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in active preparation 

The design and construction of I.F. 
amplifiers with transistors for radio, 
television and radar receivers is the 
subject of this work. The properties of 
the transistors are assumed to be ex-
pressed in the admittance parameter 
system. These parameters are considered 
in detail as regards their dependence on 
the d.c. operating point as well as 
environmental conditions. 

A survey of the theory of designing 
transistor I.F. amplifiers is presented, 
from which a practical design procedure 
is developed making use of special 
design charts. The book contains a large 
number of these normalized design 
charts which facilitate a rapid evaluation 
of the transducer gain, the amplitude 
response curve and the envelope delay 
curve of the complete amplifier when 
the number of transistors in the ampli-
fier, their biasing points and the types 
of interstage networks have been chosen. 
The design charts moreover present the 
necessary information for constructing 
single or double-tuned interstage networks 
by a simple conversion of the normalized 
variables to real variables. 

A separate chapter deals with automatic 
gain control in transistorized amplifiers 
in relation to both forward and reversed 
biased gain control methods. 

The design procedures described are 
elucidated by means of six fully worked-
out examples. 
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TRANSISTOR 

BANDPASS AMPLIFIERS 

The theory of analysis and design of 
selective amplifiers as used in the I.F. 
parts of radio, television and radar 
receivers, is here dealt with, especially 
in relation to the application of tran-
sistors. 

Use is made of a four-terminal network 
representation of the transistors (or 
vacuum tubes) which facilitates a mathe-
matical description of the performance 
of the complete amplifier by means of 
a single determinant. The properties of 
the transistor are assumed to be ex-
pressed in the small signal admittance 
— or hybrid — h parameters. 

Single-stage amplifiers as well as multi-
stage amplifiers, with arbitrary types of 
interstage or terminating networks are 
treated in detail as regards stability, 
power gain, amplitude response curve 
and envelope delay curve: also neutra-
lization of the transistor internal feed-
back and problems associated with 
spreads in transistor parameters. 
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PREFACE 

During recent years the transistor has achieved great importance for use as 
amplifying element in bandpass amplifiers. Although the design of bandpass 
amplifiers equipped with transistors follows the same lines as comparable 
amplifiers equipped with electron tubes there are a number of differences 
which justify the analysis of transistor bandpass amplifiers presented in this 
book. 

If both transistors and electron tubes are considered as four-terminal 
networks with their inherent parameters the design of the bandpass amplifiers 
differs mainly in the magnitudes of the parameters of both devices. It are 
those differences which render the design of bandpass amplifiers equipped 
with transistors — or, more specifically, amplifiers the interstage coupling 
of which consists of single or double-tuned bandpass filters — more diffi-
cult than that of similar amplifiers equipped with electron tubes. 

In the first place, the input- and output dampings of the transistor usually 
load the tuned circuits of which the bandpass filters are composed to such 
an extent that the resulting increase in bandwidth and loss in power gain are 
by no means negligible. Secondly, no matter which electrode is chosen as the 
common terminal, considerable feedback is present in the transistor, and 
this also influences the bandwidth and the power gain, and possibly even the 
tuning. Thirdly, like in all circuits with feedback, there is a risk of instability 
or considerable asymmetry in the response curve when the circuit is on the 
verge of becoming unstable. Special measures must therefore be taken to 
ensure stable operation of the amplifier circuit. 

The above aspects, here summarized in only a general form, must be taken 
into account when designing bandpass amplifiers equipped with transistors. 
The main design parameter is obviously the stability, the other parameters 
being the adjacent channel selectivity (especially in I.F. amplifiers) and/or the 
3 dB bandwidth and the powergain, whilst in some cases consideration must 
also be given to the envelope delay curve. Since all these points depend more 
or less on the method of aligning the amplifier, the tuning procedure must 
also be investigated. 

The points mentioned above also apply to tube amplifiers to some extent. 
However, if modern penthodes are used and the signal frequency is not very 
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high the influences of these effects on the performance of the amplifier are 
much less than in amplifiers equipped with transistors. 

The stage gain obtainable with a transistor amplifier is limited by the pro-
perties of the transistor with which the stage is equipped and by the gain 
which is permissible in view of the stability requirements of the amplifier. 
To obtain the specified overall gain of the amplifier with the smallest number 
of stages, the amplifier must so be designed that each individual stage gives 
the maximum obtainable gain. Moreover, stability must be ensured and 
the requirements as to the 3 dB bandwidth and adjacent channel selectiv-
ity must be satisfied. As a rule, it will be necessary to seek a compromise 
between power gain and 3 dB bandwidth and/or adjacent channel selectiv-
ity requirements. 

As already referred to, in the analyses presented in this book, the transis-
tor will be considered as a four-terminal network specified by either the ad-
mittance or hybrid-h parameter matrices. Various aspects of this four-ter-
minal network representation are considered in Chapter 1. 

To obtain a clear picture of the various design aspects and of their conse-
quences, in Chapter 2 a detailed discussion is given of a single-stage ampli-
fier. Although such an amplifier is of little practical use except for some 
specialized cases, its analysis will be most helpful in defining a number of 
quantities and concepts, the understanding of which is essential for the 
investigation and design of more complex amplifier arrangements, to be 
considered in later chapters. 

The specialized design aspects of neutralization or unilateralization is 
dealt with in Chapter 3. 

Chapter 4 is devoted to a further analysis of the single-stage amplifier 
with two single-tuned bandpass filters of Chapter 2. In this chapter especial-
ly the problem of optimization of power gain is considered. 

The considerations of Chapters 2 and 4 regarding an amplifier stage with 
two single-tuned bandpass filters are extended in Chapter 6 to an amplifier 
with two double-tuned bandpass filters. 

Chapters 5, 7, 8 and 9 are devoted to the analysis of general n-stage 
amplifiers with single-tuned bandpass filters, double-tuned bandpass filters 
or combinations of both. The mathematical formulation of the complete 
amplifier design problem obtained facilitates the complete calculation of the 
stability, the gain and the amplitude response and envelope delay curves. 

Spreads in transistor parameters and their influences upon the amplifier 
performance are considered in Chapter 11. 

The last chapter deals with problems associated with the influences of prac-
tical taps on the tuned circuits of the performance of the amplifier. The taps 
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on the tuned circuits, which are used as impedance transforming devices, 
are considered as transformers which depart more or less from an ideal trans-
former. 

The theory of transistor bandpass amplifiers presented in this book forms 
the basis for a second book by the autor entitled "Designing Transistor I.F. 
Amplifiers" which comprises a complete description of the practical design 
procedure of I.F. amplifiers. The latter book (Book II) contains a large num-
ber of "design charts" with which an optimum design of an I.F. amplifier 
can be ascertained with great ease and accuracy. These design charts are cal-
culated making use of the theory presented the underlying volume. 

This book is based on research carried out during the last years in the 
Philips Semiconductor Application Laboratory at Nijmegen, Netherlands, 
under the leadership of Mr. H.H. van Abbe. 

The subject-matter of this book forms an extension of early unpublished 
work carried out by Messrs. C. le Can and A. H. J. Nieveen van Dijkum 
of this laboratory and of research carried out by Mr. C. J. McCluskey 
of Philips Electrical Industries, Ltd, Ontario, Canada. 

The author wishes to express his gratitude towards his colleagues for 
the many stimulating discussions and the helpful suggestions. In this 
respect, he especially wishes to mention Mr. A. H. J. Nieveen van Dijkum, 
Mr. J. J. Rongen, and Mr. R. J. Nienhuis. 

June 1964 
The Author 
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M M = lyi2y211 

N N = y21 

y12 

n number of stages; tapping ratio 
P1 input power 
Po output power 
PrM value of minor determinant of order r at the tuning frequency, 

tuning method B being applied 
Psav available power from the source 
p1, p2 co-factors for the tuning correction terms 
Qr loaded quality factor of the rth tuned circuit of an amplifier 
Qo unloaded quality factor of a tuned circuit 
QrM value of minor determinant of order r at the tuning frequency, 

tuning method C being applied 

qr coupling coefficient of the rth double-tuned bandpass filter 
r suffix attached to symbols referring to items which occur several 

times in an amplifier. The suffix r denotes that the symbol 
refers to the rth item, starting at the output side 

Tr factor indicating the ratio of the secondary to primary loaded 
quality factors of the rth double-tuned bandpass filter 

nSr cascaded stability factor of the rth stage of a cascade of n-stages 
Sr isolated stability factor of the rth stage of an amplifier 
Tg regeneration coefficient on the boundary of stability 
Tr regeneration coefficient of the rth active fourpole of an ampli-

fier 
t intrinsic regeneration coefficient 
Dr regeneration phase angle of the rth active fourpole of an ampli-

fier: O = arg ry12 + arg ry21 
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to envelope delay 
Te reduced envelope delay 
n Ur loopgain of the r th stage of a cascade of n amplifier stages 
Ur loopgain of an isolated amplifier stage 

w r  ratio of the loaded to the unloaded quality factor of the rth 

tuned circuit of an amplifier 
x r  normalized frequency (or normalized detuning) of the rth tuned 

circuit 
x' r  tuning correction term of the r th tuned circuit of an amplifier 

for tuning method B 
x r " tuning correction term of the r th tuned circuit of an amplifier 

for tuning method C 
yli, y12, four-terminal network admittance parameters of a transistor or 
y21, y22 electron tube 

Yu, Yrb, four-terminal network admittance parameters of a transistor in 
Yfb, Yob common base connection 
Yie, Yre, four-terminal network admittance parameters of a transistor 
yfe, Yoe in common emitter connection 
yie, yre, four-terminal network admittance parameters of a transistor in 
yfe, Yoe common collector connection 
Yii, Y12, four-terminal network admittance parameters of a passive 
1' 21, Y22 network, in particular, a double-tuned bandpass filter 
Y general admittance symbol: since Y = G+jB, both G and B 

are not defined separately when the corresponding Yis defined 
load admittance 

Yr admittance of the r th tuned circuit of an amplifier, this circuit 
being loaded. 

Yr* admittance of the r th tuned circuit of an amplifier, this circuit 
being unloaded 

Ys source admittance 
,LYt forward transfer admittance of an n-stage amplifier 
nZt forward transfer impedance of an n-stage amplifier 





CHAPTER 1 

REPRESENTATION OF TRANSISTORS 
BY A FOUR-TERMINAL NETWORK 

In order to facilitate the design of amplifiers equipped with transistors a 
method must be found of representing the transistor. For bandpass ampli-
fiers which are to be considered in this book the method chosen must be 
suitable for solving problems of stability, gain, amplitude response and phase 
response of the amplifier. The amplifier characteristics mentioned depend, 
as far as the transistors are concerned, only on the external electrical 
properties of these active devices. To design or analyse such an amplifier 
only the current and voltages at the input and output terminals of the tran-
sistor need thus be investigated. The transistor may therefore be represented 
as a "black box" with a number of terminals. 

1.1 The Transistor as a Four-Terminal Network 

The transistor, which is basically a three-terminal device, may thus be consid-
ered as a "black box" provided with two pairs of terminals as represented 
in Fig. 1.1. One terminal of the transistor is used as a common terminal in 
forming input and output pairs of terminals. Depending on which terminal 
is taken as common, the transistor is said to be connected in either the com-
mon-base, the common-emitter or the common-collector configuration. 

U I input I output 
terminals L I I terminals 

Fig. 1.1. The transistor as 
minal network 

a four-ter-

For our amplifier design or analysis we may therefore consider the tran-
sistor as a two-terminal pair network (or four-terminal network) to which the 
results and methods of four-pole theory may be applied. Fig. 1.2 represent-
ing such a "black box", gives the notation of instantaneous currents and 
voltages. The arrows for the currents indicate positive directions, whereas 
the arrows for the voltages point to terminals at which the voltage is posi-
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11
0 

iv,
i2 

 0 

 1V2 
0 

Fig. 1.2. "Black box" representation of a transistor showing the notation of the instan-
taneous currents and voltages. The arrows for the currents indicate positive direction and 
the arrows for the voltages point to terminals at which the voltage is positive. 

tive. This method of indicating the signs of currents and voltages will be 
adopted throughout this book. 

For this black box or fourpole, six different combinations of functions can 
be written down which relate the quantities Ii, Vi, 12 and V2 in various ways 
depending on which of the two quantities is taken as the independent va-
riables and which as the dependent variables. Of these six combinations of 
functions four combinations are of interest for our amplifier considerations. 
These combinations are: 

Vi = Z1(11, I2), 
V2 = Z2(Il, 12), 

Vi = Hi(l1, V2), 
12 = H2(Ii, V2), 

Ii = Yi(Vi, V2), 
12 = Y2(Vi, V2), 

h = Ki(Vi, 12), 
V2 = K2(V1, I2)• 

Fundamentally these four combinations of functions are all suited for 
representing the transistor. Depending on the type of application of the 
transistor, however, it may happen that a certain combination of functions 
characterizes the transistor four-terminal network better than other com-
binations. Furthermore there might be a preference for a certain set of com-
binations because of the circuitry around the transistor. Both cases will be 
dealt with in the following sections. 

The relations between the voltages and currents at the input and output 
pairs of terminals of the transistor are generally non-linear functions. In the 
bandpass amplifiers under consideration, only small signal operation has to 
be dealt with. The signals can then be considered as incremental variations of 
the direct currents and voltages at the terminals and the increments can be 
expressed by means of a Taylor series. 

1.1.1 ADMITTANCE PARAMETER REPRESENTATION 

To investigate the functions describing the electrical behaviour of the tran-
sistor as given by Eq. (1.1.1) in more detail we first consider the combination: 
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Ii = Yi,(Vi, V2) 
12 = Y2(Vl, V2). 

