Gg(l == wz)— 8g22. (4.3.31)

According to sub-section 2.4.3 the transducer gain of the amplifier is
reduced by a factor (1 — w1)2(1 — w2)? due to losses in these tuned circuits.

If the losses in the tuned circuits are denoted by @;; and @;» respectively,
the transducer gain for an amplifier with constant 7" operating between a
source and load with prescribed dampings becomes:

Qt, max = Dum ¢m1 . ¢m2 : (Dil : ‘Dzz M (4.3.32)
|8|2min
and for the amplifier in which Gs and G, may be varied:
By, max = 4 (1— l/Tguggz)z- T N-® - @ — . (43.33)
\ M J Y7 18 2min

4.3.4 SOURCE AND LOAD SUSCEPTANCES FOR OPTIMUM TRANSDUCER
GAIN

As follows from the preceding sub-sections the susceptive parts of source
and load admittances must be given certain values in order to achieve the
optimum transducer gain. These susceptances have, however, not been
calculated because of the complexity involved (see sub-section 4.3.2.1). If
necessary these susceptances can be calculated after a graphical evaluation
of tan ¢ which relates:

Bs +bu  Br+bu
Gs +gu Gp+gu’

in which Bg, G, Br, and Gy, include the admittances of the input and output
tuned circuits.

The value of tan ¢ for optimum transducer gain for a given value of 7 and
O can be determined as shown in Fig. 4.11. Fig. 4.13 (opposite page 113)
presents a chart for determining tan ¢ for any value of 7 and 0.

tan ¢ = (4.3.34)

4.3.5 TUNING PROCEDURE FOR OPTIMUM TRANSDUCER GAIN
In single-stage amplifiers in which the source and load susceptances are
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provided by means of tuned circuits, these tuned circuits can easily be adjust-
ed such that optimum transducer gain is obtained. This can be achieved by
repeatedly tuning the output and input tuned circuits for maximum gain of
the amplifier. The tuning of both circuits must be carried out repeatedly
because the feedback of the transistor alters its output susceptance when
tuning the input circuit and vice versa.

4.3.6 COMPARISON OF AMPLIFIER PERFORMANCE TUNED FOR OPTI-
MUM TRANSDUCER GAIN AND TUNED ACCORDING TO TUNING
METHOD A

Comparison of Fig. 2.15 which is valid for a single-stage amplifier with
given 7 tuned according to method A and Fig. 4.11 valid for the amplifier
tuned for optimum transducer gain reveals that the only difference between
the two amplifiers amounts to having the maximum transducer gain at
different frequencies with respect to the tuning frequency. The tuning proce-
dure for optimum transducer gain as described in the preceding sub-section
produces the maximum gain at the tuning frequency whereas the (same)
maximum in gain occurs at a frequency different from the tuning frequency
when the amplifier is tuned according to method A. (see sub-section 2.5.2.1)

4.3.7 EXAMPLE
To illustrate the theory presented in this section we consider a single-stage
amplifier which should be designed with a stability factor of s = 4 thereby
delivering maximum gain. We assume that the transistor to be used has the
following parameters:

211 = 150 m b1y = —3m0O

|y12[ = 0.45 mO P12 = 250°
|y21| = 16 mO @21 = 95°
g2z = 03 mO bss = 1.5 mO.
Then it can be calculated:
D, = 11.5dB, M = 7.2:10-602, N = 36,
Ty
O = 345° T,=1.0 I= z =0:25;

Then from the chart of Fig. 4.12, |8|min = 0-75, and from the chart of Fig.
4.13, tan ¢ = 0.125. With Eq. (4.3.28) the transducer gain becomes 11.0 dB.
The optimum values of G1 and G are obtained from Egs. (4.2.23) and
(4.3.24) which yield G1 = 38 mU and Gz = 0.76 mU. Assuming that no
tuned circuits are used the source and load dampings become
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Gs=Gi1—gn= 23 mO,
G = G2 — 822 = 0.46 mO,

and with Eq. (4.3.34) we obtain for the source and load susceptances Bs =
= — 1.75 mU and By, = — 1.6 mO.

4.4 Single-Stage Amplifier with Prescribed Regeneration Coefficients and
Prescribed Source Admittance

As already referred to in Section 4.1 for optimum noise performance of an
amplifier certain values of real and imaginary parts of the source admittance
are required. These values depend on the type of transistor used in
the amplifier, its biasing point as well as on the frequency for which the am-
plifier has to be designed (see Bibliography [4.17]).

The design of the type of amplifier mentioned must thus be carried out
taking into account a prescribed value of the source admittance. To opti-
mize the gain of such an amplifier the real and imaginary parts of the load
admittance are the only variables. In most amplifiers, however, potentially
unstable transistors will be employed. This implies that the regeneration
coefficient must also remain constant. This case will be considered in the
following sections.

4.4.1 OPTIMIZATION OF TRANSDUCER GAIN

The transducer gain of the amplifier is given by Eqs. (4.3.8) and (4.3.7). Eq.
(4.3.8) reads:

[y21]?

& = 4GsGr  ————.
‘ SUL T Gi2G2(8 )2

(4.4.1)
For constant value of 7 the quantities G; and hence G2 are constant because
Gs and hence Gy, have prescribed values. The only variable is therefore:

{l—i—jtantpl T-exp(j@)l
§ = . (4.4.2)

‘ 1 1 +jtan(pz|

The transducer gain @; can thus be optimized by finding the minimum value
of |8]. Since tan ¢z is the only variable in § we may put:

o) 18] =0. (4.4.3)



18| min.
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Fig. 4.12 Chart for determining |8 min for any value of 7 and 0.
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Fig. 4.13 Chart for determining tan ¢ at |8 = |3| min for any value of 7 and 0.
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This yields for the optimum value of tan gs:

tan g2 = cos? @17 cos O(tan O — tan ¢1). 4.4.4)

4.4.2 OPTIMUM VALUE OF LOAD ADMITTANCE

The value of G2 follows from

T T

Gp=—=— .
Gi Gs+gn

Then the load damping G, follows from:

G = G2 — go2,
G = (4.4.5)
or: L — — — 999 . 4.
Gs +gu 5
The value Bs then becomes
By = G2+ tan ®2.
This gives for the load susceptance By:
Br, = Bz — b
or:
B t A b (4.4.6)
= tan @g * om0 b .
5 ¥ Gs + g1

When the amplifier is terminated by an admittance Y7, accordingto Eq. (4.4.5)
and (4.4.6) the transducer gain becomes maximal taking into account the
prescribed values of Ys and 7.
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CHAPTER 5

SINGLE-STAGE AMPLIFIER
WITH TWO DOUBLE-TUNED BANDPASS FILTERS

5.1 General

In considering single-stage amplifiers comprising two double-tuned band-
pass filters, the investigations will be based on the results previously ob-
tained from the analysis of single-stage amplifiers with two single-tuned
circuits. For the present analysis use will be made of the four-terminal net-
work representation of the double-tuned bandpass filter as derived in Ap-
pendix III. The amplifier may then be considered to consist of three four-
terminal networks in cascade, the first and last of which are passive (double-
tuned bandpass filters), and the second active (transistor or electron tube).
For this chain of four-terminal networks a matrix equation will be derived
by means of which the transfer function of the complete amplifier can easily
be evaluated. This transfer function then enables important amplifier pro-
perties such as stability, transducer gain, amplitude response and envelope
delay to be determined.

The analysis of the single-stage amplifier with double-tuned bandpass
filters is not only of practical importance in itself, but it also serves as an
introduction to the analysis of multi-stage amplifiers comprising double-
tuned bandpass filters, to be dealt with in Chapters 7 and 8.

5.2 Single-Stage Amplifier with Parallel-Parallel Tuned Double-Tuned
Bandpass Filters

Fig. 5.1 shows a circuit of the single-stage amplifier comprising two double-
tuned bandpass filters with parallel-tuned primary and secondary. In this
circuit, a transistor in common emitter connection is shown, but any other
transistor configuration or an electron tube might be used instead. The
amplifier is driven by a current source having an admittance Ys and loaded
by an admittance Y.

It is assumed that inductive coupling is used for the double-tuned band-
pass filters. However, both the method of analysis and the results obtained
are the same if other types of coupling are employed.

In the multi-stage amplifiers to be investigated later, it will prove to be
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.node * * node node * * node
No4 Y % No3 No2 13 ¥ No.l
M, M
—~ —~
: * * * * .J_ * *_I_ * * * * _I_ *
s W | C4T G | La L3 | 1G5 TCJ Y Y CzT G | L2 L1 -I-Cr Y
T ) = -
Tuned circuit Tuned circuit Tuned circuit Tuned circuit
No.4 No.3 No2 No

Fig. 5.1. Schematic circuit of a single-stage amplifier with two double-tuned bandpass
filters with paraliel-tuned primaries and secondaries.

convenient to start the analysis at the output side of the amplifier. For this
reason the double-tuned bandpass filters and the resonant circuits forming
these bandpass filters in the circuit of Fig. 5.1 are numbered consecutively,
starting at the output side of the amplifier. The same procedure is used for
numbering the voltages appearing at the terminals of the double-tuned
bandpass filters.

By replacing the double-tuned bandpass filters by their equivalent four-
terminal networks based on admittance parameters as derived in Appendix
II1, the equivalent circuit of Fig. 5.2 is obtained. In this circuit the active
device is also represented as an admittance parameter equivalent circuit.
To distinguish the admittance parameters of the passive and active four-
terminal networks capital Y’s are used to denote the former, and lower-case
J’s to denote the latter.

The indices which precede the admittance parameter symbols in Fig. 5.2
indicate the passive or active four-terminal network to which the parameters
appertain. The symbol 2Y11, for example, denotes the input admittance para-
meter of the penultimate bandpass filter of the amplifier.

passive  fourpole active fourpole passive fourpole

|
: Y23 ;
. I |
5 s % i e
3 Y )
| 2 2;3,1/4 2122 IYZI'V2 122 :
I TIA | I (N I ]
* * * *
Y=Y 2%22=% Transister or vacuum tube = 221
Double tuned bandpass filter No.l Double tuned bandpass filter
No.2 No.1

Fig. 5.2. Single-stage amplifier with two double-tuned bandpass filters. The bandpass filters
and the active device (transistor or electron tube) are represented by four-terminal equi-
valent network based on admittance parameters.
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Fig. 5.2 can be further simplified by combining the two admittances at
the common points of the four-terminal networks into a single admittance.
By so doing, the circuit of Fig. 5.3 is obtained, in which:

Y1 =1Ye + Y1,
Yo = 1y22 + 1Y11,

Y3 = oYo2 + 1y11, \
Ya=Ys + o S

(5.2.1)

It is thus seen that the admittances Y7 to Ya consist of an inductance, a capa-
citance and a conductance connected in parallel, forming a single-tuned
circuit. According to Appendix II the admittances can then be expressed by:

Y = G(l + j). (5.2.2)

It is therefore possible to represent the complete single-stage amplifier by
an equivalent circuit containing four single-tuned resonant circuits and a
number of current sources, as shown in Fig. 5.3.

node node node node
No.4 No.3 No.2 No.l
1
2Y72 V3 1)’72 7’72 Vi
"s] % "z | M
2‘37 Y% 1)’21 4] 7357 v
4 3 ! o
Y=Y+ Y=+ Y2‘l)'22+IYII Yi=ia2+Y

Fig. 5.3. Simplified equivalent circuit of the amplifier of Fig. 5.2.

According to Kirchhoff’s first law, the following equations apply to the
various nodes of the equivalent circuit of Fig. 5.3, viz,

to node 1: 1Yo1 vg + Y101 =0, (5.2.3)
to node 2:

1y21°v3 + Yo v2 +1Y12-v1 =0, (5.2.4)
to node 3:

9Y21 - va + Y3-v3 + 1y12 - v2 = O, (5.2.5)

and to node 4:
—is + Ya-vs + 2Y12-v3=0. (5.2.6)
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These four equations can be combined in a single matrix equation:

I| is H ‘ Ya 2Y12 0 0 v4
0 IRRIRE2 £ Y3 1y12 O v3
‘ii' N \\ 0 121 Yo 1Y12 } vz | (5:2.7)
0 ” |0 0 1Ya1 T v ||

The first matrix of the right hand side of this equation is the definite admit-
tance matrix of the amplifier circuit presented in Fig. 5.3. The method of
deriving this matrix employed is in fact equivalent to that of Appendix I,
Section 4.

As follows from the preceding chapters the determinant of the square
matrix of Eq. (5.2.7) is important in analyzing the amplifier with respect to
stability, gain and frequency response. This determinant, which will be denot-
ed by 4 can be simplified by separating out the G’s, making use of Eq. (5.2.2).
Hence:

2Y12 ‘
1 i 0 0
+ Jxa Ga
V¢
ZGZI l —]—jx3 1212 0
A = GGG 3 s - , (5.2.8)
1)21 : 1112
0 - 1 + ix9 —_—
Go ] 2
1Y21
0 0 == 1 tix
Gy ~+ Jxi

Eq. (5.2.8) can be further simplified by dividing each column of the deter-
minant by the Y21 (or ye1) term it contains, and multiplying the correspond-
ing row (of equal index) by this same term, which gives:

. 212+ 2¥a1
1 _ 0 0
+ JXa CaCa
. 112 1ya;
1 1 X3 ———— 0
A = GiGsCyE T GG, . (529
1Y12:1Y21
0 1 1 j S
+ jx2 GiGo
0 0 1 1+ jx1
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In Eq. (5.2.9) the index y in 4, indicates that 4 is obtained from the ana-
lysis using admittance parameters.
By putting the reduced determinant of Eq. (5.2.9) equal to 8, we obtain:

dy = G1G2G3Gy - 8y, (5.2.10)
and
\ 2Y12 - 2¥o1
1 i — 0
\’ + jxa GaGa
. 1)12 ° 1y21
1 1 e 0
5= | T G G . (5.2.11)
1Y12:1Y21
0 1 1 j ——
+ Jx2 GiGa
L0 0 1 1+jx |

5.3 Single-Stage Amplifier with Two Parallel-Series Tuned Double-Tuned
Bandpass Filters

Fig. 5.4 shows a circuit of a single-stage amplifier comprising two double
tuned bandpass filters with parallel-tuned primaries and series-tuned secon-
daries. The amplifier is driven by a current source with admittance Ys and
loaded by an impedance Zr.

Node no.4 Mesh no. 3 Node no.2 Mesh no.1

J} |
"ST YSL[ %
Fig. 5.4. Schematic circuit of a single-stage amplifier with two double-tuned bandpass
filters with parallel-tuned primaries and series-tuned secondaries.

To analyze this amplifier the double-tuned bandpass filters are replaced
by the equivalent four-terminal networks based on K-parameters as derived
in Appendix III and the transistor is replaced by an H-parameter equivalent
circuit. Then the output side of the K-network and the input side of the H-
network form a series connection of two voltage sources and two impedan-
ces. To obtain a uniform direction of the current in this mesh it is necessary
to assume a direction opposite to that of the adopted sign convention (see
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iy i

e -

2 Ky, K, 2 Fig. 5.5. K-four-terminal network with current directions
v HKH= 1172 v, according to the adopted sign convention. To ease the
1 Ky Ko 2 amplifier analysis the output current should have a rever-

Coess —o  sed direction.

Chapter 1 and Fig. 5.5) for either the output current of the K-network or the

input current of the H-network. Here an opposite direction will be assumed

for the output current of the K-four-terminal network representing the

double-tuned bandpass filters. The K-matrix of this network then becomes:
K11 — K12 |

K= (5.3.1)
KZI = Kgg |

whereas its equivalent circuit becomes as shown in Fig. 5.6.

7 j}
U] 2

Fig. 5.6. Equivalent circuit for the K-four-
terminal network with reversed direction of
output current.

X -K22
l"t HKH 8¢'K12i2 O K %

S

With these equivalent four-terminal networks the circuit of Fig. 6.4
becomes as shown in Fig. 5.7. By putting:

Zy = —1Kse + Zj,

Yo = 1h22 + 1K1y,

Z3 = — 2Kz + 1h11,
and Yo= Ys + 2K,

(5.3.2)

the circuit of Fig. 5.7 may further be simplified to that presented in Fig. 5.8.
Furthermore, according to Appendix II:

Z = R(l + j),
and (5.3.3)
Y = G + j»).



5.3] AMPLIFIER WITH TWO PARALLEL-SERIES TUNED BANDPASS FILTERS 125

Node no. 4 Mesh no. 3 Node no.2 Mesh no.1

hn

J
A |

Is

wnlS ]

'1hiavz

Double - tuned bandpass Transistor no.1 Double- tuned bandpass
filter no.2 filter no.1

Fig. 5.7. Single-stage amplifier with two double-tuned bandpass filters according to
Fig. 5.4.

For the equivalent amplifier circuit of Fig. 5.8 the following equations
may be written down:

for mesh 1:
1K2102 + Z1ih = 0, (5.3.4)
for node 2:
thay i3 + Yave — 1K12- i1 = 0, (5.3.5)
for mesh 3:
—2Ko1 * v4 + Z3 i3 + 1h12 - v2 = 0, (5.3.6)
and for node 4:
Y- v4— 2Ki2 - i3 = is. (5.3.7)

Again these four equations may be combined in a single matrix equation:

Node Mesh
no.4 no.3

2oy

137 G,

2K2l3

¥,=Ys 42Ky Z3=—pKp2t iy Ya=phaotiKn Zy==1Kax*+ZL.

Fig. 5.8. Simplified equivalent diagram of the amplifier of Fig. 5.7.
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’ is || ) Ya -2Ki2
0 - -2K21 Z3
0 N ’ 0 1h21
0 o 0

0 0 V4
1hie 0 i3
Yo K2 || T v
-1K51 Zi } i1

(5.3.8)

The determinant of Eq. (5.3.8) which will be denoted by 4, can be sim-

plified using Eq. (5.3.3) to:

—2Ki2
1 i R — 0 0
+ X4 Ga
— oK h
; 21 f e fhis 1G12 0
4y, = R1G2RsG, : 2
0 1ha1 1 4 —1Ki2
Gs Gs
—1Ko1
0 0 — 1 i
R + jx1

or, by putting the reduced determinant equal to 85:

Ay = R1G2R3G4 * Op.

By rearranging the elements of 5:

2K12 - 2Ko1
|
+ Jxa ——R3G4
1 1 i
5, — + Jx3
0 1
0 0

5.4 The Reduced Determinant

0 0]
1hi2 - 1h21
GoRs 0
1+ s 1K12 * 1K21
RG>
1 1+ jx1

(5.3.9)

(5.3.10)

(5.3.11)

The reduced determinants 8 as defined by Eqgs. (5.2.11) and (5.3.11) may be
further simplified as follows: According to Appendix III, Eqs. (ITII.1.15) and

(IIL.1.22) we have:

Yi2 = Ya1 = jg VGyGs,

and:

(5.4.1)
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Kig =— K1 =—¢q }/GpRs, (5.4.2)
in which the indices p and s refer to primary and secondary of a double-
tuned bandpass filter. With Eqgs. (5.4.1) and (5.4.2):

Y12¥21 _ Ki12K21 = g2, (5.4.3)
Gst GpRS

According to Chapter 2, sub-section 2.1.2, the term )22_221

2Gs

complex regeneration coefficient T}, - exp (j@,) in the Y-matrix environment.

Also (see sub-section 2.1.3):
h1zha1
G2R3

equals the

= T - exp (jOn).

Then the reduced determinant becomes:

1+ jxa — g2 0 0
N 1 1 +jxs T, -exp(j0,) 0
Sy = | 0 1 I 4 e g (5.4.9)
0 0 1 1+ jx1

in which the index y refers to either the Y or H-matrix environments 1).

5.5 The Transfer Function of the Amplifier

The transfer function of an amplifier is defined as the ratio between a charac-
teristic output parameter and a characteristic input parameter. For the
amplifier circuit shown in Fig. 5.1 these characteristic parameters are v; and
is respectively. Hence the transfer function equals the forward transfer
impedance or transimpedance Z; of the amplifier, i.e.:
v1
Zy = —. @45:.1)
Ls
For the circuit represented by Fig. 5.4 the characteristic quantities are i1
and ig. The transfer function therefore equals the forward transfer current
ratio or current gain H; 2) of the amplifier. Hence:

1) It will be obvious that the index y may also refer to the Z or K matrix environments
provided the parameters of the transistor(s) and double-tuned bandpass filters are
expressed in the appropriate matrix environments.

2) See note on page 24.
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=, (5.5.2)
ls
To find Z; for the amplifier with parallel-tuned double-tuned bandpass
filters first v1 is calculated using Egs. (5.2.7) and (5.2.8). This gives:

Yy 2Y12 0 is
vy = Aiy f)Y“ fy‘“’ﬂ 2 8 (5.5.3)

0 0 1Y21 0

It then follows for Z; using Eqs. (5.2.10), (5.4.1), and (5.4.4):
7y e A L (5.5.4)

VG1G2G3Ga- 81/'

In an analogous way it follows for H; of the amplifier with parallel-series
tuned double-tuned bandpass filters using Egs. (5.3.10), (5.4.2), and (5.4.4):

1h21 - g1 q2
g e _

S . (5.5.5)
VR1G2R3G4 - 8y,

Expressions (5.5.4) and (5.5.5) reveal that the factor 8y given by Eq. (5.4.4)
is the only frequency-dependent part of the transimpedance function 1).
Furthermore, the factor 8y comprises the regeneration coefficient of the
transistor; stability, transducer gain, amplitude response and envelope delay
depend on the magnitude of this coefficient.

5.6 Stability
5.6.1 BOUNDARY OF STABILITY

In the single-stage amplifier with two double-tuned bandpass filters to be
considered here, instability occurs as soon as the transfer function as given
by Eq. (5.5.4) or Eq. (5.5.5) becomes infinite. This will be the case when 8y
becomes zero. The amplifier is then said to be at the boundary of stability.
Therefore, at the boundary of stability:

1) The forward transfer immittance y21 of the active four-pole is assumed to be frequency-
independent with respect to modulus and argument (see Chapter 1).
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1 +jX4 — q2? 0 0
5= 1 1 + jxs Tg1-exp(jO) 0 _
: 1 e _ga =0 (5.6.1)
0 0 1 1+ jx

in which Ty is the value of the regeneration coefficient on this boundary 1).
It can be calculated that:

2

q
1 + jx1

gi- j . (5.62)

Ty - exp(j6) = <1 + jx2 + L+

) (1 +jxs +

The right-hand side of this expression consists of the product of the re-
duced immittances presented to the transistor by the bandpass filters at its
output and input terminals respectively (see Section 2.1 of Appendix III).
This is analogous to the case of the single-stage amplifier with two single-
tuned circuits. By putting g2 = 0 in Eq. (5.6.2), Eq. (2.2.2) is obtained.

Working out the right-hand side of Eq. (5.6.2) gives:

14+x1x3 1+x0x4 1— x1x4
T @) — 1 — 2 2 2002 —  — ~
aemp () = - e T T
X3— X1 Xo— X4 X1-+X4
. 2 2 2 2 . 56.3
+j) xe+x3+q1 - S5 L 1 L2 9192 (+x2)(1 +x22) ( )

If all circuits are assumed to be tuned synchronously, all values of x
disappear at the tuning frequency, and the locus of Ty1 - exp (j®) plotted in
the complex plane will by symmetrical with respect to the real axis.

In order to calculate the boundary of stability of the amplifier, it will be
assumed that the geometrical means of the primary and secondary quality
factors of both bandpass filters are identical. Since all values of § are identi-
cal, it is permissible to put:

Vxixe = Vxaxs = x. (5.6.4)

It is now convenient to introduce

01 x1
—_— — =r1,

Q2 x2

1) The suffix y has been omitted here for reasons of simplicity in writing the various
equations.
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whence:
x1=x Vri, and x2=x/lr1, (565
and, similarly:
03 x3
—=— =7,
Os x4
whence:
x3 = x Vra, and xs=x/Ir2.  (5.6.6)

Substitution of these expressions in Eq. (5.6.3) gives:

1+ x2Vrire - + x2/Vrire

; 0 — 1 — %2 Vralra 2 il

T exp(j6) = 1—x* Yrafn +q1* ————— +42° — 2l
1— x2Vrifre
2,2
TS - 2
Lo~ nin, ¥n In "

ix)—= 2 2 12002 )

i l"rl—l— Vi‘2+q1 1 + x2r; 72 1 + x%re 7 (14-x2r1)(1+x2/rg)

(5.6.7)

The latter expression enables 7,1 - exp (j©1) to be calculated with x as the
independent variable and to be plotted in the complex plane. This has been
done in Figs. 5.9 and 5.10 for the various cases tabulated below.

graph curve r1 ra q1% = g2% = ¢°
Fig. 5.9 A 1 1 0.5
Fig. 5.9 B 1 1 1
Fig. 5.9 C 1 1 2
Fig. 5.10 D 2 2 1
Fig. 5.10 E 2 0.5 1
Fig. 5.10 F 0.5 2 1
Fig. 5.9 ¢ & _ o
Fig. 5.10 § (two single-tuned circuits)

The coupling factors g2 of both double-tuned bandpass filters are assumed
to be equal. In Figs. 5.9 and 5.10 71 - exp (j©1) has been plotted only for
positive values of x, because the corresponding curves for negative values of
x are image-symmetrical to the former with respect to the real axis.
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Fig. 5.9. Boundaries of stability of a single-stage amplifier with two double-tuned band-
pass filters. The curves clearly show the influence of the value of g2 on the boundary. For
the sake of comparison curve G, representing the boundary of stability for a single-stage
amplifier with two identical single-tuned circuits: (g = 0), has also been plotted. Various
values of x are indicated along the curves. Only the upper halves of the curves are drawn
since the curves are symmetrical with respect to the real axis.

The curves in Figs. 5.9 and 5.10 thus represent the boundaries of stability
for the single-stage amplifier with two double-tuned bandpass filters for
several different cases. For the sake of comparison the boundary of stability
for a single-stage amplifier with two identical single-tuned circuits has also
been plotted in these graphs (curves G). All boundaries of stability for the
stage with double-tuned bandpass filters are seen to lie outside the boundary
for the stage with two single-tuned circuits. Fig. 5.9 moreover shows that 7y
increases with the value of ¢2 (cf. curves 4, B and C). Fig. 5.10 further reveals
that, when the quality factors of the primary and secondary are so chosen that
circuits 1 and 4 have the highest quality factors (curve F), T, assumes a larger
value than when circuits 2 and 3 have the highest quality factors (curvc E).

According to Eq. (5.6.7), the angle @ corresponds to the argument of the
right-hand side of this expression. Because O is a parameter which depends
exclusively on the properties of the transistor with which the amplifier is
equipped, it will be most useful to express Ty as a function of ©. This has
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Fig. 5.10. As Fig. 5.9, but for different values of 71 and r2. These graphs clearly show the
influence of these parameters.

been done in Figs. 5.11 and 5.12 for the amplifier under consideration for
several values of g% and r. A logarithmic scale has been used for 7 in order
to obtain the same relative accuracy for small and large values of 7j.

5.6.2 GRAPHICAL METHOD FOR DETERMINING THE BOUNDARY OF
STABILITY

In the preceding sub-section the boundary of stability of the amplifier con-
figuration in question has been considered using an analytical way of
approach. There is, however, also a graphical method to determine this
boundary. This method will prove to be very important in some specialized
cases and, moreover, will be of help in understanding the stability problem in
general.

Using Egs. (I11.2.8) and (I11.2.9) of Appendix III, Eq. (5.6.2) can be written
as:

Ty1 - exp (_]@) = yi1* Yoz = ki1 * kia. (5.6.8)

In the following considerations, which will lead to the graphical method for
determining 7y, only the admittance matrix notation will be used. For the
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Fig. 5.11. Boundaries of stability of a single-stage amplifier with two identical double-tuned
bandpass filters for » = 1 and several values of g2 = (kQ)2. For the sake of comparison
the boundary of stability of a single-stage amplifier with two single-tuned circuits has also

been plotted (curve in broken line).
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Fig. 5.12. As Fig. 5.11, but for different values of both g and r.
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hybrid matrix notation corresponding results can be obtained by means of
analogies. Eq. (5.6.8) may be written as:

Ty = [yal - [yozl (5.6.9)
and
O—(p1+@2) =04tk 27, k=0,1,2,... (5.6.10)

in which @1 and @2 are the phase angles of yi;1 and y,e at the frequency at
which instability will occur. If conditions (5.6.9) and (5.6.10) are satisfied, the
internal loop gain of the amplifier stage is real and equal to unity. In Fig.
5.13 condition (5.6.10) is shown for two values of 0. It follows that for values
of @ in the first or the second quadrant both g1 and ¢ will be positive where-
as for values of O in the third or the fourth quadrant @1 and @2 will be
negative.

The graphical construction for 7j; is based on the fact that the phase
shifts @1 and @32 necessary to fulfil condition (5.6.10) must be provided by yi1
and y,2 at the same frequency. In Fig. 5.14 such a construction is presented.
The construction of the diagrams for ys1 and yoe is carried out according to
the method given in Appendix III, sub-section II1.2.1.

It is assumed that @ = 250°; then @1 -+ @2 = 110° and both phase shifts
will be negative. This implies that instability will occur at a frequency below
the resonant frequencies of the (synchronously tuned) double-tuned bandpass
filters i.e. at negative values of the normalized detunings xs and xs.

Furthermore, it will be assumed that the tuned circuits of which the two
double-tuned bandpass filters are composed are identical ; thus x1 = x2 = x3
=x4 = x, r = 1. The coupling factor of the bandpass filter at the output

I 7'97
01+02);
&N
J‘ Real
lp1+w2),
)

Fig. 5.13. At the boundary of stability of the amplifier the internal loopgain must be real.
This is the case if ® + @1 4 @2 = 0 = k.27 (k = 0, 1, 2, . ..) which condition is shown
for two values of 6.
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Fig. 5.14. Graphical construction for determining 7y of a single-stage amplifier with two
double-tuned bandpass filters. Both bandpass filters are assumed to be identical except for
the coupling factor ¢2. For bandpass filter 1 (at the output terminals of the transistor),

2 = 2 and for bandpass filter 2, g2 = 1.5. For the angle O indicated, T, equals the product
of the sections OA4 and OB of the line OP. The line OP is drawn through the pole O such
that it intersects the y;1 and yoe diagrams at the same detuning (x = — 2.18).

terminals of the transistor (bandpass filter No. 1) is assumed at g12=2.0
whereas that of bandpass filter No. 2 equals ¢g22 = 1.5.

In Fig. 5.14 the diagram for y;; has been drawn in a normal position. The
diagram for yoe has been constructed using the same pole O as for the dia-
gram for y;1. Furthermore the real axis of the y,2 diagram has been turned
through an angle © and the y,» diagram itself has been reflected with respect
to this real axis. This means that 4 j and — j are interchanged. Thus the
real axes of both digrams form an angle 360 — ® = ¢ + @2 and the parts
of the respective diagrams for negative values of x intersect.

A line OP is drawn through the common pole O in such a way that it
intersects the y;1 and yee curves at the same frequency. Then the line 04
equals |y and the line OB equals | yos| at the frequency at which instability
will occur. Because of the synchronous tuning of the double-tuned bandpass
filters this happens at xo = x3 = x = 2.18. With Eq. (5.6.9):

Ty1 = OA - OB. (5.6.11)
Taking into account the proper scale factor we obtain from Fig. 5.14:
Ty = 4.7.

In Fig. 5.14 the construction for 7,1 for the case of a single-stage amplifier
with two single-tuned bandpass filters is also carried out. This yields
Ty1 = (OC)?, which equals 71 = 2.9.
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The construction for 7 as presented in Fig. 5.14 may be carried out for a
single-stage amplifier with two double-tuned bandpass filters which need not
be identical. In the case of non-synchronous tuning, the construction is also
possible if the polar diagrams of y;1 or yee are provided with a frequency
scale.

In fact the graphical determination of 731 may be carried out for any net-
work for which polar plots of y;1 and ye2 can be constructed. This renders it
very useful, especially if in complicated cases the value of 7, is required
for a limited number of values for @. In Chapter 12 we will demonstrate this
when dealing with non-ideal transformers used to connect the bandpass
filter terminals to the transistor terminals.

5.6.3 STABILITY FACTOR

By means of either the graphs of Figs. 5.9 to 5.12 or Eq. 5.6.3 as presented in
sub-section 5.6.1 or the graphical method of sub-section 5.6.2 the value of
Ty1 can be ascertained for the singie-stage amplifier.

As pointed out in sub-section 2.2.4, practical amplifiers should be de-
signed with a certain margin of stability. For this purpose a stability factor s
was introduced that relates the magnitude of the regeneration coefficient 7’
on which the design of the amplifier is based, to the value of the boundary of
stability 7p:

Ty
T=—. (5.6.12)
s

The same argument holds for the single-stage amplifier with two double-
tuned bandpass filters, the only difference being that the curve representing
Ty as a function of @ has a different shape from that given in Section 2.2.
However, this is of importance only for the value of s, because for this
type of amplifier also the value of T'is chosen by considering the shape of the
amplitude response and envelope delay characteristics for several values of
T (cf. sub-section 2.5.2.2). It is therefore by no means certain that the exact
value of Ty1 as can be determined using the methods of sub-sections 5.6.1 or
5.6.2 is actually required for designing an amplifier.