(1.1.2) 

Assuming that the increments 8 V1 and S V2 of Vi and V2 respectively are 
small, the increments 8h and 812 of Ii and 12 respectively can be expressed 
in a Taylor series for two variables as: 

0h 0h 1 0211 1 0211 
81i =   • 6V1 +  6V2 + - 8V12 +   6V22 + 

(~ Vl 0V2 2 0V12 2 0 V22

1 0h 0h 

+ 2 0V1 av2 svi . SV2 + ... , 

(1.1.3) 
012 012 1 0212 1 0212

612=- ' 8V1+ - SV2 + --- 8V12 +   6V22 + 
0 Vl 0V2 2 0V12 2 0V22

1 012 012

+ 2 0 V1 
. 0 V2 . 8V.  sV2 + ... . 

Since it is sufficient for our purpose to consider small variations of the 
quantities h, 12, Vi and V2, to represent the d.c. values at the chosen work-
ing point, the higher order terms in Eq. (1.1.3) may be disregarded: 

Oh 
81= a 

Vl 
•81/i   + 0 

V2 
•6V2, 

812= 072 •6V1  + 07 2 ' 8V2 . 
0Vi 0V2 

(1.1.4) 

The partial derivatives are thus proportionality constants relating the incre-
ments of Ii and 12 to those of Vi and V2. The proportionality constants have 
the dimensions of admittances and are dependent on the values of the direct 
currents and voltages applied to the terminal pairs. 

Furthermore, the currents in Eq. (1.1.4) are generally periodical functions 
of time and hence, the proportionality constants are dependent on the com-
ponents constituting the current functions. Using a Fourier expansion these 
periodical functions may, however, be expressed as a sum of components of 
different frequencies. Considering the first current of the right hand side of 
Eq. (1.1.4) we may put: 
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Ohl 
— 6V1 - E il,n(w) exp(Jnwt) . 
0 Vl n=1 

[1 

(1.1.5) 

The Fourier coefficients i,n(w) are functions of frequency only. Also S V1 may 
be expanded into a Fourier series as: 

0O 
vl,n (w) exp (Jnwt) . 

n=1 
(1.1.6) 

Hence the proportionality constant, which has the dimension of an admittan-
ce becomes: 

~. ~0O+

a Vl — a 1 v1,n (w) n=1 
y1,n (w) 

ail °° ll,n (w) 
(1.1.7) 

The proportionality constant is thus a function of frequency and not of times. 
It comprises an admittance Y1,n for a signal component of frequency nw. 

The other proportionality constants of Eq. (1.1.4) may be considered in an 
analogous way. 
By putting: 

ail

a V1Vi

ah2
a Vl 

=y11, 

=Y21, 

ail 

a V2

012 
0V2 

=y12, 

= Y22 , 

t 
1 

(1.1.8) 

and considering 6Ii, 572, 8V1 and &V2 as small alternating currents and volt-
ages superimposed on much larger direct currents and voltages, we may 
write for Eq. (1.1.4): 

Il = Yll vl + Y12 V2, 

i2 = Y21 vl + Y22 v2 
{ (1.1.9) 

Here i and v denote the alternating currents and voltages of frequency w at 
which yii, y12, y21 and y22 are measured or specified. 

The proportionality constants yu, y12, y21 and y22 are referred to as the 
admittance parameters or y-parameters of the four-terminal network (tran-
sistor) under consideration. These admittance parameters, which are small-
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v1

Fig. 1.3. Admittance parameter equivalent circuit. 

i1 12 
Y21'1 

1' I 

yj2Y2 

5 

signal quantities, are shown to be dependent on the biasing point of the 
transistor as well as on the frequency. 

According to Eq. (1.1.9) the transistor can be represented by the equiva-
lent four-terminal network as shown in Fig. 1.3. It follows from this figure 
and from Eq. (1.1.8) and (1.1.9) that: 
y" is the small-signal input admittance of the transistor four-terminal net-

work with the output terminals short-circuited (v2 being zero of V2 being 
constant); 

y22 is the small-signal output admittance of the transistor four-terminal net-
work, with the input terminals short-circuited (vi being zero); 

y12 is the small-signal reverse transfer admittance of the transistor four-ter-
minal network, that is to say the ratio of the short-circuited input cur-
rent to the output voltage (vi being zero); 

y21 is the small-signal forward transfer admittance of the transistor four-ter-
minal network, that is to say the ratio of the short-circuited output cur-
rent to the input voltage (v2 being zero). 

We thus have: 

v2=0 

, 

V2 0 

l2 
y12 = -

v2 

i2 
Y22 = -

v2 

v1=0 

v1=0 

(1.1.10) 

The quantities yli, y12, y21 and y22 are generally complex in character, so 
that each should be split up into a real and an imaginary part: 

yll = gll + jbll = gll + jw Cll, 

y12 = g12 + jb12 = IYl2l exp (j arg y12), 

y2l = g21 + jb21 = y21 eXp (j arg y21), 

y22 = g22 + jb22 = g22 + jwC22• 

In practical amplifiers the parameters yu and y22 are always considered in 
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connection with the tuned input and output circuits respectively. These tuned 
circuits are so designed that the imaginary parts of yii and y22 are included 
in the tuning susceptances. The real parts gi1 and g22 act as a damping on 
the tuned circuits due to the transistor. This explains why yii and y22 have 
been expressed in the form of (g + jb) in the above expressions. 

The admittances y12 and y21 are transfer properties of the four-terminal 
network, and can most conveniently be expressed in terms of modulus and 
argument because their product must be evaluated in order to analyse the 
amplifier. 

1.1.2 HYBRID-H PARAMETER REPRESENTATION 

Analogous to the method of obtaining the admittance parameters of the 
transistor presented in the preceding subsection, we may derive from the 
combinations of functions (see Eq. (1.1.1) and Fig. 1.2): 

the relations: 

Vi = H1(h, V2) , 

7 2 = H2(Ii, V2) , 

Vi =h11i1 +h12V2, 

l2 = h21 ii +h22 V2 

r 

i 

(1.1.15) 

(1.1.16) 

In these relations the quantities h11, h12, h21 and h22 are the small signal 
hybrid -h parameters or, shorter, h parameters of the transistor which are defin-
ed as: 
h11 is the small-signal input impedance of the transistor four-terminal net-

work with the output terminals short-circuited (V2 being zero); 
h22 is the small-signal output admittance of the transistor four-terminal 

network with the input terminals open-circuited (ii being zero); 
hi2 is the small-signal reverse transfer voltage ratio of the transistor four-

terminal network which equals the ratio of the open-circuited input 
voltage and the output voltage (ii being zero); 

h21 is the small-signal forward transfer current ratio which equals the ratio 
of the short-circuited output current and the input current (v2 being 
zero). 

Summarizing: 
Vi V1 

h11 = — 1212 = -
, 

h21 = 

ll 

l2 
—

V2 0 

, 

h22 = 

V2 

i2 
-

i1=0 

Z1 v2=0 V2 i1=0 

(1.1.17) 
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vi
Fig. 1.4. Hybrid-H parameter equivalent 
circuit. 

it

Fig. 1.4 represents an equivalent circuit based on Eqs. (1.1.16) and (1.1.17). 
Because of the arrangement of elements in this equivalent circuit the h-

matrix is often referred to as the series parallel matrix. 

The quantities hu, hi2, h21 and h22 thus depend on the biasing point of 
the transistor as well as on the signal frequency. Moreover, they are gen-
erally complex in character so that each should be split up into a real and an 
imaginary part: 

h11 = Re (h11) + j Im(hi1), 

h12 = Ih12I exp(j • arg h12), 

h21 = Ih2il exp(j • arg h21), 

h22 = Re(h22) + jIm (h22)• 

The four h-parameters thus contain an impedance, an admittance and two 
dimensionless quantities, which explains the term "hybrid" used in connec-
tion with these parameters. 

1.1.3 IMPEDANCE PARAMETER PRESENTATION 

Considering the combination of functions: 

Vi = Zl (Ii, 12), 

V2 = Z2 (Ii, 12), 

from Eq. (1.1.1), we may obtain the relations: 

vl = Zll ll + Z12 12 , 

V2 = Z21 I1 + Z22 l2 

(1.1.22) 

(1.1.23) 

The quantities z11, z12, z21 and z22 represent the small-signal impedance para-

meters or z parameters of the transistor and are defined as: 
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vi

it

Zll 
Z21 V1 

Z12V2 

Z22 

'2 

v2

Fig. 1.5. Impedance parameter equivalent circuit. 

Vi 
Z11 = -

l1 i2=0 

V2 
Z21 = -

il I2 0 

, 

, 

Vi 
Z12 = -

i2 ii = 0 

V2 
Z22 = -

i2 i1=0 

, 

i 

1 
(1.1.24) 

Fig. 1.5 shows and equivalent circuit based on the relations (1.1.23) and 
(1.1.24). 

1.1.4 HYBRID-K PARAMETERS 1) 

From the combination of functions: 

Ii = K1(Vi, 12) 

V2 = K2(Vi, 12), 

from Eq. (1.1.1) it follows: 
11 =k11Vl +k12I2 , 

V2 = k21 vi + k22 l2 

R 

r 
i 

(1.1.25) 

(1.1.26) 

Here the quantities k11, k12, k21 and k22 are the hybrid-k parameters or, 
shorter, k parameters of the transistor which are defined as: 

ll i1 
kll = - k12 = -

i 

v1 i2'0 i2 v1=0 

(1.1.27) 
V2 V2 S k2i = -
vl i2=0 

k22 = -
i2 vi = 0 

In Fig. 1.6 an equivalent circuit based on these relations is shown. Because 
of the arrangement of elements in the equivalent circuit the k -matrix is re-
ferred to as the parallel-series matrix. 

1) Often the symbol g is used for this set of parameters. In this book we prefer to use the 
symbol k because the symbol g is employed to denote conductances. 
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Fig. 1.6. Hybrid-K parameter equivalent circuit. 
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1.1.5 DEPENDENCE OF TRANSISTOR PARAMETERS ON TEMPERATURE 

In the preceding sub-sections we have considered the transistor as a black 
box with two pairs of terminals, containing an unspecified electrical network 
and we have derived relations describing what happens when currents and 
voltages are applied to the terminals. Generalizing, it has been accepted that 
for small signals the relations are linear functions with parameters dependent 
on the biasing point and on frequency. So far it has not been necessary 
to consider the contents of the black box in more detail. Inside the black box, 
however, there is the transistor material in which the electrical phenomena 
are strongly dependent on temperature. 

Hence, the electrical parameters measured at the terminals are also more 
or less dependent on this temperature. In Book II, Chapter I curves are given 
showing the dependency of the admittance parameters of a certain type of 
transistor on junction temperature. 

1.2 Characteristic Matrices 

As follows from Section 1.1 a transistor may be represented by the admittan-
ce matrix, the impedance matrix, the series-parallel matrix or the parallel-
series matrix. In Figs. 1.3, 1.5, 1.4 and 1.6 four-terminal network equivalent 
circuits are shown for the various matrices. The choice of matrix to 
actually represent the transistor depends upon which equivalent fourpole 
forms the best equivalent representation of the electrical behaviour of the 
transistor. This might become apparent from the following considerations: 

A transistor suitable for use in high-frequency bandpass amplifiers and 
connected in either the common base or the common emitter configuration 
will generally have an output impedance which is larger than or in the same 
order of magnitude as that of the tuned circuit connected to its output ter-
minals. The output side of such a transistor can therefore best be character-
ized by a current source in parallel with an admittance (the output self-admit-
tance) as is the case in the equivalent fourpole circuits for the y- and h-ma-
trices. 
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Considering the input side of a transistor it follows that it may either be 
"voltage-driven" or "current-driven" depending on the relative magnitudes 
of the input impedance Zi of the transistor and the internal impedance Zs of 
the driving source. If the transistor is said to be current-driven the matrix 
most suitable for this case is the h-matrix in which the h2I parameter then re-
lates the current through the load and the current determined by the driving 
source. If, on the other hand, Z$ <Z, the transistor is voltage-driven and the 
most representative matrix is the y-matrix. 

It thus follows that, depending on the electrical behaviour of the transistor, 
the 21 parameter of a certain matrix gives a better description of the proper-
ties of the complete transistor than the 21 parameters of other matrices do. 
The matrix that gives the best description is called the characteristic matrix 
(see Bibliography [1.6] and [1.7]). 

Taking into account the considerations regarding the output of transistors 
suitable for use in high-frequency bandpass amplifiers, the characteristic ma-
trix will either be the y-matrix or the h-matrix. Whether the y-matrix or the 
h-matrix is characteristic depends on the properties of the input side of the 
transistor which in turn depend on the type of transistor, the frequency of 
operation, the transistor configuration (common-base or common-emitter) 
and on the circuitry at the input side. 

Because no general conclusions can be drawn with respect to these points 
both matrices will be considered in this book. 

1.3 The Y- and H-Matrices of the Transistor and the External Circuitry 

In bandpass amplifiers tuned circuits or combinations thereof are used as 
coupling elements between the various transistors. In most cases the tran-
sistor input and output terminals are connected to taps on these tuned cir-
cuits as shown in Figs. 1.7 a and b. Assuming that the inductive or capaci-
tive taps on the tuned circuits behave as ideal transformers, the tuned cir-
cuits are effectively in parallel with the transistor terminals. In these cases it 
is very convenient to express the properties of transistors as well as those of 
the tuned circuits in terms of admittance parameters. The total admittance 
of the tuned circuit and the transistor admittances connected in parallel can 
then be evaluated by simply adding the individual admittances, taking into 
account the proper transformer ratios. 

In practical amplifiers the output terminals of the transistors will in most 
cases be connected directly across the whole circuit so that no tap is neces-
sary at all. If, however, a tap is required the tapping ratio will be such that it 
can easily be realized. At the input side of the transistor, however, large 
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a 

b 

Fig. 1.7. In practical amplifiers the transistor input- and output terminals are connected to 
taps on the tuned circuits which form (part of) the coupling element between the various 
stages of the amplifier. Fig. 1.7.a shows an inductive tap on the tuned circuits whereas 
Fig. 1.7.b shows the capacitive method of tapping. 

tapping ratios are usually required because of the small input impedance of 
the transistors or for reasons of stability. As will be considered in detail in 
Chapter XII the required tapping ratios can easily be realized at rather low 
frequencies. At higher frequencies, however, considerable differences be-
tween the behaviour of such a tap and that of an ideal transformer may be 
found. These differences are due to the "spread-inductance" or "spread-ca-
pacitance" (see Chapter XII) of the tap and the heavy load presented to it by 
the transistor. In these cases it will often prove to be advantageous to use a 
series-tuned circuit at the input side of the transistor (provided the real part 
of the input impedance is sufficiently low to reach the required quality factor 
of the tuned circuit). 

When a series-tuned circuit is used at the input side of the transistor (and 
a parallel-tuned circuit at the output side) it is convenient to express the pro-
perties of the transistors in terms of the series-parallel matrix (h-parameters). 
Then the impedances of the transistor can easily be combined with those of 
the tuned circuits. If the h-matrix is characteristic of the transistor to be used in 
the amplifier (see Section 1.3), application of a series-tuned input circuit is 
especially advantageous. 
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1.4 Further Considerations on the Choice of a Fourpole Parameter System 
for the Transistor 

Apart from considerations regarding the matrix which is characteristic for 
the transistor and the matrix most suitable for the transistor in connection 
with its external circuitry, there are other aspects which might also influence 
the choice of a particular matrix. One of these aspects is that the fourpole 
parameters chosen to characterize the transistor must be measured on the 
device itself using a not too complicated measuring gear. The most suitable 
matrix in this respect is the admittance matrix because only short-circuits 
need to be provided at certain terminals to measure these parameters. 
Such short-circuits are easier to realize than the open circuits required at 
certain terminals for measuring other matrix parameters, see Bibliography 
[1.7] and [1.8]. 

Another aspect of the choice of a parameter system is its relation to the 
complete electrical equivalent circuit of the transistor derived from its phys-
ical operation. The parameters of the matrix chosen should preferably de-
fine single elements of the equivalent circuit as accurately as possible. This 
point will, however, not be dealt with further, because electrical equivalent 
circuits are considered to be beyond the scope of this book (see Bibliography 
[1.8]). 

1.5. Transistor Parameter Nomenclature 

At present it is customary to use for transistors the symbols according to the 
I.E.E.E.-standards, see Bibliography [1.9]. These symbols include an indica-
tion as to which of the three transistor terminals is common to both the in-
put and output circuits. This may be either the base, the emitter or the collec-
tor. The indication is given by using the letter b, a or c respectively as the 
second suffix in the symbol denoting a given fourpole parameter. The first 
suffix of these symbols indicates which of the fourpole parameters is re-
ferred to, the input, reverse transfer, forward transfer and output parameters 
being denoted by the suffixes i, r, f and o respectively. The symbol 

yie 

thus 
denotes the input admittance parameter of a transistor in common emitter 
configuration, and so forth. 

The table below gives a survey of the notations using y- and h-parameters. 

Instead of using these symbols in this book, preference is given to the more 
general symbols yll, y12, y21 and y22 or h11, h12, h21 and h22• In so doing, the 
results of the analyses are applicable to transistors irrespective of which 
terminal is chosen as the common one. In fact, these results may even be 
applied to circuits using electron tubes. 
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SYMBOLS OF TRANSISTOR PARAMETERS ACCORDING TO THE I.E.E.E.-
STANDARDS 

admittance parameters common 
base 

common 
emitter 

common 
collector 

general 
symbols 

input parameter Ysb Ye Yte Y11 

reverse transfer parameter yrb Yre Yre Y12 

forward transfer parameter yfb Yfe Yfe Y2i 

output parameter Yob Yoe Yoc Y22 

hybrid h-parameters 

input parameter hsb hae hto hil 

reverse transfer parameter hr b hre hre hie 

forward transfer parameter hfb hfe life h21 

output parameter hob hoe hoe h22 

1.6 Relations between the Fourpole Parameters of a Transistor in the Differ-
ent Configurations 

A transistor may be used in an amplifier either in common base, common 
emitter or common collector configuration. Obviously, if a set of fourpole 
parameters is specified for any of these configurations, the parameters for 
the other configurations can be calculated. 

1.6.1 ADMITTANCE PARAMETERS 

A transistor is basically a three-terminal device for which, according to 
Appendix I, the indefinite admittance matrix can be written as: 

Y11 Y12 Y13 

Y21 Y22 Y23 (1.6.1) 

Y31 Y32 Y33 

Using the parameter nomenclature of the preceding section and the nota-
tion of Fig. 1.8 we may write for Eq. (1.6.1): 

Ye = YIc Yre Yre 

Yfe Yob = Yoe Yfb (1.6.2) 

Yfe Yrb Yib = Yoc 
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Fig. 1.8. The transistor as a three-terminal network. 

[1 

An indefinite admittance matrix has the property that each row and each 
column adds to zero (see Appendix I). Applying this property to Eq. (1.6.2) 
the parameters of either of the three transistor configurations can be related 
to those of the others. Table 1.1 presents the relationships between these 
parameters interrelations. 

TABLE 1.1 ADMITTANCE PARAMETER RELATIONSHIPS 

COMMON BASE 
b 

COMMON EMITTER 
e 

COMMON COLL. 
c 

Yt 

Yib Yie = EYb Ytc = EYb 

Yib = EYe Yie Yic = Yie 

Ytb = Yoc Yie = Yic Yic 

Yr 

Yrb Yre = —(Yrb + Yob) Yrc = —(ytb + Yfb) 

Yrb = —(Yre + Yoe) Yre Yrc = —(Ye + Yre) 

Yrb = —(Yfc + Yoc) Yre = —(ytc + Yrc) Yrc 

Yf 

Yfb Yfe = —(yfb + Yob) I Yfc = —(Ytb + Yrb) 

Yfb = —(Yfe + Yoe) Yfe Yfc = —(Yie + Yfe) 

Yfb = —(Yrc + yoc) Yfe = —(Yic + Yfc) yfc 

Yo 

Yob Yoe = Yob Yoc = Yib 

Yob = Yoe Yoe Yoc = Eye 

Yob = EYc Yoe = EYc Yoc 

dYb = Yib Yob — YrbYfb dye = Yie Yoe — Yre Yfe dyc = Yic Yoc — Yrc Yfc 

EYb=Yib+Yrb+Yfb+yob EYe=Yie+Yre+Yfe+Yoe EYc =Y{C+Yfc+Yfc+Yoc 

1.6.2 HYBRID H-PARAMETERS 

The relationships between the h-parameters for a transistor in the three 
transistor configurations can be obtained by calculating the required set of 
parameters of another ( given) set of parameters using the equations (see Fig. 
1.9): for the common base configuraton: 
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Fig. 1.9. Various currents and voltages at the three terminals of a transistor. Taking into 
account these currents and voltages the parameters of either the common base, common 
emitter or common collector configuration can be calculated if these parameters for one 
configuration are given. 

veb = hcb ' le + hrb ' vcb , 

lc = hfb ' le + hob ' vcb , 

for the common emitter configuration: 

vbe = hie ' lb + hre

is = h1e ' 1, + hoe ' vice , 

and for the common collector configuration: 

Furthermore: 

and: 

vbc = hdc ' ib + hrc ' vec , 

le = hî c ' lb + hoc ' vec . 

(1.6.3) 

(1.6.4) 

(1.6.5) 

lb + Zc + le = O, (1.6.6) 

vbe + vcb + vec = U. 

The results of these calculations are compiled in Table 1.2. 

(1.6.7) 

1.7 Transistor Fourpole Parameters and Narrow Band Amplifier Analysis 

In the preceding sections it has been shown that the fourpole parameters of 
a transistor are dependent on the frequency of operation. The bandpass ampli-
fiers with relatively narrow bandwidth as analyzed in this book have frequency 
characteristics which are mainly controlled by tuned circuits external to the 
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TABLE 1.2 HYBRID-H PARAMETER RELATIONSHIPS 

[1

COMMON BASE 
b 

COMMON EMITTER 
e 

COMMON COLLECT. 
c 

hi 

ho 
hib 

hie = Ha 
hib 

htc = Ha 

hta = H e
hie hic = hie 

hi,, = 
H e

hie = hic htc 

hr 

hr a 
dha—hra 

hre — 
1 +hfb 

hrc — 
Ha Ha 

hrb — 
dhe—hre

hre hrc = 1 — hre 
He

hr = 
1 Hhfc 

hre = 1 — hrc hrc b 

ht 

Itfb 
hfa Hdha 

hfe hfc — 
hr 

1
= — 

Ha 

hfe + Ghe
hfb hfe hfc = —(1+hfe) = —  He 

hfb = hT H —1 hfe = —(1 + hfc) hfc 

ho

hob 
hob 

hoe = Ha 
ho,, 

hoc = 
Hb 

hoa = 
hoe 

hoe hoc = hoe 

hob = 
h00

= hoc hoe 

dhb = hsa hob — hr b hfb dhe = hie hoe — hre hfe dhc = hic hoc — hrc life 

Hb = 1 +hfa—hra+dha He = 1 +hfe—hre+dhe H 0 = 1+hfc—hrc+dhc 

transistors. The variation with frequency of the transistor parameters is of 
minor significance in determining the performance of the amplifier. There-
fore it will be assumed that the input and output parameters of the transis-
tors are constant over the frequency range in which the amplifier gain is 
significant in so far as their dampings and capacitances are concerned. More-



1.8] GENERAL PARAMETER NOTATION 17 

over, the transfer parameters are assumed to be constant over this frequency 
range as far as their modulus and argument are concerned. Under these 
assumptions the amplifier analysis can be carried out in terms of circuit pa-
rameter values at the centre frequency. 

1.8 General Parameter Notation 

At some places in the following chapters it will be desirable not to restrict the 
amplifier analysis to a particular parameter system. In these cases a general 
notation will be used as shown in Eq. (1.8.1): 

all = y11t1 + 

y12P22 

, ) 

a12 = y21N11 + y22P2 • (S 
(1.8.1) 

In these equations the general symbols y refer to the parameters of either 
the y, z, h or k-matrix equations. Furthermore, the symbols Pi, and P2 

denote the independent variables and a1 and a2 the dependent variables of 
the general matrix equation. 

BIBLIOGRAPHY 

[1.1] W. W. GARTNER, Transistors, Principles, Design and Applications, D. van Nostrand 
Comp. Inc. New-York, 1960 Chapter 7. 

[1.2] R. A. GREINER, Semiconductor Devices and Applications, McGraw-Hill Book Comp., 
Inc., New York, 1961, Chapter 12. 

[1.3] w. w. HAPP, Dynamic Characteristics of Four-Terminal Networks, 1954, I.R.E. 
Cony. Rec., Pt 2, P. 60-76. 

[1.4] C. R. LAUGLIN, The Indefinite Y Matrix, Electronic Ind., 21, p. 121-122, Dec. 1962. 

[1.5] D. A. L. LINDEN, A Note on Four-Pole Parameters, Proc. I.R.E., 46, p. 375, 1958. 

[1.6] J. G. LINVILL and J. F. GIBBONS, Transistors and Active Circuits, McGraw-Hill Book 
Comp., Inc., New York, 1961, Chapter 9. 

[1.7] G. MARTS, Charakteristische Matrizen and Ersatzschaltbilder aktiver Vierpole, 
A. E. 0., 16, p. 227-229, May 1962. 

[1.8] G. MARTS, Charakteristische Matrizen der Transistor-Grundschaltungen, A. E. U., 
16, p. 343-346, July 1962. 

[1.9] T. R. NISBET and w. w. HAPP, Jacobians — a New Computational Tool, Electronic 
Ind., 17, p. 69-71, 1958. 

[1.10] R. PAUL, Die Messung der Kennwerte von Transistoren, Nachrichtentechnik,12, 
p. 163-167 (part I), p. 213-217 (part II), p. 260-265 (part III), p. 308-313 (part IV), 
p. 340-348 (part V). 

[1.11] R. L. PRITCHARD, J. B. ANGELL, R. B. ADLER, J. M. EARLY and W. M. WEBSTER, Tran-
sistor Internal Parameters for Small-Signal Representation, Proc. I.R.E., 49, p. 
725-738, April 1961. 

[1.12] I.R.E. Standards on Semiconductor Symbols Proc. I.R.E. 44, p. 934-937 (July 1956). 



CHAPTER 2 

THE VARIOUS ASPECTS OF BANDPASS 
AMPLIFIER DESIGN 

This chapter deals with definitions and the interpretation of those terms and 
concepts which are essential for the design of transistorized bandpass 
amplifiers. 

The general survey in the preface showed that when designing band-
pass amplifiers a large number of problems must be faced. Of these pro-
blems, the most important is that of achieving sufficient protection against 
self-oscillation of the amplifier. In this chapter the investigation of this stabil-
ity problem is confined to the comparatively simple case of a single-stage 
amplifier with single-tuned circuits, both at the input and at the output termi-
nals. This case is dealt with in great detail, and a number of concepts regard-
ing the stability problem are explained. This will facilitate a general under-
standing of this problem, which will prove to be of great advantage when 
dealing with similar problems in the more complex amplifiers to be dis-
cussed later. 