It will often be sufficient to know the approximate value of the stability
factor and hence, only an approximate value of 7y is required. A very rough
approximation of the boundary of stability for this type of amplifier is
obtained by using that for the single-stage amplifier considered in Chapter 2.

5.7 Tuning Procedures

In Section 2.3, dealing with single-stage amplifiers having single-tuned cir-
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cuits, it has been pointed out that distinction should be made between three
practical methods of aligning. The consequences of these tuning methods on
the performance of the single-stage amplifier with double-tuned bandpass
filters are dealt with in this section.

5.7.1 TUNING PROCEDURES FOR AN AMPLIFIER IN THE Y-MATRIX EN-
VIRONMENT

The type of amplifier analyzed in the chapter using the Y-matrix represen-
tation comprises double-tuned bandpass filters with parallel-tuned primary
and secondary. In the following sub-sections this type of amplifier will be
considered with regard to either of the tuning methods A, B and C.

5.7.2 TUNING METHOD A

As described in sub-section 2.3.2, tuning an amplifier according to what is
referred to as method A amounts to each resonant circuit of the amplifier
being tuned to the desired frequency whilst the resonant circuits immediately
preceding and following it are so heavily damped that the remaining part of
the amplifier has no influence on the circuit to be tuned. Its admittance can
then be expressed by:

Y =G(1 +jx), (5.7.1)

as shown in sub-section 2.3.1. In the preceding calculations on the single-
stage amplifier with double-tuned bandpass filters it has been tacitly assumed
that the amplifier was tuned according to this method A. (Hence, in deriving
the matrix equation (5.4.4); Eq. (5.7.1) was assumed to be applicable.

5.7.3 TUNING METHOD B

The tuning procedure referred to as method B consists in aligning the vari-
ous tuned circuits of the amplifier successively, starting at the output side.
During alignment of a particular resonant circuit, the circuit immediately
preceding it must then be heavily damped or detuned. In so doing, the pre-
ceding part of the amplifier has no influence on the admittance of the circuit
to be tuned, whereas the part of the amplifier which follows this circuit does
influence its admittance.

The admittances of the various tuned circuits of the single-stage amplifier
will now be calculated in succession for the case in which tuning method B
is applied. At the same time it will be shown how this tuning procedure may
be carried out in practice, reference being made to Figs. 5.1, 5.2 and 5.3.

Tuned Circuit 1

To align circuit 1, circuit 2 must be made inoperative. This can be achieved
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most easily by connecting a low-impedance signal generator across its ter-
minals. The signal generator is adjusted to the desired frequency and
circuit 1 is tuned for maximum deflection of a detector voltmeter connected
to the output terminals of the amplifier. This voltmeter must not load the
tuned output circuit (circuit 1) to any appreciable extent.

The output voltage v, depends, except for a constant, exclusively on the
frequency-dependent part of the circuit, so that:

vo = Ci(1 + jx), (5.7.2)

in which the constant C; isinversely proportional to the damping G of circuit
1 and to the amplitude of the signal supplied by the generator.

Putting P;1 = 1 + jx1 and denoting the value of P; at which v, is at a
maximum for the chosen tuning frequency by P1y, gives:

Piy=1. (5.7.3)
Tuned Circuit 2

In order to align circuit 2, circuit 3 must be made inoperative, for example by
connecting the low-impedance signal generator which supplies the signal
for aligning the amplifier, across it, Circuit 1 remains operative. Now circuit
2 is tuned in such a way that the deflection of the output meter is at a maxi-
mum.

The output voltage v, depends, except for a different constant, Co, on the
frequency-dependent part of the admittance of circuit 2, and on the coupling
coefficient of the double-tuned bandpass filter. Hence:

Cq
1 4 jxo — 2

Vo =

1 1+ jx1

but, since circuit 1 has been tuned previously, x1 = 0, whence:

C G
vo=— = - : (5.7.4)
Py 1+ jx2 — q1?

1 1

It can be shown that in this case the constant Cs depends on the amplitude
of the signal supplied by the generator, on the dampings G1 and Gz and on
the forward transconductance 1Y2; of the double-tuned bandpass filter.

The output voltage v, is at a maximum when x2 = 0 and
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Poyy =1+ qlz. (5.7.5)
Tuned Circuit 3

To align circuit 3, circuit 4 is made inoperative, whereas circuits 2 and 1 re-
main operative. In this case too, correct tuning is achieved when the deviation
of the output meter is at a maximum, which gives:

C3 C3
Vg = — = - - (5.7.6)
P3 1 +jx3 T1-exp(j61) 0
1 1 — qlz
0 1 1

The output voltage v, is at a maximum when the imaginary part of the first
term of the determinant is equal to:

. 1 ’
T sin 0 quz == wal (5.7.7)
It is seen that v, is now at a maximum when x3 = 0, and this conflicts with
the requirement that x3 should disappear at the tuning frequency. The rela-
tive admittance 1) of this resonant circuit will therefore be defined by (cf.:
Appendix II and sub-sections (2.1.2) and (2.3.3):

(1 + j(xs + x3"). (5.7.8)
Substitution of this relative admittance for the first term of the determinant
in Eq. (5.7.6), using x3" as defined by Eq. (5.7.7), gives:
P3y =1 + g12— T1cos O1. (5.7.9)
Tuned Circuit 4

The tuned input circuit 4 of the single-stage amplifier is aligned with all
other circuits operative, whence:

C 'S
e : ‘ . (5.7.10)
Py I +jxa  — go? 0 0

Vo

1 1 + jx3’ T1 cos O 0
0 1 1 - q12
0 0 1 1

1) Theterm “relative admittance’” employed here denotes the tuned circuit admittance with
respect to the admittance at resonance (x = 0).
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The output voltage v, is therefore at a maximum when x4 = 0, which gives:

Pav = (1 + q1%)(1 + ¢3) — T1 cos O1. (5.7.11)

Summarizing the tuning procedures for circuits 1 to 4, it is seen that the
numerator of the expressions for v, consists of those terms of 6; (given by
Eq. (5.4.4)) which are operative during the particular alignment, the results
of the previous alignments being taken into account. The numerator of Ee.
(5.2.6), for example, applicable to the alignment of circuit 3, consists of the
3 x 3 minor determinant derived from the determinant 8y with x; = x2 = 0
because the tuning of circuits 1 and 2 has been carried out previously. The
following chapter, dealing with multi-stage amplifiers, will show the useful-
ness of this conclusion.

If the relative admittance of each tuned circuit is represented in the form

1+ j(x + x),

it follows from the above comments that the various tuning corrections term
are as follows:

xll:()a

X' =0, 1 Pix (7.5.12)
x3' = T1sin O * 2=T18in@1‘—. -
xd = 0 7 2M

Now the determinant 8 according to Eq. (5.4.4), can be rewritten as
follows, taking the influence of tuning method B into account:

1 + j(xa 4 x4") — go? 0 0
5. — 1 1 4 j(xs + x3") T1exp(j©1) 0
4 0 1 I +j(x2 + x2) —q1?
0 0 1 I 4 j(x1 + x21")

(5.7.13)

Furthermore, the quantities Py are seen to be the magnitudes of the minor
determinants of &y at the tuning frequency:

PlM = 1,

Poy = Pix +q12 = 1 + q12, (5.7.14)
P3M=P2M—T1COS@1'P1M=1—i—qlz—TlCOS@l, o
Pay = Psm + q22Poy = (1 + g12)(1 + g22) — T1 cos O1.
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5.7.4 TUNING METHOD C

As described in sub-section 2.3.4, the tuning procedure referred to as method
C consists in aligning the various tuned circuits in succession, starting at the
input side and rendering inoperative the tuned circuit which immediately
follows the circuit to be aligned. In practice this tuning method can be
carried out by connecting a signal generator, which is adjusted to the desired
frequency, to the input circuit of the amplifier that is to be tuned. The ad-
mittance of this signal generator must be sufficiently low so that the circuit
is not loaded to an appreciable extent. The exact tuning point can be ascer-
tained by means of a detector voltmeter connected across the circuit follow-
ing that which is to be tuned. The input admittance of this voltmeter should
be increased to such an extent that the resulting quality factor of the circuit
across which the voltmeter is connected becomes very low, thus fulfilling the
condition that the circuit is made inoperative. The sensitivity of the voltmeter
should remain sufficiently high to give an indication of the correct tuning
point.

To tune circuits 4, 3 and 2, the detector voltmeter (with increased input
admittance) is similarly connected across circuits 3, 2and 1 respectively. It
should be recognized that, since for tuning the output circuit the detector
voltmeter must be connected directly across this circuit, it should not appre-
ciably load the circuit in this particular case.

The influences of this tuning procedure can be calculated on the same lines
as explained for method B. The minor determinants derived from &, will
now be denoted by Qa, 03, Q2 and Q1, and their maximum values at the
tuning by Qam, Osm, Qam and Qim respectively!). The tuning correction
factors applicable to tuning method C will be denoted by x”, in analogy with
section 2.3. Therefore:

X4” = 0,
x3'" =0,
xz” = T1 sin @1 . = T1 sin @1 . %{, (5715)
X1 =0, 1 4 g22 Osm
and
Qam = 1,
Osu = 1 +g2% (5.7.16)

Oox = 1 + ¢g22— T1cos O,
Oin = (1 + ¢1%)(1 + ¢2%) — T1 cos 6.

1) The symbols Q and Qs used here to denote the minor determinants obtained
with tuning method C should not be confused with the symbols Q and Qo used to
denote the quality factors of the tuned circuits af the amplifier. In all cases it
will be obvious from the context which quantity is actually meant.
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Taking the influence of tuning method C into account, the determinant
8y can be rewritten:

1+ j(xa + x4 — ga? 0 0
- 1 1 +j(xs + x3”) Tiexp (jO) 0
! 0 1 L+jxe+x) —q?)
0 0 1 1+ il + x1")

(5.7.17)

5.7.5 SUMMARY OF TUNING PROCEDURES FOR AMPLIFIERS IN THE Y-
MATRIX ENVIRONMENT

In Table 5.1 all practical aspects of tuning methods A, B and C for amplifiers
in the Y-matrix environment as considered in the preceding sub-sections have
been set out. Columns 2 to 5 indicate the method in which the tuning pro-
cedure is carried out. Inspection of the table learns that tuning an amplifier,
especially a complicated one, according to methods B or C requires approx-
imately two thirds of the number of operations as are required to tune the
same amplifier according to method A.

5.7.6 TUNING PROCEDURES FOR AN AMPLIFIER IN THE H-MATRIX EN-
VIRONMENT

In sub-section 2.3.6 it is shown that for a single-stage amplifier with single-
tuned bandpass filters, identical mathematical expressions which describe
the influences of the tuning methods A, B and C for amplifiers in either the
Y- or the H-matrix environment can be derived. Also for single-stage ampli-
fiers with double-tuned bandpass filters the expressions obtained for the
various tuning methods for amplifiers in both matrix environments are iden-
tical. This may be shown by deriving the expression for the amplifier in the
H-matrix environment. This can easily be done by means of analogies to the
preceding sub-sections.

When considering the various methods of tuning for amplifiers in either
the Y- or H-matrix environments it is essential to take into account the basic
definitions for tuning methods A, B and C as presented in sub-section 2.3.5.

The practical methods of carrying out these tuning procedures for ampli-
fiers in the H-matrix environment are set out in Table 5.2.

5.7.7 REDUCED DETERMINANT FOR THE VARIOUS METHODS OF TUNING

The three different methods of tuning can be combined in a single mathemati-
cal expression by using co-factors p1 and p2, as given in the table below:
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Tuning method A Tuning method B Tuning method C
P 0 1 0
P2 0 0 1

From Egs. (5.7.13) and (5.7.17) the amplifier determinant then becomes:

I+j(x+pix'-+pax)a  — g2 0 0
5 — 1 1+j(x+4p1x’ +pox")s  Tiexp(jO1) 0
0 1 1+j(x+p1x’+ pex')s — q12
0 0 1 1 +j(x+p1x’+p2x'

(5.7.18)

The quantities x” and x"' occurring in this expression are given by Eqgs.
(5.7.12) and (5.7.15) respectively.

To evaluate the transfer function of the amplifier from Egs. (5.5.4) and
(5.5.5), the determinant & as given by (5.7.18) must be used because the in-
fluences of the different tuning methods are then incorporated.

5.7.8 INFLUENCE OF THE VARIOUS METHODS OF TUNING ON THE STA-
BILITY FACTOR
As a matter of fact, the boundary of stability should actually also be deter-
mined from 8 as given by (5.7.18). However, since the tuning correction
terms depend on 7 sin O it would then be necessary also to take into account
the parameter s which relates 7' to 7; = s7. Considering the large variety in
parameters already used in section 5.6.1 to calculate the boundary of stabili-
ty of the single-stage amplifier tuned according to method A, the general cal-
culation of the boundary of stability for other methods of tuning would
become very complex.

Using the graphical method of determining the boundary of stability as
considered in sub-section 5.6.2, however, the change of stability factor due to
tuning methods B and C can easily be determined. This can probably best be
illustrated by means of an example which extends the case considered in
sub-section 5.6.2 (0 =250°, ri1=rs = 1, 12 = 1.5, g2 = 2.0). For tuning
method A it was found that 7, = 4.7. For s = 4, the regeneration coefficient
becomes T = Ty/s = 1.18. With Eq. (5.7.12) the tuning correction term for
tuning method B becomes x; = — 0.34. The construction for 7} is carried
out in Fig. 5.15. The line OP' joins points of the same frequency on the yi1
curve and the (shifted) yo2 curve. The boundary of stability equals 7" =
= 0A’. OB’ = 4.9. For T = 1.18 (the value for which x3" and, hence, the
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ol

.

Fig. 5.15. Graphical construction for determining the stability factor of an amplifier design-
ed with a certain value of s for tuning method A when it is tuned according to method B.

shift of the y,2 curve was determined), the stability factor now becomes
s' =42

From the above considerations it may be concluded that when an ampli-
fier is designed for, say, s = 4 for tuning method A, this stability factor
slightly increases (in this particular case to s = 4.2) when the amplifier is
tuned according to methods B or C. This is in accordance with the effects
found for the single-stage amplifier with single-tuned bandpass filters, see
sub-section 2.3.8.

However, it is in most cases not essential to know the exact value of Ty,
the more so because it is judged from the amplitude and envelope delay
characteristics whether an amplifier design is acceptable or not. It is only
necessary to know the value of 7, approximately for determining the stability
factor s with a view to interchangeability requirements (cf. sub-sections 2.2.4.
2.5.2.3 and 5.6.3 and Chapter 11). For these reasons the exact calculation
of T, is omitted here.

5.8 Transducer Gain

The transducer gain @; of the single-stage amplifier with two double-tuned
bandpass filters, defined at the tuning frequency (x = 0), is given by:

¢t = 4G,SGL]Zto|2, (581)
or:
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@, = 4GsRL|Hyol2, (5.8.2)
in which (see Eq. (5.5.4)):
Zpp — 22 41742 (5.8.3)
Y G1G2G3sGys - 8o
and (see Eq. (5.5.5)):
h @ %
= e DB (5.8.4)
Y R1G2R3Gy - o
Furthermore (see Eq. (5.7.18)):
{ 1 +j(prx’ + pex')a — qa? 0 0
. 1 1 4 j(p1x’ + p2x")s  Tiexp (j6) 0
. 0 1 1 + j(p1x’ + p2x")2  — q12
0 0 1 1+ j(pux’ + pax’n
(5.8.5)

The values of x" and x”’ in this expression are given by Egs. (5.7.12) and
(5.7.15) respectively, whilst the values of p1 and p2 again follow from the
table on page 145.

For tuning method A (p1 = p2 = 0):

80 = (1 + q2)(1 + g22)— Texp (j6), (5.8.6)
and for tuning methods B (p1 = 1, p2 = 0) and C (p1 = 0, p2 = 1):
8o = (1 + q13)(1 + ¢22)— T cos 6. (5.8.7)
Egs. (5.8.6) and (5.8.7) may be combined as:
So=(1 +q:12(1 + ¢2%)— Tcos ©— j(1 — p1— p2)Tsin 6. (5.8.8)

This expression shows that, in general, with tuning methods B and C the
value of 8y will be smaller, in other words: @; will be larger than with tuning
method A.

From Egs. (5.8.3) and (5.8.1):

|v21/2912g22

Oy =4GsG - ——— ,
‘ S 516G2GGa - 8o

(5.8.9)

or
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& ly212  GL ge2 gu Gs < 2q1 >2< 2g> )2
WS .. 28 Bl . .

 4dgugs G Ga Gz Ga \l+qi2) \14¢22
1 2\(1 2)2
(1 + @1 + ¢2?) . (5.8.10)
|80/
According to Appendix I:
|y21|2
e e Dyn
4g11 800
G*
By putting: G- w, (5.8.11)
it follows that (c.f. Fig. 5.2):
G1 = G + G1* or Gp=(1—w)G,
G2 = 1822 + G2*  or 1822 = (1 — w2)Gy, [ (5.8.12)

Gs = 1811 + G3* or 1g11 = (1 — ws3)Gs,
Gy = Gs + G4* or Gs = (1— ws)Ga. 5

According to Appendix III, Section I11.6, the transducer losses of a double-
tuned bandpass filter @y are equal to

gy == (J—f o ]~ w1 — w0} (5.8.13)
1 g2

From Egs. (5.8.10) to (5.8.13) the transducer gain becomes:

(I + @131 + ¢22)?

Dy = Dym * Dy * Dins - B
0

(5.8.14)

It follows from Eq. (5.8.8) that if 7= 0, that is to say if the amplifier has
no feedback, @; becomes:

Dy = Dyps - Dev1 * Dipe -

The last factor of Eq. (5.8.14) thus represents the losses due to the feed-
back. These losses will be denoted by @, 1), which gives:

_ (g0 +¢2%?

D 5
i BE

(5.8.15)

and:
Dy = Dunt - Divy * Pivs * Dy (5.8.16)

1) In analogy with sub-section 2.4.3 the quantity @; represents the losses due to the extra
admittance present at the input terminals of the transistor because of its non-unilateral
character. If tuning methods B or C are applied, @ represents the losses due to the real
part of this extra admittance.
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In some cases it will be more convenient to write the expression for @ in a
somewhat different form. For this purpose the various factors of Eq. (5.8.9)
are rearranged as follows:

Gs GL |yal- [yl @ q1%g2?

Dy =4 — - — — —_—. (5.8.17)
Gy G G2Gs [yi2|  [30|?
By putting
lyaal _ (5.8.18)
[y12]
Eq. (5.8.17) becomes:
Gs Gy q1%q2?
®;=4—+— Ty'N- ; 5.8.19
‘ Gs G ' |80/2 ( )

in which T is the regeneration coefficient in the Y-matrix environment (see
Section 5.4).

The above expressions for the transducer gain are derived for an amplifier
in the Y-matrix environment. Starting with Eqgs. (5.8.2) and (5.8.4) corre-
sponding expressions can be derived in an analogous way for an amplifier
in the H-matrix environment. This results in:

G R 2 152
@, — s Re o v

—_—, 5.8.20
& By |80/2 ( )

in which T} is defined in Section 5.4, and

h
v || _ |y (5.8.21)
' hi2 Y12 ‘
If Eq. (5.8.16) is used to determine ®;, Py is given by (see Appendix V):
Foq 2
Vg (5.8.22)

M7 4Re(hi1)Re(hzz)’

and @ and Py are given by Egs. (5.8.13) and (5.8.15) respectively.

Since, for a given transistor, the value of 7' is determined by the required
stability, Eqgs. (5.8.19) and (5.8.20) clearly show the influence of the ratio
N on the transducer gain of the amplifier.

5.8.1 THE OPTIMUM VALUE OF ¢

The expressions (5.8.19) and (5.8.20) for the transducer gain of the amplifier
contain a factor:
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q12q22
—— = Op, (5.8.23)
|80/2
which accounts for the influence of the coupling factors of the double-tuned
bandpass filters and the feedback of the transistor. Hence, ®; may be optimiz-
ed by optimizing @r. Therefore we put:

0Dp _ 0 0Dr

and —— =0. (5.8.24)
qu

oq1

After some calculations for either of the tuning methods A, B or C:

(1 —q13)(1 + g2?) — T'cos ©® = 0,

(5.8.25)
(I +¢q12)(1 —¢g2?)— Tcos © = 0.
From Eq. (5.8.25) it follows that:
g1%0pt = g2%0pt = G%opt, (5.8.26)

and
q%opt = V1 — T cos®. (5.8.27)

In Fig. 5.16 the optimum value of g2 according to Eq. (5.8.27) has been
plotted as a function of T'cos @. At T'= 0, g2=1 which is the value of
critical coupling of a double-tuned bandpass filter. This critical coupling
gives maximum transfer of energy from primary to secondary.
Substituting g2pt from Eq. (5.8.27) into Eq. (5.8.23) gives:

1
41 + V1= Tcos )2

@Fopt == (5.8.28)

In Fig. 5.16, the factor @ropt expressed in dB’s has been plotted as a function
of T'cos O. The value of @ at 7 = 0 is taken as 0 dB. It should be noted
that Eq. (5.8.29) is only valid when 7 has such a value that stability of the
amplifier is ensured over the entire passband.

5.9 Amplitude Response Curve

In analogy with sub-section 2.5.2, the normalized amplitude response curve,
that is to say the amplitude response curve having unity magnitude at x = 0,
is given by the relation |8o/8|, which is the reduced determinant of the entire
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Fig. 5.16. At a certain value g2,,: of the coefficient of coupling of the double-tuned band-
pass filters of the single stage amplifier the transducer gain becomes maximal. This opti-
mum value is plotted as a function of 7' cos @. At this optimum value of gop:2 the losses
due to feedback of the transistor and the coefficients of coupling of the double-tuned band-
pass filters have a minimum value as appears from the plot of @Propt = g12¢2%/|80/%

amplifier, as given by Eq. (5.7.18). The quantity 8o which equals é at x = 0,
is given by Eq. (5.8.5) or Eq. (5.8.8).

The amplitude response curve for a single-stage amplifier with two identi-
cal double-tuned bandpass filters is plotted in Fig. 5.16. It is assumed that
the bandpass filters have equal primary and secondary quality factors
(whence r = 1), that g2 = (KQ)?> = 1 and, moreover, that 7 = 2 and
©=225°. For the sake of comparison the amplitude response curve for the
unilateral amplifier (7= 0) has also been plotted.

This figure shows that the curve for this amplifier with 7= 2 differs only
slightly from that for the amplifier with 7" = 0. This means that in this ampli-
fier with two double-tuned bandpass filters the feedback of the transistor
distorts the symmetry of the response curve to a lesser extent than in the
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Fig. 5.17. Amplitude response curves of a single-stage amplifier with two identical double-
tuned bandpass filters having the following data: gi12 =¢g22 =1, r =1, T =2 and 0 =
= 225°. The fully drawn curve is applicable to tuning method A and the dash-dot curve to
tuning methods B and C. For the sake of comparison the response curve of the unilateral
amplifier (7" = 0) has also been plotted (curve in broken line).

amplifier with two single-tuned bandpass filters (cf. the curves given in Fig.
2.17). Considering that the stability factor s = 7,/T is roughly equal to 4 in
both cases, this emphasizes once again that the performance of the amplifier
cannot be judged from the stability factors.

Because all resonant circuits of this amplifier are identical, it makes no
difference to its performance whether tuning method B or Cis used. However,
tuning method A will lead to different results. This is also illustrated by Fig.
5.17 which shows that better symmetry is obtained with tuning method B or
C than with method A. Since methods B or C also yield a higher gain
than method A, these methods are preferable for tuning the amplifier.

Fig. 5.18 illustrates another important aspect of the design of bandpass am-
plifiers equipped with transistors. In this graph the amplitude response curves
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have been plotted for an amplifier (also with @ =225°) with two identical
double-tuned bandpass filters of which g2 = (KQ)? = 2. The curve for ' = 0
is double humped (because of the overtransitional coupling). The curve for
T = 2, however, has a flat top, whereas that for 7' = 3 is even slightly round-
ed off. This can be explained as follows:

Assume that tuning method B is employed. Then the output bandpass
filter of the amplifier is tuned as if the amplifier had no feedback. Further-
more, assume that the admittance parameter notation is used. When the
secondary of the first bandpass filter is tuned, the input admittance of the
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Fig. 5.18. Curves similar to those plotted in Fig. 5.17 but for 12 = g2 = 2 and r = 1, the
dash-dot curve being valid for 7 = 2, the fully drawn curve for 7 = 3 and the curve in
broken line for 7 = 0 (unilateral amplifier). These curves illustrate the disappearance of the
humps due to the presence of negative real feedback.
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transistor is 1):

Yigye1
in = J11— ——— . 5.9.1
Vin J1 Go(1 + qz) ( )
This means that, in addition to g11, an extra damping:
Re 1)
i g ) - (5.9.2)
Go(l +4¢7)

appears at the input terminals of the transistor.
With Egs. (2.1.11) and (2.1.12) this extra damping can be expressed by:

gingp =— G1-Tcos O - (5.9.3)

1 +q2°
For ©=225° Tcos O is negative, as a result of which, according to Eq.
(5.9.3), the damping on the secondary of the first double-tuned bandpass
filter is increased. The “working” quality factor Q of the secondary is
therefore decreased, and since the coupling coefficient k between the primary
and secondary is constant, the “working” KQ is also decreased. This explains
the disappearance of the humps at 7= 2 and T = 3 in Fig. 5.18. If T cos @
had been positive, this would obviously have resulted in an increase of the
“working” KQ and hence in an increase of the humps.

From the above argument it can be concluded that when choosing g =
= KQ it is necessary also to take the quantities 7" and @ into consideration.
(In fact, this is one of the points which render the syntheses of amplifiers in
which T differs from zero extremely complex.)

5.10 Envelope Delay Curve

According to section 2.5.3, the envelope delay of the amplifier is given by:

A
fo~ 22, (5.10.1)
wo
in which (cg. Eq. (2.5.38):
Ay
S .10.2
Te Ax (5 )

The angle ¢ must be derived from the transfer function of the amplifiers:

Zi= 0 0L (5.10.3)

V61626 - 5

1) Eg. (5.9.1) is in accordance with Eq. (2.3.2 )in which Y2 has been replaced by the input
damping at x = O of the second bandpass filter of the amplifier (cf. Appendix III).
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~ 1haqige
VRiG2RsGy - 8

or H;

(5.10.4)

in which 8 denotes the general amplifier determinant, including the influences
of the tuning procedure as given by Eq. (5.7.18).

Since the relative bandwidth of the amplifier under consideration is fair-
ly small, the phase angle of y21 may be assumed constant. (In fact, this is one
of the assumptions on which this theory is based; cf. Chapter 1.) In order to
evaluate @, only 8 need therefore be considered.

Im ()
= tan—1 . 5.10.5
@ Re(d) ( )
1 s
T ___.:7';2
fr 1 —7=3
3
2 - N
!\\ HI p‘rﬁ*ja"“\
Ny 0 o AN
Io's 507 0TS
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Fig. 5.19. Reduced envelope delay 7. of a single-stage amplifier with two identical double-
tuned bandpass filters having the following characteristics: gi12 = g2 =2, r =1, @ =
= 225°, it being assumed that tuning method B or C is applied. The dash-dot curve applies
to T = 2, the fully drawn curve to 7' = 3, whilst the curve in broken line is applicable to
the unilateral amplifier (7" = 0).

The reduced envelope delay 7, has been determined by way of example for
a single-stage amplifier with two identical double-tuned bandpass filters, it
being assumed that g2 = (kQ)? = 2, r = 1, and © = 225°. The values of 7,
thus obtained for 7= 0, T = 2 and T = 3 have been plotted in Fig. 5.19.

It should be recognized that the curves for 7= 2 and T = 3 in the graph
of Fig. 5.19 are slightly flatter than the corresponding curve for 7 = 0. This
means that the feedback which is present in the amplifier has a flattening

effect on the envelope delay characteristic, provided the feedback is not
excessive.
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CHAPTER 6

MULTI-STAGE AMPLIFIERS WITH SYNCHRONOUS
SINGLE-TUNED BANDPASS FILTERS

The design of multi-stage transistor amplifiers is complicated by the fact
that transistors are non-unilateral devices. A transistor considered as an
active four-terminal network will have a mutual interaction between its
input and output terminals. If then a number of stages containing such
transistors are cascaded, the interaction between the input and output ter-
minals of any transistor influences to a certain degree the operating condi-
tions of all other transistors. The degree of interaction between successive
stages obviously depends on the degree of coupling of the stages due to
the interstage network employed. The larger this coupling, the larger the
interaction.

It is, therefore, not possible to design a multi-stage amplifier on a stage-
by-stage basis. This means that the conventional theory of linear amplifier
circuits employing unilateral amplifying elements is not applicable to tran-
sistor amplifiers and recourse must be made to an analysis of the multi-
stage amplifier as a whole.

In amplifiers employing single-tuned bandpass filters as interstage coupling
networks, as considered in this chapter, there is a very light coupling between
the successive stages. In this type of amplifier, problems due to the inter-
action between the stages present themselves very seriously.

These problems, relating to stability, power gain amplitude response and
envelope delay, will be considered in detail in the following sections.

6.1. General Amplifier Circuit
In Fig. 6.1 a circuit diagram of an amplifier containing » transistors and

Tuned circuit Transistor Tuned circuit Tuned circuit Transistor Tuned circuit
no.(n+1) no. 0.

3 ; angi

Fig. 6.1. Circuit diagram of an n-stage amplifier with » + 1 single-tuned bandpass filters.




158 AMPLIFIERS WITH SYNCHRONOUS SINGLE-TUNED BANDPASS FILTERS [6

Tuned circuit Transistor Tuned circurt
no.(r+1) no.r no.r
*
Lrsy Lﬁg
r+1ty rt ]
T _—
GreTT Cra1 joe e
&7’2 @ Ertz

Fig. 6.2. Stage No.r of the amplifier showing the taps on the single-tuned bandpass filters
and the notation thereof.

(n-+1) single-tuned bandpass filters is presented. The input and output ter-
minals of the transistors, which are, by way of example, shown in the
common emitter configuration, are connected to taps on the single-tuned
circuits. To arrive at a more uniform and more schematic circuit diagram,
we consider the rth stage of this n-stage amplifier, see Fig. 6.2. This rth stage
comprises transistor No. r and the rth and (r-1)th tuned circuits. The
notations used for the elements of these single-tuned circuits as used in the
diagram are analogous to those of Chapter 2.

The output terminals of the transistor are connected to a tap ,#1 on the
rth tuned circuit and the input terminals of the transistor to a tap (+1)fe
on the (r-+1)th tuned circuit. We may replace the tuned circuits having taps
by an admittance Y* and two ideal transformers with transformer ratios
t1:1 and 1 : 72 as shown in Fig. 6.3. Furthermore, let the transistor be
replaced by an equivalent four-terminal network based on admittance param-
eters and let the input and output currents and voltages of the transistor
network be related as:

i1 = yu'vi’ + yi2've’, ) 6.L1)

. ’
i) = ya1'v1’ + ya've .

The transistor equivalent network can now be transformed to the top of
the tuned circuits taking into account the proper transformer ratios. Then
a normalized equivalent four-terminal network is obtained as indicated in
Fig. 6.3. Now:

i1 = Y1101 + ry12ve,
(6.1.2)

T~

i2 = rY21V1 -+ rY22v2,
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tuned circuit transistor tuned circuit
no.(r+i1) no.r no.r
/] . e S e e e e e T S e T T e e _l‘ i.?
vy i equivalent transistor I v
ideal o four-terminal network i ideal I
transformer 1, —— | <2 transformer }
o g f v
" D ’ %% L U Yr*
, {] 1 il
10 etz I i1 l ) } l rt Q1
i Y !
_____________ =)
_________________________________ _

normalized equivalent four-terminal
network of the transistor

Fig. 6.3. Equivalent circuit diagram of the rth stage of an amplifier. The taps on the single-
tuned bandpass filters are represented by ideal transformers. These transformers are
included in a normalized equivalent four-terminal network representing the transistor.

in which:
i1 = @+t - oy, Y12 = rl1* gtz Y12, )
(6.1.3)
Vo1 = rt1* eyt Vo1, Ves = rh12 pyao’. ’

Using this normalized equivalent four-terminal network, the amplifier
circuit around the rth transistor can be represented as shown in Fig. 6.4

transistor transistor transistor
no. (r+1) node no. r node no.(r-1)
no.(r+l) no.r
______________ ] [, i
= o ~1 | I . 1 1 5 o
3 PR | % | = Lo | &
BN S G S P
Fex s et el 1L B |
F 7 “ < ¢T T
. A TR e « N QF T
IR RN IRIBIRG
| | 1
‘ : 1 !
| T ) P ———— PPN S,

Fig. 6.4. Equivalent circuit diagram of a part of the n-stage amplifier.

which may further be simplified to Fig. 6.5 by combining the output self-
admittance of the rth transistor, the admittance of the rth tuned circuit and
the input admittance of the (r—1)th transistor into a single admittance Y.
6.2 General Amplifier Determinant

An amplifier comprising » transistors and (n-+1) single-tuned bandpass
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node node node node
no.(r+2) = & ho(r+l) no.r = no.(r-1)

R = <

TR ¢ I 5
N X = F N
ENEY N O’ EE
t & Iﬁ Iu f L

Yr2) &) Vr Yir-1)

Vel TPt o0t 2t e
Fig. 6.5. Simplified equivalent circuit diagram of a part of the n-stage amplifier.
filters driven by a current source with admittance Ys and loaded by an ad-
mittance Y, is represented in Fig. 6.6. When:
Yn+1 = Ys + Yn*i1 + ay1, (6.2.1)
Y1 =12+ 1* 4+ Yi, (6.2.2)

and the further notations are as indicated in the preceding section we may
write the nodal equations for the n-stage amplifier in the form of a matrix
equation:

is Ynt1  wyiz — — 0 0 Va+1
0 ny21 Yo — = 0 0 Un
- Z - —Z _ _ 623
0 0 0 — — Ys 112 V2

0 0o — — 12 Y1 V1

The determinant 4 of this equation may be simplified by firstly: dividing all
rows by the Y-term it contains, and secondly: by dividing all columns by the
y21/Y term it now contains and multiplying the corresponding rows by this
same term. Then 4 may be written as:

m=n+1
A= I Yn-9, (6.2.4)

m=1

node_no. node no. node no. node no.
n+1 n 2 1

Y
< rV2
~<

Fig. 6.6. Simplified equivalent circuit diagram of the n-stage amplifier showing source and
load terminations.
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1 nY12 * ny21 . . 0 0
Yn+1 * Yn
1 1 — — 0 0
5 — - - - T — (6.2.5)
0 0 o o 1y12 * 1Y21
Yo 11
0 0 — — 1 1

6.3 Loopgains and Stability

Use will be made of the loopgain concept to analyze the multi-stage amplifier
with single-tuned bandpass filters with respect to stability. Using this concept
enables us to illustrate the various stability and instability phenomena in a
multi-stage amplifier in a plausible manner.

6.3.1 THE LOOPGAIN OF AN ISOLATED AMPLIFIER STAGE

In order to illustrate the loopgain concept we will first consider an isolated
amplifier stage. Let such an isolated amplifier stage be represented by Fig.6.7.
The amplifier determinant for this stage equals:

" Y12
4= , (6.3.1)
Y21 Yy
which may also be written as:
| Yy |
4= 1Y, Y1Ys w (6.3.2)
1 1

Furthermore, the forward voltage gain of the stage equals:

Y21

Ys '

~<

. var2
Fig. 6.7. Isolated amplifier stage.
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whereas the reverse voltage gain is given by:
Y12
-
Hence, the loopgain of the stage amounts to

Y12 ya1
YiYs

If we denote the loopgain of the isolated amplifier stage by

g L (6.3.3)
Y1 Y2
we may write for the general amplifier determinant:
| 1 u
4 =117 ‘ ; (6.3.4)
1 1

If the isolated amplifier stage forms a single-stage amplifier and does not
constitute a part of a chain of amplifier stages (see next section), Eq. (6.3.3)
represents the complete amplifier determinant, and, apparently, when u; = 1
(= 1uy) the amplifier is at the boundary of stability (because then 4; = 0).

6.3.2 ISOLATED STAGE LOOPGAINS IN THE REDUCED AMPLIFIER DETER-
MINANT

The reduced determinant for the n-stage amplifier given by Eq. (6.2.5) may,
taking into account Eq. (6.3.3.), be written as 1):

1 Un 0 —_ = 0 0 0
1 i it = w== 0 0 0

Sy = : T : : : : : ,  (6.3.5)
0 0 0 S 1 1 u
0 0 0 —_ = 0 1 1

in which u, denotes the loopgain of the rth stage of the n-stage amplifier
when considered as isolated. Expressed in a formula:

ryi2 * ry21
Up = —— | 6.3.6
" Yr- Yr+1 ( )

1) Theindex u in 8, indicates that 8, refers to the reduced amplifier determinant expressed
in terms of isolated loopgains. Remember that 3 (without index «) denotes the reduced
determinant in terms of regeneration coefficient.
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6.3.3 BOUNDARY OF STABILITY OF AN n-STAGE AMPLIFIER

The boundary of stability of an n-stage amplifier comprising (n-1) single
tuned bandpass filters is obtained by equating 8, given by Eq. (6.3.5) to
zero (provided all Y’s are different from zero). In the case where all transis-
tors and all single-tuned bandpass filters are identical, all loopgains at the
boundary of stability are equal. These loopgains, which will be denoted by
nlg, are calculated in Appendix VI. The results are compiled in Table 6.1
for amplifiers comprising up to 10 stages. For a single-stage amplifier 1z, = 1,
whereas for an infinite number of stages ,uy = 0.25.

When the various stages of the amplifier are not identical, instability will
occur for values of u, other than ,u,. Substituting values for u, in Eq. (6.3.5)
it can be checked whether the amplifier is stable (8 < 0) or not by evaluating
this determinant (or by checking the cascaded loopgains of the various stages,
see sub-section 6.3.4).

Using the notations of Chapter 2, Egs. (2.1.4), (2.1.11), (2.1.12) and (2.2.6)
we may write for Eq. (6.3.6):

Ty exp (jOr) = ur (1 + joxr) (1 4 jxrs1). (6.3.7)
At the boundary of stability we obtain for the amplifier with identical

stages by eliminating x from the last expression (all x’es are assumed to be
identical):

2l
iTg=—n? | (6.3.8)
1 + cos ©®
or:
nTg = nug ® 1Tg. (63.9)
TABLE 6.1
n nllg
1 1.00060
2 0.5000
3 0.3820
4 0.3333
3 0.3081
6 0.2928
7 0.2831
8 0.2764
9 0.2715
10 0.2680
0 0.2500
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6.3.4 CASCADED LOOPGAINS IN A MULTI-STAGE AMPLIFIER

In a multi-stage amplifier the loopgain!) of anystage depends on the transfer
parameters of the transistor in the stage in question and on the total admit-
tances seen by the forward and reverse current generators of the transistor.

Let ,U, denote the loopgain of the rth stage of the cascade of n stages.
Then, for a single-stage amplifier, obviously,

WWi=wum (6.3.10)

(see sub-section 6.3.1).

In a two-stage amplifier the forward transfer current generator of the
output transistor sees an admittance Y1, see Fig. 6.8, whereas the reverse
transfer current generator sees an admittance

Yz_z)’m *2)21 = ¥yl —).
Ys

The loopgain 2U; of this output stage therefore becomes:

Uy — 1)Y12 " 1)21
= Y1' Yz(l——uz)’
or:
N .. (6.3.11)
1— Us

In the same way the loopgain of the input stage is found to be:

Fig. 6.8. Simplified equivalent circuit diagram of a two-stage amplifier illustrates the de-
finitions of cascaded loopgains.

1) The method of considering the loopgain of a stage out of a cascade of stages in terms
of the loopgains of these stages considered as isolated, has been indicated firstly
by C. J. McCluskey in a private communication to the author.
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Uz
2Uz =

(6.3.12)

1—w

When the loopgain of any of the stages of the amplifier becomes unity, the
amplifier is at the boundary of stability. For the two-stage amplifier this
boundary is therefore reached if 2U1 = 1 or 2Uz = 1, or:

1— Uy — Ug = 0. (6.3.13)

For identical stages u = 0.5, which is also obtained in the preceding section.
In an analogous way we can derive for the various stages of a three-stage
amplifier:

U =—— | (6.3.14)

Uz

Up=——————, 6.3.15
PR 0 —m) (I —w {del)
u
" - N S (6.3.16)
uz
1 — =
1 — Ui
The boundary of stability is reached for
sUr=1,3Uz=1o0r3Us=1,
or:
U +us +ug—wmuzs =1, (6.3.17)
which leads to suy = 0.38 if u1 = us = us .
For a four-stage amplifier we may derive:
. N (6.3.18)
Uz
1— -
us
1 —uy
WUs — 1 : (6.3.19)

(1 — u1) (1 ——uf—>

1—u4
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us

4Us = » 9
(1 _ —2—> (1 — us)
1—w
Uus
Uy = » 3
fompee
P
1— [Z5%

whereas at the boundary of stability:

ur + uz + uz + ya— wiuz — wiug — uguz = 1.

In an analogous way we obtain for an n-stage amplifier:

25}
U1 = —
(L N
1
ele,
nUs = 1w »
1 —u) (1 & )
u
1_ 4
ete.
us
nU3 =

For the rth stage we may write (see also Fig. 6.9):

ry12 * ry21
2Ur = s
Pr Qr+1
Yy : Yr+1 °
Pr—l Qr+2
or.;
Ur
WU = ——— )
Pr Qr+1

Pr—l Qr+2

(6.3.20)

(6.3.21)

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)

(6.3.26)

(6.3.27)
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in which P and Q are minor determinants of 8 defined as indicated in
Eq. (6.3.28):

1 u. O 0 0. 0 O 0 0 0
11 upa 0 0: 0 0 0 0 0
o 1 1 0 0. 0 0 0 0 0
- - -Q. B
0 0 lLwa: 0 0 0 0 0
0 0 1 1 u 0 0 0
. | b ______________________________________________________________________ | (63.28)
0 0 O 0 1 1 u 0 0 0
0 0 0 0 0 1 1 0 0 0
S - P-C:C
0 0 0 0 0 0 0 1w 0
0 0 0 00 (0 © 1 1 wm!
0 0 0 0 0 0 0 0o 1 1.

The minor P, is thus obtained by starting at the lower right hand side of 8,
and taking so many rows and columns from &, that the loop gains u1 up to
and including u,—1 are contained in the minor (r columns and rows). The
minor Qr+1 is obtained by starting at the upper left hand side of 8,; the
loop gains wuy4+1 up to and including u, are to be contained in this minor
(n + 1 — r columns and rows).

: Py
The quantity Y5 7

in Eq. (6.3.26) denotes the total admittance seen by
r—1

the forward transfer current generator of the rth transistor. Analogously,

Stage no.r

P

I

Il

|

|

|

|

E

| oo
‘\ 21Vrer I
|

1

1

I

|

1

T

=== | 1 yr+1u

Qr+1
1 V’d-fﬁr::?

P
Veibst 1
"R

Fig. 6.9. Part of an n-stage amplifier illustrating the cascaded loopgain of the rth stage.
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the quantity Y71 grﬂ

denotes the total admittance seen by the reverse
r+2

transfer current generator. These total admittances can easily be written as

continued fractions. This might also be concluded from the expressions

obtained for the simpler cases first considered. If, therefore, all u’s of the

n-stage amplifier are known, all ,U’s can be calculated. Interesting questions

which might be put forward in view of amplifier stability are:

a) what are the values found for the various ,U’s of an n-stage amplifier
if all «’s are made equal?

b) if equal values for all ,U’s of the n-stage amplifier are required, what
values are to be given to the various u’s?

These questions will be dealt with in the next section.

6.3.5 STABILITY FACTORS IN AN #n-STAGE AMPLIFIER

The stability factor of an amplifier is generally defined as the reciprocal of
its maximum real loopgain. In an n-stage amplifier with single-tuned band-
pass filters this loopgain may either be an isolated loopgain (u) or a cascaded
loopgain (»U). This implies that stability factors associated with both kinds
of loopgain should be considered.

The ““isolated” stability factor sy for the rth stage is therefore defined as:
1

Uy

> (6.3.29)

Sr =

whereas the “cascaded” stability factor »Sy is defined as:

1
S, = , 6.3.30
nr nUr ( )
The two questions put forward in the preceding section thus refer respec-

tively to:

a) equal isolated stability factors,

b) equal cascaded stability factors.

Both cases will be considered in the following sub-sections (see also Biblio-

graphy (6.1)).

6.3.5.1 Equal Isolated Stability Factors

If in an amplifier the isolated stability factors of the various stages are (made)
identical, we may calculate the cascaded stability factors of these stages by
using the expressions derived in sub-section 6.3.4. In Figs. 6.10 and 6.11
the cascaded stability factors S, are plotted as a function of the isolated
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Fig. 6.10. Relation between the cascaded stability factors and the isolated stability factors
of a two and a three-stage amplifier. The isolated stability factors of all stages are taken to
be identical.
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Fig. 6.11. As Fig. 6.10, but for four and five-stage amplifiers.




170 AMPLIFIERS WITH SYNCHRONOUS SINGLE-TUNED BANDPASS FILTERS [6

stability factor s for the various stages of amplifiers comprising up to five
stages. It follows from these graphs as well as from the expressions presented
in sub-section 6.3.4 that, for a three-stage amplifier or for a muiti-stage
amplifier having an odd number of stages, the centre stage has the lowest
cascaded stability factor. In a multi-stage amplifier with an even number of
stages this applies to the two centre stages. Furthermore, the cascaded
stability factors of the various stages have values which are symmetrical
with respect to the centre stage(s) of the amplifier and which increase grad-
ually going from the centre stage(s) to the outer stages. This has also been
illustrated in Table 6.2 below, which presents the various stability factors
of a five-stage amplifier of which each stage has an isolated stability factor
of s = 6.

TABLE 6.2 STABILITY FACTORS IN A FIVE-STAGE AMPLIFIER

Stage no s 5Sr
1 6 5.25
2 6 3.95
3 6 3.75
4 6 3.95
5 6 5.25

6.3.5.2 Equal Cascaded Stability Factors

If it is required that the cascaded stability factors of the various stages of
the amplifier are identical, it can be calculated by means of the expression
derived in sub-section 6.3.4, which values of isolated stability factor should
be given to the various stages in order to fulfil this condition.

Considering a three-stage amplifier we find that for equal cascaded stability

factors S of the various stages:
1 1 1
ST SRR s I TN (6.3.31)
sU1 3Uz 3Us

From Egs. (6.3.14), (6.3.15) and (6.3.16) it then follows for the isolated

S

1
stability factors (s = —) :
u

si=s2=1+S8,
1+ 8)2
—

(6.3.32)

§2 =

In an analogous way it follows for a four-stage amplifier using Eqs. (6.3.18)
to (6.3.21):
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s1=8s1=1-+8 .

(1—;S)2. S

(6.3.33)

S2 — §3 =

Using Eqgs. (6.3.23) to (6.3.28) it can be calculated for an n-stage amplifier
with equal cascaded stability factors:

s1=s8p=1+§, (6.3.34)
and
1+ 5)2
S = A , (6.3.35)
S
in which m=23,...n—1.

It thus follows that for equal cascaded stability factors of the amplifiers
the first and the last stages have isolated loopgains different from those of
the inner stages. In Fig. 6.12 the isolated loopgains as given by Eqgs. (6.3.34)
and (6.3.35) have been plotted as a function of the cascaded loopgain S.

21— t\
71— 4
EEENN 5
\ boundar, /T |
10 j‘f§ " of stabiﬂyty r,\c'o"’/
N | S
9— &@“\/ A
;- A 5/
- // \z‘// |
7 N P44 [
MR / I
- A /
61— pd /
7
- //
5 /
‘- /’/
3 A
- V.
2 /
Fig. 6.12. Relation between the iso- 1
lated stability factors and the casca- 1
ded stability factors for an n-stage — S
amplifier. The cascaded stability i >3 4 = 3 , 5
<

factors are identical for all stages.
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6.3.5.3 Choice of Stability Factor System for Practical Amplifier Constructions

Whether, in a practical amplifier, the cascaded stability factors or the isolated
stability factors should be made equal depends on the relative merits of the
two systems in amplifier design and construction.

When the isolated stability factors are made equal, all single tuned
bandpass filters of the amplifier become identical which production
problems. When equal cascaded stability factors are required the input and
output bandpass filters are different from the others. Equal isolated stability
factors are therefore preferable in the light of production techniques. This
however, implies a certain sacrifice in gain of the amplifier compared with
the case of equal cascaded stability factors. This may become apparent from
the following considerations: In an amplifier the most important stability
factors are those which apply to the various stages under actual operating
conditions: the cascaded stability factors. These cascaded stability factors
should have a certain minimum value. This minimum value, defined for a
nominal amplifier, depends on spreads in transistor parameters and tolerance
of components as well as on the allowable distortion of the response curve.
If the isolated stability factors are made equal, the worst cascaded stability
factor (centre stage of the amplifier) should have this minimum value. The
cascaded stability factors of the remaining stages are then higher than
required. This means that more gain than necessary has been sacrificed in
achieving stability. For amplifiers with practical values of stability factors
this extra sacrifice in gain, compared with the case of equal cascaded stability
factors, is generally very small, see sub-section 6.6.11 and Bibliography (6.1).

From these considerations it may be concluded that there are no distinct
advantages in either of the two systems, except that the system with equal
isolated stability factors is generally preferable from the point of view of
amplifier construction. For this reason we will confine ourselves in the further
analysis of this type of amplifier mainly to the equal isolated stability factor
system.

6.4 Regeneration Coefficients

6.4.1 REGENERATION COEFFICIENTS IN THE GENERAL AMPLIFIER DE-
TERMINANT

Considering that:
Yr = Gr (1 4 jxy), (6.4.1)

ry12 * ry21 o
Gr : Gr+1

and Ty - exp (jOr) , (6.4.2)
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the determinant of Eq. (6.2.3) can be written as:

m=n-+1
4="T Gu-s, (643
m=1
and
' 1+ jxn+1 Tohexp (jOn) — - 0 g
S Ltfgg — — @ 0
“ - o . o — —
5 — ’ - B - B B - . (644
0 0 _ — 14 jx2 Tiexp(jO:
]‘ O O —_ — —_ 1 +jx1

With Eq. (6.4.4) we have obtained the normal form of reduced amplifier
determinant which will be used for investigating gain and frequency response
of the amplifier.

6.42 REGENERATION COEFFICIENTS AND STABILITY FACTORS

According to Chapter 2 the boundary of stability, in terms of regeneration

coefficients, of an isolated amplifier stage is given by:
2

" 1+cosO°

T, (6.4.5)
The isolated stability factor s relates this boundary to the actual regeneration
coefficient as:

T=—. (6.4.6)
s
To obtain values for the regeneration coefficients 7" of the various stages the
isolated stability factors are thus required. The design on stability of an
amplifier should, however, be based on cascaded stability factors. When these
factors are known, the isolated stability factors can be ascertained by means
of the graphs of Figs. 6.10, 6.11 and 6.12.

If the amplifier is equipped with identical transistors in the various stages,
the equal isolated stability factor system leads to equal values of T for all
stages. When the equal cascaded stability factor system is employed the
values of 77 and T, are larger than from those of 75 ... Tp_1.

6.5 Tuning Procedures

In the multi-stage amplifier with synchronous single-tuned bandpass filters
tuning may also be carried out according to either of the methods A, B or C




174 AMPLIFIERS WITH SYNCHRONOUS SINGLE-TUNED BANDPASS FILTERS [6

as described for the single-stage amplifiers in Chapters 2 and 5. We therefore
introduce tuning correction terms x’ for tuning method B and x”’ for tuning
method C. With p1 and p2 having values given in Table 2.1 on page 46
the relative admittance of the rth tuned circuit of the amplifier becomes:

yr=1+7j 0 + prxs’ 4 paxy”). (6.5.1)

Then the reduced determinant of the amplifier may be written as:

Yn+1 Tnexp (;0,) — - 0 0
1 Yn - - 0 0
8 = — — — - — — . (6.5.2)
0 0 - — ¥ T1 exXp (j@l)
0 0 == === 1 1

The tuning methods A, B and C as well as the calculation of the tuning
correction terms have been considered in detail in Chapter 2 for a single-stage
amplifier with two single-tuned bandpass filters, and in Chapter 5 for a single-
stage amplifier with two double-tuned bandpass filters (comprising four single-
tuned circuits).

Calculation of the tuning correction terms for this particular amplifier,
which may be carried out analogously, yields for tuning method B:

xl’ = 0, \
. 1 .

xo' = T1sin Oy - = Ty sin @1 ,
Piym
P 1

.X3, :Tzsin@2~ ﬂ = TzSin@g'—,
PzM 1— T1 COS @1 (653)
P 1—-T (€]

X4':T35in@3'—2¥[:T35in@3' 1 G851 8
P3M j - T1 COoSs @1 b Tz CcOoS (92
Pu-

andxr, — Togin @, 02

Pr-1ym

For tuning method C we obtain:
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x””n-\-l = 09 \\
Xn' = Ty sin O, =Ty sin O, ,
O n+1y™
, . O m+1ym ) 1 . (6.5.4)
x"'n-1=Tp-18InOy_1 - A Tp-18in@p_3 ———
Onn 1 —Tpcos @,
. Qui2)m
x;'" = Ty sin O, . —. ]
Owrym /

In these expressions P and Q are minor determinants obtained from
Eq.(6.3.28) when starting at the lower right hand side corner and the upper left
hand side corner respectively. The first index of P and Q denotes the order
of the minor which is, obviously, equal to the number of tuned circuits
included. The index M in Pyy and Qu denotes that these minors apply to
parts of an amplifier tuned according to method B or method C respecti-
vely in such a way that these parts give maximum response at the tuning
frequency.

In Chapter 5 an analogous notation has been used for the minors of the
determinant for a single-stage amplifier with two double-tuned bandpass
filters.

6.6 Gain
6.6.1 TRANSDUCER GAIN
The transducer gain of an amplifier is given by:

®; = 4 GsGy - | Zs]2, (6.6.1)

in which Z; represents the transimpedance of the amplifier. For the n-stage
amplifier this transimpedance can be obtained from Eq. (6.2.3) as:

m=n

T m}y21
e :‘T (6.6.2)
or, with Eq. (6.4.3):
my21
Zy — 2 . (6.6.3)
m=1

The reduced determinant 8 including the effects of the tuning procedures
is given by Eq. (6.5.2). At the tuning frequency all x’es in & vanish and the
transducer gain becomes:
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m=n

II |m}’21|2
Dy =4 GsGL ;{%— ; (6.6.4)
I Gp2- 802
m=1
in which
1 Ya+y0  Tnexp(jOn) — — 0 0
J 1 Yns0 — = 0 0
o= | o - o . (6.6.5)
| — _ _ — _ _
|
0 0 — —  y20 Tiexp(jOr)
0 0 — — 1 yl,O
and
yro = 1 4 j(p1xy" + pax,”’). (6.6.6)

In analogy with sub-section 2.4.3 we may express the transducer gain of the
multi-stage amplifier given by Eq. (6.6.4) as the product of the maximum
unilateral gains of the transistors 1), @y, the insertion losses of the tuned
circuits 2), @;, the mismatch losses across the tuned circuits 3), @, and a
factor 1/|,80/2, »Of, accounting for the non-unilateral properties of the tran-
sistors. In a similar way as we obtained Eq. (2.4.15), we find:

m=n m=n-+1
Brg= I 3iPum B (B 5 Posm) * 5Dy . (6.6.7)

m=1 m=1
For an amplifier consisting of identical stages, this expression reduces to:
¢t,n = Qyy" - Dy - D™ n¢f . (668)

Expressions (6.6.7) and (6.6.8) are of special importance for amplifier
designs in which the contribution of the various parts to the total transducer
gain is known (as a design requirement) or is required afterwards for other
purposes. If, however, the transducer gain of the amplifier obtainable with
a certain type of transistor is of prime interest, Eq. (6.6.4) can better be

Yya1 ’

expressed in an alternative form. If N = | — | , Eq. (6.6.4) can be written as:
Yiz2

1) See Appendix V.
2) See Appendix II.
3) See Appendix II and footnote on page 51.
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GS GL m=n ]
- — - II (T"N)w * n@r, 6.6.9
Gp1 G1 m:1( o o ( :

@t,n - 4

in which T is generally determined by stability requirements.

For the purpose of comparing various transistors, it may be assumed that
the ratios Gs/Gr+1 and Gr/G: are kept constant (which may be achieved
by a change of tapping ratio) and, furthermore, that all stages of the ampli-
fier are identical. Evaluation of T»N"/|5¢|2 then gives the transducer gain
of the amplifier (except for a constant) obtainable with the different types
of transistors.

1
The fac:tor|8—Jz = ,@; appearing in the various transducer gain ex-
0

pressions may be obtained by evaluating the determinant given by Eq. (6.6.5).
When tuning methods B or C are applied and the various stages of the
amplifier are identical with respect to 7 and 0, |§o| is a function of 7" cos ©
only and can therefore easily be represented graphically. Fig. 6.13 shows
such a graph for amplifiers comprising up to five stages. For tuning method A,
representation of [8o| in a single graph is not possible because the quantities

10° }
1T 160l
BC
102 =
~ -
Nl | =2 N =5
L ~
- =, N
~IE N
10 ~
N
~~§n=2 || ~~\\t\
B S SUERAN
= ~L A\
~ RO
1
|
L |
5
\
[H4)
o i)
-4 -3 -2 -1 0
—= Tcos @

Fig. 6.13. The value of the reduced determinant |8| at x = 0 for an amplifier tuned accord-
ing to methods B or C as a function of 7 cos 6.
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10°
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(1] | |80l
02 FES
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/'//
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Fig. 6.14. Comparison of values of |30 for an amplifier tuned according to either method
A or methods B or C for ® =225° and @ =270°. It follows that the differences in |8,
are larger for larger values of [sin O|.

T cos O as well as T'sin O are contained in |8o|. To show the differences in gain
obtained with tuning methods A and B or C, |§¢| has been plotted in Fig. 6.14
as a function of 7' for ® = 270° and ® = 225°.

6.6.1.1 Comparison of Equal Isolated Stability Factor and Equal Cascaded
Stability Factor Systems

As pointed out in sub-section 6.3.5.3 some gain is sacrificed when the equal
isolated stability factor system is applied in an amplifier which must have a
given minimum cascaded stability factor. The difference in gain obtained
with the two systems will be calculated for a four-stage amplifier in which
S > 4. For the case of equal isolated stability factors it then follows from
Fig. 6.11 that s = 6. For the case of equal cascaded stability factors it follows
from Fig. 6.12 that s = 6.25 for stages 1 and 4 and s = 4.4 for stages 2 and 3.
The various regeneration coefficients 7’can now be ascertained from 7" = T}/s.

With Eq. (6.6.9), @;,, can be calculated for the two systems taking into
account the different values of 7" and |8p|. The factors Gs/G5s and Gr/G1 do
not change noticeably because for the outer stages the isolated stability factors
equal either s = 6 or s = 6.25. Then the ratio of the transducer gain ob-
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tained from the amplifier with equal cascaded stability factors and from the
amplifier with equal isolated factors becomes:

D; 4 equal S

@¢ 4 equal s

T (T, \2
6 1—4% cos® + 3 (?‘q cos @)

T (442 (6252 T T (/T2 T, 2% .
W e Ji=2 o )
=2 (4.4 N 6.25> GEH = ) (4.4) e (6.25> .

b

/

(6.6.10)

in which 77 is the boundary of stability of an isolated amplifier stage:

2

e pe— 6.6.11
1 -+ cos @ ( )

T,

In Fig. 6.15, Eq. (6.6.10) has been plotted as a function of the regeneration
phase angle @. It follows from this curve that for a four-stage amplifier with
a cascaded stability factor of S = 4, an increase in transducer gain can be
obtained of 3.3 dB at ® = 0° by making all cascaded stability factors equal
instead of making all isolated stability factors equal. At @ = 270° (or 90°)
this increase amounts to 2.4 dB whereas at @ = 210° (or 150°), 1.5 dB is
gained.

5 Tgﬁ, ,equal S
— e
4 | Giequal s
7
[
3 I~
T
2
<
7
8{ o —
] 30 50 180
360 30 300 270 260 210 180

Fig. 6.15. Difference in transducer gain as a function of 7 of a four-stage amplifier designed
with equal cascaded stability factors and with equal isolated stability factors for ® = 225°
and S = 4.
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stage 4 stage 3 stage 2 stage 1

X,

|

.

of O] ko

Fig. 6.16. Diagram illustrating the numbering of stages of the amplifier.

From these considerations it may be concluded that the increase in gain
per stage obtained in this way is generally less than 1 dB (see also sub-section
6:3:5.3).

6.6.2 POWER GAIN PER STAGE

The power gain of the rth stage of an amplifier comprising the rth transistor
and the rth single-tuned bandpass filter (see Fig. 6.16) is composed of the
factors ,®,m, the maximum unilateralized power gain of the transistor;
D¢ and Pym, the insertion losses of the rth single-tuned bandpass filter
and the mismatch losses across this bandpass filter and @y, the losses in
power gain due to the feedback of the transistor. Therefore:

Dr = 1 Dynt * +Ps * +Poum * ®fr- (6612)

As we have found in Chapter 2, the losses (or gain) due to the feedback of
the transistor, defined at the tuning frequency, equal the squared ratio of
the total admittance at the transistor input terminals without feedback to
that with feedback. The total admittance including the influences of the feed-
back will be calculated in the following sub-section.

6.6.2.1 The Input Admittance of a Particular Stage of the Amplifier

In order to calculate the input admittance of the rth transistor of the ampli-
fier, we consider the circuit of Fig. 6.17. For this part of the amplifier we can
write down the following matrix equation:

(im)r i iz — — 0 0 (Vin)r
0 wa Yy — — 0 0 vy
_ - — - Z - Z _ |66y
0 0 0 — — Y2 e v2
0 0 0 —  — 1y Y1 U1
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The first term of the determinant of this matrix equation equals the input
self-admittance of the rth transistor. Now:

Y11 = rg11 + rb11. (6.6.14)

In order to manipulate with the determinant in such a way that for each
transistor its regeneration coefficient 7" appears, we must relate yg11 to Gr+1,
which is a factor of the denominator of

T, — rly12yeil .
Gr ‘ Gr+1
Therefore we put:
C - Gri1 — rg11
1l = Gr+1
or:
r811 = (1 — Cr+1) Gri1. (6615)

Eq. (6.6.14) then becomes:

.y
i1 = Gra (1 —feitia— (6.6.16)
Gr+1

After substituting
Y =G{l + j(x + pix)},

and ry11 given by Eq. (6.6.16) in the determinant of Eq. (6.6.13), the G’s
may be separated out. Let the reduced determinant be denoted by Py+1.
Then Eq. (6.6.13) may be written:

| Gmr | | | @en |
'—:"’7&“0.] =

| \ I G !Pr+1‘ .;‘ - (6.6.17)
' 0 | | | || v ‘\

Furthermore, the determinant P,41 becomes:

(/.jn),-

P2
f ‘fn)r[ 1 l l Y22 —@— —
211

Fig. 6.17. The input admittance of the rth stage of an n-stage amplifier is defined with this
transistor loaded by the amplifier stages Nos. 1 to (r — 1).
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b
P = <I—Cr+1 "‘] éll
\ i

From Eqgs. (6.6.17) and (6.6.18) it then follows for ,yiy:

) Pr—Trexp(j00) - Pr1. (6.6.18)

P
rVin = Gr+1 - ;:1 s
or:
b Py
P = B 3 I — Lo+ 22— Ty exp (10) —— ! (6.6.19)
Gr+1 Pr S

For tuning method B the minors P are real at the tuning frequency. If
these values of the minors are denoted by Py, we may write:

; P
rgin = Gri1 s 1 — 41 —Trcos O - = % ’ (6.6.20)
( PTM
and
. Pe-1ym
rbin = vb11 — T sin Oy - * Gri1 . (6.6.21)

rM

Egs. (6.6.19) to (6.6.21) give the input admittance of any of the transistors
in the amplifier for tuning methods B and C at the tuning frequency. These
expressions may be used to calculate the power gain of a particular stage
of the amplifier.

6.6.2.2 The Feedback Losses of the rth Stage of the Amplifier

Consider an amplifier with single-tuned bandpass filters tuned according
to either tuning methods A or B. The total admittance at the input terminals
of the rth transistor of this amplifier, disregarding the feedback of the (r-1)th
transistor (this feedback is accounted for in stage (r + 1)), equals:

w+1)Y22 + Y*ri1 + in. (6.6.22)

At the frequency of tuning and for tuning method A this total admittance
becomes with Eq. (6.6.19):

Grs1 ‘ 1 —Trexp(jOr) -

(

and for tuning method B with Eq. (6.6.20):

Pr—l )
5 (6.6.23)
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Py-1ym

Gr+131—Trcos@r- = {
rM

If the rth transistor has no feedback, 7, = 0 and the admittance amounts

to Gy+1 in both cases.
The lossesdue tofeedback of the rth stage then become for tuning method A :

Gri1?
¢f1‘: ‘ ) 4 P 2 )
3 —1
 Grea (1 — Ty exp (§6)) ;T )
= ! (6.6.24)
- —aF .6.
1 —Tyexp (j6y) 7.
and for tuning method B:
10
5
8
8
7
! 2IMar
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Fig. 6.18. Amplitude response curves for a two-stage amplifier with @1 = @2 = 225° for

tuning methods A and B.
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1
Dy — . (6.6.25)

Py 2
(1—Tr cos O, - o DM)

M

The power gain @ of any stage of the amplifier can now be calculated from
Eq. (6.6.12) together with Egs. (6.6.24) and (6.6.25).