Other problems encountered in bandpass amplifier design are those of 
gain, amplitude response and phase response. Since in the amplifiers dealt 
with there is a certain amount of feedback, that is to say a return of a portion 
of the amplifier output power to the input, the method of alignment must also 
be investigated in detail, since in such an amplifier the tuning of one resonant 
circuit influences the properties of all other circuits. 

In most treatises on bandpass amplifiers the problem of how to align the 
amplifier is not discussed. It will become clear from the analyses given below 
that this omission is due to the fact that in these treatises it is generally 
assumed that the amplifiers are tuned according to one particular method, 
which we will refer to as method A. 

There are, however two other methods of aligning an amplifier, which 
yield well-defined results. As a matter of fact, these methods — to be termed 
methods B and C — offer distinct advantages over method A, as regards both 
the performance of the amplifier and ease of alignment. 

Because the method of alignment has considerable influence on the fre-
quency-dependent properties of the tuned circuits of the amplifier, its ampli-
tude and phase response must be investigated for each of these three methods 
of alignment. 



2.1 ] SINGLE-STAGE AMPLIFIER WITH SINGLE-TUNED CIRCUITS 19 

Here again, these points are analyzed in detail for a single-stage amplifier. 
The various problems present themselves most fundamentally for such an 
amplifier, so that a clear picture is easily obtained. The following analysis 
may thus be considered as an introduction to the various aspects of practical 
bandpass amplifier design as applied to the analyses of more complex ampli-
fiers. 

As already referred to in Chapter 1, in order to analyze the amplifiers, the 
transistors and their associated circuitry will be expressed in an "Y-matrix 
environment"I) as well as an "H-matrix environment". Both matrix environ-
ments will prove to be very useful in analyzing practical amplifier configu-
rations. To keep the analyses as practical as possible, both systems will be 
treated separately. The calculation based on Y-matrices will be carried out 
first. For the case of H-matrices the results of the calculations are derived 
by means of analogies. 

2.1 Single-Stage Amplifier with Single-Tuned Circuits 

2.1.1 GENERAL AMPLIFIER CIRCUIT 

To analyze a single-stage amplifier (containing one active element) the pro-
perties of the active element as well as those of the passive elements can, 
according to Chapter 1, be expressed using either the Y, Z, H or K-matrices. 
In Fig. 2.1 the four basic matrices of the single-stage amplifier are shown. 

The analysis can be based on each of the four matrices of the amplifier. For 
practical reasons, however, only the Y- and H-environments will be con-
sidered in detail. 

2.1.2 AMPLIFIER CIRCUIT BASED ON ADMITTANCE PARAMETERS 

Fig. 2.2 shows a schematic circuit diagram of a single-stage amplifier com-
prising two single-tuned circuits. This amplifier circuit can most readily be 
analyzed by means of the admittance matrix system. The current source 
which drives the amplifier is assumed to have an admittance Ys, and the 
amplifier is loaded by an admittance YL. Usually, the latter admittance is 
formed by the input admittance of a following amplifier stage. 

For the sake of simplicity the tappings on the tuned circuits, which are 
necessary in a practical amplifier for the impedance transformations, have 
been omitted. 

The admittance of the tuned circuit formed by Li*, Ci* and GI* will be 

denoted by Yl*, and that of the tuned circuit formed by L2*, C2* and G2* by 
Y2* . 

1) The term "matrix environment" is used to express that the equivalent four-termi-
nal network of the transistor together with the circuitry at its in out- and output 
side are arrranged in a manner inherent to the respective matrix. 
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Fig. 2.1. Basic matrix environments of the single-stage amplifier. The respective environ-
ments will be referred to as 
a. the Y-matrix environment (parallel-parallel matrix), 
b. the Z-matrix environment (series-series matrix), 
c. the H-matrix environment (series-parallel matrix), 
d. the K-matrix environment (parallel-series matrix). 

The following relations hold for the circuit of Fig. 2.2: 

11 = (Vs + Yl* + yu)vl + y12v2, 
l2 = Y21v1 + (Y22 + Y2* + YL)v2. 

By putting 

and Y1=Ys+Yi* +yli, 
Y2=Y22+Y2* +YL, 

(2.1.1) 

(2.1.2) 



2.1 ] SINGLE-STAGE AMPLIFIER WITH SINGLE-TUNED CIRCUITS 21 

Eq. (2.1.1) is simplified to: 

11 = Ylv1 + y12v2, 

I2 = Y21v1 + Y2v2• 
s 

(2.1.3) 

Here Yi and Y2 defined by Eq. (2.1.2) represent the admittances of single-
tuned circuits. According to Appendix II: 

Y = G(1 + jx), (2.1.4) 

in which x represents the normalized detuning of the circuit with respect to 
resonant frequency (at which x = 0) and equals 

x = fQ. (2.1.5) 

In this expression fi is the relative detuning of the circuit with respect to the 
resonant frequency fo: 

(2.1.6) 

and Q is the quality factor of the circuit. With Eq. (2.1.4), Eq. (2.1.3) becomes: 

11 = Gl(1 + jxl)vl + Y12'v2, 

i2 = Y21v1 + G2(1 + jx2)'v2, 

or, using a matrix notation: 

active fourpole 

(2.1.7) 

Fig. 2.2. Schematic diagram of a single-stage amplifier with single-tuned circuits at the 
input and output terminals. The active fourpole represents the transistor or electron 
tube; Ys denotes the admittance of the current source which drives the amplifier, and 
YL the load admittance of the amplifier. 
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11 

i2 

Gl(1 + jxl) y12 

Y21 G2(1 + jx2) 

Vi 

V2 

(2.1.8) 

The determinant of Eq. (2.1.8), to be denoted by d, can be simplified to: 

1 + jxi 
d = GiG2 

y12y21 

GiG2 
(2.1.9) 

1 1 + jx2 

The determinant in Eq. (2.1.9) will further be referred to as the reduced 
determinant S, so: 

y12y21 

GiG2 

1 + jx2 

(2.1.10) 

Because both y12 and y21 are generally complex quantities, it will be useful 
to introduce: 

Iy12y21 
Ty 

GiG2 ' 

and: 

(2.1.11) 

~y = arg yl2 + arg y21. (2.1.12) 

The quantities T and O will be termed the regeneration coefficient and the 
regeneration phase angle of the amplifier stage respectively. The quantity 
Sy can now be written: 

1 + jxi Ty exp (j(2) 
Sy = 

1 1 + jx2 

Thus Eq. (2.1.8) becomes: 

i1 

= G1G2 Sy 

i2 

111 

V2 

(2.1.13) 

(2.1.14) 

If the output terminals of the circuit according to Fig. 2.2 are open cir-
cuited (the load of the amplifier is already accounted for in Y2), i2 = 0. 
Since it is also equal to the source current is, the output voltage may, 
according to Eqs. (2.1.8) to (2.1.13) be expressed by: 
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Y21 lS 
v2 -   (2.1.15) 

G1G2 Sy 

Or, since the ratio v2/IS represents the transimpedance of the complete 
amplifier: 

Zt = _  y21 1 

GiG2 Sy 
(2.1.16) 

2.1.3 GENERAL AMPLIFIER CIRCUIT BASED ON HYBRID H-PARAMETERS 

Fig. 2.3 shows a schematic circuit diagram of a single-stage amplifier with a 
series tuned circuit at its input side and a parallel tuned circuit at its output 
side. This amplifier circuit can most easily be analyzed using the H-parameter 
system. 

The amplifier is driven from a voltage source with source impedance Zs and 
is loaded by a load of admittance YL. The impedance of the tuned circuit 
formed by L1*  ,Ci* and Ri* will be denoted by Zi* and that of the tuned 
circuit formed by L2*, C2* and G2*  by Y2* . 

By putting: 
Z1=ZS+Z1 * +h11, 

Y2 = h22 + Y2*  + YL, f 
the following relations are obtained for this circuit: 

Considering that: 

and 

if 

ZS

vi = Z1 i1 + h12v2 , 

t2 = h21 11 + Y2v2 

Zi = R1(1 + jxi) , 

Y2 = G2(1 + jx2) , 

-b--  
R1* 

 o o* ̀  c

r 

I 

(2.1.17) 

(2.1.18) 

(2.1.19) 

i2

active fourpole 

Fig. 2.3. Schematic diagram of a single-stage amplifier with a series-tuned resonant circuit 
at the input side and a parallel-tuned resonant circuit at the output side. The amplifier is 
driven from a voltage source with source impedance Zs and loaded by an admittance YL. 
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in which: 

and 
Ri = Re(Zs) + Rl* + Re(hii), 

G2 = Re(h22) + G2* + Re(YL), 

(2.1.20) 

(2.1.21) 

Eq. (2.1.18) can be written, in analogy with the preceding sub-section: 

vl i2 

it 

= R1G2 8h 
D2

(2.1.22) 

The reduced determinant 8h equals: 

Sh = 
1 + jxi Th exp (jeh) 

(2.1.23) 

in which: 
1 1 + jx2 

Th 

and 

Ihi2 h211 
_RiG2 

(2.1.24) ' 

Oh = arg h12 + arg h21. (2.1.25) 

According to Eqs. (2.1.22) to 2.1.25) the output voltage of the amplifier 
of Fig. 2.3 becomes, provided the output terminals are open-circuited: 

h21vs 1 
V2 - 

RiG2  Sh 

The forward voltage gain of the amplifier then follows from: 

v2 h21 1 1) 
Kt = — _ —  —

vs RiG2 Sh 
. 

2.1.4 THE TRANSFER FUNCTION OF THE AMPLIFIER 

(2.1.26) 

(2.1.27) 

The forward transfer impedance, or transimpedance, of the amplifier circuit 
of Fig. 2.2 as derived in sub-section 2.1.2 and the forward transfer voltage 
ratio, or voltage gain, of the amplifier circuit of Fig. 2.3 as derived in sub-
section 2.1.3 are important quantities. Investigation of these quantities 
leads to conclusions regarding the stability, the gain and the frequency 

1) The symbol Kc for forward voltage transfer ratio (voltage gain) is chosen as analogous 
to the symbol Ze which denotes the forward transfer impedance or transimpedance. 
Similarly, Yc denotes the transadmittance and He denotes the current gain of an am-
plifying system. 



2.2] STABILITY 25 

response of the amplifier. These points are dealt with in succession in the 
following sections. 

2.2 Stability 

The problem of self-oscillations occurring in bandpass amplifiers is often 
encountered by designers. These oscillations are always due to some form of 
feedback from the output to the input. This feedback may arise from a com-
mon power supply; from coupling caused by "earth currents" when the 
chassis does not constitute an ideal mass; from stray capacitance and mutual 
inductance linkages between interstage coupling elements; or from reverse 
transmission occurring within the transistor or electron tube. 

The latter cause of feedback is the most serious because, unlike the other 
causes, it cannot be avoided or reduced by careful layout of the amplifier; 
the feedback which exists within transistors or electron tubes being a proper-
ty of the device itself. There is no possibility of remedying it simply by de-
coupling or shielding, so that steps must be taken in advance. In all ampli-
fier designs it is therefore necessary to investigate the internal feedback of 
the transistors or electron tubes that are to be used, and to ascertain to 
what extent this internal feedback may affect the stability of the amplifier. 
The problem of securing satisfactory stable operation of the amplifier is of 
prime importance; an amplifier which is barely stable, that is to say not suffi-
ciently stable, is useless. 

2.2.1 STABILITY OF SINGLE-STAGE AMPLIFIERS 

In a single-stage amplifier as discussed in Section 2.2 the output voltage v2 

becomes infinite for a finite value of is or vs if the determinant S becomes 
zero (cf. Eq. (2.1.15) and (2.1.26)).1) The amplifier is then on the verge of 
oscillation. The condition S = 0 will therefore be considered as the boundary 
of stability of the amplifier. 

It may thus be written that the amplifier is at the boundary of stability 
when 

1 + jxi Texp (jO) 
6 = =0 (2.2.1) 

By writing out the determinant, 

1 1 + jxz 

the quantity 6 can be written: 

S = (1 + jxi)(1 -I- jx2) - T exp (jO). (2.2.2) 

1 ) Provided Ri, G1 and G2 (see Eqs. (2.1.15) and (2.1.26)) have positive values (Ri>0, 
G1 > 0 and G2 > 0). 
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This quantity is obviously composed of the two vectors 

(1 + jxi)(1 + jx2), 
and 

Texp (j0), 

so that it can be ascertained graphically by constructing these two vectors 
and determining their difference. This procedure, which gives a clear indi-
cation of the stability properties of the amplifier, will be illustrated by dis-
cussing in succession single-stage amplifiers with two identical synchronously 
tuned resonant circuits and with non-identical resonant circuits. 

2.2.2 SINGLE-STAGE AMPLIFIER WITH TWO IDENTICAL SYNCHRONOUSLY 
TUNED RESONANT CIRCUITS 

In the case of xl = x2 = x the first term of Eq. (2.2.2) becomes: 

(1 + jx)2 = 1—x2 + j2x. (2.2.3) 

It can be shown that the locus of (1 + jx)2, plotted in the complex plane, is a 
parabola with its focus at the origin and a directrix perpendicular to the 
real (horizontal) axis in the point (2.0). Fig. 2.4 shows such a parabola. 

Im{v 5 X,)(1+Ja)} 
x=2.5 j

Fig. 2.4. Parabola representing (1 + jx) 2, and vector T, illustrating how S can be deter-
mined. 
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Fig. 2.5. Parabola representing (1 + jx) 2, and several vectors Te applicable to three ampli-
fiers with particular values of ® on the boundary of stability. 