6.7 Response curve
6.7.1 AMPLITUDE RESPONSE CURVE

The amplitude response curve of the amplifier, which is defined as a = [8¢/9|,
can be determined by evaluating & as a function of the normalized detuning x.
In Fig. 6.18 the amplitude response curve of a two-stage amplifier with
three single-tuned bandpass filters has been plotted for tuning methods A
and B. For this amplifier @ = 225° and x; = x2 = x3 = x. It follows from
these curves that they become more asymmetrical for increasing values of 7’
and that the response curves obtained with tuning method B are less asym-
metrical than those obtained with tuning method A taking the same values

for T.
10 T

! .
Tre i IR <=0 ™
P\ h |
2 'v ﬁ A T57.54
‘ . ey . Spm—|
I { _;<’H-—- TN
nTKr=15 4
1 7 A AN
1 RN
A \l
!
5
2
107

05 24 5 200072 5 1 2 5 10

—_—X

Fig. 6.19. Envelope delay curves for a two-stage amplifier with @; = @ = 225° for tuning
methods A and B.
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6.7.2 ENVELOPE DELAY CURVE

According to sub-section 2.5.3 the envelope delay curve of an amplifier can
be determined by evaluating A¢/Ax, in which ¢ = tan=! {I;»(8)/R.(8)}, as
a function of x for suitably small values of the interval 4x.

In Fig. 6.19 envelope delay curves have been plotted for the two-stage
amplifier considered in the preceding sub-section.
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CHAPTER 7

MULTI-STAGE AMPLIFIERS WITH DOUBLE-TUNED
BANDPASS FILTERS

In the preceding chapters the analyses of single-stage amplifiers with two
single-tuned bandpass filters and with two double-tuned bandpass filters as
well as the analysis of multi-stage amplifiers with single-tuned bandpass filters
were given. In practice, however, most bandpass amplifiers, for example those
used in radio and television receivers, contain more than one stage, the inter-
stage coupling usually being formed by double-tuned bandpass filters.

This chapter deals with such multi-stage amplifiers, use being made of the
results of the analyses of the preceding chapters. Again use will be made of
a determinant method to represent the amplifier performance following the
method indicated by McCluskey (See Bibliography [7.4]). The higher order
determinants encountered in this analysis will prove to be simple extensions
of the determinants used for the single-stage amplifier of Chapter 5.

7.1 Equivalent Circuit of an n-Stage Amplifier with (n 4-1) Double-Tuned
Bandpass Filters
7.1.1 AMPLIFIERS IN THE ADMITTANCE MATRIX ENVIRONMENT

In Section 5.2 it was shown how the equivalent circuit of a complete single-
stage amplifier with two double-tuned bandpass filters in the admittance
matrix environment is obtained. The transistor(s) and the parallel-parallel-
tuned double-tuned bandpass filters are both represented by equivalent
admittance parameter four-terminal networks and placed in the correct
sequence.

The output terminals of the first four-terminal network are now connected
to the input terminals of the second network, and the output terminals of the
latter to the input terminals of the third network. Next, the self-admittances
of the networks at the points where they are interconnected are combined
into one admittance. In this way the equivalent circuit of the single-stage
amplifier shown in Fig. 5.3 was obtained.

The same procedure can be followed to combine # transistors (or electron
tubes) and (n -+ 1) double-tuned bandpass filters into an equivalent circuit.
Fig. 7.1 shows a block diagram of such an amplifier and Fig. 7.2 its equivalent
circuit.
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The numbering of the transistors, the double-tuned bandpass filters and
the single-tuned circuits of which these bandpass filters are composed is
again consecutive, beginning at the output side of the amplifier. Suffixes
which precede the admittance parameters indicate to which four-terminal
network the parameter belongs. As in Chapter 5, capitals are used for the
admittance parameters of the double-tuned bandpass filters, and lower case
letters for the admittance parameters of the transistors.

The symbol 2Y12 for example, denotes the Y12 parameter of the last but
one double-tuned bandpass filter, and the symbol 521 denotes the ys; para-
meter of the nt® transistor, numbered from the output side of the amplifier.

7.1.2 AMPLIFIERS IN THE H-MATRIX ENVIRONMENT

In Section 5.3 the equivalent circuit of a single-stage amplifier with two
parallel-series tuned double-tuned bandpass filters is derived. It was shown
that this equivalent circuit could easily be derived if the properties of the
transistor were expressed in the hybrid H-matrix environment and those of
the double-tuned bandpass filters were expressed in the K-matrix environ-
ment. Using the same method, the equivalent circuit of the n-stage amplifier
with (n 4+ 1) double-tuned bandpass filters as represented in Fig. 7.3 can
be derived.

7.2 The Reduced Amplifier Determinant

Considering the amplifier in the admittance matrix environment it follows
that there are 2n + 2 nodal points, see Fig. 7.2, at which, according to
Kirchhoff’s first law, the sum of the currents equals zero. These current
equations for all nodes can be combined into the following matrix equation:

is H Yonie ns1¥12 0 — — 0 0 0 Vopio
0 nt1Y21 Yoni1 nyiz2— — O 0 0 Vontl
0 0 n)y21 Yo — — 0 0 0 Vay
— _ e _
0 | 0 0 0 — — Y3 1yiz O v3
0 0 0 0 — — 1ya1 Yo 1Y12 ve
0 0 0 0 — — 0 1Yo1 11 v
7.2.1)

By proceeding in similar manner to that in Section 5.4 it can be derived
that the main determinant of Eq. (7.2.1) becomes:
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node no, mesh no. nads no. node no. mesh no. node no. mesh no.
2n+2 2n+1 2 1
Z2n+1 -

i S STl = B EN vz | .>‘: 7

2n+1 {ﬂ .:;; R é‘g S & & 1
= "% IR rol Y

Yon ' i T 1

t ? T

Fig. 7.3. Schematic diagram of an amplifier consisting of n active four-terminal networks
and n + 1 double-tuned bandpass filters with parallel-tuned primaries and series-tuned
secondaries. In this diagram

Yonte = Ys + n+1K11 = ohag + 2K11
Zon+2 = —n+1Ka2 + nh11 Z3 = —2Kss + 1411
Ys = 1h22 + 1K11
Z1 = —1Ks22 + Z1,
m=2n-+2
4y, =11 Gp, - 8y, (1.2.2)
m=1

in which the reduced determinant 8y is given by:

8 =
+1Y12 " n+1Y21
14 itapg = 0 S 0 0 0
L Gon+e* Gont1
. V12 ® ny21
1 1 e ey e 0 0 0
e Gan+1- Gan
0 1 I4jxss —— O 0 O
; 1Y12°1)21
0 0 0 — —1
+jx3 Gs - Ga
1Y12 - 1¥e1
0 0 0 —_ 1 14 e
+]x2 Gs Gu
0 0 0 —— 0 1 14jx
(7.2.3)

By introducing transistor regeneration coefficients 7% and regeneration
phase angles @y, see Eq. (2.1.11) and (2.1.12), and also the coupling factors g2
for the double-tuned bandpass filters, see Eq. (5.4.3), the reduced determin-
ant becomes 1):

1) The suffixes y in Ty and @, have been omitted for reasons of simplicity in writing
Eq. (7.2.4).
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l+jxoente —¢%nt1 0 ——= 0 0 e
1 14jx2n+1 T exp(jOn)— 0 0 0
0 1 l1+jxgs —— 0 0 0
Bl T _ . _
0 0 0 — — 1+jxs Tiexp(j©1) —

0 0 0 — — 1 1+4jx —q1?

0 0 0 _— 0 1 1—|—jxl

(7.2.4)

The amplifier in the hybrid-matrix environment can be considered in an
analogous way. The various mesh and nodal equations of the equivalent
circuit represented in Fig. 7.3 may also be combined in a single matrix
equation. By manipulating with the determinant of this equation in the same
manner as above using the method of Section 5.4, the reduced determinant
of the amplifier becomes as given by Eq. (7.2.4). Values for the quantities T
and O related to transistor parameters expressed in the H-matrix environ-
ment must be substituted, see Eqs. (2.1.24) and (2.1.25).

7.3 Stability

As in the case of the single-stage amplifiers considered in Chapters 2 and 5,
the n-stage amplifier is on the boundary of stability when the reduced deter-
minant 8, as given by Eq. (7.2.4), becomes zero, and this depends on the
magnitude of Texp (j@). If all quantities 7 exp (jO) are assumed to be
identical, there exists a certain upper limit at which the amplifier is on the
verge of self-oscillation. (As pointed out in the preceding chapters, @ is
determined exclusively by the transistor transfer properties, whereas T
depends also on the tuned circuit dampings. Hence, when the type of tran-
sistor to be used and its working point have been chosen and the operating
frequency is known, then O is fixed, but 7 is still variable.)

Denoting the boundary of stability of the n-stage amplifier by »,7, and
assuming moreover that all double-tuned bandpass filters of the amplifier
are identical, 7, can be calculated from Eq. (7.3.1). In this expression the
quantities x, and x; represent the normalized frequencies of the primary
and secondary of the bandpass filters respectively:
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| 14+jxp —q2 0 —— 0 0 0
1 1+jxs aTy-exp(j©) — — O 0 0
0 1 1+jxp —— 0 0 0
8 = - _ - - - - - =
0 0 0 — — 14jxs aTy - exp(j©) 0 K
0 0 0 —— 1 I+jxp —q?
0 0 0 —— 0 1 1+jxs

By writing out & as given by Eq. (7.3.1), an n'? order polynomial with com-
plex coefficients is obtained. This means that, for an n-stage amplifier, there
are n values of ,7, for a given value of 6.

In the case of a two-stage amplifier Eq. (7.3.1) leads to a quadratic in 27
with complex coefficients, which can be solved analytically. For x, = xs = x
(r = 1) the result is:

g q*

14 14 R
In Fig. 7.4 this expression has been plotted in the complex plane for g = 1.
Values of x are indicated on the curves. Apparently, there are two values
of o7 for every value of @ that gives rise to instability phenomena at different
values of x. Because x is variable over a wide range of values the smallest

value of 27, must be considered as the boundary of stability. This boundary,
which is indicated by shading in Fig. 7.4, consists of parts of both mathe-

Ty exp (1) = 1 +1—— + (1

)€U+him. (7.3.2)

-6 14

Fig. 7.4. The mathematical expression of the boundary of stability in a two-stage amplifier
leads to two curves as drawn in this figure for ¢ = 1. The boundary of instability which is
important in practical amplifier design is the curve indicated by shading.
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-6 -1
=3
Fig. 7.5. Mathematical boundaries in a two-stage Fig. 7.6. Boundary of stability in a
amplifier with ¢ = 2. three-stage amplifier with g2 = 1.

=
/

7459

Fig. 7.7. Boundaries of stability for a four-stage amplifier with identical 7’sand ©@’s and g’s;
r = 1 and g2 = 1. The points for x = 0 of the various curves are indicated. Other values of
x are marked by means of dots placed at intervals of 0.5.
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matical boundaries. Fig. 7.5 gives the mathematical boundaries of stability
for the same amplifier but now with the coefficient of coupling of the double-
tuned bandpass filters equal to g2 = 2.

In Figs. 7.6 and 7.7 the mathematical boundaries of stability for a three
and four-stage amplifier with ¢2 = 1 and r = 1 are plotted. The practical
boundary of stability is again indicated by shading. For amplifiers with
double-tuned bandpass filters consisting of three or more stages an analytical
calculation of the boundaries of stability is no longer possible. These boun-
daries have been calculated by means of an electronic computer using an
iterative method.

In Fig. 7.8 the practical boundary of stability of the four-stage amplifier
is plotted for g2 = 2, together with that of a single-stage amplifier with two
single-tuned bandpass filters (g2 = 0) for which:

150° 1359 120° 105° 90° 75
. /
-
Fosgl
/ ;
/ %
165° / / /

Fig. 7.8. Boundaries of stability of a four-stage amplifier for ¢ = 2.0 and of a single-
stage amplifier with two single-tuned circuits (g% = 0).
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135° 120° 105° 90° 75° 60°
4% 225° 240° 255° 270° 285° 300°

150°
210°

165°
195°

Fig. 7.9. Boundaries of stability of a two-stage amplifier for » = 1 and several values of g2
The fully drawn curve is applicable to a single-stage amplifier with two single-tuned cir-
cuits. This figure clearly shows that this curve closely approaches the exact curves and
may therefore be considered as an approximate boundary of stability that is sufficiently
accurate for most practical cases.

2

S s N 7.3.2
1+ cos @ ( )

Ty

(see Section 2.2). Practical boundaries of stability for values of g2 smaller
than 2 lie even closer to that applicable to the single-stage amplifier. The
curve for T}, given by the simple expression (7.3.2) thus very nearly coincides
with the practical boundaries of stability for this four-stage amplifier,
irrespective of the value of g2. The same considerations hold for the three-
stage amplifier and, to a lesser extent, for the two-stage amplifier. This also
follows from Figs. 7.9, 7.10 and 7.11 in which the boundary of stability
according to Eq. (7.3.2) is plotted together with the exact boundaries.

As already mentioned in Chapters 2 and 5, the parabola representing
expression (7.3.2) may therefore be considered as the basic boundary of
stability for almost every bandpass amplifier (with double-tuned bandpass
filters).
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Fig. 7.11. As Fig. 7.9, but for a four-stage amplifier.
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It approximates 7, with sufficient accuracy for most practical I.F. amplifier
designs.

In those cases which require a more accurate value of 7, use can be made
of the graphs plotted in Figs. 7.9, 7.10 and 7.11 which give ,7, for two-,
three- and four-stage amplifiers respectively.

7.4 Tuning Procedure

The n-stage amplifier can be aligned either according to tuning method A,
B or C as explained in detail in Section 5.7.

Analogous to the method outlined in sub-sections 2.3.7 and 5.7.7, tuning
correction terms p1x’ + pex’’ are introduced for the n-stage amplifier. In so
doing the reduced determinant for the n-stage amplifier becomes:

Yen+2 —q%n+1 0 — 0 0 0
1 vent1  Tuexp(jO) — — O 0 0
0 1 yau —— O 0 0

nd= o - o - B - B i ’
0 0 0 — — )3 T1‘Cxp(j@1) 0
0 0 0 — 1 Y2 _ql‘.’. :
0 0 0 —— 0 1 »n
(7.4.1)

in which y stands for 1 4 j (x + p1x’ + pax”').

It can be derived from this expression that the tuning correction terms and
the minor determinants for tuning methods B and C become as given in
Table 7.1. Using »6 as given by Eq. (7.4.1) and the tuning correction
terms from this table, together with the values of p; and ps as indicated
in the table in section 5.7.7 (page 145), the performance of the n-stage
amplifier can be calculated for each of the three methods of tuning.

7.5 Gain

7.5.1 TRANSDUCER GAIN

The transducer gain of n-stage amplifiers with double-tuned bandpass filters,
defined at the tuning frequency (x = 0) is again given by:

20t = 4 GsGL * |nZ10l2, (7.5.1)
in which:
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TABLE 7.1.

GENERAL FORMULAE FOR n-STAGE AMPLIFIERS WITH (n+1)

DOUBLE-TUNED BANDPASS FILTERS

Tuning method B

Tuning method C

Major determinant: see Eq. (7.4.1), page 196.

Minor determinants at the tuning frequency; r = 1, 2, 3, ... n:

Pin =1
Pormt = P2r-1)M + gr2P2r—2)m
Pr+1ym = Poryt — Trcos Op * Pi2r-1)m

Pen+o)m = Peni1)m + ¢2ns1Pen—2)m

Qen+2ym = 1

Qerinm = Qeri2)m 1 ¢%(r+1)0 (2r+3)M
Qorm = Qor+1)m — Tr cos Or - Q(2r+2)Mm
Qi = Qam + q1203m

Tuning correction terms; r =1, 2, 3, . ..

mn:

x' =0 X"2n+2 = 0
xer’' =0 Xxr41 =0
i Per-1yu : 2r+2)M
x'zr+1 = T sin @r Rl i xer = T, sin @r Q( r+2)
Pornt Q (2r+1)M
X'2n+2 = 0 x1” =0
Transducer gain:
Gs Gp, MR m=n+1 1
2Pt = 4 c— + II wm(T-N) O gn® ——,
Gon+2a G1 il 80l
m=n m=n+1 )
or: 2@ = II m@um- II @i Py,
m=1 m=1
1 m=n+1
where: 2Pr I 1+ gnd?.

[nd0]? m=1

m=n m=n+1.
I wyer- I jgm

m=1 m=1
an - <m=2n+2

1 2
In Gm) /2 : n80

m=1

(7.5.2)

where 8¢ follows from Eq. (7.4.1) by putting x = 0. The quantities p:
and p» occurring in the expression for ,8y depend on the tuning method
and follow from the table on page 145.

In an analogous way to that employed in Section 5.8, the transducer gain
»®; can be split up into the maximum unilateralized power gains @,y of the
transistors, the transducer losses @;; of the double-tuned bandpass filters
and a factor ,®; which accounts for the losses caused by the real part of
the feedback of the transistors in the amplifier. Hence:

.
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m=n m=n-+1
2@t = Il @uy - 11 Py - n(pf, (7~5'3)
m=1 m=1
in which:
m=n+1
nPf = 5 I (1 +gm®?. (7.5.4)
|n80] m=1

With Eq. (5.8.18) the transducer gain of the n-stage amplifier can alter-
natively be expressed by:
4 GS GL m=n m=n+1

G — 2 ZE T (TN T g .
T G B m=1m( =i i |280]2

(7.5.5)

7.5.2 GAIN PER STAGE
7.5.2.1 Voltage Gain

For amplifiers of which the constants are expressed in the admittance matrix
environment the voltage gain per stage can readily be calculated. The voltage
at the input terminals of the r*® transistor of the amplifier is denoted by
vory1 (see Fig. 7.2). From Egs. (7.2.1), (7.2.2) and (7.2.4) it follows, using
Cramer’s Rule:

m=2r
Hle PZT m=n+1 m=n
’ m=
Vor+1 = IS * ET * H mY21 ® H mya1 . (7.5.6)
I G, Ponio m=r+1 m=r+1

m=1
A corresponding relation can be derived for the input voltage of stage (r — 1)
(denoted by ve,—1). The voltage gain (¥.G.), between the input terminals of
the 2 and the (r — 1) transistor then becomes:

Vor+1 1 Par—s|
V.G = ‘ = . |y Yo1] | 7.5.7)
' |U2r—1| Gar* Gar—1 | Por lr 21' ‘TyZI (
With Y21 = ¢V Gar - Gar_1, (7.5.8)
Eq. (7.5.7) becomes:
1 Poy_
VGl = [ s |ypaa] - (7.5.9)
VGar - Gar1 | Por

Now we may write:
Por = Por1 + qrz Por s,
= Por—s — Tr—1€xp (jOr-1) * P2r—3 + ¢ Par_s,

= (1 + g?) P2r—2 — Tr—1 exp (jOr-1) P2r-s.
.



7.5] GAIN 199

Hence:
Por— 1
;’ = =—s (7.5.10)
. -3
zr 1+ g2 — Ty-1 exp (jOr-1) * zr
Porg
Substituting Eq. (7.5.10) into Eq. (7.5.9) gives:
1 1+ g2
(Fi )y = "1 _Zr 5 " lryaa] - ‘ a7 7 .
VGar + Gar—1 4r 11 + g2 — Ty—1exp (jOr-1) - il
Poyr—s
(7.5.11)
For Ty-1 = 0 (no feedback in transistor (r — 1)) this becomes:
(V.G)r = (Zo)r * lryanl. (7.5.12)

Here (Z;) denotes the transimpedance of the r't double-tuned bandpass
filter at the tuning frequency (see Appendix I11). The last factor in Eq. (7.5.11)
thus accounts for the extra admittance due to the feedback of the tran-
sistor loading the r*t double-tuned bandpass filter.

7.5.2.2 Power Gain

The power gain @, of the rth stage of the amplifier is given by:
Dy = 1 Dynt * 1 Dry gDfr' (7.5.13)

In this expression ,@,u denotes the maximum unilateralized power gain of
the rth transistor, ,®; denotes the transducer losses of the double-tuned band-
pass filter following the #t2 transistor and @y, denotes the losses attributed
to the feedback of the r* transistor.

The feedback losses @y are caused by the extra input admittance of the
transistor due to its feedback. In analogy with Section 6.6.2.2 the extra input
admittance can be calculated as:

P 2r—1

—G2r+1 * Ty exp (j@r) ' .
Py

The total admittance at the input terminals of the rth transistor therefore
becomes:
Par1

Gors1 § 1 + 4,2, — Trexp (1)) * —
2r
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(aB)

]
b.\\\

-10 —= Tcos &
‘ -5 -5 -4 -3 =2 - 0 !

Fig. 7.12. Feedback losses (or gain) of the four stages of a four-stage amplifier as a function
of T cos O. All stages have identical elements and the coupling coefficient of the double-
tuned bandpass filter equals ¢2 = 1. Furthermore, it is assumed that tuning method B
is applied.

and the losses due to the feedback become:

1 2.3)2
B — (1 + 7%+1) (7.5.14)

¢ . P2r71 2’
1 4 g%-+1—Trexp(jOr)
P2r |

For tuning method B, this expression reduces to:

1 2 )2
@ — (1 + g%+1) (7.5.15)

Por-nym\2
<1+q27.+1_~T,.cos @,M)

2rMm

In Fig. 7.12 the feedback losses of each stage of a four-stage amplifier with
identical stages and g2 = 1 are plotted as a function of 7" cos O. It is assumed
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that the amplifier is tuned according to method B so that Eq. (7.5.15) is
applicable. It follows from these curves that the feedback losses of stages 2,
3 and 4 are almost equal and larger than those of stage 1. The small differences
in feedback losses between stages 2, 3 and 4 can be explained by considering
that in a chain of amplifying stages the influence of one stage on the foregoing
stage becomes identical for all stages if the chain is infinitely long. The differ-
ence in losses between stage 1 and stage 2 is therefore larger than that
between stage 2 and stage 3, which is in turn larger than that between stage 3
and stage 4.

7.6 Response Curve

7.6.1 THE COMPLEX RESPONSE CURVE

The reduced determinant ,8 derived for an n-stage amplifier is a complex
function of the normalized frequency x with 7" and @ as parameters. In order
to ascertain the complex response curve (cf. sub-section 2.5.1) it is necessary
to relate the values of x of the various tuned circuits to a normalized value
for the complete amplifier.

Since this book is confined to synchronously tuned amplifiers 1) the
B-values of the various resonant circuits are all identical. The x-values can
then simply be related by incorporating the Q-values of all resonant circuits
into a normalized Q-value for the complete amplifier. Denoting this normal-
ized frequency for the complete amplifier by x gives:

28(%) = Re {n8(2)} + iIm {nd(x)}. (7.6.1)

By plotting »8 in the complex plane, the complex response curve of the
n-stage amplifier is obtained.

7.6.2 THE AMPLITUDE RESPONSE CURVE

In accordance with sub-section 2.5.2, the normalized amplitude response
curve of the n-stage amplifier is given by:
)
150 (7.6.2)
!nB ’
in which ;8 is given by Eq. (7.4.1) and 8o is equal to »8 at x = 0.

1) Although the amplifier is synchronously tuned, it is inherent to tuning methods B
and C that the circuits resonate at different frequencies.
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Fig. 7.13. Amplitude response curves of a three-stage amplifier with four identical double-
tuned bandpass filters, applicable to tuning methods B and C. @ = 225° r = 1 and ¢ = 2.

Fig. 7.13 shows the amplitude response curve of a three-stage amplifier
of which g2 = 2 and r = 1. The regeneration phase angle is taken to be
225°. These curves have been calculated for T = 0, T = 2 and T = 3. They
are applicable to both tuning methods B and C.

Comparison of the curves for 7= 0 and 7 = 2 clearly shows that the
humps of the curve for 7= 0, which are to be attributed to the overtransi-
tional coupling of the double-tuned bandpass filters, have disappeared at
T = 2. This is due to 7T cos © assuming a negative value (cf. Section 5.9).

7.6.3 THE AMPLITUDE RESPONSE CURVE FOR A LARGE VALUE OF THE
REGENERATION COEFFICIENT

Fig. 7.14 represents the amplitude response curve for the same amplifier

as in sub-section 7.6.2 but now for 7= 8 and for tuning method A. Accord-

ing to Fig. 7.10 the value of T} for this case amounts to 7, = 8. This implies

that for 7= 8 the amplitude response must become infinite which, also
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appears from Fig. 7.14 for x = —2.9. According to sub-section 7.3 there

are three mathematical boundaries of stability for this three-stage amplifier.
This also follows from Fig. 7.14 which indicates instability phenomena at

two other frequencies.

702 |
LAl
1
[
; g
; T
'u
e | L VI
10 %0 ! t
t v
I |
| |
| \I\
] \.‘
I
EEEN
[ \
7 I
i N
o
i KN
NG
‘\
\\
N
N
\
l \
N
107 ,, N
’l \\\
\
1 AN
]
T ¥
/ \
I
/II
i \
y —bX A
70-2 | A
-6 -5 -4 -3 2 - 0 1 2 3 4 5 6

Fig. 7.14. Amplitude response curve for the same amplifier as in Fig. 7.13 but now for a
value of regeneration coefficient almost at the boundary of stability (7 = 8) of the ampli-
fier. According to the theory presented in sub-section 7.3 instability phenomena should
occur at three different frequencies, which is clearly illustrated in this figure. The curve has
been calculated for tuning method A for which also Fig. 7.10 is valid. The dashed curve
is valid for a four-stage amplifier with the same combination of parameters. Now,

instability phenomena are present at four different frequencies.
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Fig. 7.15. Envelope delay curves of the amplifier the amplitude response curves of which are
given in Fig. 7.13.

7.6.4 THE ENVELOPE DELAY CURVE

As shown in section 2.5, the envelope delay of an amplifier is given by the
expression:

20
Te —

te = (7.6.3)
wo
in which 7. represents thezreduced envelope delay:
A
o — A_:’; . (7.6.4)

Now 4 is defined as the difference between the ¢-values calculated from:

I {n3(0)}
Re {n8(x)}’

provided the values of x are not too far apart. The difference between the
x-values obviously corresponds to 4x.

Fig. 7.15 shows the reduced envelope delay curve for the same amplifier
as the one the response curves of which were given in Fig. 7.13. The
graph reveals that the envelope delay curves are slightly flattened due to the
presence of feedback.

@ = tan (7.6.5)

7.7 Table of Formulae

In Table 7.1 given on page 197, general formulae are set out for the n-stage
amplifier with (n -~ 1) double tuned bandpass filters. The determinant for ,6
given by Eq. (7.4.1) on page 196 is applicable to these general formulae.

In this table the index r denotes either the rth transistor or the rtt double-
tuned bandpass filter of the amplifier, starting to count in both cases at the
output side of the amplifier. In Fig. 7.16 the quantities Py (valid for tuning
method B) have been plotted for an amplifier consisting of identical stages
with g2 = 1.
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Fig. 7.16. Plot of Py (minor determants in case of tuning method B) has been
plotted as a function of T cos @ for an amplifier consisting of identical stages and
q2 = I’

The equations given in the tables for the minor determinants (required
for calculating the tuning correction factors) are recurrent relations. This
implies that for multi-stage amplifiers the final results become extremely
complicated unless these amplifiers consist of identical stages, as is often
the case.
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CHAPTER 8

MULTI-STAGE AMPLIFIERS WITH ARBITRARY
TYPES OF INTERSTAGE COUPLING NETWORKS

8.1 General

In Chapters 6 and 7 multi-stage amplifier are considered employing only
single-tuned or only double-tuned bandpass filters. There is however no
limitation to the method of analyzing the amplifier on account of the types
of coupling networks between the various stages. The interstage networks
may either be single-tuned bandpass filters (as employed exclusively in
Chapter 6),double-tuned bandpass filters (as employed exclusively in Chapter
7) or multiple-tuned bandpass filters. Also complicated networks may be
used as interstage coupling devices.

The method of analysis in all cases amounts to determining the definite
admittance matrix (assuming that all active and passive networks contained
in the amplifier are expressed in the admittance matrix environment) of the
amplifier according to the method considered in Appendix I using the nor-
malized detuning concept of specifying the admittance of the tuned circuits.
Then this definite admittance matrix may be simplified by introducing regener-
ation coefficients for the transistors and coupling factors for the double-
tuned or multiple-tuned bandpass filters.

When all bandpass filters of the amplifier consist of one or more single-
tuned circuits which are parallel-tuned, all tuned circuit admittances will
appear in the main diagonal of the definite admittance matrix, whereas all
forward and reverse transfer admittances of the transistors and bandpass
filters will appear in the diagonals adjacent to the main diagonal. If, fur-
thermore, no couplings are present in the amplifier between the various
stages except those via the interstage coupling networks, the definite ad-
mittance matrix will contain zero entries at all places except at the three
diagonals mentioned.

The order of the admittance matrix will be equal to the number of nodal
points in the amplifier. In the cases considered above, the order of the matrix
thus equals the number of tuned circuits contained in the amplifier.

When one or more complicated interstage coupling networks are used in
the amplifier it is often convenient to determine the definite admittance
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matrices of these networks separately before considering the whole amplifier.
Sometimes it will be advisable to reduce the order of these separate matrices
to 2 x 2 before incorporating them in the definite admittance matrix of the
complete amplifier. The matrix reduction method is considered in Appendix I.

Up to now all amplifier analyses are confined to synchronous tuning of
the various tuned circuits using either of the methods A, B or C. In the case
of non-synchronous tuning of the various circuits “frequency shift terms”,
v, must be introduced in the tuned circuits admittances. These frequency
shift terms relate the tuning frequencies of the various circuits to that of a
reference circuit.

For tuning methods B and C, which are applicable only in the case of
synchronous tuning, tuning correction terms, x’, must be added to the tuned
circuit admittances. These tuning correction terms can be calculated accord-
ing to the methods outlined in the preceding chapters.

When the (loaded) quality factors of the tuned circuits of the amplifier
are not identical, these quality factors must be related to the quality factor of
a reference circuit using certain proportionality factors.

The various steps in arriving at the representation of the admittances o
the tuned circuits in the general amplifier determinant may be summarized as
follows:

Consider the rth tuned circuit of the amplifier and assume that the ampli-
fier is tuned according to method A. Then its relative admittance may be
written as:

1 4 Jee (8.1.1)

If the amplifier is tuned either according to methods B or C, a tuning
correction term x’, the value of which is generally different for the two tuning
methods, appears in the expression for the relative admittance of the tuned
circuit, namely:

1+ j(xr + x/"). 8.1.2)

Now the relative admittance of this tuned circuit must be related to that

of the reference circuit. Let the quality factor of this reference circuit be
denoted QOret and its relative detuning by:

5 0,ref
Bret = S _Jorer (8.1.3)
bz 0, v02 f
Then the normalized detuning of this circuit becomes:
Xret = Qref & ﬂref- (814)

When the rth tuned circuit resonates at a frequency f1 we may put:
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o f i ! fo,ref
Sfo,ret f

Together with the quality factor Q; of this circuit, we can define a frequency
shift term:

B1 (8.1.5)

vr = QOr- B1, (8.1.6)

which adds to the relative admittance of the circuit as:

L+ j(xr + v + x). 8.1.7)
Next the quality factor Oy of the rth tuned circuit is related to that of the
reference circuit by:
Or
 Ont

Then the relative admittance of the rth tuned circuit becomes with Eq.
8.1.7):

(8.1.8)

dar

yr =14 j{ar(xret + vr) + x/'}. (8.1.9)

If the general amplifier determinant has been written down and the various
correction terms are included in the representation of the relative admittance
of the tuned circuits as shown in Eq. (8.1.9), the determinant can be evaluated
as a function of the normalized detuning of the reference circuit. This evalua-
tion then yields information regarding the stability, the gain and the ampli-
tude response as well as the envelope delay curves of the amplifier in the same
manner as considered in the preceding chapters.

8.2 n-Stage Amplifier with » Double-Tuned Bandpass Filters and One Single-
Tuned Bandpass Filter

A very important class of multi-stage amplifiers is that in which the output
bandpass filter is a single-tuned circuit and the coupling networks between
the various stages are double-tuned bandpass filters. This type of amplifier
is mostly used in those cases in which the amplifier drives a detector circuit
and an optimum match between amplifier and detector circuit is of prime
importance.

According to the method outlined in the preceding section the general
determinant for this type of amplifier can be derived. The reduced form of
this determinant is given by Eq. (8.2.1), in which it is assumed that all tuned
circuits are tuned synchronously either according to methods A, B or C:
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1 Yen Tnexp(j@n) —_— _—
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TABLE 8.1 GENERAL FORMULAE FOR

209
0 0 0
0 0 0
0 0 0
- 1(8.2.1)
V3 —q12 0
1 ve  Tiexp(jO1)
0 1 Y1

n-STAGE AMPLIFIERS WITH

DOUBLE-TUNED AND ONE SINGLE-TUNED BANDPASS FILTERS.

n

Tuning method B

Tuning method C

Py =1
Psorvi = Por—1ym — Trcos Oy - Pi2r—oyum
Pirsyy = Poryt + gr2P2r-1u

m=1

Major determinant: see Eq. (8.2.1).
Minor determinants at the tuning frequency; r =1, 2, 3, ..

. e

Qi = Qa2m— Ticos Oy - O3y
Qarm = Qer+1)M + q(r+1)2Q2r+2)M
Or+nm = Q@r+aym —

Trcos Oy - Q2r+3)m
Qeninym = 1

Tuning correction factors; » = 1, 2, 3, ... n:
x1’ =0 ; 3
b x1” = Tisin Oy - QOsxt
x9," = Tysin O, - Per-2m oM
" ’ " Parnm x2”" =0
X 2r+ =0 . ]
B x2r+1)”” = Tysin O, - Demrso
Q2r+2)M
X (2n11)” =0
Transducer gain:
4Gs G m=n m=n 1
) e 1 | T-N)- II ~gm2-——,
m Gon+1 G m=1m( ) m=1 o }7130,2
or:
m=n =n
n(pt = II m¢uM - IT m‘ptb ° (pi, c Dy - 11¢j‘,
m=1 m=1
2g \2
where: Dip = (1 — wp)(1 — ws) - 1—‘—2) , (transducer losses double-tuned
i bandpass filter)
@, = (1 — w1)?, (insertion losses single-tuned bandpass filter)
+Gr)? . ;
Dum1 = (giz—GL) , mismatch losses across the single-tuned band-
&220L pass filter.
m=n
and n(pf S IT (] i 9)712)2
|n50|
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The transimpedance of this type of amplifier can be derived as:

I wyer- II jgm
Zin = 25— %"'=1 , (8.2.2)
i } Gy -
[ m=1 Gm Gl 7"8

from which the transducer gain can be calculated.

In Table 8.1 the most important results obtained when analyzing this type
of amplifier are compiled, using the same scheme as for the n-stage amplifiers
with n + 1 double-tuned bandpass filters as analyzed in Chapter 7 (see
Table 7.1).

Amplitude response and envelope delay curves of this type of amplifier
may be obtained from the reduced determinant of Eq. (8.2.1) in the usual
manner.
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CHAPTER 9

AMPLIFIERS WITH DOUBLE-TUNED BANDPASS
FILTERS WITH COMPLEX COUPLING
COEFFICIENTS

In transistor bandpass amplifiers, unless special precautions are taken, some
asymmetry in the amplitude response curve always occurs due to the internal
feedback of the transistors employed. This asymmetry may be compensated
by a special method of adjusting the various resonant circuits of the ampli-
fier. This, however, requires complicated tuning procedures and, moreover,
reduces the obtainable gain.

Another method of compensating this asymmetry, which does not have
the drawbacks of the special tuning methods is the use of double-tuned
bandpass filters with complex coupling. These are bandpass filters in which
the coupling system contains resistive as well as reactive elements.

To analyze this method of achieving symmetrical amplitude response cur-
ves a single stage amplifier will first be considered. Then the analysis will be
extended to multi-stage amplifiers.

9.1 Conditions for Symmetry of Response Curve in a Single-Stage Amplifier

As already referred to, the asymmetry of the response curve of an amplifier
in which amplifying elements with internal feedback are employed can al-
ways be compensated by means of a special method of adjusting the various
resonant circuits. In general, however, a trial and error method will be re-
quired which does not lend itself to a mathematical analysis. This implies
that it is not possible to predict, on a theoretical basis, the performance of
such an amplifier. These systems will therefore not be considered further in
this book.

Another method of achieving symmetry is the use of synchronously tuned
double-tuned bandpass filters with complex coupling. This method, which
lends itself well to a mathematical analysis, will be developed in the following
sub-sections.

9.1.1 THE SINGLE-STAGE AMPLIFIER WITH TWO SINGLE-TUNED BAND-
PASS FILTERS

In Fig. 9.1 a simplified diagram of a one-stage amplifier with two single-
tuned circuits has been given. This type of amplifier has been analyzed in
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i

“ 1% v2

il .
. ¥ ( l 1 [ Fig. 9.1. Equivalent circuit diagram of a single-
Yarvy stage amplifier with two single-tuned bandpass
o filters.

detail in Chapter 2, in which it was concluded that its transimpedance func-
tion could be written as:
Ye1
MO i B 9.1.1
¢ GiGa - b (0.1.1)
and
8 = (1 + jx)(1 + jx2) — Texp (j6), 9.1.2)

assuming that tuning method A has been applied.

If yo1 is assumed to be constant over the passband considered, the ampli-
tude response curve will be symmetrical with respect to the centre of the
passband if |8| is symmetrical with respect to x; = x2 = 0.

The first part of the expression for 8, see Eq. (9.1.2), represents a parabola
in the complex plane which is symmetrical with respect to the real axis. In
Fig. 2, this parabola has been plotted for x; = x2 = x. Also the vector

Iy, (14jx
x=2

No

N |x=0

Re(1+jx)?

Fig. 9.2. Polar plot of the reduced determinant of the single-stage amplifier with single
tuned bandpass filters showing the case of asymmetry of the amplitude response curve.
For symmetry, T'sin @ = 0.
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T exp (jO) has been shown. Since & equals the distance between the parabola
and the extremity of 7" (see Section 2.5) only a symmetrical response curve
will be obtained for 7T'sin @ = 0.

Furthermore, since the parabola is fitted with a frequency scale with
x = 0 at the real axis, it appears that maximum amplitude response (mini-
mum value of |8]) occurs at x << 0 if T'sin @ <0 and at x>0 if 7'sin @ > 0.
This suggests that it would be possible to achieve a symmetrical response
curve if a passive four-terminal network is incorporated in the amplifier
with a regeneration coefficient which is the complex conjugate of Texp ©.
Then a certain amount of “left asymmetry” would be compensated by the
same amount of “right asymmetry”.

9.1.2 THE SYMMETRICAL AMPLIFIER STAGE

In Fig. 9.3 an equivalent circuit diagram of an amplifier stage which would
have the supposed symmetry is given. It consists of two four-terminal net-
works coupled together.

To distinguish between the two four-terminal networks, the current sources
of the first network are denoted by capital Y’s whereas those of the second
network are denoted by lower case y’s.

For the circuit of Fig. 9.3 we may write:

is i lYs Y2 O vg |
0| = . Yor Yz 12 vy (9.1.3)
0 ! 1 0 yo1 Y1 ‘ v1
By putting
Y = G + jx), 9.1.4)
and
Xy=Xp— X3 = X (9.1.5)
the determinant of Eq. (9.1.3) becomes:
4 = G1GGs - 6, (9.1.6)
and
2 12"2 2 ki J
48] 81 | I 8} 18 [ I

Yarv3

Fig. 9.3. Equivalent circuit diagram of an asymmetry-compensated single-stage amplifier.
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14 jX3 TzCXpG@z) 0
o= 1 1+ jx2 Tiexp(j©1) |. 9.1.7)
0 1 1+ jX1

In this equation T2, @2 and 71, O are the regeneration coefficients and phase
angles of the first and the second four-terminal networks.
By writing out the reduced determinant we obtain with Eq. (9.1.5):

8 = (1 + j0{(1 + jx)2 — Tuexp(jO1) — Toexp(i€2)}.  (9.1.8)

Since |8| represents the amplitude response curve of the amplifier, |J|
must be symmetrical with respect to x = 0 for a symmetrical response curve.
The first factor of |8| according to Eq. (9.1.8), |1 + jx|, is symmetrical and
hence it is required that the second factor |[(1 + jx)? — Tiexp(jO1) —
Taexp (jO2)| also has this symmetry. This second factor is represented in
Fig. 9.4. The term (1 4 jx)? is again the parabola, and it follows that for sym-
metry it is required that:

Tisin @1 + Tesin O =0 . (9.1.9)

This is, indeed, in accordance with the assumption made in the preceding
subsection.

I +x)?
x=2
x=]
8
(N x=0
415in 8+ B sin 6 Re(1+jx)?

Fig. 9.4. Polar plot of the asymmetrical factor in the reduced determinant of the amplifier
arrangement of Fig. 9.3. For symmetry, T; sin @1 + T2 sin Oz = 0.
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9.1.3 GENERAL CONDITIONS FOR SYMMETRY

In the preceding sub-section the conditions for symmetry are derived for a
single-stage amplifier with x; = x» = x3. In general, however, x1, x2 and x3

will be different due to different quality factors of these tuned circuits. We
therefore put:

X1 = CX,
xs = bx, (9.1.10)
and X3 = ax.

By writing out the reduced determinant of Eq. (9.1.7) we then obtain:

8 = — x¥(ab + ac - bc) + x(aTi sin @1 + cTs sin Oy)
4+ 1—T1cos Oy — T cos Oz
+ j[— abex3 + x(a 4+ b + ¢ — aT1 cos O1 — cTs cos Oy)
= T1 Sin@l—Tz sin @2]. (9.1.11)
We now put:

ab + ac +bc= — A,

aTy sin @1 + ¢Ts sin O3 = B,

1 —Ticos O1 —Tecos Oy = C,

abie — — B, (9.1.12)
a-+ b -+ c—alicos @1 — cTscos O = E,
T1cos O 4 Tosin @y = — F.
Then 6 can be written as:
8 = Ax? + Bx + C + j(Dx3 + Ex + F), (9.1.13)

and |§/2 as:

8|2 = D2x8 4 (42 + 2DE)x* + (2AB + 2DF)x3 + (B2 + 24C + E?)x2
(2BC + 2EF)x + C? + P2, (9.1.14)

For symmetry the terms with odd powers of x must vanish. Hence:

BC + EF = 0,
and (9.1.15)
AB + DF = 0.
Condition (9.1.15) is fulfilled for:
B=F=0, (9.1.16)
or for:
A=C=D=E=0. (9.1.17)

The second condition, Eq. (9.1.17), cannot be satisfied because 4 and D can-
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not become zero, see Eq. (9.1.12). The first condition, Eq. (9.1.16), leads with
Eq. (9.1.12) to:
aTh sin O + ¢T» sin O = 0, )

and (9.1.18)
T1sin O1 + Tasin O = 0. S
It then follows that for symmetry:
a=c, )
and » (9.1.19)

T1sin @1 + Tesin Oy = 0. S

Expression (9.1.19) thus represents the general conditions for symmetry
of the response curve of a single-stage amplifier. It is required that the
regeneration coefficients of the two four-terminal networks are their complex
conjugates and that the quality factors of the input and output-tuned circuits
are equal.

An alternative method of deriving the conditions for symmetry is the
following: Again assume that x1 = x2 = x3 = x and write Eq. (9.1.8) as:

8§ =1+ jx)3 + (1 + jx)(m + jn). (9.1.20)

Here m 4 jn stand for — Tiexp (j@1) — Teexp (j@2). To determine the
quantity 8, the two terms of Eq. (9.1.20) must be added vectorially. The
first term is always symmetrical around x = 0. The vectorial sum of
the first and the second factor can then only be symmetrical if the real axis
of the polar diagram of the second term coincides with that of the first
factor. This is the case for n = 0, or, generally, if the co-factors of the
(1 + jx) terms are real.

9.1.4 PRACTICAL REALIZATION OF THE SYMMETRICAL AMPLIFIER STAGE

For a symmetrical response curve of the single-stage amplifier under consi-
deration, condition (9.1.19) must be satisfied, i.e.

T1sin @1 + Tssin O3 = 0.

If we assume 77 cos @1 = T cos O (as is required for symmetry of a multi-
stage amplifier, see following section) it follows that:

O3 = 27 — 01 + 2km. (9.1.21)

The angle ©; follows from the admittance parameters of the transistor at
the chosen d.c. operating point and, therefore, has a fixed value. This means
that the passive four-terminal network of Fig. 9.3 must be so arranged that
equality (9.1.21) is satisfied. Hence:
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arg Y12 + arg Yo1 = 2 arg Yo1 = — 0 + (k + 1)2=,
or:

)
arg Yoy — —3‘ 1+ (k + D, (9.1.22)
0,128 .-

For all values of ©; of the transistor, arg Ya1 (of the passive four-terminal
network) may be situated in the 2nd or 3rd quadrant which implies that the
required symmetry can be achieved by taking for the first four-terminal
network a double-tuned bandpass filter in which a resistance is added to the
coupling elements. Examples of such bandpass filters are given Figs. 9.5a
and 9.5b (for these bandpass filters £ = 0 in Eq. (9.1.22)).

9.1.5 AMPLITUDE RESPONSE CURVE

The amplitude response curve of the symmetrical amplifier stage becomes
with Eq. (9.1.14), taking into account Eqgs. (9.1.16) and (9.1.19):

18] = {D2x6 + (42 + 2DE)x* + (2AC + E2x2 + C2}3 . (9.1.23)

For identical tuned circuits (@ = b = ¢ = 1) and T = T3, this becomes
with Eq. (9.1.12):

18] = {x6 4 (3 + 4T cos O)x* + (3 + 4T%cos? O)x2 + (1 — 2T cos O)2}}

(9.1.24)

Further consideration of Eq. (9.1.8) in combination with Eq. (9.1.9) or

the expressions given by Eqgs. (9.1.23) and (9.1.24) reveals that the amplitude

response curve of the symmetrical amplifier stage is identical to that of
a triple-tuned bandpass filter, for which:

R Re Ce
— —
- — e
o~ ail o o —

v L e =C>| |G, L
-F 161 L L Hqucz ’ H T 2“ o
O- “ 8

O O 0

Fig. 9.5. Examples of double-tuned bandpass filters with complex coefficient of coupling.
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18] = {x8 + (3 —4g2)x* + (3 + 4g%x2 + (1 + 2¢?)%2. (9.1.25)
Then:
q12 = g2 = — T cos 0. (9.1.26)

For the amplitude response curve of this amplifier stage the same remarks

can therefore be made as are applicable to the triple-tuned bandpass filter,

see Bibliography [9-1]and [9-2]. It can hence be concluded that the amplitude

response curve of amplifier arrangement under consideration has the follow-

ing properties:

a) symmetry, provided the quality factors of input and output tuned cir-
cuits are equal (a = ¢);

b) single-humped top for equal quality factors of the three tuned circuits
(@a=b=o0);

¢) triple-humped top when the quality factor of the second tuned circuit is
large compared with those of the first and the third tuned circuit (b > a=
= ¢). The three humps become equal for a particular value of 71 cos 01 =
= Ts cos Os;

d) no flat topped response curve can be obtained assuming that tuning
method A is applied.

In Fig. 9.6 the amplitude response curves of the single amplifier stage are

represented assuming @ = b = ¢ = 1 and 71 = T2 = T for T'cos® =0, 1,

P i \\‘ = 1
T —&B Zid 4 A S
5 ! yard AYERN |
S NN
\ll / \\ \\ \:cos£‘=—2
v NN
2 ( v \
‘ L/ \cosB=-1
\,/b / \\
1074 A\ AN
—7 3
5 // Tcos6=0
/ \
2
X
,0~2

3 2 - 6 1 2 3

Fig. 9.6. Amplitude response curves for a single-stage-asymmetry-compensated amplifier.
The curve for T cos © = 0 is valid for the case of a cascade of three single-tuned bandpass
filters coupled by means of unilateral devices.
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and 2. The well known properties of the triple-tuned bandpass filter referred
to above are evidently present in this set of curves.

Condition c for three equal humps can generally not be met in transistor
amplifiers because, in view of stability or otherwise, b &~ a.

The round-off character of the top of the amplitude response curve limits
the application of this amplifier arrangement to cases in which a flat-topped
response curve is not essential. Furthermore, this type of symmetry-compen-
sated amplifier may advantageously be used in cases where a very flat envel-
ope delay curve is required as will become apparent form the curves given
for the three and four-stage amplifiers considered in the following section.

9.2 Multi-Stage Amplifier with Double-Tuned Bandpass Filters with Complex
Coupling Coefficients

9.2.1 CONDITIONS FOR SYMMETRY OF RESPONSE CURVE

In Fig. 9.7 the equivalent circuit diagram of a two stage amplifier with two

double-tuned bandpass filters and one single-tuned bandpass filter is given.

Before deriving the conditions for symmetry of amplitude response curve

we will make the following assumptions:

a) the two transistors are identical and their regeneration coefficients are
denoted by 71 exp (jO1).

b) the two double tuned bandpass filters are identical and their complex
coefficients of coupling are denoted by T3 exp (j©2).

¢) all tuned circuits of which the bandpass filters are composed are identic-
al and their admittances are denoted by ¥ = G(1 + jx).

The reduced determinant for this amplifier can then be written as:

y b 0 0 0
1 y a 0 0
§ = 0 1 y b 0 |, 9.2.1)
0 0 1 y a
0 0 0 1 y
in which
y=1+4jx, 9.2.2)
Ys Vs Y3 % Y
2Y2% 2% Y2t 2% ?
ool Jeried o i8d o I8 |
2Yar% 2YorV4 1Yarv3 Varv2

Fig. 9.7. Equivalent circuit diagram of a two-stage asymmetry-compensated amplifier.
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a = Ty exp (jO1), (9.2.3)
and
b = Taexp (jO2). (9.2.4)

By writing out 8, we obtain:
8 =y —y¥a + b) + y(a® + ab + b?). (9.2.5)

Since y is a symmetrical function of x, the condition for symmetry of &

around x = 0 is that the coefficients of the terms y and y3 are real, see also
sub-section 9.1.3.
For symmetry:

In(a + b) =0, (9.2.6)

Im (a2 4 ab + b2) = 0. 9.2.7)

After substitution of Egs. (9.2.3) and (9.2.4) it follows from Egs. (9.2.6) and
9.2.7):

Oy = — 04, 2
and (9.2.8)

T1 = To. s

Extending the above analysis, it may be concluded that a multistage ampli-
fier has a symmetrical amplitude response curve if the asymmetry of the
amplitude response curve of the amplifier due to the feedback of each
transistor is compensated by an asymmetry of opposite direction of
a double-tuned bandpass filter with complex coupling coefficient. For
anamplifier consisting of identical “stages”, the regeneration coefficients and
regeneration phase angles of transistors and double-tuned bandpass filters
must meet with the conditions expressed by Eq. (9.2.8).

9.2.2 RESPONSE CURVE

In Fig. 9.8 the amplitude response curves of a three and a four-stage ampli-
fier with complex coupling coefficients in the double-tuned bandpass filters
are plotted. The curves are valid for 1 = 210° and @> = 150° and 71 = T
= T = 3.5 and T = 7.0 respectively. Fig. 9.9 gives the corresponding envel-

ope delay curves.
It appears that the envelope delay curves are substantially flat over the

range of normalized detunings considered.

9.3 Stability

Instability in an amplifier occurs if its reduced determinant becomes zero.
In the assymetry-compensated single-stage amplifier this is the case for (see
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Fig. 9.8. Amplitude response curve for three and four-stage asymmetry compensated am-
plifiers with transistor regeneration phase angles ®=210- and T'= 3.5, respectively T' = 7.0.

sub-section 9.1.2):
8 = (1 + jx{( + jx)2— 2Tcos 6} = 0, (9.3.1)

assuming equal quality factors for the tuned circuits and equal values for
the regeneration coefficients of the active and passive four-terminal networks.
It follows from Eq. (9.3.1) that instability occurs at

1
Tcos O = Tk (9.3.2)

This means that instability in this amplifier is only possible if @ is situated in
the first or the fourth quadrant.

TTe (rad/sec.)
10

n=3,T=70 |p=4,T=35 |n=4,T=70

\§—_’— —

Fig. 9.9. Envelope delay curves for the amplifier arrangements of Fig. 9.8.
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If this single-stage amplifier is to be protected against instability by a stabil-
ity factor s, we obtain the condition:

Tcos O < i ‘ (9.3.3)
2s

A similar condition can be derived for an asymmetry-compensated multi-
stage amplifier.

The stability condition given by Eq. (9.3.3) is, however, only valid in an
amplifier in which the asymmetry due to the feedback of the transistors is
exactly compensated. In practical amplifiers the complex regeneration coeffi-
cients of the transistors and the double-tuned bandpass filters will spread
around a certain average value. Due to these spreads a considerable decrea-
se of the value of s according to Eq. (9.3.3) is possible. To accomodate with
these spreads it is generally advisable to choose 7" smaller than or equal to
the value Ty = 2/(1 + cos @), the value of the regeneration coefficient at
the “basic” boundary of stability as considered in the preceding chapters.
If T=T,/s’,in which 5" expressses the amount of protection against instabil-
ity due to spreads, we obtain as a second requirement:

r<__ 2 .
s'(1 4 cos 0)

(9.3.4)

For a safe design of an asymmetry-compensated amplifier, both conditions
(9.3.3) and (9.3.4) should thus be satisfied.

9.4 Transducer Gain
The transducer gain of the amplifier is again given by
Dy = 4GsGyr -+ | Zs a3, 9.4.1)

in which for an n-stage amplifiers with » transistors and n double tuned band-
pass filters and one single-tuned bandpass filter, see Chapter 8:

m=n m=n
IT mysr - I p Y21
Ziw =20 . (9.4.2)
II Gp: 6,
m=1

If the regeneration coefficients of all transistors are denoted by 7%, and
those of the double-tuned bandpass filters by 7', we obtain for the transducer
gain of the n-stage amplifier:
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Gs Gg 1
Dpp=4—" Nt Ty e Tpto—— 9.4.3
= Gani1 G1 " v |8n|? ¢ )

For Tir = Ty it can be calculated that at the centre frequency of the
asymmetry-compensated amplifier:

forn=1:

81,0 = 1—2Tcos 6, 9.4.4)
forn=2:

82,0 =1—4T cos O + 3T2cos2 O, (9.4.5)
forn = 3:

83,0 = 1 —6Tcos O + 1072 cos? @ — 4T3 cos? O, (9.4.6)
and for n = 4:
84,0 =1—8T cos O + 2172 cos2 ® — 2073 cos3 O + 5T* cost O.
(9.4.7)

With these expressions @;,, can be calculated. Obviously, the transducer
gain at the tuning frequency of this asymmetry-compensated amplifier is
equal to that of the amplifier with a single tuned bandpass filter at the output
considered in Section 8.2, when tuned according to method B and ¢2 =
— TcosO.
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CHAPTER 10

STAGGERED TUNING IN TRANSISTOR
BANDPASS AMPLIFIERS

A well known technique in selective amplifiers equipped with valves is the
application of the staggered tuning principle. This technique which utilizes
simple single-tuned interstage networks, enables a desired bandpass charac-
teristic to be obtained with gain levels comparable with those achievable
with more complicated interstage networks. The success of the staggered
tuning technique in valve amplifiers rests on the fact that here the amplifi-
cation is limited by the maximally possible tuned circuit impedance. This
maximum tuned circuit impedance depends on the required bandwidth of the
circuit and the minimum value of tuning capacitance of which the lower limit
is set by the parasitic capacitances present across the circuit. In a stagger-
tuned amplifier the quality factors of the individual tuned circuits can be
made larger than in a synchronously tuned amplifier with the same overall
bandwidth to such an extent that the overall amplification of the stagger-
tuned amplifier is larger (see Bibliography [10.2]).

In selective amplifiers with transistors the impedance levels of the tuned
circuits are generally much lower than in the valve case. The lower impe-
dances are required for reasons of stability of each stage of the amplifier and/
or to make all transistors of a given type interchangeable in the amplifier,
taking into account their spreads in parameters (see Chapter 11). No in-
crease in (power) gain can hence be obtained by narrowing the bandwidth of
the various tuned circuits and, in fact, a reduction in gain occurs when
staggering the tuning of the interstage networks. This implies that, general-
ly, staggered tuning offers no advantages in transistorized amplifiers. There-
fore synchronous tuning of the various tuned circuits is used almost exclusi-
vely.

Despite the lower gain the staggered tuning principle is sometimes used in
transistorized amplifiers to achieve a better response characteristic compared
with the synchronously tuned case. Unless all stages of the amplifier are
perfectly neutralized the design calculations of, say, flat-staggered doubles or
triples become extremely complex because of the feedback inherent to the
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transistors. These calculations are therefore considered to be beyond the
scope of this book.

The determinant method on which the analysis of the synchronously tuned
amplifiers considered is based is however also suitable for non-synchronously
tuned amplifiers, as already referred to in Chapter 8. This method may there-
fore also be applied in the analysis of the performance of staggered ampli-
fiers as soon as the staggering scheme, the tuning frequencies of the individual
circuits and their quality factors are known.

For the case of ® = 270° (valve case) Jenolek and Sidorowicz (see
Bibliography [10.1]) have investigated the influence of the feedback on the
amplitude response curve for staggered pairs and staggered triples also
using a determinant method. In this analysis various staggering sequences
are considered. The quality factors and tuning frequencies of the individual
tuned circuits were determined using the normal stagger diagram for unilat-
eral amplifiers.

From this analysis it follows that even at small values of the regeneration
coefficient 7" a severe distortion of the amplitude response curve occurs
which is mainly to be attributed to the deterioration of stability of each
stage due to the cascade of stages (see Chapter 6). This deterioration de-
pends, obviously, on the sequence of the resonant frequencies of the indivi-
dual tuned circuits in the amplifier. It might be concluded from the analysis
mentioned that the staggered tuning technique can only successfully be em-
ployed in a transistor amplifier if the stability factor of each stage is made
very large (s > 20). This may be achieved either by neutralization or by
sufficiently damping the transistors at their input and output terminals. In
the latter case, as already referred to, the power gain will generally be con-
siderably less than in the case of synchronous tuning.




CHAPTER 11

SPREADS IN TRANSISTOR AMPLIFIERS

In designing practical bandpass amplifiers the spreads and tolerances of the
properties of the active as well as the passive devices to be used must be
taken into account. The design must be such that the performance of the
amplifier remains within allowable limits over the range of possible spreads
of transistor parameters as well as component tolerances.

We will restrict ourselves to investigating in some detail the consequences
of the deviation of the admittance parameters of the transistors to be used in
the amplifier from the nominal values. Tolerances in the circuitry external
to the transistors will only be considered in as far as they influence the spreads
in the transistor admittance parameters.

Parameter spreads of the transistors affect the stability of the amplifier
as well as the gain and the response curve. Because an amplifier is useless
in practice unless it is adequately stable, the design based on stability taking
into account spreads will be considered in detail. The consequences of transis-
tor parameter spreads on gain and response curve will not be considered in
detail because for this investigation actual transistor parameters should be
taken into account. This thus leads to different parameters for each transis-
tor of the amplifier. When the amplifier determinant is written down taking
into account these parameters, questions regarding gain and response curve
can be answered after evaluation of the determinant. Such procedures are,
however, outside the scope of this book because they only yield results for
specific cases which cannot be used in general. In Book II, an example of
such an investigation is given for a three-stage vision I.F. amplifier of a tele-
vision receiver.

As already referred to, only transistor admittance parameters will be con-
sidered in this chapter. Investigations for other parameter systems may be
carried out by using similar methods.

11.1 Stability

As already pointed out, in amplifier designs for a certain type of transistor
care must be taken that all transistors of that type are interchangeable with-
out impairing the performance of the amplifier too much due to spreads in
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transistor parameters. Usually it will be accepted that when other transistors
of the same type are inserted in the amplifier, the amplifier must be realigned.
It is, however, not acceptable that the amplifier can become unstable with
transistors with parameters satisfying the published data inserted in it.
Therefore the stability of the amplifier has to be considered for transistors
with a combination of parameters which set the severest stability require-
ments to the amplifier.

As will be obvious from the preceding chapters such a transistor has mini-
mum values of g11 and gge, maximum values of |y12| and |ye1| and an angle
O = @12 + @21 such that cos @ has a maximum value.

We will denote a minimum value of a parameter by adding a suffix m and
a maximum value by adding a suffix M. No extra suffix denotes a nominal or
typical parameter value.

In the amplifier design on stability for a nominal transistor a certain stabil-
ity factor s > 1 was taken into account, see sub-section 2.2.4.

For the design on stability of an amplifier in which transistors with a com-
bination of extreme parameters as mentioned above are assumed to be insert-
ed we will allow that s reduces to s = 1. Then the amplifier is on the boundary
of stability. This is allowable for the following reasons:

A single transistor with a combination of extreme parameters as men-
tioned, or as it further will be referred to, an “extreme transistor”’, never
occurs in practice. Therefore the stability factor of an amplifier equipped
with practical transistors will always be larger than unity when it is
allowed that s reduces to s = 1 for the “extreme transistor”.

Based on these principles the influences of spreads of the transistor para-
meters will now be investigated by considering a single-stage amplifier with
two single-tuned bandpass filters. This simple type of amplifier has been
chosen because of the straightforwardness of the analysis and, moreover,
because its boundary of stability may be considered as a general boundary of
stability for all selective amplifier configurations, see Chapters 2, 5, 6and 7.

Because the influences of the parameter spreads on the stability present
themselves somewhat differently in neutralized and non-neutralized ampli-
fiers, the two cases will be dealt with separately.

11.2 Non-Neutralized Amplifiers

To investigate the influences of the transistor parameter spreads in a non-
neutralized amplifier we will consider the spreads of the various parameters
separately. In this way a clear picture of the influence of each parameter
will be obtained.
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In investigating the various spreads in the non-neutralized amplifier use
will be made of the 7-plane representation of the amplifier stability.
11.2.1 SPREADS IN Y12

According to Chapter 2, we may write for a single-stage amplifier with a
stability factor s:

(1 4 jx)2 —sTexp (j©) = 0. (11.2.1)
At the boundary of stability s = 1 and T = T.
Since
[y1e| - yal
T= , 11.2.
GiGa (11.2.2)
and
0 = @12 + @21, (11.2.3)
Eq. (11.2.1) can also be written as:
sTexp (jp12) = (1 + jx)? - exp (— joa1), (11.2.4)
or
: |yl o .
[y12| exp (jor2) - s - =— = (1 + jx)? - exp (—joz1).  (11.2.5)
G1G2

In investigating the influences of the spreads in y12 we will assume in this
sub-section that the parameters y11, y22 and y21 are constant.

The influence of the spreads in y;2 can clearly be seen from Fig. 11.1 which
is a plot of the right-hand side of Eq. (11.2.4) in the complex T exp (jp12)
plane. The vector T exp.(jg12) represents the nominal case. The modulus of
y12 is assumed to spread between

[y12| + 4ly12| = |y12ml,
and (11.2.6)
[y12| — 4|y12| = [y12ml,

wheras the phase angle g12 spreads between

@12 + Ad@i2 = @iom,
and (11.2.7)
@12 — Api2 = @iom.

The spreads in |y12/lead to extreme values of the regeneration coefficient 7

[y21]
The — :
M = |yiem]| GiGs

and (11.2.8)

[yaul
Tm = ¢ .
m ‘y12m| G1Ga

3
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Fig. 11.1. Location of spread area of the transistor feedback admittance y12 in the complex
T plane. It is assumed that ya1, g11 and g2 are not subjected to spreads so that spreads in
T are only due to spreads in y12. The real axis of the parabola denoting the boundary of
stability is shifted over an angle — @21 with respect to the real axis of the T plane so that
spreads in @12 can easily be incorporated.

The shaded area in Fig. 11.1, bounded by T, T, @12m and @12y , is thus
the area in which the regeneration coefficient T will be situated taking into
account spreads of yis. Obviously the stability factor of the amplifier is
smallest for the combination Ty and @i2m.

11.2.2 SPREADS IN Ya1

If also the parameter y21 is subjected to spreads, the situation becomes slight-
ly more complex. If the angle g21 spreads between

@21 + dga1 = @a1m,

and (11.2.9)
@21 — Apa1 = @a1m,

the angle through which the real axis of the parabola must be rotated with

respect to the axis 7T cos @12 varies between these two values as shown in
Fig. 11.2.
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Fig. 11.2. Spreads in | y21| enlarge the spread area of 7. The maximum value of 7'is obtained
for a combination of maximum values of |y12| and |ys1| whereas the minimum value holds
for a combination of minimum values of |y12| and |y21|. The double hatched spread area
is considered to be due to spreads in y12 only. Spreads in @21 present themselves as spreads
in the location of the symmetry axis of the parabola.

Assuming |y21| to spread between
[y21| + dlyz1| = |yziml,
and (11.2.10)
[yo1l — 4dly21| = [y2iml,

the regeneration coefficient has extreme values of:

|y1em| * [yeim|

Te="G6 '
and e (11.2.11)
|[y12m| - [y21m]
Tm = =

These extreme values are indicated in Fig. 11.2. The double hatched area
in this figure refers to the spread area of y12 whereas the single hatched area
represents the additional spread of |y21|. The spreads in @21 become apparent
from the rotation of the parabola in the 7" exp (jgi12) plane.
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11.2.3 COMBINATION OF SPREADS IN yi12 AND y21

The influences of spreads of the y12 and yo1 parameters of the transistors on
the stability of the amplifier as illustrated separately in Fig. 11.1 and Fig. 11.2
can also be expressed in a combined form in the 7 exp jO plane as illustrated
in Fig. 11.3. The extreme values of the angle @ then become:

O + A1z + Aps1 = Oy,
and (11.2.12)
0 — A(plg — A(pgl = @m.