The vector T is now drawn for an arbitrary angle 0, and is constructed for 
the normalized frequencies x = — 0.5 and x = — 2.0. 

It follows from Eq. (2.2.1) as well as from Fig. 2.4 that the boundary of 
stability of the amplifier will be reached when the top of the vector T coin-
cides with the locus of (1 + jx)2. This value of T will be denoted by Tg. 
By way of example three different values of Tg have been plotted in Fig. 2.5 
for different angles O. 

The locus of Tg as a function of O thus represents the boundary of stabili-
ty. In following chapters dealing with more complicated amplifiers, the ad-
vantage of defining the stability boundary as the locus of Tg will become 
clear. 

Eqs. (2.1.15) and (2.1.16) reveal that at a constant magnitude of the 
source current is the output voltage v2 of the amplifier increases as 8 de-
creases. At S = 0, v2 becomes infinitely large. The region of the complex 
plane of Fig. 2.4 for which 8 > 0 thus corresponds to the region of stable 
operation of the amplifier. In the case under consideration this is the region 
within the parabola for which T is smaller than Tg. 

Since at 6 = 0, that is at T = Tg, the amplifier is at the boundary of stabili-
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ty, the region outside the parabola corresponds to the region of unstable 
operation of the amplifier; in this region 8 <0 or T> Tg. Since amplifiers 
must necessarily be stable, they must be so designed that T lies within the 
parabola. 

By means of Eq. (2.2.2) it is possible to express Tg in terms of O. On the 
boundary of stability 8 = 0, whence: 

(1 + jxi)(1 + jx2) — Tg exp (j0) = 0. (2.2.4) 

Putting xl = x2 = x and separating the real and the imaginary parts of 

this expression gives: 

and 

whence, by eliminating x: 

1—x2 =Tg cos O, 

2x=Tg sin O, 

Tg 
(1 + cos (9) ' 

from which it follows that an amplifier is stable, provided: 

2 

2 
T < 

(1 + cos O) 

(2.2.5) 

(2.2.6) 

(2.2.7) 

2.2.3 SINGLE-STAGE AMPLIFIER WITH TWO NON-IDENTICAL RESONANT 
CIRCUITS 

In an amplifier there may be differences between the tuned circuits either 
because they are not tuned to the same frequency or because they have 

different quality factors, or for both reasons. In the single-stage amplifier 
under consideration this results in xi and x2 having different values (x = 

= Q). In discussing this case distinction will be made between the input 
and output circuits having different quality factors and/or different resonant 
frequencies. 

2.2.3.1 Different Quality Factors, Equal Resonant Frequencies 

When the quality factor Qi of the input circuit differs from the quality factor 

Q2 of the output circuit, this may be expressed by (assuming a to differ from 
unity) : 

whence: 
aQi = Q2, (2.2.8) 

(1 + j/3Qi)(1 + jRQ2) = 1 — a(~Qi)2 + j/3Qi(1 + a). 



.12

2.2] STABILITY 29 

By putting PQi = xl and NQ2 = x2, this expression becomes: 

(1 + jxl)(1 + jx2) _ (1 + jxi)(1 + jaxi) = 1 — axi2 + jxi(1 + a). (2.2.9) 

The locus of Eq. (2.2.9) is again a parabola; its vertex coincides with that of 
the parabola representing (l +jx)2. Both these loci have been plottted in Fig. 2.6. 
For the parabola representing Eq. (2.2.9), a is given a value of either 0.5 or 2. 
This curve intersects the imaginary axis at the points (0, ± j(1 + a)/j/a). 
For a 1 the curve thus lies outside the parabola representing 
(1 + jx)2, except at the vertex where the two curves coincide. This implies that 
if a is given a value differing from unity, the vector T exp (jO) remaining 
constant, the stability will slightly increase. 

2.2.3.2 Different Resonant Frequencies, Equal Quality Factors 

If the resonant frequency of the input and that of the output circuit of the 
single-stage amplifier differ, this may be expressed by putting: 

---(1+jx)2 

(1+ix,)(1+Jax,) 
(a=0.5 0r2) 15 

J4

J1

1 

j4 

j5 

Fig. 2.6. Loci of Eq. (2.2.9) with a = 0.5 or a = 2 (fully drawn curve) and of the function 
(1 + jx)2 (broken curve). At values of a differing from unity the former curve is always 
located outside the latter curve. 
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b 
P2 = Pi + 

Q 
(2.2.10) 

whence: 

(1 + jPiQ)(1 + jP2Q) = 1— (RiQ)2 — jSiQb + j(2PiQ + b)• 

By putting pi   = xi, this expression becomes: 

(1 + jxi){1 + j(xi + b)} = 1— xi2 — xib + j(2xi  + b). (2.2.11) 

The locus of Eq. (2.2.11) is also a parabola lying outside the parabola 
representing (1 + jx)2. It intersects the positive real axis in the point 
((1 + b2/4), 0) and the imaginary axis in the points (0, +j[/b2 + 4). Two of 
these loci, namely those for b = X0.5 and for b = +1.0, have been plotted 
in Fig. 2.7. It is seen that due to the tuning frequencies of the circuits being 

(1+Jx,) {1+j(xl+b)} 
b=±1 

— -- -b=±0.5 

intervals of x,=0. 

T 

j6 

J6

j5 

jl ' x1=0 for b=1 
xj =0 for 

6=0.5 

-1 11 2 
x1 =0 for 

b=-0.5 

-y4 

j5 

x7=0 
for b=-1 

Fig. 2.7. Loci of Eq. (2.2.11) with b = f 0.5 and b = + 1.0. These loci lie outside the 
parabola (1 + jx)2, which implies that for the same value of Tthe stability of the amplifier 
is increased if b has a value other than zero. 
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different, the stability of the amplifier has slightly increased in this case also. 
The greater the difference in tuning frequencies the greater will be the in-
crease in stability. 

The case of the resonant frequencies of the two tuned circuits being differ-
ent is of particular importance in connection with the method of aligning 
the amplifier, as will be shown in Section 2.3. 

2.2.3.3 Different Quality Factors, Different Resonant Frequencies 

When both the quality factors and the resonant frequencies of the tuned 
circuits of the single-stage amplifier differ, and the same notation is used as 
before, it may be written: 

(1 + jxi){1 + j(axl + b)} = 1— axi2 — bxi + j{(a + 1)x1 + b}. (2.2.12) 

As shown in sub-sections 2.2.3.1 and 2.2.3.2 the curve representing 
(1 + jxi)(1 + jx2) will be symmetrical with respect to the real axis if either 
only the quality factors or only the resonant frequencies differ. When, 
however, both the quality factors and the resonant frequencies differ the 
curve, representing Eq. (2.2.12), will be asymmetrical with respect to the 
real axis. 

In Fig. 2.8 such curves have been plottted for a = 2 or a = 0.5 and b = 1 
and b = — l.For the sake of comparison the parabola representing (1 +jx)2, 
applicable to the condition a = 1 and b = 0, has also been plotted. Both 
curves according to Eq. (2.2.12) are seen to lie outside the latter parabola. 
This means that by suitably choosing a and b in a particular amplifier design, 
it is possible to improve the stability, which, in turn, influences other pro-
perties of the amplifier. 

2.2.4 STABILITY FACTOR 

Sub-section 2.2.1 indicated in which region of the complex plane T should 
be located to ensure stable operation of the amplifier. It was shown that T 
should lie within the parabola which represents the boundary of stability. 
It was further shown that for single-stage amplifiers with non-identical tuned 
circuits (or with identical circuits tuned to different frequencies) the boundary 
of stability is situated just outside the parabola which is valid for the case of 
two identical, synchronously tuned circuits. It is, however, generally re-
quired that alignable amplifiers do not become unstable over the entire 
alignment range. This means that stability of such an amplifier has to be 
considered at the worst possible conditions that might occur during align-
ment. Following from the considerations in sub-section 2.2.3, the worst 
possible condition in view of stabilityis the case of equal resonant frequencies 
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(1-i-1x1) {1+j (axe+b)} 
---a=2 or 0.5, b= 1 
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Fig. 2.8. Loci of Eq. (2.2.12). The curves are not symmetrical with respect to the real axis, 
in contrast to those applying to the case in which either a or b is zero. 

2 

and equal quality factors of both tuned circuits. If, therefore, an amplifier is 
designed such that for correct operation the tuned circuits have different 
resonant frequencies, the stability of the amplifier should be considered 
taking the resonant frequencies as equal because during alignment the 
situation of equal resonant frequencies may actually occur. Further investi-
gation of the stability of the single-stage amplifier will therefore be confined 
to the case of an amplifier with two identical tuned circuits. The boundary of 
stability which is valid in this case (cf. sub-section 2.2.2) will be considered 
as the basic boundary of stability. In dealing with more complex amplifiers 
later, it will be seen that this boundary of stability is indeed very basic. 

Hence, if the top of the vector T is situated within the parabola (1 + jx)2

the amplifier will be stable or, in other words, it will not oscillate by itself. 
The location of T inside this parabola is, however, not a sufficient condition 



2.2] STABILITY 33 

for the stability of a practical amplifier. This may be illustrated by Fig. 2.9 
in which the vector T' is applicable to an amplifier which is barely stable 
because T' is only slightly smaller than Tg. If due to variations of tempera-
ture, supply voltage or other conditions, T' is slightly increased so that it 
approaches Tg more closely, or even becomes equal to it, the stable ampli-
fier will have become unstable as a result of environmental conditions. To 
ensure that the amplifier remains stable over a wide range of environmental 
conditions, T should be given a sufficiently small value. It is also necessary 
to keep T small with respect to Tg in order to make allowance for spreads 
in transistor parameters. For this purpose the amplifier is normally designed 
for a transistor having average values of parameters, but it must also remain 
reasonably stable when equipped with a transistor of the same type having 
the most unfavourable combination of parameters. 

It may thus be concluded that in order to avoid the risk of instability, 
practical amplifiers should be so designed that T is smaller than Tg by a 
certain factor, the stability factor. In a practical design this factor, defined as: 

a\ 

boundary of 
stability 

boundary of sufficient 
stability 

-6 -5 - 4 3 -2 -1 

j5 

j 4

j3 

j4 

j5 

Fig. 2.9. The vector T' applies to an amplifier which, due to a small change in environmental 
conditions, may become unstable, revealing that the design was not adequate. To ensure 
that the amplifier is sufficiently stable, T should be located within or on the parabola re-
presenting the boundary of sufficient stability. 
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(2.2.13) 

should be so chosen that not only will the amplifier be sufficiently protected 
against self-oscillation under the most unfavourable conditions, but certain 
requirements concerning the response curve are also satisfied. This point 
will be dealt with in sub-section 2.5.2. 

In Fig. 2.9 the curve representing Tg/s as a function of 0 has been plotted 
together with the locus for Tg. It can be shown that the curve T9/s =f(e) is 
also a parabola, confocal with the parabola for Tg, its vertex lying at the 
point (1/s, 0). 

The region within the parabola for Tg/s may thus be considered as the 
region of sufficiently stable operation of the amplifier, the parabola itself 
representing the boundary of sufficient stability of the amplifier. 

2.2 5 POTENTIAL UNSTABILITY AND INHERENT STABILITY 

In the preceding comments it was investigated under what conditions insta-
bility might occur in a single-stage amplifier. It was shown that it depends 
on the magnitudes of T and 0 whether or not an amplifier is stable. The 
stability of an amplifier can therefore be governed by modifying T and/or O. 

Eqs. (2.1.11) and 2.1.12) reveal that both T and e can be modified by 
changing the product y12y21• This can be achieved by different d.c. biasing 
of the transistor or by applying neutralization. Moreover, it is possible to 
modify T, as appears from Eq. (2.1.11) by controlling the product G1G2. 

According to Fig. 2.2 the product GiG2 can be varied by modifying either 
the dampings G* of the tuned circuits, or the source and load dampings 
Gs and GL respectively. If yi2 and y21 are left unchanged Twill reach an upper 
limit when Ys, Yl*, Y2* and YL are made purely susceptive (Gs, GI*, G2* and 
GL being made zero). It may then be written: 

Gl = gll , 

G2 = g22 

(2.2.14) 

Identical comments apply to an amplifier in the H-matrix environment. 
If in the circuit of Fig. 2.3 the impedance Zs and Zi* and the admittances 
Y2* and YL are made purely susceptive, we obtain according to Eqs. (2.1.20) 
and (2.1.21) : 

Ri = Re(hii) , 

G2 = Re(h22) 
(2.2.15) 
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Combining Eq. (2.2.14) with Eq. (2.1.11) and Eq. (2.2.15) with Eq. 
(2.1.24) it follows 1) : 

IY12Y21I Ih12h211 
—  =t. 

gllg22 Re(hll) Re(h22) 
(2.2.16) 

The quantity t will be called the intrinsic regeneration coefficient of the 
transistor. The value of t is independent of the matrix in which the proper-
ties of the transistor are expressed. This might be seen either from considering 
the physical operation of the transistor or from inspecting a matrix conver-
sion table. This coefficient has been plotted in Fig. 2.10 for a particular case. 
In this graph the regeneration coefficient T of the amplifier stage and the 
boundary of stability Tg have also been drawn. In all practical cases twill 
obviously exceed T. 

2 

t j6 

Fig. 2.10. A transistor is said to be potentially unstable when its intrinsic regeneration co-
efficient t lies outside the parabola representing the boundary of stability T 0 : The regener-
ation coefficient T of a practical amplifier stage equipped with this transistor is gener-
ally much smaller than t (and also smaller than T9). 