The extreme values T and T, of the regeneration coefficient are given by
Eq. (11.2.11).
The double hatched area in Fig. 11.3 again refers to the spread area of y12
whereas the single hatched area indicates the additional spreads due to ysi.
The severest case with respect to stability in Fig. 11.3. is the combination
of Ty and @M-

11.2.4 SPREADS IN g11 AND g2z

Until now it has been assumed that the conductances gi1 and goo are not
subjected to spreads. In practical transistors these parameters also spread

Tfsin 8

Fig. 11.3. Combined influence of the spreads in y12 and ye1 in the T exp (j©) plane.
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around their nominal values and hence influence the value of the regenera-
tion coefficient 7.
In the single-stage amplifier under consideration we have

G1=gn + Gi* + Gg, )

and , (11.2.13)
G2 = g22 + G2* 4 GL. \
For minimum values g11m and geom, G1 and Gs become:
Gim = g11m + G1* + Gs,
(11.2.14)

Gom = goom + G2* + GL

After the design on stability for the nominal transistor has been carried out
the quantities (G1* + Gs) and G2* + G2) are known and Gim and Gam can
be calculated. The extreme values for 7 then follow from:

[yizm| - [y2im]

TM = B ) /
Glm : G‘_’m
11.2.15
and o [y12ml > Ui%lﬂl \ ( )
" Gim - Gan

In Fig. 11.4 the spread area of T taking into account the extreme values of
all admittance parameters is shown. The shaded regions indicate the extra
increase of the spread area due to the spreads in gi1 and gao.

The spreads of the susceptive parts of y11 and y22 need not to be taken into
account because they are incorporated in the tuned circuit susceptances
when tuning the amplifier.

11.2.5 PRACTICAL DESIGN PROCEDURE WITH INTERCHANGEABILITY
CHECK

In designing practical amplifiers the design is first carried through for tran-
sistors with nominal values of parameters. According to the introductory
section of this chapter it must then be ascertained whether for the so-called
“extreme transistor’ the stability factor s, is larger than unity or not.

If s, = 1 all transistors of the type under consideration may be inserted
in the amplifier without any risk of instability. If sm < 1 some of the transis-
tors of the given type may give rise to instability when inserted in the ampli-
fier. To remedy this, s, must be increased to unity by increasing the tuned
circuit dampings or the source and load dampings.

This then means that the stability factor for the nominal transistor becomes
larger than was initially provided for.
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Fig. 11.4. Further enlargement of the spread area of T due to spreads in the dampings gi1
and g22. The shaded area indicates the influences of these parameters.

In order to check the interchangeability conditions the smallest value of
T, that may occur in the amplifier must be determined. Therefore that ex-
treme value of © (Oy in common emitter connection and @, in common
base connection) must be taken that gives the minimum value for:

2

Ty = .
o 1+ cos®

(11.2.16)

After Tys has been determined from Eq. (11.2.15) the minimum value of the
stability factor sm follows from:

S __Tgm
m Tu .

11.2.6 EXAMPLE

To illustrate the theory presented in the preceding subsections a single-stage
amplifier will be designed with respect to stability. The transistor to be used
in the amplifier is assumed to be of a type of which the admittance para-
meters are as given in Table 11.1.
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TABLE 11.1 ADMITTANCE PARAMETERS

minimum value | nominal value | maximum value unit
g11 2.5 5 10 mgy
[¥12] 50 100 200 e
@12 260 265 270 o
[y21] 75 100 130 mgy
@21 300 315 330 o
g22 50 100 200 U

For the nominal case:
0 = @12 + @21 = 220°

2
T,— —_ —386.
g 1+ cos @
Fors =4,T = 2.15
Then G1Go = P2V 465 10-0 2,
G
Assuming  —+ — & it follows that
Gz go2

o
G — ]/33 GiGy = 15.3 mO

822
and G2 = 300 pO.
As Gi1= g1 + Gi* + Gs, Gi* + Gs = 10.3 mU;
also G2 = go2 + G2* + G, G2* + G = 200 pO.

For reasons of interchangeability we must take into account
giim, [yizml, @iam, [yoiml, @a1m and goom,

This leads to:
On = @12m + @21m = 240°,

:;2 =4
1+ cos On

Gim = giim + G1* + Gs = 12.8 mO,
Gom = goem + Go* + G = 250 40,

Tym

_yremllyaim|

= 8.1.
Gim * Gam

Furthermore, Tu
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This gives for the minimum stability factor

Tym
Sm = T 0.5.
A stability factor sm = 0.5 indicates that the amplifier may become unstable
for a transistor of the type under consideration with an unfavourable com-
bination of parameters. To meet with the interchangeability criterion sy,
must be increased to sm = 1 by increasing (G1* + Gs) and (G2* + Gr).
For sm = 1, Tm = Tym = 4 and Gim * Gom = 6.5+ 1076 02,
gum _ Gim

Assuming it follows that:
g22m Gam
and Glm =, 18 mU,
Gam = 360 pO.
This yields G1* + Gs = 15.5 mO,
and Go* + G = 310 pO.

For the nominal case we then find:
G1 = 20.5 mU and Gz = 410 0.
The regeneration coefficient then becomes:

100 -10-3-100- 10-6
©205-1073-410-106

1:2;

and the stability factor:

11.3 Neutralized Amplifiers

As regards spreads in transistor parameters two methods of neutralization
must be considered which were already referred to in Chapter 3 as “perfect
neutralization” and “fixed-component neutralization”.

In the case of perfect neutralization the y12 parameter of every transistor
of the given type which is inserted in the amplifier will be exactly neutralized
by adjusting the components of the neutralizing network. This implies that
we need not to consider the stability of this type of amplifier in view of the
transistor parameter spreads.

In practical amplifier constructions, however, the yi12 parameters of the
transistors are subjected to variations during life or due to environmental
conditions. These variations must be catered for by sufficiently large values
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of the dampings at the transistor input- and output terminals. To determine
the required value of the product of these dampings the same method may
be followed as for the amplifier with fixed neutralizing components considered
in the next section.

11.4 Amplifiers with Fixed-Component Neutralization

In Chapter 3 various methods for neutralizing the reverse transmission of
signals through a transistor are considered. For perfect neutralization the
neutralizing components must have values which are different for each tran-
sistor because of the spreads in the reverse transmission properties. As al-
ready referred to in Section 3.6, in practical amplifier constructions fixed-
component neutralization is employed. Then perfect neutralization is achiev-
ed for a transistor which has a particular value of yi». Transistors having
different values of yi1» are either over-neutralized or under-neutralized.
The aim of the following sub-section is to investigate which value of y12
can best be perfectly neutralized by the fixed-component network taking into
account the spreads in the four transistor admittance parameters as well as the
spreads in the components of the neutralizing network. After having found
the best values for the neutralizing components it must be assured that all
transistors of the type considered are interchangeable in the amplifier with
this neutralizing network without giving rise to instability phenomena.

11.4.1 COMPONENT VALUES OF THE NEUTRALIZING NETWORK

11.4.1.1 No Spreads in the Neutralizing Components

To determine the values of the fixed components of the neutralizing network
we will, in the first instance, disregard the spreads in the neutralizing compo-
nents themselves and only take into account the transistor parameter
spreads.

As y19 is the parameter to be neutralized the effect of a neutralizing net-
work can best be illustrated by expressing the stability conditions of the
amplifier in the |y12| exp (jp12) plane. This can be done by rewriting Eq.
(11.2.5) as:

G1Go
|ye1l

1

[y12] exp (jo12) = S (1 + jx)% exp (—jpa1). (11.4.1)
The right-hand side of the expression can be represented by a parabola in
the y12 plane. Its focus is located at the origin of the y12 plane and its axis of
symmetry is shifted over an angle (— g21) with respect to the real axis. The
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Fig. 11.5. Location of the stability parabolas in the complex yi2 plane.

directrix of the parabola is located at a distance 2 G1Ga/s|yz1| from the ori-
gin. In Fig. 11.5 such a parabola has been constructed. The location of the
parabola in the y12 plane is thus dependent on the values of y21, G1, G2 and s
and for each set of values of these parameters a new parabola must be con-
structed. For values of yi12 on the parabola for s = 1 the amplifier is on the
verge of oscillation for the particular values of y21, G1 and G2 assumed. For
values of yis located outside this parabola the amplifier is unstable.

In Fig. 11.6 the spread area of y12 of a particular transistor has been shown.
Assuming certain values of y21, G1 and G2 and taking s = 1 the parabola thus
represents the boundary of stability. Also a parabola for s = 2 has been
shown. It follows that for a large number of transistors of this type the am-
plifier is unstable if no further measures are taken.

As already referred to, one of the measures that can be taken is the appli-
cation of a neutralizing network. Assuming that this network has a transfer
admittance |Yian| exp (jpizn) and that its influence on the y21, y11 and y22
parameters of the neutralized transistor four-terminal network is negligible,
the effect of the neutralizing network may be represented as shown in Fig.
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Fig. 11.6. Location of spread area of y12 of the transistor and the feedback admittance
| Y12n]| of the neutralizing network in the yi2 plane. The hatched area represents the remai-
ning spread area of yi2 after neutralization with Yiax.

11.6. Here, the vector Yian represents the transfer admittance of the neutral-
izing network. The hatched area represents the remainder of the feedback
of the transistor after neutralization of an amount Y2y of it.

It follows that, due to this particular choice of the value of Yiox, for
over-neutralized transistors the stability factor of the amplifier is much smal-
ler than for under-neutralized transistors. The value of Yi2x should prefer-
ably be chosen such that the stability factor in the over-neutralized case is
equal to that in the under-neutralized case. In sub-section 9.6.2 this value has
been calculated, assuming zero spreads in the phase angles @12 and ¢o1.
After neutralization with this value the points @ and b appear on the same
parabola for a certain value of s, see Fig. 11.7. Strictly speaking, spreads in
@12 should also be taken into account. This requires that the points @’ and
b’ are both situated on a parabola for a certain value of s (different from that
for the points @ and b). Moreover, spreads in y21 should also be taken into
account. Consideration of the spreads in @12 and @21, however, only leads
to second order variations of the (nominal) value of Y12x. The assumption of
nominal values for ¢12 and @21 for determining the nominal value of Y1anx
is therefore justified.
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As follows from Fig. 11.7 the value of the transistor feedback admittance
which is perfectly neutralized lies between the minimum value and the
average value of yi2. This means that most transistors of a given type are
under-neutralized.

11.4.1.2 Spreads in the Neutralizing Components

In practice normal capacitors and resistors are used for the components of the
neutralizing networks. This implies that we have to take into account the
tolerances of these components which are equal to 109, say. Furthermore,
spreads may occur due to spreads in the transformer ratio of the phase invert-
ing transformer. The component tolerances influence both magnitude and
phase of the neutralizing admittance whereas the spreads in transformer
ratio only affect the magnitude.

As it is probable that the spreads in the magnitude are larger and, hence,
more important than the spreads in phase, the magnitude spreads will be
considered first.

T 2[5 812

e

Fig. 11.7. Location of the remaining spread area of yi2 for equal stability in the extreme
over- and under-neutralized cases.
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Fig. 11.8. Effects of spreads in |Yi2n].

In Fig. 11.8 the effects of spreads in magnitude of Yiany are shown.
The spread area of y12 indicated by the dashed lines is valid for the correct
nominal value of Yian as found in Fig. 11.7. The hatched spread areas apply
to the cases with a positive spread, |Yionm|, and with a negative spread,
|Y12n ml. It follows from the figure that for the over-neutralized and under-
neutralized cases the stability factor is again different.This means that with a
fixed-component neutralizing network the nominal value of Y125 must be
determined by taking into account the spreads in y12 of the transistor as well
as the spread in Yion of the neutralizing network.

As the spreads in |Yi2n| are usually specified as a certain percentage of
deviation from the nominal value, difficulties occur when it is attempted to
take these spreads into account. This is due to the fact that, to determine the
nominal value of Y12y, the absolute magnitudes of the spreads are required
whereas for the spreads in Y12y only the relative values are know. (The abso-
lute values depend on the nominal value to be found.) For practical ampli-
fiers the correct nominal value of Yisn can be determined with sufficient
accuracy by assuming that the absolute spreads in Y12x are equal to the
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percentage spread multiplied by the minimum value of the transistor feed-
back admittance yi2. This might be seen as follows: In the preceding sub-
section we have found that due to spreads in the transistor feedback ad-
mittance only the correct value of |Yia2n| lies between |yi2| and |yieml,
assuming yo1 to be situated in the fourth quadrant. As, due to the neutra-
lizing network, the total spread in both directions increases, the correct,
nominal, value of |Y12n| Will approach more closely the value |yiem|. For
yo1 situated in the second quadrant, |Y12x| more closely approaches |yiam|.
To determine the nominal value of |Y1an/| the absolute spead of |Yian| ob-
tained in this way should be added to the absolute spreads in |y12| of the
transistor.

These points will be elucidated by means of an example: let a transistor
have an average feedback admittance |yi2| of 100 U which spreads be-
tween 50 pO and 150 pO. Then |dyjs| = 150 — 50 = 100 pO. Let further-
more the neutralizing network have a spread of 209,. We assume that
|4Y12n] is equal to 209 of 50 uO or 4Y12x = 20 pO. The total spread to
be taken into account then becomes 100 + 20 = 120 pO. If we assume that
the transistor has a forward transfer admittance of 100 mO at the average with
spreads from 80 mOU to 120 mU and that the average value of @ equals
O = 225°, we obtain with Eq. (3.6.8) for the nominal value of |Yian|:

[Yion| = 48 nO.

We have now taken into account spreads in |y12/, |y21] and |Yi2n| for finding
the optimum nominal value for the magnitude of the feedback admittance
of the neutralizing network. This value yields the same stability factor in the
extreme over-neutralized and under-neutralized cases and we are therefore
able to design the amplifier with a certain stability factor s for these extreme
cases. The parameters mentioned are, however, not the only spread para-
meters which contribute to the stability of the amplifier. Spreadsin g2, 21,
g11, g22 and @12n should also be considered. To investigate whether the in-
fluences of these spreads are tolerable the interchangeability criterion refer-
red to in the introductory section of this chapter will be applied.

11.4.2 SPREADS IN @iax

In the preceding sub-section we have investigated how the spread area of
the transistor feedback admittance yi2 is influenced by the spreads in |Yian|.
In this sub-section we will take into account spreads in the phase angle @ian
of the feedback admittance of the neutralizing network.

In Fig. 11.9 the y12 spread area obtained in Fig. 11.8 drawn for a properly
chosen value of Yian (dashed lines) is shown. Also the spread area of Yion
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Fig. 11.9. Combined effect of spreads in modulus and argument of Yiax.

which is assumed to be rectangular, has been indicated. The spread in @ia2n
enlarges the remaining spread area of y12 as shown in the figure. It follows
that when y2; is situated in the fourth quadrant (common emitter connection)
negative spreads of gion seriously decrease the stability of the amplifier
whereas positive spreads of @12x increases the stability. For yo; situated in
the second quadrant (common base connection) the reverse is true.

11.4.3 SPREADS IN |y21], g11 AND gas

According to sub-section 11.4.1.1 the distance between the directrix of the
parabola representing the boundary of stability in the y12 plane and the
2G1G:
origin equals TL]% . If G1 and G2 are calculated for minimum values of
Jya1
gi1and g22 (Gim and Gam) and the maximum value is taken for |y»1], a para-

bola is obtained which represents the stability boundary in this extreme case.
To achieve interchangeability the total spread area of y;2 must be located
inside this parabola. Fig. 11.10 represents a case in which this condition is
met for the nominal value of ¢21 (drawn curve).
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11.4.4 SPREADS IN @21

According to sub-section 11.2.2 spreads in @21 can be taken into account
by shifting the axis of symmetry of the parabola as shown in Fig. 11.10. It
appears that for this particular choice of parameters a part of the spread area
of y1ais located outside the parabolavalid for the positive spread of g1 (dashed
curve). The amplifier oscillates with transistors having yi12 located outside
the parabola. To remedy this the value of the damping product Gim Gam
must be increased by increasing the tuned circuit dampings. Then the para-
bola becomes wider and encloses a larger part of the yi2 plane.

11.4.5 INTERCHANGEABILITY CHECK AND SUMMARY

It will be apparent from the preceding sub-sections that the check on inter-
changeability of transistors in a neutralized amplifier can best be carried out
graphically. After the optimum value of the feedback admittance of the

[ Inalsin@y;

Fig. 11.10. Interchangeability check. The spread area of yi1s including the spreads of Yian
should in any case be situated inside the parabola for s = 1 in the y12 plane taking into
account the most unfavourable combination of parameters. It follows that in this particu-
lar case the amplifier may become unstable for a number of transistors of the given type
because part of the spread area of yia is situated outside the parabola for s = 1 and a
positive spread of ga1.
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neutralizing network has been calculated according to the method outlined
in sub-sections 11.4.1.1 and 11.4.1.2, the remaining spread area of yi2 can be
drawn on a piece of properly scaled graph paper. Then two parabolas are
constructed having the symmetry axes shifted with respect to the real axis of
the y1» plane over angles equal to — (— @21m) and — (— @21m). The direc-

. 5 2G1mG2m 4o 0%
trices of the two parabolas are at a distance T from the origin
ya1lm

of the y12 plane. If the spread area of y12 is located inside the two parabolas
all transistors of the given type are interchangeable in the amplifier without
any risk of oscillations. If not, the parabolas must be enlarged and this can
be achieved by an increase of the dampings Gim and/or Gam.

In carrying out the interchangeability check, possible variations of the
transistor feedback admittance which may occur during life and those which
are due to environmental conditions should also be taken into account.

11.5 Stability of Multi-Stage Amplifiers

11.5.1 AMPLIFIERS WITH SINGLE-TUNED BANDPASS FILTERS AS INTER-
STAGE COUPLING DEVICES

In multi-stage amplifiers with single-tuned bandpass filters the relative in-
fluences of the transistor parameter spreads on the stability are the same as
those considered in the preceding sub-sections except for the fact that the re-
duction of the stability factors due to the cascade of stages should be taken
into account. This has been dealt with in Chapter 6.

In carrying out the interchangeability checks a factor u, should be taken
into account in constructing the parabola which represents the boundary of
stability.

11.5.2 AMPLIFIERS WITH DOUBLE-TUNED BANDPASS FILTERS AS INTER-
STAGE COUPLING DEVICES

In multi-stage amplifiers with double-tuned bandpass filters as considered in
Chapter 6 the boundary of stability can, with sufficient accuracy, be approxi-
mated by the parabola considered in the preceding sub-sections. This implies
that for these amplifiers the results of the interchangeability analysis are
immediately applicable.

For the single stage amplifier with double-tuned bandpass filters, consider-
ed in Chapter 5, the boundary of stability differs appreciably from the para-
bola. For this type of amplifier the parabola should be replaced by the proper
polar diagram representing the boundary of stability, especially if large
accuracies are required.
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CHAPTER 12

EFFECTS OF NON-IDEAL TRANSFORMERS FOR
COUPLING TRANSISTORS AND BANDPASS FILTERS

In bandpass amplifiers the transistors are nearly always employed in the
common emitter or common base configurations. This implies that their
input admittance is usually large compared with that of practically realizable
bandpass filters, whereas the output admittance of the transistors is in the
same order of magnitude as that of the bandpass filters.

For stability, variations in response curve due to spreads of transistor para-
meters or for other reasons the admittance presented by the bandpass filters
at the transistor terminals must be equal to or larger than the driving point
admittances y11 and y22 of the transistors. This requires the use of impedance
transforming devices at the input terminals of the transistors. These transfor-
mations may be achieved by either two winding transformers, tapping of the
tuning inductance of the bandpass filters (auto-transformers) or tapping of the
tuning capacitance of the bandpass filters. The last two methods are referred
to as inductive tapping and capacitive tapping respectively.

In this chapter we will consider the influences of these “transformers” on
the performance of the amplifier as far as stability is concerned. Special atten-
tion will be paid to deviations from the case of the ideal transformer (i.e.
a device providing impedance transformation with a real transformer ratio
and nothing else).

12.1 Stability of an Amplifier Stage with Practical Impedance Transforming
Networks

In an amplifier in which potentially unstable active elements are employed,
stability is achieved either by suitably dimensioning the immittances present-
ed to the terminals of each active element or by means of unilateralization.
We will restrict ourselves to the case of transistors in the admittance matrix
environment in which stability is ensured by means of sufficient damping at
the transistor terminals. These dampings are provided by bandpass filters
connected to the transistor either directly (at the output side) or by means of
impedance transforming networks (at the input side) as already referred to.
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Fig. 12.1. Single-tuned interstage coupling network providing impedance transformation
between the top of the tuned circuit and the input terminals of the transistor by means of a
double-winding transformer.

To design these bandpass filters with respect to stability of the amplifier,
the effects of the non-ideal conditions of the impedance transforming net-
works on the dampings presented to the transistor must be taken into
account.

12.1.1 OUTPUT IMPEDANCE OF PRACTICAL IMPEDANCE TRANSFORMING
NETWORKS

To enable the effects of the non-ideal conditions of the impedance trans-
forming networks on the amplifier stability to be investigated equivalent
circuit diagrams will be derived. These diagrams will enable us to obtain a
qualitative insight into these effects and, by substituting circuit values, to
decide whether or not they must be taken into account in the design of the
amplifier. The various impedance transforming networks will first be con-
sidered in connection with single-tuned bandpass filters after which the ana-
lysis will be extended to double-tuned bandpass filters.

12.1.2 THE DOUBLE-WINDING TRANSFORMER

In Fig. 12.1 a single-tuned bandpass filter is used as the coupling networks

between two transistors of an amplifier. The tuning inductance has been

provided with an extra winding to achieve the required impedance transfor-

mation between the bandpass filter and the transistor and vice-versa.
When we put:

g 2 (12.1.1)
he = Ijl 5 S I
and
M
... (12.1.2)
VLiLs

an equivalent circuit diagram for this bandpass filter as shown in Fig. 12.2 is
obtained, see sub-section 3.3.3. It includes an ideal transformer of ratio
1 : nk.
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Fig. 12.2. Equivalent circuit diagram of the interstage network of Fig. 12.1. The non-ideal
transformer has been replaced by an ideal transformer and a series inductance.

For further analysis of this equivalent circuit it is assumed that all capa-
citances are contained in C and that all dampings (of the bandpass filter, not
including those of the transistor connected to L» in Fig. 12.1) are contained in
G;. Inspection of Fig. 12.2 then shows that the impedance of the bandpass
filter seen at the output terminals equals:

1
Zous = n%k ——— + joLin2(1 — k?), (12.1.3)

2
G(1 + j»)
or:

w
— 2k L n2(1 — k2 2
Zout = n’k G +59) ! jwo woL1n?(1 — k2). (12.1.4)

Expression (12.1.4) reveals that the output impedance of the circuit of
Fig. 12.2 compared with the case of an ideal transformer is increased by an
amount

jwoL1n?(1 — k2) = jwoLa(1 — k?), (12.1.5)

assuming

When plotted in the complex plane the impedance Z,,: expressed by Eq.
(12.1.4) consists of a circle of diameter n2k2/G the origin of which is situated
at the top of a vector jwoL1n*(1 — k?) on the imaginary axis, see Fig. 12.3.
12.1.3 THE AUTO-TRANSFORMER
Fig. 12.4 shows a single-tuned bandpass filter with a tap on the tuning
inductance which provides an impedance transformation between the top of
the bandpass filter and the terminal (tap) to which the transistor has to be

connected. The tapped tuning inductance may be replaced by an arrange-
ment of inductances as shown in Fig. 12.5.
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Fig. 12.3. Polar diagram showing the variation of the output impedance of a practical
double-winding transformer as a function of the normalized frequency x. The effect of the
series inductance is represented by the vector jwoLin2(1 — k2).

o
L Ly+M
C= 6 e T —
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L Ly+M
o o) o : e}
Fig. 12.4. Single-tuned interstage net- Fig. 12.5. Equivalent circuit diagram
work in which impedance transforma- for the interstage network of Fig. 12.4.
tion is obtained by tapping the tuning
inductance.

In order to calculate the impedance seen when looking into the output
terminals of Fig. 12.5, we consider the four-terminal network containing only
the elements C, G, L1 + M and Ls + M, (see Fig. 12.6) for which the ad-
mittance parameters are equal to:

Y1=G + joC +

jo(L1 + M)’
1
Yy Yo — — 12.1.6
Y12 = Ya1 jolls £ M) ( )
1
Yoo =

ijp y
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Fig. 12.6. As Fig. 12.5. The effects of the part of the diagram indicated by the dashed
lines on the output impedance are calculated separately after which the inductance — M
is added to obtain the total output impedance.

in which
L1+ M) Ly +M
Fpe=tiie= e ] (12.1.7)
L,
and
=L+ Ly + 2M. (12.1.8)

Furthermore we put:
4Y = Y11Y22 — Y12Y21,

for which it follows from Eq. (12.1.6):

Ayzj-wLp(GﬂwCJer)

or:

AV = - G(1 + j). (12.1.9)

ijp
The output impedance of the complete network of Fig. 12.6 then becomes:

Z j M—I—Yn
= —jw —
out ] Ay’

TS VO N 1 +1( I Y c>) (12.1.10)
] T L L V7 e T

Ly
Now ————— — w2L,C equals
M

L2+M31 (w)z L1+M§

w
which for — a2 1 reduces to:
wo

Lo+ M?
(ZZ | = 2 say. (12.1.11)
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transformer ratio To+M
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Fig. 12.7. Complete equivalent circuit diagram of a single-tuned interstage network with
tapped tuning inductance.

The quantity »n as defined here denotes the voltage transformation ratio of
the unloaded transformer.

Ly
If p2 = I n? becomes:
18

21k 2
= (u> . (12.1.12)
1+ p? + 2kp
Combining Eqgs. (12.1.10) and (12.1.11) we obtain:
LIS LS L) jwoM (12.1.13)
out—m;(G Jwolp | — JwoM. S B
For normalizing Z,,: we put:
1
woLpGn;é = Qspr. (12.1.14)
Then Eq. (12.1.13) becomes:
2 . .
Zout = Gav+j;) (\1 +]Qspr> —onM. (12.1.15)

Here, QOspr denotes the quality factor of the spread inductande L.
When Z,ut, according to Eq. (12.1.13), is plotted in the complex plane, a
polar diagram as shown in Fig. 12.8 is obtained. It consists of a vector
1 n?
— jwoM and a circle representing ——— (,,, + jwoLp> with diameter
l1+jx\ G

( /n2\2 1
S (E ) — wo2Lp§“ . To construct this diagram it has arbitrarily been assu-

(\@

L,G
med that i

woMG ’
= 0.4 and — g = 0.05. The polar diagram for Zyus
n n

being based on Eq. (12.1.13), is only correct as long as the approximation
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Fig. 12.8. Polar diagram of the output impedance of the circuit of Fig. 12.7. The construc-
tion of this diagram is based on Eq. (12.1.13).

w
— ~ 1 is justified. This is the case for not too large values of the nor-
wo

malized detuning x.

It clearly follows from the polar plot that when woM and woL, are not
small compared with n2/G a considerable discrepancy in magnitude and
frequency dependency between the practical transformer and an ideal one
occurs. For an ideal transformer the polar diagram of Z,y: is, obviously, a
circle with its origin at 0 and of diameter n2/G as shown by the dashed curve
in the diagram.

12.1.4 THE CAPACITIVE TAP

Fig. 12.9 represents a capacitively tapped single-tuned bandpass filter. Ana-
logous to the inductively tapped bandpass filter considered in the preceding
sub-section, the capacitively tapped bandpass filter may also be considered
as a four-terminal network. It can then easily be calculated that the output
impedance follows from:
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Fig. 12.10. Equivalent circuit diagram for
the capacitively tapped interstage network
of Fig. 12.9.

_" ool ! (12.1.16)
TG 1+jx | juCp 1+jx’ o
or for @ ~ 1 and after normalization:
wo
2
Zogp = e (] =7 . 12.1.1
out G(1+ _]X)( JQspr) (12 7
In these expressions:
et (12.1.18)
CG+C’ o
and Cp = C1+ Cs,
G/n?
Ospr = — (12.1.20)
w()Cp

Fig. 12.10 shows an equivalent circuit of this bandpass filter based on Eq.
(12.1.16) whereas Fig. 12.11 shows a polar diagram of the output impedance
again taking an arbitrary value of Qspr = 0.4. The construction of the polar
plot of Z,y: is based on Eq. (12.1.16).

12.1.5SUMMARY ON PRACTICAL IMPEDANCE TRANSFORMING NETWORKS

According to the preceding sub-section a single-tuned bandpass filter with a
practical impedance transforming network may, with regard to its output im-
pedance, be represented as a single-tuned circuit with admittance G(1-+ jx),
an ideal transformer with transformer ratio » and a series impedance Z.
The ideal transformer ratio n together with the impedance Z form a new,
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Fig. 12.11. Polar diagram of the output impedance of Fig. 12.10. The construction of this
diagram is based on Eq. (12.1.16).

1
complex, transformer ratio transforming the impedance —— of the

G(1 + jx)
parallel tuned circuit. For not too large values of Z (such that the approxi-

mation w/wo & 1 is justified) the new, transformed, polar diagram is again a
9

n-t
circle with diameter G V1 + Q2%yr which is shifted with respect to the

real axis of the complex plane over an angle ¢; tan=! ¢ = Qspr.
The quantities Qspr for inductive and capacitive taps are given by Egs.
(12.1.14) and (12.1.20) respectively.

Furthermore it follows from the foregoing consideration that the effects
of the non-idealness of the practical impedance transforming networks on
the output impedance may be minimized by reducing the tuned circuit
damping G and, in case of an inductive transformation, by making the
coupling as tight as possible.
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Fig. 12.12. General equivalent circuit diagram of a single-tuned interstage network taking
into account practical methods for achieving impedance transformations. The impedance
Z accounts for the spread capacitance or inductance of the practical transformer.

12.1.6 DOUBLE TUNED BANDPASS FILTERS WITH PRACTICAL IMPEDANCE
TRANSFORMING NETWORKS

In an analogous way as for single-tuned bandpass filters it can be investigated
how practical impedance transforming networks influence the output impe-
dance. It then follows that the same complex transformer ratio as for single
tuned bandpass filters acts upon the output impedance

1

. q (12.1.21)
8 1 8 = . 8
G( + jx +1+jxp>

of the double-tuned bandpass filter.
In Fig. 12.13.a. a circuit diagram for a capacitively tapped double tuned
bandpass filter is given. Fig. 12.13.b. represents the equivalent circuit whereas

L,

M
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7 Co LIGoLp Ls LlGs

T
O & O

Fig. 12.13.a. Double-tuned bandpass filter with capacitively tapped secondary.
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Mo |
! 'C,+C2 :
| H—o
| Iy,
H H o~ | Xo
Co LGplp) (Ls LiGs |Cc | |
]
| |
o L L o
L 4

Fig. 12.13.b. Equivalent circuit diagram of the interstage network of Fig. 12.13.a.
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Im (Zowt)

Fig. 12.14. Polar diagram of the output impedance of the double-tuned bandpass filter
represented in Fig. 12.13 b.

Fig. 12.14 gives a polar diagram for Z,,: assuming g2 = 1 and Qs,r = 0.4.
The dashed curve is valid in the case of an ideal transformer (with Qsp,r = 0).

12.1.7 BOUNDARIES OF STABILITY IN A SINGLE-STAGE AMPLIFIER WITH
PRACTICAL TRANSFORMERS

Using polar impedance diagrams the boundary of stability of an amplifier
stage can be ascertained in the same way as shown in subsections 5.6.2 and
5.7.8 for polar admittance diagrams. With impedance diagrams 1/7 is
found instead of 7, which was obtained from constructions using polar
admittance diagrams.

In Fig. 12.15 the construction is presented for determining the boundary
of stability of a single stage amplifier with two single tuned bandpass filters
and @ = 270°. The input bandpass filter is assumed to be connected to the
transistor input by means a transformer with either an inductive — or an
capacitive spread reactance. Again the arbitrary value of Qs,r = 0.4 has
been taken.
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The case of an ideal transformer is also shown. The values obtained for
T, in these three cases are tabulated below.

TABLE 12.1 BOUNDARY OF STABILITY OF AN AMPLIFIER STAGE
Case Line of intersection Ty
inductive tap 0A 1.25
ideal transformer OB 2.00
capacitive tap ocC 2.50

It follows from the table that an amplifier stage designed with a certain
value of 7, i.e. with a certain value of the stability factor s, assuming ideal

output single tuned
bendpass filter

. =0

input single tuned”"

bandpass filter : with ideal transformer
with capacitive tap,

Fig. 12.15. Polar diagram for determining the boundary of stability (7) in a single-stage
amplifier with two single-tuned bandpass filters and ® = 270°. The line OA4 intersects the
polar impedance diagrams of the output bandpass filter and that of the input bandpass
filter with an inductive tap. The products of the line lengths OA4” and OA” equals the reci-
procal of Ty. The lines OB and OC are valid for input bandpass filters with an ideal trans-
former and with a capacitive tap respectively.
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transformers to be employed becomes much less stable in the case of an
inductive tap and much more stable in the case of a capacitive tap.