1 ) Assuming gi1 > 0, g22 > 0, Re(hli) > 0 and Re(h22) > 0. 
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It will be clear that there is no risk of instability occurring in an amplifier 
unless the intrinsic regeneration coefficient t is of such magnitude that the 
transistor with purely susceptive terminations may itself become unstable. 
This will be the case when t is located outside the parabola which represents 
the boundary of stability. The transistor is then said to be potentially unstable. 
According to Fig. 2.10 potential instability occurs when: 

t> T9, (2.2.17) 

whereas an amplifier cannot become unstable when: 

t < Ty. (2.2.18) 

In the latter case the transistor is said to be inherently stable. 
It thus depends on the four-terminal network parameters of the transistor 

whether it is potentially unstable or inherently stable. Since these parameters 
are frequency-dependent, a transistor may be potentially unstable over a 
certain range of frequencies (usually the mid-range) and inherently stable 
over other ranges (usually the very low and very high ranges). A statement 
that a transistor or any other active device is potentially unstable is therefore 
incomplete unless the frequency range to which this statement applies is also 
specified. 

It may thus be concluded that if an amplifier is designed for using poten-
tially unstable transistors (or electron tubes), provision must be made for 
the ultimate amplifier design to be sufficiently stable. It is only when the 
transistors are inherently stable to such an extent that t is located within the 
region of sufficient stability that no stability considerations are required. 
This will thus be the case when: 

t < T9/s. (2.2.19) 

2.3 Tuning Procedure of the Amplifier 

The frequency response of an amplifier depends on the properties of its 
tuned circuits, whilst the method of alignment largely determines the 
influence of these frequency-dependent properties on the performance of 
the amplifier. It is therefore necessary to investigate the various methods 
of aligning an amplifier insofar as they may lead to different results. 

Three methods of tuning') amplifiers with feedback will be discussed. 

1) A resonant circuit is said to be tuned when it gives the excepted response at the 
desired frequency, i.e. at the tuning frequency. Note that the term "expected response" 
does not necessarily imply "maximum response". 
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These tuning methods are closely related to the matrix environment in 
which the properties of the amplifiers are expressed and the way in which 
the various tuning methods are carried out in practice agrees with defini-
tions of the four-terminal network parameters used to analyze the amplifier 
(see sub-section 2.3.6). 
Although the advantages and disadvantages of the tuning methods become 
more apparent in amplifiers which comprise a large number of tuned circuits, 
the different methods will be investigated here with reference to a single-
stage amplifier with two single-tuned circuits. In this way the consequences 
of the tuning method on the mathematical analysis of the amplifier perform-
ance can easily be explained. The results thus obtained can readily be 
applied to more complex amplifiers, as will be shown later. 

To ascertain the influences of the various methods of tuning an amplifier 
the admittance parameter representation will be considered. In a later sub-
section the consequences of the tuning methods are derived for an amplifier 
using a hybrid-H parameter representation. 

2.3.1 GENERAL CONSIDERATIONS REGARDING THE METHOD OF TUNING 
AN AMPLIFIER IN THE Y-MATRIX ENVIRONMENT 

The transimpedance function of the single-stage amplifier based on admit-
tance parameters according to Eq. (2.1.16) was obtained by assuming both 
xi and x2 to be zero at the tuning frequency; for in that case, by definition, 
x = 3Q and fi = 0 at resonance (cf. Appendix II). 

To appreciate the consequences of these assumptions, which were made 
without taking into consideration other factors introduced by the transistors, 
it is necessary to ascertain the admittances presented by the input and out-
put terminals of the transistor in the amplifier. 

It will be assumed that a transistor fourpole, defined by the parameters 

yll, y12, y21 and y22, together with its tuned output circuit and load admit-
tance, is connected as shown in Fig. 2.11. In this circuit the following relations 
apply: 

11 = yllvl + y12V2 

t2 = Y21V1 + (y22 + Y2* + YL)v2• 

(2.3.1) 

When i2 = 0 (i.e. when the output terminals are open-circuited) the input 
admittance is: 

Vj Y12y21 
Ytn = — = Yll 

y22 + Y2*  + YL 
, 

it 
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Fig. 2.11. Circuit arrangement for calculating the admittance presented by the transistor 
input terminals. 

or, from Eq. (2.1.2) : 

y12y21 
Yin = yll 

Y2 
(2.3.2) 

The first term of this equation represents the transistor self-admittance yli, 
whilst the second admittance term —yi2y2i/Y2 accounts for the presence 

of the feedback parameter y12 of the transistor. 
The output admittance presented to the transistor output terminals in 

the single-stage amplifier can be calculated in an analogous way. The ad-
mittance of the tuned input circuit, Yl*, and the source admittance Ys are 
now connected to the transistor input terminals in the normal way as shown 
by Fig. 2.2. The output admittance then is: 

y12y21 
gout = y22 

Y1 
(2.3.3) 

Apart from the first term y22, representing the transistor self-admittance 

parameter, the output admittance contains a term — y12y21/Yi. 
Eqs. (2.3.2) and (2.3.3) reveal that the input and output admittance of the 

transistor in the amplifier depend on the complex values of Y2 and Yi respec-
tively, and hence on the tuning of the amplifier. 

Now, according to Eq. (2.1.2) : 

and 
Yi= yli +Yi* +Ys, 

Y1=y22+Y2* +YL. 

(2.3.4) 

It is thus seen that the admittance Y1, as defined here, only contains the 
part yll of the transistor input admittance, whereas the input admittance it-
self comprises, apart from yli, a term — y12y21/Y2. The latter term can, 
however, be reduced to such an extent as to become negligible by making Y2
very large. This can be achieved either by heavily damping or detuning the 
output circuit of the amplifier. 

According to Eq. (2.1.4) : 
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Yi = G1(1 + jxi), 

in which x1 must disappear at the tuning frequency, as stated earlier. This 
will therefore be the case only when the influence of the term — y12y21/ Y2 

on the input admittance is negligible. It may thus be concluded that Y2 

should be made very large in order to align the input circuit of the amplifier, 
or, in other words, to adjust its circuit elements so that x1 = 0 at the tuning 
frequency (The expected response of the tuned circuit is that which is 
obtained when xl = 0). 

The same argument holds for the output tuned circuit. In this case: 

Y2 = G2(1 + jx2), 

in which the condition x2 = 0 at the tuning frequency cannot be satisfied 
unless the output circuit is tuned with the input circuit heavily damped or 
detuned. 

Stringent requirements are therefore imposed on the method of tuning 
the amplifier if the properties of the resonant circuits are to be defined by 
G1(1 + jxi) and G2(1 + jx2). 

2.3.2 TUNING METHOD A 

One way of tuning the single-stage amplifier — to be termed "method A" —
therefore consists in tuning each of the two tuned circuits with the other 
circuit heavily damped or detuned. 

In practice, the tuning can be carried out by feeding a signal of the tuning 
frequency to the circuit to be tuned, via a high impedance and measuring 
the voltage produced across the circuit by means of a vacuum tube volt-
meter. The circuit elements are then so adjusted that the voltmeter reading is 
at a maximum. Care should be taken that the instruments used for tuning 
this circuit do not introduce any noticeable damping or detuning. 

Both tuned circuits of the single-stage amplifier can easily be adjusted in 
this way. However, if the amplifier contains a considerable number of tuned 
circuits, this procedure is rather laborious and takes much time. In fact, each 
circuit must be aligned separately, and during this operation at least the pre-
ceding and the following circuits must be heavily damped or detuned. This 
method was assumed to be applied in the single-stage amplifier considered 
hitherto. The results thus obtained remain valid, however, provided tuning 
method A is applied. 

2.3.3 TUNING METHOD B 

Another method of tuning the single-stage amplifier, termed "method B", 
consists in first tuning the output circuit with the input circuit heavily 
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damped. The admittance of the output circuit as a function of the frequency 
can then be expressed by: 

Y2 = G2(1 + jx2)• 

Subsequently the input circuit is tuned so that the reading of a vacuum tube 
voltmeter connected to the output terminals is at a maximum, the tuning of 
the output circuit being left unchanged. 

According to Eq. (2.3.2) the input admittance of the transistor at the tuning 
frequency is: 

y12y21 
Yin = yll 

G2 , 

provided the output circuit has already been tuned (x2 = 0). 
The total admittance at the input terminals of the transistor, including 

the tuned circuit admittance Y1* and the source admittance Ys, then becomes: 

yin tot = Ys + Y1* + yii 
G2 

y12y21 

which can also be written: 

or 

yin tot = Yl 
G2 , 

y12y21 

y12y21 
Yin tot = G1 1 + jxl  

G1G2 . 

(2.3.5) 

(2.3.6) 

(2.3.7) 

Substitution of Eqs (2.1.11) and (2.1.12) gives: 

Yin tot = Gi(1 + jxi — T cos O — jT sin O). (2.3.8) 

When the input circuit is being tuned the reading of the voltmeter will be 
at a maximum if the admittance of this circuit as a function of the normalized 
detuning, as defined by Eq. (2.3.8), is at a minimum. This will be the case 
when the imaginary part of this expression is zero, that is to say when: 

xl — T sin O = 0, 
or 

Xi = T sin O. (2.3.9) 

When the input circuit is tuned in this way it is essential for xi to have 
the value given by Eq. (2.3.9) at the tuning frequency so that, at this frequen-
cy, the total susceptance of the circuit is zero. The quantity x = 1Q has, 
however, already been so defined that x itself becomes zero at the tuning 
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frequency. In order to keep this definition of x valid for the method of tuning 
described here, the quantity xi' will be introduced: 

xi' = T sin 0. (2.3.10) 

The total susceptance of the input tuned circuit will therefore be defined as: 

Gi(xi + xi'). (2.3.11) 

The input tuned circuit thus gives the expected response when at the 
tuning frequency its susceptance equals 

Gixi' = Gl T sin 0, 

in accordance with Eq. (2.3.8). 
If the single-stage amplifier is aligned according to method B, that is by 

firstly tuning the output circuit with the input circuit heavily damped and 
subsequently tuning the input circuit with the output circuit unchanged, 
the total admittance of the output tuned circuit will therefore be: 

Y2 tot = G2(1 + jx2)• 

The total admittance of the input circuit will be: 

Yi tot = Gi{1 + j(xl + xi')}. (2.3.13) 

(2.3.12) 

It should be recognized that the conductive term of this admittance has 
remained unchanged. This is due to the fact that Eq. (2.3.13) clearly expresses 
the admittance of the input circuit without the influences of the feedback of 
the transistor on this circuit. The conductance therefore remains Gi, but the 
susceptance is increased by Gixi' in order to render the total susceptance, 
including that due to the transistor feedback, equal to zero at the tuning 
frequency, as required by the tuning procedure adopted. In other words, if 
tuning method B is followed the susceptance must be corrected by an amount 
Gixi'. The term x1'  in Eq. (2.3.13) will therefore henceforth be referred to as 
the tuning correction term. 

In practice, tuning method B is very convenient for amplifiers containing 
a large number of tuned circuits. An output voltmeter having a very high impe-
dance is connected across the output circuit and a low-impedance signal 
generator feeds a signal having the desired frequency to the penultimate tuned 
circuit of the amplifier, after which the output circuit is tuned to maximum 
deflection of the output meter. All other tuned circuits of the amplifier are 
then aligned in succession in the same way, the output circuit having been 
tuned first. The signal generator is always connected to the circuit that pre-
cedes the one to be tuned. 
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Compared with method A, this method of tuning is therefore more con-
venient and time-saving. Moreover, the consequences of the tuning procedure 
on the performance of the amplifier can easily be taken into account in a 
mathematical analysis. This has already been shown in the foregoing ana-
lyses, and it will be seen later that similar results are obtained for more 
complex amplifiers. Another point is that, with tuning method B, better 
amplitude response and envelope delay curves are usually obtained, which 
will also be discussed later. 

2.3.4 TUNING METHOD C 

An alternative method of tuning, "method C", is as follows. First the input 
circuit is tuned to the desired frequency with the output circuit heavily 
damped or detuned. This damping or detuning of the output circuit can 
conveniently be achieved by using a low-impedance output meter, for 
example a vacuum-tube voltmeter the input probe of which is shunted by 
a large capacitance. Under these conditions the input admittance of the 
transistor is y11, which implies that the total admittance of the input circuit is: 

Yl tot = Gi(1 + jxi). 

After the input circuit has been tuned, the output circuit is aligned, the 
input circuit remaining unaffected. The signal required for tuning the out-
put circuit is thus obtained from the current source connected to the input 
circuit. A tube voltmeter, which must not introduce any noticeable damping 
in this case, is connected to the output terminals. 

In analogy with the comments in sub-section 2.3.3, the total admittance of 
the output circuit, with the input circuit correctly tuned, is: 

or 

Yout tot = Y22 + Y2* + YL 
G1 ' 

Y12y21 

Y12Y21 
Y12Y211 Yout tot = Y2- 

G1 
- G2 1 + Jx2 G1G2 

/ 

Substitution of Eqs. (2.1.11) and (2.1.12) gives: 

Yout tot = G2(1 + jx2 —T cos O — jT sin ©). (2.3.14) 

It can be shown in a similar way as in sub-section 2.3.3 that with this 
method of tuning the total admittance of the output circuit is 
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Y2 tot = G2{1 + J(X2 + X2")}, (2.3.15) 

in which the tuning correction term x" equals 1) 

X2" = T sin O (2.3.16) 

Similar to tuning method B, method C is particularly useful for aligning 
amplifiers (with feedback) which comprise a large number of tuned circuits. 
In this case, too, the circuits are tuned in succession, but here the input 
circuit is tuned first. 

2.3.5 BASIC DEFINITIONS OF THE VARIOUS TUNING METHODS 

The various tuning methods of selective amplifiers with feedback are consi-
dered in the preceding paragraph by analyzing an amplifier in the Y-matrix 
environment. As already referred to, the tuning methods and their practical 
execution are closely related to the matrix environment of the amplifier. This 
means that there may be differences between corresponding tuning methods 
for amplifiers in the Y- or H-matrix environments although the basic defini-
tions are the same. This will become apparent by considering these basic 
definitions which will therefore be stated here explicitely. 

2.3.5.1 Tuning Method A 

The resonant circuits of a single-stage amplifier are said to be tuned according 
to method A when, during alignment, the total immittance of the circuit at 
the input terminals of a transistor only contains the input self-immittance 
(either yli or hit) of this transistor and the total immittance of the circuit 
at the output terminals of this transistor only contains its output self-
immittance (either y22 or h22). 

2.3.5.2 Tuning Method B 

A single-stage amplifier is said to be tuned according to method B when 
the resonant circuits are tuned in succession starting at the output side and 
the tuning is carried out such that, during alignment, the total immittance 
of the circuit connected to the output terminals of a transistor only contains 
the output self-immittance (y22 or h22) of this transistor. 

2.3.5.3 Tuning Method C 

A single-stage amplifier is said to be tuned according to method C when 
the resonant circuits are tuned in succession starting at the input side and 

1) The double dash which is used here distinguishes the tuning correction term from that 
used for tuning method B. 
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the tuning is carried out such that, during alignment, the total immittance 
of the circuit connected to the input terminals of a transistor only contains 
the input self-immittance (either yli or hii) of this transistor. 

Due to the different definitions of y22 and h22 (input terminals of the tran-
sistor short-circuited or open-circuited respectively), the way in which 
tuning methods A en B must be carried out in amplifiers in either the Y or 
H-matrix environment is completely different. 

2.3.6 VARIOUS TUNING METHODS FOR AN AMPLIFIER IN THE H-MATRIX 
ENVIRONMENT 

For the single-stage amplifier in the H-matrix environment the total input 
self-immittance is the impedance Zi and the total output self-admittance is 
the admittance Y2. In analogy with the preceding paragraphs, tuning correc-
tion terms are required for tuning methods B and C. 

2.3.6.1 Tuning Method A 

For the single-stage amplifier tuned according to method A we may write, 
see Eq. (2.1.19) : 

and 
Zi = Ri(1 + jxi) , 

Y2 = G2(1 + jx2) . 

(2.3.17) 

From the basic definition it follows that for an amplifier in the H-matrix 
environment the output circuit should be short-circuited to tune the input 
circuit and the input circuit should be open-circuited to tune the output 
circuit. The latter condition is sometimes difficult to fulfil in a practical 
amplifier because the tuning signal should be supplied to the transistor via an 
impedance which is large compared with hii 1). 

2.3.6.2 Tuning Method B 

For the same reasons as tuning method A, tuning method B is less practical 
for amplifiers in the H-matrix environment 2). For completeness of the 
theoretical analysis, however, suppose that an amplifier is tuned according 
to this method. Thus, in analogy with sub-section 2.3.3, a tuning correction 
term x' appears in the equation for the total input impedance Zi of the am-
plifier whereas no tuning correction term appears in the total output ad-

mittance Y2. With Eqs. (2.1.17) and (2.1.19) : 

1) The same conclusions can be drawn for amplifiers in the Z- [and K-matrix environ-
ments. 

2) The same applies to amplifiers in the Z-matrix environment. For amplifiers in the 
K-matrix environment, however, tuning method B will prove to be the most practical 
method. 
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Zl = Rl{l + j(xl + x1')}, 
and (2.3.18) 

Y2 = G2(1 + jx2) 

2.3.6.3 Tuning Method C 

According to the basic definition of tuning method C in sub-section 2.3.5 
a single-stage amplifier in the H-matrix environment should be tuned as 
follows: 
Firstly the input circuit is tuned. Because h11 is defined with the output ter-
minals of the transistor short-circuited, the output circuit of the amplifier 
must be heavily damped or detuned for tuning the input circuit. Next, the 
output circuit is tuned with the (already tuned) input circuit left operative. 
With this tuning operation no practical difficulties are encountered and it 
may thus be concluded that tuning method C is very useful for amplifiers 
in the H-matrix environment 1). 

In analogy with sub-section 2.3.4 a tuning correction term x2" appears in 
the total output admittance Y2 of the amplifier whereas no tuning correction 
term appears in the total input impedance Zi. With Eqs. (2.1.17) and 
(2.1.19) we then obtain: 

Zl = R1(1 + jxl), 

Y2 = G2{1 +J(x2  + X2")}. 

(2.3.19) 

2.3.7 INFLUENCE OF THE METHODS OF TUNING ON THE REDUCED DETER-
MINANT 

It has been shown that for tuning method B a tuning correction term xi' 
must be introduced for the immittance of the input circuit whereas for the 
output circuit no correction term is required. For tuning method C the reverse 
applies, and for tuning method A no tuning correction term is necessary at 
all. 

The three tuning methods may be represented by one set of equations 
giving the immittances of the input and output circuits: 

Yi = Gi{ 1 + j(xl + pixi + p2x1" )}, (2.3.20.a) 

Z1 = R1{ 1 + j(xl + plxl' + p2x1" )}, (2.3.20.b) 

Y2 = G2{1 + j(x2 + 
plx2' + 

p2x2r)}. (2.3.20.c) 

Equations a and c are valid for amplifiers in the Y-matrix environment 

1) Further consideration of tuning method C leads to the conclusion that it is less practical 
for amplifiers in the Z- and K-matrix environment. 
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whereas equations b and c apply to amplifiers in the H-matrix environment. 
In Eq. (2.3.20) the tuning correction terms are: 

xl' = T sin (9,  xi" =0, 

x2'  = 0, x2"  = T sin e, 
(2.3.21) 

while pl and p2 would furthermore be given the values tabulated below: 

Table 
2.1 

tuning 
method A 

tuning 
method B 

tuning 
method C 

pI 0 1 0 
p2 0 0 1 

The reduced determinant of the single-stage amplifier becomes with 
Eqs. (2.3.20) and (2.3.21): 

6 = 
1 + j(xl + pixi' + p2xi

„) 

1 

Texp (j(9) 

1 + j(x2 + plx2 '  + p2x2") 

(2.3.22) 

Since S contains all frequency-dependent terms of the transfer function of 

the amplifier, see Eqs. (2.1.16) and (2.1.27), Eq. (2.3.22) can be used univer-
sally to investigate the gain, the amplitude response and the phase response 
of the single-stage amplifier, the table above being employed to account for 
the different methods of tuning. 

2.3.8 INFLUENCE OF THE METHODS OF TUNING ON THE STABILITY OF 
THE AMPLIFIER 

With tuning methods B or C the input and output circuits of the amplifier 
are detuned with respect to each other by an amount I) 

Xi' = x2" = T sin O. 

At xi = x2 =  x the reduced determinant, as given by Eq. (2.3.22), be-

comes: 
(1 + jx)(1 + jx + jT sin o) — T exp (j0). (2.3.23) 

i) It should be recognized that, although the amplifier is synchronously tuned, which 
means that a signal of the same frequency is used for aligning both circuits, it is in-
herent to tuning methods B and C that the circuits resonate at different frequencies. 
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At the boundary of stability this determinant becomes zero. Denoting the 
value of T at this boundary by Tg' gives: 

(1 + jx)2 + (1 + jx) • jT sin (9 — Tg' exp (j(9) = 0. (2.3.24) 

The real and imaginary parts of this expression can be separated, which 
gives: 

1 — x2 — xT Sin O = Tg' cos O, (2.3.25) 
and 

or, since 

2x + T sin O = Tg' sin O, 

T ' 
T = g  , 

s 

2x=( 1
1--)T g'sin0. 

(2.3.26) 

(2.3.27) 

This equation is now substituted for x in Eq. (2.3.25), so that after some 
rearrangement a quadratic expression for Tg' is obtained of which only the 
(largest) positive root has significance: 

Tg' =  
, / 

2 
(2.3.28) 

cos O + V cost O + (1 — \) sine O 
\ si 

With tuning method A the value of Tg becomes: 

2 

Tg COS - 1/Cost (9 .... Sint O 
(2.3.29) 

(cf. sub-section 2.2.2, Eq. (2.2.6). 
Comparison of Eqs. (2.3.28) and (2.3.29) reveals that Tg' is slightly larger 

than Tg. This confirms that, due to the tuning methods B and C, the stabili-
ty of the amplifier is slightly improved, as was already shown in sub-section 
2.2.3.2 and in Fig. 2.7 (now b = T sin 0). 

Considering that in a practical amplifier only the value of T = Tg/s is of 
importance, this small increase in stability will be neglected henceforth. 
Moreover, the condition that during alignment the tuned circuits may 
resonate at the same frequency (see sub-section 2.2.4) must also be taken into 
account. As a matter of fact the tuning procedure affects only the stability 
factor s, the exact value of which is of secondary importance. 

2.4 Gain 

The method of expressing the gain of amplifiers equipped with electron tubes 
in terms of voltage gain has been abandoned for transistor amplifiers, the 
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gain of which is as a rule expressed in terms of power gain. The reason for 
this is the difference in input admittance of the two types of amplifying devices. 

Provided the frequency of the signal to be amplified is not extremely high, 
the real part of the input admittance of electron tubes is negligible, so that 
no signal-frequency power is required to produce a certain signal across the 
impedance in the output circuit, it being sufficient to apply a certain voltage. 
In bandpass amplifiers the relevant stage equipped with an electron tube is 
usually followed by another stage also provided with an electron tube, which 
again requires only a voltage to drive it. This explains why the gain of a 
tube amplifier is expressed in terms of voltage gain. 

On the other hand, the real part of the input admittance of transistors is 
by no means negligible even at low frequencies. A certain amount of input 
power is therefore required to drive the transistor. 

Furthermore, the impedance levels may be different at various points in 
the amplifier between which the gain is to be specified. It is therefore con-
venient to express the gain of transistor amplifiers in terms of power gain, it 
then being superfluous to state the different impedance levels. Expressing 
the gain in terms of power gain is, moreover, very useful because the follow-
ing transistor also requires some driving power. 

2.4.1 TRANSDUCER GAIN 

The definition of the power gain of an amplifying circuit will now be dis-
cussed. It should be such that the gain figure gives a proper indication of the 
function of the circuit. 

Fig. 2.12 represents an amplifier which delivers power into a load having 
an admittance YL = GL + BL. The amplifier is driven by a current source is 
having an admittance Ys = Gs -f- jBs. 

The power supplied to the load by the amplifier is: 

Po = Ivol 2 • GL. (2.4.1) 

amplifier 

'S1 

Fig. 2.12. Amplifier with load and source admittances. The power delivered to the load 
amounts to vo2GL, whilst the available power of the source is is2/4Gs. The ratio of these 
two powers is termed the transducer gain fit. 



2.4] GAIN 49 

The power supplied to the input admittance of the amplifier by the current 
source depends on the matching between the source and the amplifier. 

Optimum matching can always be achieved by means of an impedance 
transforming network incorporated in the input circuit of the amplifier, so 
that its gain can best be related to the power that the source can deliver 
under matched conditions. This power, termed the available power of the 
source, equals: 

(I isI 2 1 1 
Psa =

 = 
IisI2 4Gs . (2.4.2) 

The ratio Po/Psa is termed the transducer gain of the amplifier. Hence, 
from Eqs. (2.4.1) and (2.4.2): 

~ t = 4GsGL . 
vo 

is 

2 
(2.4.3) 

or, as the ratio vo/is represents the transimpedance Zt of the complete 

amplifier circuit: 

~ t = 4GsGL IZt I2. (2.4.4) 

By means of the Thevenin-Norton theorem, the current source of Fig. 2.12 
with admittance Ys can be replaced by a voltage source with impedance Zs, 
see Fig. 2.13. 
If 

Zs = Rs + j Xs, 

the available power from the source is: 

Ivs12
Psa = 

4R5 
. 

With Eq. (2.4.1) the transducer gain then becomes: 

amplifier 

Zin ̀ Rin+f Xin 

J 

V0 YL 

(2.4.5) 

(2.4.6) 

Fig. 2.13. Alternative amplifier arrangement for defining transducer gain. The current 
source is with admittance Ys of Fig. 2.12 has been replaced by a voltage source with an 
impedance Zs. 
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~t = 4RSGL
vo 

vs 

2 
= 4RSGL IKtl2 . (2.4.7) 

It will be obvious that Fig. 2.12 and Eq. (2.4.4) apply especially to ampli-
fiers in the Y-matrix environment whereas Fig. 2.13 and Eq. (2.4.7) are 
applicable to amplifiers in the H-matrix environment. 

Eqs. (2.4.4) and (2.4.7) thus give the power gain of an amplifier between 
a given load admittance having a damping GL and a given signal source 
having a damping Gs or resistance Rs respectively. This gain figure is the 
best indication of the properties of the amplifier, provided that GL and Gs 
or Rs are independent of the design of the amplifier. Definitions of trans-
ducer gain and other methods of expressing gain in power are presented in 
Appendix IV. Furthermore, the relative merits of the various methods of 
defining gain in power will be considered in Chapter 4. 