Considering the location of the polar plot in the complex plane of the
output impedance of a practical transformer and the value of @, certain con-
clusions regarding the stability of the amplifier compared with the case of an
ideal transformer can be drawn. These conclusions are summarized in Table
12.2:

TABLE 12.2 STABILITY OF AN AMPLIFIER STAGE

Case 0< 0O <180° 180° < ©® < 360°
inductive tap increases decreases
capacitive tap decreases increases

Depending on the location of @ the stability of the amplifier increases by
suitably choosing the kind of practical transformer. In practice, however,
no advantage will generally be gained from this effect because for larger
values of T a considerable deterioration of amplitude response curve of the
amplifier occurs. In practical amplifier constructions it is therefore always
attempted to make the transformers in such a way that their properties
approach as nearly as possible those of an ideal transformer.
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APPENDIX I

APPLICATION OF MATRIX THEORY IN BANDPASS
AMPLIFIER ANALYSIS

In this appendix a survey of the matrix theory of linear networks will be
presented with special reference to the application in bandpass amplifier
analyses. No attempt will be made to give an extensive treatment of the
fundamental theory (see Bibliography I- 1, 3, 4, 6,13 and 14 to 17) but mere-
ly to state and to illustrate the basic rules governing the manipulation
of matrices and to derive these matrices for various four terminal-networks

thereof.

I.1 Matrix Algebra

A matrix equation may be considered as a symbolic method of writing a set
of linear simultaneous equations. Consider for example the general simul-
taneous equations below:

anxi+a2x2+ ... ... ain Xn = Y1
a1 x1+agxs+ ... ... azn Xn = Y2 (L11)
amiX1 + amexzs + . . . . .. AmnXn = Ym
This set of equations may be expressed in symbolic form as:
a1l a2 — — — Qdin X1 1
azy a2 — — — Qz2n X2 Y2
—_ = = — = — —’z — 1, (1.1.2)
adm1 Am2 — — — dmn Xn || Ym ‘
or shorter as:
llall - [IxI| = 1yl . (1.1.3)

The quantities between the double bars are known as matrices which are,
in fact, displays of information, as a comparison with Eq. (I.1.1) reveals.
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Matrices may be manipulated as algebraic quantities taking into account
some basic rules governing these manipulations. Sub-section I.1.2 presents
these basic rules and in sub-section I.1.1 definitions are given of the various
forms in which matrices may occur.

I.1.1 VARIOUS FORMS OF MATRICES

Matrices may occur in various special forms depending on the character of
the information displayed. The forms which are of importance in our
amplifier analyses and the terms used in connection with these matrix forms

are defined below:
matrix

determinant

co factor

column matrix

row matrix
square matrix

diagonal matrix
unit matrix

null matrix or zero matrix

determinant of a square matrix:

A rectangular array of m.n. quantities
arranged in m rows and » columns.

A matrix cannot be evaluated.

A square array of n? quantities. A deter-
minant can be evaluated by forming the
sum of the products of the elements of any
row or column and their respective co
factors

i=n

4= 3

j=1
The co factor A4;; of the element ai; of a
determinant equals the product of the
factor (—1)#7 and the (minor) determinant
formed by deleting the row and column
containing the element a;; from the given
determinant.
A matrix consisting of one column of
m elements.
A matrix consisting of one row of  elements
A matrix consisting of an equal number of
columns and rows.
A matrix with all elements equal to zero
except those in the principal diagonal.

i=h
ag - Aij.= 3 aij- Ay . (1.1.4)

i=1

: A diagonal matrix with elements equal to

unity in the principal diagonal.

A matrix with all elements equal to zero.
A determinant whose array of elements is
identical with the array of the matrix itself.
Clearly only square matrices have deter-
minants.
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non-singular matrix : A matrix of which the determinant has a
value different from zero.
singular matrix : A matrix of which the determinant vanishes

after evaluation.
1.1.2.3 BASIC RULES OF MATRIX ALGEBRA

1.1.2.1 Equality
Two matrices are equal if their corresponding elements are equal;

lla|| = ||b]], if, and only if, a;; = by;. (I.1.5)

1.1.2.2 Addition and Subtraction

The sum or difference of two matrices is another matrix of which the elements
are equal to the sum or difference of the corresponding elements of the two
matrices. This implies that the matrices to be added or subtracted must have
the same number of columns and the same number of rows;

llal| + (6] = |lc||, where ci; = ai; + by. (1.1.6)
E.g.:
‘ ail  di2 ’ bi1 b1z

+
|

H a1 + b aiz + by

] as as ba1 b2 ‘ H as + bar  az + b2

1.1.2.3  Multiplication by a factor

If a matrix is multiplied by a factor, each element of the matrix is multiplied
by that factor;

k - |lal| = ||b]| with bi; = k - ay;. (L.1.7)
B.g.5
an a2 | H kann kais ||
k- =
a1 A ;‘ “ ka1 kass |

1.1.2.4 Multiplication of Two Matrices

To obtain the element of the ith row and the jth column of a matrix ||c||
which is the product of two matrices ||a|| and ||5||, the elements of the ith
row of ||a|| are multiplied by the elements of the j'* column of ||4|| and the
results are summed;
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k=n
llall - [1Bl] = llell, with ¢ = ) aix * brj. (L.1.8)
It is thus necessary that the second matrix has as many rows as the first
has columns. If this is the case it is said that the matrices are conformable
in the order. There is no limit to the number of rows of the first matrix or
to the number of columns of the second matrix. E.g.:

ain  az | bu b1z anhi1 + aizbe1  anbiz + aisbes ‘
? ] <

an a || || ba1 b2 | az1b11 + azeba1  azbiz + azeba: ||
b1 b2 ain ai | | buiair + bizaz1  buaiz + bizaze H
- |

ba1  bo as as: | borar1 + bosas1  baiai2 + basaze |

1.1.2.5 Distributive Law
For matrices the distributive law is valid;

(lall + 111 - llell = llall - llell + 11611 - [lel]. (1.1.9)

L1.2.6 Commutative Law for Multiplication

For matrices the commutative law for multiplication is generally not valid;
llall - 11611 # 11Bl] - llall.

This is also illustrated by the examples of point 4.

The non-validity of the commutative law implies that great care must be
exercized in determining whether in a certain case pre-multiplication or post-
multiplication is required.

1.1.2.7 Inversion

Inversion of a matrix ||a|| leads to a matrix ||b|| in which the element b
equals the quotient of the co factor A4;; of the element a;; and the determinant
of matrix ||a|l;

Aji

[la]|~1 = ||b|| with bU = Z;’ (1110)

E.g.:
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A1 Az
ail  daie ’
1 dg  4dq
llall = |5 llall=t = [1b]] =
| 92 Qa2 | A1z Az
| ol

263

aze —ai2
b

|
|—dz1 dil ‘

(Aa)z
|

in which 4, is the determinant of ||a||. Since inversion of a matrix requires
obtaining its determinant, inversion can exist only for square matrices.

1.1.2.8 Multiplication of a Matrix by its Inverse Matrix

Multiplying a matrix by its inverse matrix yields a unit matrix;

llall - llall7t = [la71] - llal| = [I1]]. (LL.11)
E.g.:
Lan aiz | || ase are | anass  ai2a21  —audiz  ai1diz
I Aa Aa Aa Aa Aa Aa
i ==
as1 d»2 ‘ az1 dil az1dz2 az2az1 —Aaz1d12 aiids2
f 4, Aq | A, da Ag Aq
1 0
= = [I]].
0 1

1.1.2.9 Division by a Matrix

Division by a matrix must by carried out by multiplication by the inverse
matrix. Consider, by way of example, the matrix equation:

[l = 1yl - Hlell.

Then:

il = 1yl=t - iyl -

= [} -

[y~ -
[l
= [lvl].

Hence:

ol = [yl - 11l

{[vll,

(1.1.12)
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1.2 Matrix Equations of a General Four Terminal Network

For the general (linear) four-terminal network represented in

Fig. .1 six

different pairs of simultaneous equations can be written down relating input
quantities to output quantities and vice-versa. These equations written in

matrix form are:

| | | noo.
!i U1 "i n Z11 212 “ 1|
I = o,
| ve | zn zop || || B2 ||
. | || ‘
Bl _ ||y oy | m g’ )
| i | yer yez | | ve “ ’
1 1 Il |
v _ hiy he | | oa |
iz | hot hee | T w2’
TR TR i
(I - ku kiz | H V1 ‘\\ )
|| ve || kov koo | " | B2 |
| | N ol
ol _ || auae| | 2]l
. = e | N
|| & asy az | | —ie | ’
| [
\’ Vo ;" - b1 bis | )| 51 ‘
izl | ber bae |7

1.2.1)

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)

The matrices expressing the properties of the four-terminal network are

termed respectively:

the impedance matrix in Eq. (1.2.1),
the admittance matrix in Eq. (1.2.2),
the hybrid-h matrix in Eq. (1.2.3),
the hybrid-k matrix in Eq. (1.2.4),

the forward transfer matrix in Eq. (1.2.5) and
the reverse transfer matrix in Eq. (1.2.6).

With the elements of any one matrix given, the elements
matrices may be calculated by algebraic methods. Since such

it 2
Oo—| —0
b b
Fig. I.1. General four-terminal network .

of all other
calculations
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are often required in matrix manipulations use can conveniently be made
of tables of matrix and determinant interrelations as presented in TablesI.1
and 1.2 (see Biblography [I.12]).

1.3 Interconnection of Four-Terminal Networks

The various matrix equations of the preceding sub-section may advantage-
ously be used to determine the resultant matrices when several four-terminal
networks whose associated matrices are known are connected in various
manners. In this sub-section we will consider two four-terminal networks
connected either in:

a) series,

b) parallel,

¢) series-parallel,

d) parallel-series or in

e) cascade.

Use will be made of that matrix which is fundamentally the most suitable
for the kind of interconnection in question.

When connecting together four-terminal networks care must be taken that
the networks are combined in such a way that the matrix equations of the
individual networks remain valid after interconnection. This is the case if]
and only if, the current entering one terminal of an input or output pair of
an individual four-terminal network also emerges from the other terminal
of the same pair after interconnection of the networks.

1.3.1 SERIES CONNECTION

In Fig. 1.2 two four-terminal networks connected in series are represented.
The networks I and II may be represented by the matrix equations:

o'l = 112"l - 1111, (I.3.1)
and
o] = [I1z"]] - [lE"]]. 1.3.2)

For the combined four-terminal network, we have:

. A 22
. V'? Network T OTV K
B 12°] 2 1.5,
o —o
TV, ﬁ: i VZT
Fig. 1.2. Series-connection of two four-ter- V,‘f Nem":* X ?V,'
minal networks. LT Iz-1 | 52 |
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TABLE 1.1. MATRIX INTERRELATIONS

from
1E4] [yl |4} [|K[| [lall [16]]
to
ye2 —yiz| 4h o ha | 1 —kiz| aun  da | bo 1
B 22 Ay Ay | hee hee | ki kn | amn azi | bar ba:y
I1zl]
gy 2gg 2R _IM —hay 1 | kaa 4k 1 asz | 4b  bu
dy Ay | haa  hee | kn ku | az:n a2 | bar b2
Zoa —Z12 1 —hie| dk  kiz | a2 —4da| bun —]77
Az Az | P YT Thi | kee ke | a1z aie | b1z bie
[yl
—2Z21 Zo2 hoy  Ah | —ka 1 —1 a1 {—4b b2
s yor Yoo 2T
4z A4z hir hi | kee koo | aiz  aiz | b1z b1z
4z  z12 1 —yi2 i X kee —kiz| a1z da | bz 1
zes  ze2 | yuu yn H 2V Ak Ak | a2 as2 | b bu
Al
—z21 1 yor Ay B s —k21 _k?i —1 a1 | —4b ba
zes  ze2 | yu yn Ak Ak | a2 a2 | b bn
1 —zio | 4y  yi2 | hea —hi2 a1 —da | bar —1
- kir ki =
zi1 zi1 | ye2 ye2 | 4h A4k air  ai | bae  ba
[k
| za1 4z } —ya1 1 —h2_1 jui For  dess | 1_ ais 4b  bie
zi1 zi1 | ye2  yee | 4dh 4k a1 air | baz b2z
zn Az |—yz —1 —4h Tﬁli 1 ﬁzﬁ 7b227 blz,
zo1  zo1 | yer  yer | har her | kai ka: ann @z |Tap 4p
|lall
1z —dy —yu|—hse —1]| kn Ak - b2t b
zo1  zo1 | ye1r  yer | hor  her | ker  ka 4ab  4b
| za2 *Az —yn —1 1 711171" ~Al§ — koo aze a2 b b
z12 12 yiz  yiz | bz hie | kiz  kiz | da da 1 =
|18l
1 zin | =4y —yoz| hee 4k | —kun —1]| an  an ey s
z12 ziz | yiz2 yi2 | h2 s | kiz k2 | da  da
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TABLE 1.2. DETERMINANT INTERRELATIONS
from
4z dy 4h 4k da 4b
to
4z A 1 h11 ko2 aie b1s
Ay hi2 ko1 as bo1
Ay 1 dy ha2 ki1 as ba1
4z h11 kas aiz b1z
Ah 711 a2 Ah 1 an b2z
Z22 ru 4k asz b11
Ak Z22 oy 1 Ak ass b1
1 Yoo 4h ain bas
A Z12 yie hi2 B ki da 1
z21 Yyo1 ho1 ka1 4b
b za1 yo1 ha21 ! 1 b
Z12 yiz hi2 k12 da
v — v ’ v r
1 1+ v, % (13.3)

vy = v’ + 2,

and, provided there is no circulating current in the inner loop of the com-

bination;

Hence:

By putting

s 7

1 =
_l'2':

ol = [1o'l] + [l"Il = (1 =+ 112711 - {1l

2"l + "1l = izl

(13.4)

(1.3.5)

(1.3.6)

||z|| becomes, using the rule for the addition of matrices (see sub-section

1.1.2.2):
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network I

O L—o
O —0
Fig. I.3. Non-permissible series connec-
tions of two four-terminal networks. The
connection between the lower terminals
of network I short-circuits the elements
between the upper terminals of net-
work II.
|
H zin’ +zu” zi2' + z12” |
llzl] = || I (1.3.7)
‘ zon + za1”  zee' + za2” ||

The relations derived above are thus valid if the two networks are connected
in a permissible manner. The difference between a permissible and a non-
permissible interconnection is clearly illustrated by Figs. I.3 and 1.4. In order
that no circulating current will flow in the inner loop of the two series
connected networks of Fig. 1.2, the voltage between the lower (input and
output) terminals of network I and that between the upper terminals of
network II must be equal before interconnection. Clearly this condition is
not fulfilled by the two networks of Fig. 1.3 (V1 # V11); the interconnection
as shown is therefore not permissible. By rearranging the network II as
shown in Fig. 1.4 the interconnection becomes permissible (now V1 = Vi)

Network T

Fig. 1.4. Series connection of the same
—o—{___} —{—_}—o—ro networks as in Fig. [.3, but now in a
L ! permissible manner.
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1.3.2 PARALLEL CONNECTION

Fig. 1.5 shows two four-terminal networks connected in parallel. Let the
networks I and II be characterized by:

il = 1111 - 11l (1.3.8)
and

a1l = 1y"Il - "

h=1i'"4+#h",
(L.3.9)
s = io’ + i,
provided there is no current unbalance in the combined network; i.e. there
is no circulating current in the loop formed across the upper terminals of the
pairs of terminals of both networks. Furthermore:

\

vy = vll — vl”,

(1.3.10)
Vg =— 1)2' = ‘Uz”.
Hence, from Egs. (1.3.8) to (1.3.10):
el = 1l =+ 11
= (Y"1 + 1”1 - llvll. (1.3.11)
With
Il = 1Y+ 1", (1.3.12)
yi' + yu”’ yi2' + yi2”’ |
Iyl = ; (1.3.13)
yoi' + yo1”’ yes' + yoo
it Q'
5] Network I 5] _
S i Py W B i I
TV’ i Uy 6I
O—aq — -— —-o0
— e Network IT 2
Fig. 1.5. Parallel connection of two four- TV,' vl ?Vj’
terminal networks. — o=
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An example of the technique of adding admittance matrices when paral-
leling four-terminal networks is found in the systematic formation of a
double-tuned bandpass filter. The procedure is shown step by step in Fig. 1.6.

admittance matrix

step no. four-terminal network W
1
juwC o
prim. e
and
sec. Co Co e
capa-—
citances
o JjwCs
2
L o
prim. Jwtp
and
sec.
i L L
induc— 2 <
tances
° 1
iwsl
Jwts
g
Gp (<)
prim.
and sec. Gp Gs
dampings
) Gs
4
o i o ||l jwtm i
Cm
coupling
capa—
citance
o o —jwCm JjwCm
5
o o ||| GptjeolCotCon)t - il
complete (I:Il,n P Rl Jwlp Am
double
tuned =Cp 7 Lp Ls Gs| | Cs
bandpass
filter ’
o- 0 —jwCm Gs+jw(C5+Cm)+ms

Fig. 1.6. Systematic formation of a double-tuned bandpass filter showing a step by step
method of obtaining its admittance matrix.
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1.3.3 SERIES-PARALLEL CONNECTION

Fig. 1.7 presents a combination of two four-terminal networks connected
in series at the input side and in parallel at the output side. Let the matrix
equations of networks I and II be given by:

vi’ i’

= 1A ol 1.3.14

iy [1A']] vy | ( )
and

vlll N . . i].”

W | = [1A"]] vy (1.3.15)

In order that the interconnection of the networks as shown is permissible,
no circulating current may flow in the loop across the terminals marked 1’,
2', 2" and 1”, see Fig. I.7. Then:

v1 =01 + 11",
s =iy + i,

(13.16)
=i =i",
vy = v’ = vy,

H N | = awir + - ol (1.3.17)

and
| hu' + b hie - b

I
1Rl = (1K1l + [IA"]] = | i ' (1.3.18)

| h2r” + h21” heo' 4 ho2”
1.3.4 PARALLEL-SERIES CONNECTION

In Fig. 1.8 a parallel-series connection of two four-terminal networks is
shown. Let the matrix equations of the networks be given by:

iy i> iy’ iy

3 3 Network I "°'?V, , ——O—TV' Network I —°“‘tv

] 1 . 2 . i . ;
1 ’ ol g c," Q.L;- Il 2 L o2 ._'i’_
1 it 7 VZT TV’ i" i K’T
o— o -4 —o0 o 1 . 2 o

o Network I _O—TV N TS| Network 1 29—

i ol el &2 1 4] P~

— L—o—~ —o—

Fig. 1.7. Series-parallel connection of two  Fig. 1.8. Parallel-series connection of two
four-terminal networks. four-terminal networks.
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. i= 0l ; z

! (1.3.19)
12

and
IJ ll Il

= Ik . (1.3.20)

If the interconnection of the networks is permissible (no circulating current
flowing in the loop across the terminals marked 1, 2’, 2"" and 1" in Fig. 1.8):

i =i +i", )

vg = v’ + v,

Rt ke (13.21)
iZ s izl — i2” ,
“ [ l 17 H v1
|| = Q0+ 1D - (1.3.22)
] . | k11’ ki k k1o Il
and [kl = k|| + [k ||=[ R

ko1 + ko1 ko' + koo ‘] ’

|

I.3.5 CASCADE CONNECTION
Fig. 1.9 shows a cascade connection of two networks. Let the matrix equa-
tions of the networks be given by:

| ‘ vl’ ‘ Uz'

l=nal ) (1.3.24)
| i —i2
and:
1" " ‘
o e } o (1.3.25)
| 1 | —1I2 l
From inspection of Fig. 1.9 it follows:
l % =" (1.3.26)
—l2 ||

Hence, by substituting Eq. (1.3.25) into (I1.3.24) taking into account Eq.(1.3.26)

S=1all" (1.3.27)
\‘ |

Now lall=1la"ll-1la"Il, (1.3.28)

\vl | “ 1)2
I~

which forms the new matrix of the two cascaded networks.
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if - i <ty
— — el e
Network T o o Network I
v . V- Vo
N [ B W e 2l

Fig. 1.9. Cascade connection of two four-terminal networks.

Note that a cascade connection of networks is always permissible (a cur-
rent entering a network via one terminal of a pair emerges from the other
terminal of the pair also after cascading).

1.4 Admittance Matrix of a General #n-Node Network

In the preceding sections various matrices for four-terminal networks are
considered. In amplifier analyses, however, it is often convenient to consider
the complete amplifier or parts of it as a network having n nodes of which
at least three are accesible from outside the network. (The network is then
of the three-terminal type of which the input- and output pairs have one
terminal in common).

I.4.1 THE INDEFINITE ADMITTANCE MATRIX

In Fig. 1.10 an n-node network is represented with voltages v, applied to
each of the terminals and currents i entering each of the terminals. The
voltages v, are all measured with respect to the same reference level.

If the n-node network only contains linear passive or active elements, it
may be described by n independent simultaneous equations. These equations
may be written down by considering that the current entering a certain node
is a linear function of the voltages between this and all other nodes. For
node r this equation reads:

ir=yrn(V1—vy) +yr2e(V2—vy) +....

+ yre—1y (r—1 — ) + Ve Orir— o) 4 ...
vty (v —rv).  (14.1)

n-node network
1 2 n-i

A Y

Fig. 1.10. General n-node network. level




274 APPLICATION OF MATRIX THEORY IN BANDPASS AMPLIFIER ANALYSIS [AI
This equation may also be written:
Ir=yr1* 01+ Y2 V2 + ...+ Yra-1) Vr-1+ Yrr - vr +

+ Vra+1) *Vr+1 + oo o+ Yrnt Un . (14.2)

Apparently, in Eq. (I.4.2) a current y,,v, has been intoduced which must be
equal to the sum of the products of v, and the corresponding admittances.
Therefore:

YVrr = — Z Yrm » (1.4.3)
m=1 m%r
which may also be written as:
Z yrm — 0 . (1.4.4)
m=1

Furthermore, according to Eq. (1.4.2):

i =m§"(ym - Um). (14.5)

m

The n equations with which the n-node network may be analyzed may be
represented by the matrix:

Ell = 11 - o]l (1.4.6)

Here, ||Y]| is a square matrix of order n which, according to Eq. (1.4.4),
is singular. By way of example, the matrix ||Y|| for a network having four
nodes is given by:

yia Y12 yi3 Y14
21 22 23 24
| = r2 =& B Ju g (14.7)
Y31 V32 Y33 Y34
| ya Ya2 Y43 JYaa

The admittance matrix ||Y|| which after Shekel (Bibliography [1.12]) is defi-
ned as the indefinite admittance matrix 1) has some special properties which
will be discussed below.

Considering Eq. (1.4.4) it follows that each row of the matrix ||Y|| must
add to zero.

1) The matrix ||Y]| is termed indefinite because its array of elements is defined relative
to an arbitrary (indefinite) reference point.
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Furthermore, by Kirchoffs first law the algebraic sum of all currents
entering the nodes is zero. Thus:

Sip=0. (1.4.8)

With Eq. (I.4.5) we then obtain:

p > (}’rm ' vm)% =0
r=1{ m=1
OI'I m=n r=n
2 g Y rm - vM)g =0. (1.4.9)
m=1{ r=1
Since vy, is completely independent of r, Eq. (I.4.9) can only be satisfied if:
r=n
> yrm=0. (1.4.10)

r=1

This implies that each column of the matrix ||Y|| must also add to zero.

If two nodes of the network have the same voltage applied, it is permissible
to interconnect these nodes. Then the current entering the combined node
is equal to the sum of the currents entering the separate nodes. The indefinite
admittance matrix of the new network may therefore be obtained by adding
the corresponding elements of the columns and rows of the nodes which are
combined. If, for example, the nodes 3 and 4 of the four-node network
described by Eq. (1.4.7) are combined, the indefinite admittance matrix of
the network becomes:

“ Y1z Y13 + y1a H
I Y21 Yoz Y23 + yoa IE (I.4.11)
|| 31+ ya1 ys2 + yaz ys3s + ysa + yas + yaa ||

Ifthe n-node network contains isolated nodes, that are nodes which have no
electrical connection with other nodes, the indefinite admittance matrix
contains columns and rows with zero elements corresponding to these nodes.
This may become apparent from the following reasoning: An isolated node
draws no external current. This necessitates a row of zero entries to ensure
that the currents constituting the node current are zero irrespective of the
voltages of other nodes. Furthermore, the voltage of an isolated node can
have no influence upon the currents of other nodes, and so the column
corresponding to such a node must have all zero entries.
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1.4.2 THE DEFINITE ADMITTANCE MATRIX

The indefinite admittance matrix as considered in the preceding sub-section
may be regarded as an array of elements displaying the properties of an
n-node network with respect to some arbitrary reference point. If one of
the nodes of the network is taken as the reference point the indefinite admit-
tance matrix becomes a definite admittance matrix (because now the reference
point is defined).

Suppose the r-th node of the network is taken as the reference point. Then
the voltages of all other nodes must be expressed relative to this node, which
is achieved by taking v, as zero. This means that the r th column of the
indefinite admittance matrix may be deleted.

Furthermore, the current flowing into the reference mode is usually not
required. This implies that the rth row of the indefinite admittance matrix
may also be deleted.

The matrix now obtained is referred to as the definite admittance matrix
or simply the admittance matrix of the network relative to the common
node r. Consider, by way of example, the indefinite admittance matrix of
a network having four nodes with nodes 3 and 4 connected as given by Eq.
(1.4.11) If the combined node 3 is regarded as the common reference node the
definite admittance matrix becomes:

yir Y12

hd Vs (1.4.12)

[yl = ‘

If the definite admittance matrix of a network is known, the indefinite
admittance matrix can be obtained by using the condition that all rows and
columns add to zero. This means that a row and a column have to be added
to the definite admittance matrix containing elements of such a value that
these conditions are satisfied. For example, let the definite admittance matrix
of a network be given by Eq. (I.4.12). The indefinite matrix then becomes:

I yu V12 —(y11 + y12) I

[yl ‘ Yo1 Voo —(y21 + y22) L (14.13)
‘—(yu + y21) —(y12 + ye2) Y11+ yiz -+ ye1 + yee

I.4.3 SURVEY OF PROPERTIES OF THE INDEFINITE ADMITTANCE MATRIX

In sub-sections 1.4.1 and 1.4.2 various properties of the indefinite admittance

matrix are derived. In this sub-section these properties are summarized, for

ease of reference:

1) The indefinite admittance matrix is singular and the sum of the elements
of any row or column is zero.
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2) The definite admittance matrix of a network is obtained from the indefi-
nite admittance matrix by deleting a row and a column corresponding
to the reference node. The definite admittance matrix is non-singular.

3) The indefinite admittance matrix can be obtained from the definite ad-
mittance matrix by adding one row and one column with elements such
that each row and column add to zero.

4) When two nodes of the network are connected the corresponding rows
and columns are added to form one row and column.

5) Isolated nodes correspond to rows and columns of zero entries. Isolated
nodes may be employed to increase the order of the indefinite admittance
matrix.

1.4.4 THE INDEFINITE ADMITTANCE MATRIX OF NETWORKS IN PARALLEL

If two n-node networks have corresponding nodes at the same voltage level
interconnection of these nodes is permissible (see Section I.3). If all permissible
interconnections are made it is said that the two n-node networks are con-
nected in parallel.

The indefinite admittance matrix of the paralleled networks can then be
obtained by adding corresponding elements of the indefinite admittance
matrices of the individual networks. To add these matrices it is required
that they have the same number of rows and columns. This means that the
networks must have the same number of nodes and this may be achieved
by inserting a number of isolated nodes in one of the networks.

Furthermore, if interconnection of two nodes in the networks to be con-
nected in parallel is not permissible an isolated node is inserted in each of
the networks corresponding to the non-isolated node where interconnection
was not permissible.

It will be evident from the above considerations that “paralleling” net-
works making use of the isolated node concept covers a very wide field of
circuit applications. Using this technique it is possible to write down by
inspection the indefinite admittance matrix of almost any circuit.

To elucidate the method of paralleling and obtaining the indefinite ad-
mittance matrix, the circuit of Fig. I.11 is analyzed step by step. This circuit
has four nodes and therefore a 4 x 4 indefinite admittance matrix. In Fig. 1.12
the indefinite admittance matrices for each of the separate elements of the
circuit are derived, whereas in the final step (5) the complete indefinite
admittance matrix is obtained. In practical circuit analysis it is, of course,
not necessary to follow a step by step method of deriving the indefinite
admittance matrix of the complete circuit. It can be written down by merely
inspecting the circuit.
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Gy
ot AR SR ©
! L L 2

Fig. I.11. Four-node network (compensated trap circuit) used as an example for illustrating
the method of employing the indefinite admittance matrix.

Taking node (terminal) 3 as common the definite admittance matrix of
the circuit of Fig. 1.11 becomes:

1
G —G _—
L ij1 . ijl
G G1 + : ! (1.4.14)
- i | 1 Jsz _Jsz 5 e 13
1 1 n 1 Ly
o ja)Ll —ijg ij1 ijg

Obviously, the definite admittance matrix (I1.4.14) of the circuit of Fig. I.11
can also be obtained without the intermediate step of the indefinite admit-
tance matrix. For complicated circuits, however, the method employing the
indefinite admittance matrix will prove to be more systematic.

IS5 Application of the General Admittance Matrix in Amplifier Analysis

The general admittance matrix of an n-node network as considered in the
preceding section may readily be applied to the analysis of multi-stage ampli-
fiers dealt with in Chapters 5, 7 and 8. Such amplifiers generally have only
two terminal pairs of which one terminal is common.

To analyze the performance of the amplifier with respect to stability, gain
and frequency response it is sufficient to calculate the transfer function from
the input terminal pair to the output terminal pair. This calculation can be
carried out either by the “determinant method”” of solving a set of simultane-
ous equations using the definite admittance matrix or by reducing the order
of the definite admittance matrix from (n—1) to 2 (assuming the amplifier
has n-nodes).
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Fig. I1.12. Tabular diagram showing the step by step method of obtaining the indefinite
(or definite) admittance matrix of the network of Fig. I.11.

1.6 Reduction of the Order of an Admittance Matrix

The method of reducing the order of an admittance matrix as presented
here is based on an article by Nichols (Bibliography (1.7)).
An admittance matrix of an n-node linear network may be split into
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columns and rows corresponding to nodes which have external connections
and columns and rows which correspond to nodes that have no external
connections and so have zero node currents. Preferably the admittance
matrix should be reduced to such a degree that all rows and columns cor-
responding to the latter kind of nodes disappear. Then the remaining matrix
relates currents and voltages at the terminals and this is sufficient to analyze
its performance.

The reduction can be carried out as follows: Let —1 nodes of the n-node
network have external connections and let these nodes be numbered 1 to
(r—1). Then n — (r—1) nodes have no external connections. Let these nodes
be numbered r to n. The admittance matrix equation of this network then
becomes as shown in Fig. [.13. The matrix:

1, 1.6.1)

is the definite or indefinite admittance matrix of the system partitioned into
four matrices A4, B, C and D. The matrices 4, B, C and D are defined in
Fig. 1.13.

The matrix equation of Fig. 1.13 can now be split into two matrix equa-
tions, namely:

B
‘ A- :: “+B - | (L.6.2)
Y I Y I
and:
| | o l
0:c}! —I—D‘H: s (1.6.3)
Ll ]

The matrix D is a square matrix of order n —r + 1. Provided [D| # 0,
the inverse || D||~! exists (see sub-section 1.1.2) and Eq. (I.6.3) may be written:
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Fig.1.13. Partitioning of a general matrix equation for reduction of the order of the matrix.

vy ’ o ‘I
|l = —D-1x € ;5 . (1.6.4)
. o
Substituting Eq. (1.6.4) into (1.6.2) gives:
] B
| (4—B D C)-i - (16.5)
| :
i | o

The matrix (A—B- D~1-:C) is an admittance matrix of order (r—1), and Eq.
(1.6.5) only contains voltages and currents appearing at the terminals of the
network.

In multiplying the matrices B- D1 and C care must be taken that these
matrices are conformable in the order (see sub-section 1.1.2.4). If not, this
can be achieved by adding rows and columns of zeros at appropriate places
in the complete matrix (as given in Fig. 1.13).
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APPENDIX II

SINGLE-TUNED BANDPASS FILTERS

In this appendix single-tuned bandpass filters as used in the amplifiers
analyzed in this book will be considered having regard to frequency-depen-
dent properties as well as to power losses.

II.1 Frequency-Dependent Properties of a Single-Tuned Bandpass Filter

In Fig. II.1 a single-tuned bandpass filter, or single-tuned circuit as it is
usually referred to, with elements L, C and G connected in parallel is shown.
For the admittance of this circuit we may write:

1
Y= jwC + — II.1.1
: Y—031+'(“’C 1)%
o - I~ Gar/y’
G 1+‘(“’°C . -y (IL1.2)
- W6 " w6 @/} -
Now the quality factor Q of a tuned circuit equals:
W il IL1.3
G wo LG’ (IL.1.3)
Introducing moreover:
w wp
B=———, (I1.1.4)
wo w

the admittance becomes:

-
Fig. I1.1. Representation of a single-tuned circuit with 1__]-
e e e e

the elements L, C and G connected in parallel.
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Fig. I1.2. Polar plot of the normalized admittance of a single-
+-1v  tuned circuit.

Y =G (1 +jB0O) (IL.1.5)

The quantity g given by Eq. (I.1.4) is a measure of the relative detuning
of the circuit with respect to the reasonance angular frequency wo = 27fo.
At the angular frequency wo, 8 = 0 and, according to Eq. (I1L.1.5) the ad-
mittance of the circuit is real.

By introducing:

x = BQ,
the admittance of the tuned circuit becomes:
Y=G(1 + jx). (11.1.6)

Denoting the admittance at the resonant frequency by Yo = G, the
normalized admittance y equals:

y=1-jx (IL.1.7)

The quantity x, which forms the frequency-dependent part of the normalized
admittance will be referred to as the normalized frequency.
In Fig. I1.2 a polar plot of y as a function of x is shown. Fig. IL.3 gives

N i

I Fig. 11.3. Normalized amplitude
0 response curve of a single-tuned
—s X . . .
circuit; a = |1 + jx|.
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o

90°
459
-4 -3 =2 -1 1 2 3 4
SR
4 _‘50
Fig. I1.4. Phase angle ¢ = tan! x of -90°

a single-tuned circuit.

the amplitude response curve a = |y| = f(x) of the single-tuned circuit
whereas Fig. 11.4 represents the phase response curve ¢ = f(x) in which
@ = tan~lx. The envelope delay 7, of the circuit is shown in Fig. ILS.
According to sub-section 2.5.3.5 the envelope delay as a function of x is
given by:

te=2§1+(3'3j2$-—1 28, 1 (IL1.8)

wo [y 1 + x2 wo 1 -+ x2

For a tuned circuit with the elements L, C and R connected in series as
represented in Fig. I1.6 analogous expressions may be derived. For the
impedance of the circuit we may write:

1
Pl — IL1.
z R+pL+wC (IL1.9)

The quality factor of the series-tuned circuit equals:

1.0

—2..tyfrad)

0

Fig. IL.5. Envelope delay curve of a single-tuned circuit.
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o 0 ——
c

R L

o—

Fig. I1.6. Representation of a single-tuned circuit with the elements L, C and R connected
in series.

_ ook 1 (IL.1.10)
@="R Twcr -
With Egs. (I1.1.4) and (I1.1.6) the impedance becomes:
Z=R( + jx). (IL1.11)

The normalised impedance z equals:
z=1-+jx,

which is identical to the relation obtained for the normalised admittance of
the parallel-tuned circuit. Hence Figs. I1.2 to IL.5 are also valid for the series-
tuned circuit by changing y into z where necessary.

In the way described the frequency dependent properties of single-tuned
circuits can easily be expressed provided the losses can be considered as a
pure parallel damping or a pure series resistance. In practical circuits in most
cases “mixed losses” will occur, but, except for low values of Q, these losses
can be converted with sufficient accuracy in either of the two types considered.

II.2 Power losses in a Single-Tuned Bandpass Filter

If a single tuned circuit is inserted between a source and a load, power
delivered by the source is lost in the parallel damping or the series resistance
of the tuned circuit.

Fig. I11.7 shows an equivalent circuit diagram for a parallel-tuned circuit
with source and load. In this figure:

Gs denotes the conductance of the source,

o %L HG*GLH l/L

.

&
€D
U)Q
£ _——F
1l

Fig. I1.7. Equivalent diagram of a parallel-tuned circuit with source and load connected.
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Gy, is the load conductance, and

G* is the damping of the tuned circuit itself.
The imaginary parts of source and load admittances are assumed to be
contained in the tuning elements of the circuit.

At resonance the equivalent circuit of Fig. IL.7 can be simplified to
Fig. 11.8. The power developed in the load is:

ir2 5. G EA |

Pr=— = e — I1.2.1
aT P sreral & e
whilst the power available from the source is:
. (11.2.2)
Sav — 4 GS . Lo
The transducer gain is therefore:
P 4 GsG
Oy — = S . (11.2.3)
Psav  (Gs + G* + Gr)?
Now, the quality factor Q of the loaded circuit is given by:
0= = (I1.2.4)
C Gs+G*+ G’ -
and the quality factor Qo of the unloaded circuit by:
woC
Q() = F. (11.2.5)
The ratio of these quality factors will be denoted by:
G*
N U (11.2.6)
Qo Gs+ G*+ Gy
Hence, with Egs. (I1.2.6) and (11.2.3):
4 GsG
§ = L —wp. (IL.2.7)
(Gs + Gr)?

Vi

isT Hss JG‘ UGL

Fig. 11.8. Equivalent circuit diagram of a parallel tuned circuit at resonance.
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Eq. (I1.2.7) represents the transducer gain, or better, transducer loss of a
single-tuned circuit from a source having a damping Gs to a load with a
damping Gr. The first factor represents the mismatch losses @pn. When
Gr = G this term is unity.

The second term represents the insertion losses of the tuned circuit. These
losses can be minimized by making the quality factor of the non-loaded
circuit, Qo, as large as possible, and that of the loaded circuit, Q, as small
as possible. However, in practice the value of Qo will be limited by practical
considerations or by stability requirements, whereas the value of Q will have
to meet selectivity requirements. The limit imposed by stability requirements
will become clear when it is realized that (1 — w)? represents the insertion
losses. The losses may from necessity be such that they decrease the loop-
gain of each stage to a value at which stability is ensured. Denoting these
insertion losses by @; gives:

®; = (1 —w)?, (I1.2.8)
and &y — Dy - i (11.2.9)

For a series connected single-tuned bandpass filter with a source with
resistance Rs and a load with resistance Ry, analogous expressions for @y,
and @; can be derived:

4 RsRy,
= 11.2.10
"™ (Rs + Ru)? ¢ )
. R* .
d =01—w2l=(1 — —m8—]. 11.2:11
an ( ¥) ( Rs + R* - RL)) ( )

Here R* denotes the resistance at resonance of the tuned circuit itself.



APPENDIX III

DOUBLE-TUNED BANDPASS FILTERS

In this appendix some of the properties of double-tuned bandpass filters
are derived using the theory presented in Appendix I. The double-tuned
bandpass filters are considered with respect to the frequency-dependent
properties of input immittance, output immittance and transfer function.
Also the power losses are calculated.

III.1 Four-Terminal Network Parameters of Double-Tuned Bandpass Filters
III.1.1 Y-PARAMETERS

In Fig. III.1 below the circuit diagram of a double-tuned bandpass filter
with indirect inductive coupling is given. This figure which shows the various
elements of the double-tuned bandpass filter is also used for defining the
symbols related to these elements.

Furthermore, let the coefficient of coupling between the primary and
secondary be defined by:

M
k= - . (IIL.1.1)
VLpLs
The admittance parameters of the circuit then become:
1
Yiu=G jwCp + ——————,
" I joLy(1 — k2)
¥ Y. j : - I11.1.2)
12=Ya1=]" ——— 5 A
J w VLZ)LS 1 = k2 (
Y. Gs + joCs + :
= w —_— %
BT T L (=)
LA M W2
fo T o ')
v,‘ Cp:: Gp L/D Lg G _|.C$ Tvz
& O

Fig. III.1. Double-tuned-bandpass filter with indirect inductive coupling and parallel
tuning of primary and secondary.
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These expressions show that Y11 and Y2 denote admittances of single-tuned
circuits with effective tuning inductances Ly(1 — k2) and Lg(1 — k2) respec-
tively.

If primary and secondary are tuned to the same frequency it is obvious that

wo2CpLyp (1 — k2) = wo2CsLs (1 — k2) = 1. (111.1.3)

By introducing:

o
O = —2=, (111.1.4)
Gp
d: C
an 05 — 200 (I11.1.5)
Gs

and with the considerations of Appendix II. Eq. (III.1.2) may be written:
Y= Gp (1 + jxp),

k
Yis=Yn =] LA La—k : (111.1.6)
Yoo = Gs (1 + jxs).
Let furthermore:
G = VG,Gs, (I11.1.7)
L=VL,(1 —k®L;(1—k?), (111.1.8)
and 0 = V0,0s, (I1L.1.9)
which gives:
L= wolGQ. (111.1.10)

With Eqgs. (I11.1.7) to (II1.1.10) the admittance Y12 according to Eq. (111.1.6)
can be written:

Yis = GO —. (IIL1.11)
w
By putting:

B e K (IIL.1.12)

wo
w
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and q = KQ, (II1.1.13)

this expression is reduced to:
Y12 = jqG. (111.1.14)

Eq. (II1.1.6) is thus simplified to:
Y11 = Gp (1 + jxp),

¥is = ¥y = 60K — = 6y, (IIL1.15)
w
Y22 — Gs (1 —|— jx,g) »

The parameters Y11 and Y2o are clearly frequency-dependent whereas Y12
may be considered frequency-independent provided wo/w = 1, see Eq. (III.1.)

Identical expressions as derived above can be obtained for the admit-
tance parameters of double-tuned bandpass filters with direct inductive
or capacitive coupling. Because of the different arrangement of elements the
effective tuning inductances or capacitances are different from those in the
case of indirect inductive coupling considered above. In each case these
effective inductances and capacitances are equal to the sum of the inductances
and capacitances forming part of the admittances Y11 and Yas.

Furthermore the frequency dependency of the Y12 parameter is different
for the various types of coupling. This is of special importance when the
frequency range of interest is such that the condition w = wg is not always
fulfilled.

In Table I11.1 relations giving the coefficient of coupling and the admittance
parameter Y12 are compiled for double-tuned bandpass filters with the various
- types of coupling. The symbols L,, and C,, denote the coupling elements for
direct inductive or capacitive coupling.

2

s - Rs

C.

M
L
o, ¢

—O0

Fig. 111.2. Double-tuned bandpass filter with indirect inductive coupling. The primary
forms a parallel-tuned circuit whereas the secondary forms a series-tuned circuit.
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TABLE IIL1
Type of coupling of the Transadmittance Coefficient of coupling

bandpass filter

indirect

M
inductive Yiz = Y1 = jGQ k 2° k=—=
coupling @ VLpLs
capacitive ® Cm
coupling 1 2 160 wo V(Cp+Cm)(Cs+Cum)
inductive _

d CpC.
T Yis = Yo1 = —iGO k2 k= / L Ymee
coupling B o 6o wo (Cp+Cnm)(Cs+Cm
inductive

% wo LpLs

™ Yig = Yoy = —jGQ k= = V
coupling =B =lae ey Lo+ Lm)(Ls+Lm)
i;ductive it Ln
coupling ' # e ® V(Lp~+Lm)(Ls+Lm)

III.1.2 K-PARAMETERS

For the indirect inductively coupled double-tuned bandpass filter with a
parallel-tuned primary and a series-tuned secondary as represented in Fig.III.2
the K-parameters can be written:

1
K]_]_ = Gp —’" ijp +J—_—

1’

Iy Ls

K12 = Ko1 = —k

K32 = Rs + joLs (1 — k) +

Ly’

(111.1.16)

joCs’

It follows from the expressions for Ki; and Koo that the effective tuning
inductances of primary and secondary now amount to L; and Ls (1 — k).
Assuming that primary and secondary are tuned to the same angular

frequency wo such that:

woCpLp = wo CsLs (1 —k?) =1,

(II.1.17)
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and introducing

1
=T oy I11.1.18
Qp w( Lp Gp ( )
Ls (1 — k2
gy = ALk (IIL1.19)
Rs
we obtain:
k
B =B g VGp-Rs - VQp0Qs.  (IIL1.20)
By putting:
q= V_ V0,05, (LIL.1.21)

Eq. (II1.1.16) becomes:
K11 = Gp (1 + jxp),
K12 = —K21 = A L GpRs, ) (III.1.22)
KZZ = Rs (1 + ij) .
Other practical versions of the parallel-series tuned double-tuned bandpass
filter are those with capacitive — or inductive — T coupling for which
analogous expressions may be derived. With respect to the effective tuning

inductances or capacitances the remark made in the preceding sub-section
applies.

1.2 Input and Output Immittance of a Double-Tuned Bandpass Filter

For a four-terminal network the input immittance can be expressed as:

Y12Yo1
y T :
1 11 Yo )
(IIL.2.1)
K12 K21
(0] K; = K11 — .
i 11 Koo S
With Eqs. (IIL.1.15) and (IIL1.22):
. q?
Yi—Ki—= G, (1 : > M1.2.2
i i p( +sz'+1—[—st ( )

The output immittances of a fourpole network are given by:
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Y12Y21
Yo = You— )
Y1 )
| (111.2.3)
Ki2K21
Ko = Koo — .
0 22 Ko S

With Eqgs. (II1.1.15) and (111.1.22) we obtain for the double-tuned bandpass
filter:

B . q*
Yo = Gs ( L s + - jxp>, (111.2.4)

2

and Ko=R 1+ jx + ). anas)

y I 4 jxp/

II1.2.1 REDUCED INPUT- AND OUTPUT IMMITTANCES

It follows from Egs. (111.2.2), (111.2.4) and (I11.2.5) that the input and output
immittances consist of a factor G or R and a frequency dependent factor.
This frequency dependent factor is usually referred to as the reduced input-
or output immittance respectively.

k- ol 2o
Kom i 2
in which:
qz
y=l=14 ot o= (I1.2.8)
. q°
yo=ko=1+jx + - . (I11.2.9)

It appears from these equations that the reduced input and output immit-
tances plotted in a polar diagram consist of the addition of the vectors
(1 + jx) and ¢%/(1 4 jx). The first vector (1 + jx) represents a straight line in
the complex plane parallel to the imaginary axis through the point -+ 1.0
as shown in Fig. IL.2. The second vector ¢2(/1 -+ jx) represents a circle with
diameter g2 and centre at the point (0.5, 0), see Fig. IIL3.

It follows from Eq. (II1.2.8) that the polar diagram of the reduced input
immittance can be constructed by adding to the vector (1 -+ jx,) a vector
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+ T
—>X
X=—00 x=0
X=+00 d.5 TF&JI
Fig. II1.3. Polar plot of the vector ¢2/1 + jx. q? .

q%/(1 + jxs) of which the extremity is situated on a circle moving along the
(I + jxp) line. This construction is given in Fig. IIL.4.

|
|
|
|
I
1+jxg A\ ! y

Xp 0'6/{2 N |

N .
103 N !
04f s B :
0.8 p\\ \ :

=K. N\
Yi=k; 02k W\
06 U
02\
pole 0 f 'l‘ff -04” |0 —_ o treal
-02f 05
~08
y -0.4-
=J
~10

Fig. I11.4. Polar diagram of the reduced input immittance of a double-tuned bandpass
filter with g2 = 1 and xp = x5 = x (r = 1.0). The construction is shown for x = 1.2 and
x = 1.8. The proper point on the circle for xs is found by considering that tan! x, =
= — r. tan'! x;, which leads to the graphical construction as shown. Note that the
distance 1/r indicated in the figure applies to the construction of x5 and not to the location
of the point x, =0 on the input immittance curve.
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III.3 Transfer Function of a Double-Tuned Bandpass Filter

The transfer function of a double-tuned bandpass filter of which both primary
and secondary consist of parallel-tuned circuits can best be expressed by
means of its transimpedance Z;. For the case the primary consists of a parallel-
tuned circuit and the secondary of a series-tuned circuit the best method is
found in the (forward) current transfer ratio H;.

According to four-terminal network theory:

Z—— 22 (I1.3.1)
T Ty o
K1
d Hp=——, I11.3.
an ¢ 1K ( 2)

For the sake of convenience we will use the reciprocal of the transfer func-
tions Z; and H; in the calculations. With Eqs. (III.1.15) and (IIL.3.1):

1 I <3 1+ ixs 2
- =1/GsGs - Ut b)) A+ o0 + &, (I1L3.3)
¢ q

and with Eqs. (III.1.22) and (IIL.3.2):

1 14 jxp) (1 4+ 2
1 Ve Uttt (I11.3.4)
Ht q
III.3.1 NORMALIZED TRANSFER FUNCTION
It follows from Eqs. (II1.3.3) and (II1.3.4) that at x = 0:
1 1 + ¢2
— =1 VGG, - , (I1L.3.5)
Zio ] i q
and i y ,
L VGr 11T (I11.3.6)
Hio

The normalized transfer function, that is the transfer function of the band-
pass filter relative to its value at x = 0 becomes therefore:

1 1 _(1—|—jxp)(l—}—jxs)—{—q2

zz  he 1 4 g2

(I11.3.7)

By putting

M o, (I11.3.8)
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and l/xpxs = X, (I11.3.9)
Eq. (III.3.7) becomes:

1
1—|—jx<l/r——1——-—7>—x2+q2
—=—= ' . I11.3.10
Zt h 1+ ¢2 ( )

IIL.4 Amplitude Response Curve of a Double-Tuned Bandpass Filter

The amplitude response of the bandpass filter can be found by determining
the modulus of the transfer function. The modulus of the reciprocal of the
relative transfer function then represents the normalized amplitude response
curve. By introducing an amplitude response curve shape factor:

1
2q2—<r + —)
r

l—l—qzi

o=

, (IIL.4.1)

which is zero for an amplitude response curve of maximum flatness, it follows
from Eq. (111.3.10) that:

1 1 x2 [ox2 2
g=—=—={1—ua +( ) . (111.4.2)
1+q2 1+q2

In fig. IIL.5 amplitude response curves are plotted for » = 1 and
a = —0.67, 0 and 0.67 (that is for g2 = 0.5, 1.0 and 2.0).

1.5 Envelope Delay Curve of the Double-Tuned Bandpass Filter

The normalized transfer function as given by eq. (I11.3.7) can also be written
as:

(L+jCo + 0} {1 +j&—a)}

g (111.5.1)
Hence it follows for the phase angle ¢ of this transfer function:
@ = tan"Y(xp + ¢) + tan—1(xs —g). (111.5.2)
According to sub-section 2.5.3.5 the envelope delay ¢, is given by
=k | o

e )
wo dx
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10
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Fig. II1.5. Amplitude response curves for a double-tuned bandpass filter with » = 1 and
g% = 0.5, 1.0 and 2.0 respectively

in which Q = V/Q,0s, and x = l/xz,xs.
With Eq. (II1.3.8) it follows from Eq. (II1.5.2):

de 1 1
= = s+ 1 s (IIL.5.3)
1+(V_+q> T Vr—a
Vr

In Fig. II1.6 dg/dx is plotted as a function of x for r = 1 and ¢2 = 0.5,
1.0 and 2.0.

III.6 The Transducer Gain of a Double-Tuned Bandpass Filter

Fig. I11.7 shows an equivalent circuit of a double-tuned bandpass filter with
parallel-tuned primary and secondary. In this circuit Gs denotes the source
conductance and Gy, the load conductance; the other symbols have the same
meaning as in Fig. III.1, the asterisks accounting for the fact the corres-
ponding dampings are those of the bandpass filter proper.

The transducer gain @; at the tuning frequency is given by:

Dy = 4 GsGr | Z %, (I11.6.1)
in which Z; is given by Eq. (IIL.3.5). Hence:

q2
GpGs (1 +¢?)?’

D, =4 GsGy, - (I11.6.2)
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Fig. 111.6. Envelope delay curves for a double-tuned bandpass filter with » = 1 and
g% = 0.5, 1.0 and 2.0 respectively.

Denoting the ratio of the damping of the tuned circuit itself to the total
damping by w, that is:

G ( )
it may be written:

Gp = Gs + Gp*, or Gs = (1 — wp)Gp,

(I11.6.4)
Gy = Gy - G5*, or Gt = (1 — we)Gs, (I1L.6.5)
(2 )2
whence: Dy = (1 — wp) (1 — wy) . (I11.6.6)
1+ ¢2

For the double-tuned bandpass filter with parallel-tuned primary and series-

M

/ST 6| &= 6| L Ly |l6f J-cs G
7448 T.

Fig. II1.7. Equivalent circuit of a loaded double-tuned bandpass filter with parallel-tuned
primary and secondary.
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j
L
= o
"sT [ Gs ==Cp [Gp' R

Fig. I11.8. Equivalent circuit of a loaded double-tuned bandpass filter with parallel-tuned
primary and series-tuned secondary.

tuned secondary as shown in Fig. I11.8 analogous expressions can be derived.
The transducer gain follows from

®; = 4 Gs Rr |Hol?, (111.6.7)
which gives with Eq. (II1.3.6):

e
D, =4 GsRyr - 7 . 111.6.8
¢ sRL G,R: (I + g2 ( )
R*
With w=—,
R
Rs = Rr + R*, or R, = (1 — ws)Rs. (I11.6.9)

By substituting Eqs. (111.6.4) and (II1.6.9) into Eq. (I111.6.8), Eq. (I11.6.6) is
obtained.

Expressions (I11.6.6) and (II1.6.8) thus represent the transducer losses
(gain) of a double-tuned bandpass filter. By putting

Dy — 1—wp (I11.6.10)
G5 — 1 — ws (ITL.6.11)
2 2
and ®, — ( d ) (I11.6.12)
1+ ¢2

the transducer loss becomes:

Dy = Dy - Dy - . (IIL6.13)

The quantities @, and @, thus represent the ratio of the source and load-
damping to the total damping of the primary and secondary of the double-
tuned bandpass filter, respectively.
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APPENDIX 1V

DEFINITIONS OF GAIN IN POWER

The various definitions of gain in power used in this book are listed below.
The definitions are in accordance with the “I.R.E. Standards on Electron
Tubes: Definitions of Terms, 1957 (57.IRE 7.S2).
The available power of a source is defined as the maximum power which
can be transferred from the source to a load.
Note: Maximum power transfer will take place when the immittance of the
load is the conjugate of that of the source. The source immittance must

have a positive real part.
The power gain of a four-terminal network is defined as the ratio of 1) the

power that the network delivers to a specified load to 2) the power delivered
to the input of the network. In Fig. IV.1:

Py,
=, IV.1)
P;
Y
Ve — g
» B A 2 Fig. IV.1. The power gain of a four-termi-
nal network equals @ = Pr/P;.

Note: The power gain of a network is not defined unless its input immittance
has a positive real part.

The maximum power gain of a four-terminal network is defined as the
ratio of 1) the available power from the output of the network to 2) the
power delivered to the input when the output is conjugately matched. In
Fig.IV.2:

Ye optimum
a

Fig. }V.Z. The maximum power gain of a four-terminal network is obtained when the load
immittance is conjugately matched to the output immittance of the amplifier. The conjugate
matching is indicated symbolically by means of a transformer.
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YS :/pir:um v optimum
g I i 1

Fig. IV.3. The available power gain of a four-terminal network relates the power available
from the output of the network to the power the source has available. Under conjugately
matched conditions the power in the load equals the power available from the output
of the amplifier, see Fig. 3a. The power delivered to the network by the source is, generally
smaller than the power available from the source, compare Figs. 3a and 3b.

P La P oa
Dy = — = —. Iv.2
M 7, 2 ( )
The maximum unilateralized power gain of a four-terminal network is
defined as the ratio of 1) the available power from the output of the net-
work to 2) the power delivered to its input terminals, when the network is
unilateralized.

The available power gain of a four-terminal network is defined as the ratio
of 1) the available power from the output of the network to 2) the available
power from the input source. In Fig. IV.3:

- P La P oa

D, Pa Po (Iv.3)
Note: The available power gain of a network is a function of the match
between the source immittance and the immittance of the input of

the network.
The maximum available power gain of a four-terminal network is defined
as the available gain of the network when it is conjugately matched to source

and load. In Fig. IV.4:

Pr, P
Bl == e ot e (IV.4)
PSa PSa
¥ ‘ff_"qum optimum
’ = Re

Fig. IV.4. The maximum available power gain of a four-terminal network is obtained when
the input immittance of the amplifier is conjugately matched to the source immittance.
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Ys timum
6
V —
S A In v —
' s [

Fig. IV.5. The transducer gain of a four-terminal network equals @; = Pr/Psav.

Note: The maximum available power gain of a network is not defined unless
both input and output immittances of the network have positive real
parts for arbitrary passive input and output terminations.

The transducer gain of a four-terminal network is defined as the ratio of

1) the actual power transferred from the output of the network to its load,

to 2) the available power from the source driving the network. In Fig. IV.5:

P
Py, (IV.5)
PSa
Ys optimum
IR 2N
% A\
% Gl

Fig. IV.6. The insertion gain of a four-terminal network is the ratio of the power the net-
work, fed from a given source, delivers to the load to the power the source would deliver
when the load was connected directly.

The insertion gain or insertion loss of a four-terminal network is defined as
the ratio of 1) the actual power transferred from the output of the network
to its load, to 2) the power that the same load would receive if driven directly
by the source. In Fig. IV.6:

Pr

D; = "
i Py

(IV.6)



APPENDIX V

MAXIMUM UNILATERALIZED POWER GAIN OF
A TRANSISTOR

According to Appendix IV, the maximum power gain of a four-terminal
network is obtained when it is conjugately matched at its output terminals.
When a transistor, considered as a four-terminal network is matched accord-
ingly it delivers the maximum unilateralized power gain when it is neutra-
lized by a loss-less external network (unilateralized) so as to make the
resultant feedback admittance equal to zero.

iy )

o—= oM —o
1l ’ o2 2
° 2% o

Fig. V.1. Equivalent admittance parameter fourpole network of a transistor.

In Fig. V.1 an admittance parameter equivalent circuit of a transistor is
given. The input power P; equals v12g11 and the output power in the matched
load G (which has a value equal to gao) is:

- v1) 2 1
Po = <—‘—Iy21I 1) t
2 GL
= 1|yal? v — .
811

The maximum unilateralized power gain is therefore given by:

|y21]?
By — 2 (V.1)
4 g11822

It may be shown that @, m does not vary with the matrix environment so that:

|ho1 |2

DM = :
M7 A Ry(h11) - Rohss)

(V.2)




APPENDIX VI

BOUNDARY OF STABILITY IN AN »-STAGE
AMPLIFIER WITH (n+1) SINGLE-TUNED BANDPASS
FILTERS

Consider the reduced amplifier determinant given by Eq. (6.3.5), viz. 1):

‘lun——OOOOOOJ‘
§11~_0000001
CIIIIZZIIZIC
0 0 — — 1 ws 0 0 0 0
S 7= §o§ 1 ..... " u 4 ....... 0 ......... 0 ........ () ....... P (VI.1
0 0 —— 0 1 1 uw 0 0
0 0 — — 0.0 1 1 uw 0|
S I I T
0o 0 —— 0;0 0 0 1 it "°

and let minor determinants P be defined as indicated. Then we may write:

Py =1,
Py 1 By |
= | =1 or — = l—u,
i 1 PO 1
P2 Po
Po = P1 — usPy or — = 1—us—,
Py Py . (VI2)
P3 Pl
P3:P2—u3P1 OI‘PT2 = I—usp—z,
P
Py = Py1—upPy_2 or £ =1 Un e
n—1 Pn~1

1) The prefix  in the symbol ,u, denoting that ,u applies to an n-stage amplifier, and the
suffix g in the symbol u,, denoting the value of u at the boundary of stability, are
omitted in this appendix for simplicity in writing the various equations.
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in which P, equals 6 which should be equated to zero to find the boundary
of stability.

If all transistors and all single-tuned bandpass filters of the amplifier are
assumed to be identical, all ’s are equal (see Eq. (6.3.5)) and the quotient
P,/P,-1 may be written as a continued fraction. Consider, for example, the
quotient P5/P4. According to Eq. (IV.2) this may be written as:

Ps Ps3
—=1—u—,
Py Py
u
- =
1—u~i‘a
Ps
u
.‘:1— 5
B
Ps
u
e s
u
Tl sl
u
ez .
Y u
i (VL3)

Hence, for solving P, = 8, the theory of continued fractions may be applied 1)
For finding the boundary of stability of this n-stage amplifier the smallest
positive root of u must thus be determined from

, (V1.4)

for P, = 0.

We try to solve this system by putting:
Ppi1 = Aeon, (VL5)

which, indeed, is possible provided:

g2a __go L y =0, (VI1.6)

1) Seee.g. H. S. WALL, Analytical Series of Continued Fractions, Van Nostrand and Co.
New-York, 1948.




308 BOUNDARY OF STABILITY [AVI
e =11+ V1—4u),

g2 = 1 (1 — V1 —4u).

(VL7)

Thus we have:
Py = Agm ™ 4 Beo2n (VL)
in which 4 and B are functions of « not depending on » and satisfying:
Po=1=A4+ B

(VL9)
P1=1—u= Aex | Be*

Solving A and B from Eq. (VI1.9) and substitution in Eq. (VI.8) yields:

With Eq. (VL.7) the last expression can be written as:

Pn

_ {en(n+2) _ gaa(n+2)} (VL.10)
V1 —4u

Zeros of Py, are those values of u that make
0L+ — gas(n+?) (VL.11)
with a possible exception of u = }.
Since g3 - g% =y (VL.12)
we have from (VI.11):
£201(n+2) — yn+2 . gi2 7wk (VL.13)
k=10,1,2,3;.::
Taking the 2 (n-+2)th root from the last expression, we get with Eq. (VL.7):

S - km
30+ Vidw) = Vu- & w2, (V1.14)

Solving for u yields:

g e e = (VL15)
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Since we have derived an expression for every possible root for /u, we
find every root for u twice. Moreover, instead of finding every root twice,
we found it four times, since, by squaring repeatedly, we also solved:

£20a(n+2) — ynt2. gi2mk
The value u = % found from Eq. (VL15) for k=0, k =n4 3 and
n = oo is a suspected value since it is also a zero of the denominator of
Eq. (VL10).
Indeed, further consideration shows:
hm Pn+1 = 0

u—1%

Because we are interested in the smallest root of u, we must take £k = 1
which gives:

— (VL.16)
4 cos?

'
n+2




APPENDIX VII

INFLUENCES OF IMPEDANCES IN SERIES WITH THE
TRANSISTOR LEADS

When connecting a transistor to its external circuitry in an amplifier series-
impedances for signals of the desired frequencies will be introduced between
the (lumped) components of the circuitry and the transistor. These series-
impedances may either be due to parasitic effects or may be provided for
intentionally.

Series-impedances due to parasitic effects are, for example, the inductances
of the wires connecting the transistors to the circuitry and the not completely
decoupled d.c. biasing resistor in the lead common to input and output
circuits of a transistor. Series-reactances due to the use of non-ideal trans-
formers may also be considered to belong to this group. Series-impedances
which are connected into the circuit intentionally are, for example, resistances
in the coliector lead of the transistor to prevent parasitic oscillations at lower
frequencies and impedances which are connected in series with the transistor
lead in order to increase the stability of the amplifier in a particular range of
frequencies.

Because these series-impedances are, generally, constant over the pass band
of the amplifier their influence can most easily be taken into account by
calculating the parameters of a new four terminal network including the
transistor as well as the series-impedances.

In the following sections we will confine ourselves to an admittance para-
meter representation of the transistors.

VILI.1 Calculation of the Admittance Parameters of a Transistor with Impe-
dances in its Leads

In Fig. VII.1 a schematic diagram is given of a transistor with impedances Z1,
Zs and Zsz in leads 1, 2 and 3 respectively. The transistor four-terminal net-
work will be denoted by the matrix:

Y1 Y12

‘ ’ VII.1
Y21 Yoz || ( )

| = ‘
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Fig. VII.1. Transistor four-terminal network with series-impedances in the transistor
leads.

Using Table 1 of Appendix I this admittance matrix may be transformed
into an impedance matrix ||z|| as:

i; Y22 —)iz2
| 4 dy

llzll = , (VIL2)
|~y yu
| 4y dy

which may also be written as:

1 Z1s

il || | (VIL3)
|l z21 Z22 |

The impedance matrix of the four-terminal network including the series-
impedances is now obtained as:

| z11 4+ Z1 + Zs z12 + Zs
| , VIL4
=1l ‘ z91 + Z3 222+ Zs + Z3 ( )
or:
i ’ ’
2] = || 2 ‘ : (VILS)
J‘ Z21 Z22

Converting the impedance matrix of Eq. (VIL.1.5) into an admittance matrix
we get:

| z22"  —z12' ||
| 4z A" |

1yl = B (VIL6)
—z's1 Z'nn ‘

7 A7 |
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which we put equal to:
yu' oy

’

y21 Voo

The dashes in Eqs. (VIL.4) to (VIL.7) refer thus to a new four terminal
network including the transistor as well as the impedances Zi1, Zs and Zs.
After some calculations it follows that the admittance parameters of the
new four-terminal network are given by:

(VIL1.7)

Wyl =

, —+Zs+ Z3
, 22 za+Zp+Zs dy ’
ikl &= 4z A4z n A4z’ ’

yu + dy - (Z2 + Z3)

= ., (VILS)
142y Z3+ ynZi + y22Zo 4 dy - 222
Y12
—t
, _ zd  zin+Z3 Ay ’
B = 4z 4z a4z ’
— Ay Z
= SN . (VILY)
1+ 2y Zs + ynZy + yeaZo + Ay - 272
Y1
SELPN
,_ ' zm+Zs 4y ?
KR = 4z 4z a4z ’
— A4y - Z
= s . (VILIO)
1+ 2y Zs + yuZi + yeZs+ dy.- 272
Y22
— +Z1+ Zs
, oz’ i+ Zi+2Zs dy !
Ya2 = 27 a7 = 7 i
4y (Z Z
_ el L . (VIL11)
1 +2y-Zs 4+ yuZi + yeeZs + dy - XZ2
In these expressions:
dy = y11ys2 — y12ya1, (VIL.12)
2y = yu + y12 + ya1 + yeo, (VIL13)

and 272 = Z17Zs -+ Z1Z3 -+ Z2Z3. (VIL.14)
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