2.4.2 POWER GAIN 

It has been shown that the transducer gain is a very useful measure of the 
amplification of an amplifier as a whole. However, it is very often necessary 
to express the gain of the individual stages of an amplifier in order to judge 
their amplifying properties. For this purpose another gain figure, the power 
gain per stage of the amplifier, is used. This power gain is defined as the 
ratio of the amount of power fed to the load of the stage (usually the input 
impedance of the following stage) to the amount of power fed to the input 
impedance of the stage itself (see also Chapter 4). In the circuit of Fig. 2.12 
the power gain is therefore given by: 

Ivp 2 GL 
~h —  (2.4.8) 

Iv4 2 Gln 

and in the circuit of Fig. 2.13: 

Ivol 2 ' GL 

Ivtl2

R2n 

2.4.3 TRANSDUCER GAIN OF THE SINGLE-STAGE AMPLIFIER 

(2.4.9) 

Eqs. (2.4.4) and (2.4.7) give the transducer gain of an amplifier in the Y- or 
the H-matrix environment respectively. Together with Eq. (2.3.22) and 
Eqs. (2.1.16) resp. (2.1.27) the transducer gain of the single-stage amplifier 
at x = 0 becomes: 
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or 

in which: 

So = 

2 

ct = 4GSGL 
Iy211 1 , 

G12G22 ISoI2 

~t = 4RSRL ' 
R12 G22 

I 
So 2 

1h2112 1 

1 + j(plxl , + p2x1„) 

1 

r 
1 

T exp (jO) 

1 + j(plx2, + P2x2„)

When tuning method A is applied, So becomes: 

So = 1 — T(cos O + jsin O), 

whilst with tuning methods B and C: 

So=1—Tcos(. 

(2.4.10) 

.(2.4.11) 

(2.4.12) 

(2.4.13) 

These expressions reveal that (because of the term Tsin (9 in Eq. (2.4.12)) 
tuning methods B and C usually yield a slightly higher transducer gain at 
x = 0 than method A. 

Eq. (2.4.10) can also be written: 

_  Y21!2 4Gsg11 4g22GL 
~t 

4g11g22 (GS + gll) 2 (g22 + GL)2 
. 

(Gs + gll)2 (g22 + GL)2 1 

G12 G22 So 12
or: 

_  Ih2112  4Rs R5(h11) 4R€(h22) GL 
~t 

4Re(hll) Re(h22) {Rs + Re(hii)}2 {Re(h22) + GL}2

{Rs + Re(hll)}2 {Re(h22) + GL}2 1
R 12 

G22  ISO 

2 

(2.4.14.a) 

(2.4.14.b) 

According to Appendix V, the first factor of these expressions denotes the 
maximum unilateralized power gain of the transistor, which will be denoted by 

~uM. The second and third factors denote the mismatch losses 1) between the 

i) Strictly speaking, the term "mismatch losses" is used here incorrectly because the 
input and output self immitances are not the actual input and output immittances in case 
the transistor is non-unilateral. The influence of the transistor feedback on the trans-
ducer gain is, however, completely accounted for by the factor . The remaining fac-
tors in the expression for the transducer gain (Eq. 2.4.14) only refer to a "unilateralized" 
transistor. This explains the term "mismatch losses" in the sense as used here. 
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real parts of the generator immittance and transistor input self-immittance and 
those between the real parts of transistor output self-immittance and load 
immittance respectively (see Appendix II); these mismatch losses will be 
denoted by mm1 and mm2 respectively. According to the same appendix, 
the last two factors of Eq. (2.4.14) represent the insertion losses of the 
first and second tuned circuit of the amplifier, to be denoted by t1 and -'t2 
respectively. The factor I1/So I2 represents the losses due to the feedback of 
the transistor at the tuning frequency. These losses will be denoted by . 
Eq. (2.4.14) may thus be written: 

~t = ~uM mm1 mm2 1 t2 ' ~j• (2.4.15) 

The quantity uM depends solely on the transistor properties and the chosen 
biasing point. 

For tuning methods B and C, c j can be written with Eq. (2.4.13) as: 

1 
~j 

(1 —Tcos O)2 ' 
(2.4.16) 

For amplifiers in the admittance matrix environment, Eq. (2.4.16) can be 
written as: 

G1 2 
~j—

G1 
IY12Y21I cos 0 

G2 

(2.4.17) 

The denominator of this expression represents the total damping at the input 
terminals of the transistor including the influences of the feedback whereas 
the numerator represents this damping without feedback influences. Now, 
for a certain output current of the transistor a certain voltage has to be 
produced at the input terminals (10 = y21 vt). (Eq. 2.4.16)) then represents 
the square of the ratio of the sum of the input currents through the various 
dampings for the cases with and without feedback required to produced the 
same input voltage vt. This squared ratio equals the influence due to the 
feedback on the gain in power of the amplifier. 

For tuning method A, t.'j can be expressed as: 

0j — G12

}G1 
IY12Y21I cos ©)2 SIY12Y21I sin € 2 ' 

G2 
+<

G2 j) 

(2.4.18) 

which reveals that the feedback losses are larger for tuning method A than 
for tuning methods B and C. 
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For amplifiers in the H-matrix environment similar arguments hold for the 
influence of the feedback. 

The remaining factors constituting 't depend on the design of the amplifier 
and are determined by the stability and response curve requirements. 

Since it is not intended to discuss in this chapter an actual design of an 
amplifier of the type considered, but merely to define and explain several 
terms which are to be used later, the problem of obtaining maximum trans-
ducer gain will not be dealt with here. Chapter 4 will mainly be devoted to 
this problem together with some other points. 

2.5 Frequency Response of the Amplifier 

The only frequency-dependent term in the transfer function of the amplifier 
is the reduced determinant S which, including the influences of the tuning 
procedure, is given by Eq. (2.3.22). From this reduced determinant the 
the complex response curve, the amplitude response curve and the phase 
response curve can be derived. 

2.5.1 THE COMPLEX RESPONSE CURVE 

The complex response curve of an amplifier is defined as the curve which 
gives the combined responses of the amplifier with respect to amplitude 
and phase, both as functions of frequency. This response corresponds to the 
transfer function of the single-stage amplifier, including influences of the 
tuning procedure, hence to the reciprocal of: 

1 + J(xi + plxl, + 
p2x1

„ ) T exp (JO) 

1 1 + j(x2 + 
Plx2r + P2X2rr)

in which p1 and P2 follow from Table 2.1, and x' and x" are the tuning 
correction terms (see sub-section 2.3). 

Since xi is related in a simple manner to x2, it is possible to express Zt
as a function of either xi or x2 or, for example, as a function of the geometric-
al mean of the normalized detunings x1 and x2. Preference is given here 
to the latter method, and for this purpose a new normalized detuning 

x = Vxlx2, (2.5.2) 

will be introduced. It is now possible to plot S as a function of x in the 
complex plane. Fig. 2.14 shows such a graph for a single-stage amplifier 
having the following data: xi = x2, T = 2, O = 225°, pi = 1 and p2 = 0 
(tuning method B). 

Both the amplitude and the phase response can be determined from this 
complex response curve. The length of the line 181 is a measure for the reci-

6 = (2.5.1) 
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2.4 
29 j6 

j6 

Je 
Fig. 2.14. Complex response curve of a single-stage amplifier with two single-tuned circuits 
having the following data: xi = x2 = x, T = 2, = 225°, p1 = 1 and p2 = 0 (tuning 
method B). The length of the line I is the reciprocal of the transimpedance at x = 1, 
whilst denotes the phase angle of the transimpedance function at this frequency. 

2.4 

20 
l6 

d2 
0.8 

6 

4 Re(6) 
0.8 

procal of the amplitude response for a normalized frequency x = + 1, 
whilst angle q represents the phase angle of S at that frequency. 

In most cases it is, however, more convenient to judge the amplitude and 
phase responses of the amplifier from separate curves. The amplitude 
response can then be obtained by determining the modulus of 1/6, whilst 
the phase response follows either from the phase angle of 1/6 or from a 
derived function of this phase angle. 

2.5.2 THE AMPLITUDE RESPONSE CURVE 

2.5.2.1 The Amplitude Response Curve of the Single-Stage Amplifier 

The amplitude response of the single-stage amplifier as a function of the 
normalised detuning x follows from the modulus of 1/6. The most important 
information to be given by an amplitude response curve is the ratio of the 
gain of the amplifier at a certain normalized detuning x to the gain at x = 0. 
This ratio is expressed by the relative transfer function 1 ) a of the amplifier 

a = 8 , (2.5.3) 

in which So is the magnitude of 6 at x = 0. 
The amplitude response can be determined from the parabola which 

forms a geometrical representation of the frequency-dependent part of S. 

1) By this term is understood the magnitude of the transfer function of the amplifier, 
relative to that at x = 0. 
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Fig. 2.15. The amplitude response of the single-stage amplifier is proportional to the reci-
procal of the distance between the top of the vector T and the parabola (valid for the case 
of tuning method A). 

In Fig. 2.15 such a parabola is shown for a single-stage amplifier tuned 
according to method A with xi = x2 = x. The amplitude response of the 
amplifier is proportional to the reciprocal of the distance between the top 
of the vector T and the parabola. In Fig. 2.15 the amplitude responses for 
x = 0 (which equals 80) and x = 2.5, x = —0.5 and x = — 1.5 are indi-
cated. It appears that the amplitude response curve as a function of the 
normalized detuning x will be asymmetrical because the extremity of T is not 
located on the symmetry axis of the parabola. 

The parabolic presentation is also very useful to illustrate the influences 
of the various methods of tuning on the amplitude response of the amplifier. 
In Fig. 2.16 parabolas applicable to tuning methods A (curve I), B (curve II) 
and C (curve III) for an amplifier for which T = 2, O = 225° and x2 = 2x1
are given. These parabolas are based on the relation 

{1 + j(xi + pixi'+ p2x1")}{l + j(x2 + pix2' + p2x2" )}, (2.5.4) 

which is the frequency-dependent part of Eq. (2.3.22). Inspection of Fig. 2.16 
shows that curve III gives a less asymmetrical amplitude response curve 
than curves I and II because the top of the vector Tlies closest to the symme-
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Fig. 2.16. Parabolas for single-stage amplifier with T = 2, ® = 225° and xs = 2xi. Curves 
I, II and III are valid for tuning methods A, B and C respectively. The axis of symmetry of 
curve III lies closest to the top of the vector T. Hence the amplitude response curve ob-
tained with tuning method C has the less asymmetrical from, see also Fig. 2.17. 

try axis of the first parabola. The amplitude response curve can be calcu-
lated from Eqs. (2.3.22), (2.4.11) and (2.5.3) from which: 

1 + J(pixi' 
+ 

p2xl
„ ) T exp (jO) 

1 1 + 
J(plx2' + p2x2,i) 

1 + j(xi + plxl' + p2xl") T exp (JO) 
1 1 + J(x2 + 

Plx2r + p2x2ir) 

According to Table 2.1 the relative amplitude response curve will, in 
the case of tuning method A, assume the form: 

fio 
6 

1— T exp (JO) 

(1 + jxi)(1 + jx2)—T exp (JO) 

and in the case of tuning method B: 

So 1 — T cos O 

6 {(1 + j(xi + T sin O)}(1 + jx2) — T exp (jO) 

whilst in the case of tuning method C: 

(2.5.5) 

(2.5.6) 

(2.5.7) 
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Sp 

S 

1 — T cos O 

(1 + jxi){(1 + j(x2 + T sin (9)} —T exp (j0) 
(2.5.8) 

Calculated amplitude response curves of a single-stage amplifier have 
been plotted in Fig. 2.17 for the three different methods of tuning. It was 
assumed for this case that the regeneration coefficient T = 2 and the regen-
eration phase angle O = 225°; the quality factor of the output tuned circuit 
was assumed to be twice the value of that of the input tuned circuit. In so 
doing, the different results of tuning methods B and C clearly stand out. If 
xi had been chosen equal to x2 the curves representing the results of tuning 
methods B and C would coincide. 

In this graph the normalized amplitude response curve for an amplifier 
without feedback (T = 0) has also been drawn. This curve is obviously 
symmetrical. 

The curves in Fig. 2.17 are all plotted as functions of x = xix2. 
The various parameters of the four curves plotted in Fig. 2.14 are tabu-

lated below. 
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Fig. 2.17. Normalized amplitude response curves for a single-stage amplifier with two 
single-tuned circuits having the following data: © = 225°, T = 2, and Q2 = 2Qi. Curves 
I, II and III show the results obtained with tuning methods A, B and C respectively. Curve 
IV represents the curve applicable to T = 0. 
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curve tuning 
method 

pi p2 transfer 
function 

I A 0 0 (2.5.6) 
II B I 0 (2.5.7) 
Ill C 0 1 (2.5.8) 
IV A,BorC — 

Comparison of curves I, II and III with curve IV reveals that the presence 
of feedback in the amplifier has considerable influence on the response curve. 
Comparison of curves I, II and III also reveals that tuning methods B and C 
result in less asymmetry of the response curve than tuning method A. This 
is to be attributed to the more symmetrical location of the extremity of the 
vector T for tuning methods B and C, see Fig. 2.16. 

It is seen that the best results are obtained with tuning method C (curve III) 
in which the circuit having the smallest quality factor is tuned first. The tuning 
correction term T sin O is then applied to the output tuned circuit on which 
the extra susceptance due to this tuning correction term is half as large as 
that occurring on the input circuit with tuning method B because 

Q2 = 2Qi or 2G2 = Gi, 

and hence, 
1 1 1 

G2x = - 
2 Gl XI' ' 

see sub-sections 2.3.3 and 2.3.4. 

2.5.2.2 Conditions for Symmetrical Amplitude Response Curve 

As pointed out in the preceding sub-section the amplitude response curve of 
the single-stage amplifier for T 0 will generally be assymmetrical. For a 
particular combination of the tuning frequencies and the quality factors of 
the input and output circuits a symmetrical response curve can be obtained. 
By putting: 

Q 

Q2 

Q

= 
aQi, 

bi 
Nl =N+ n l , 

P2=P+Q 2 , 

(2.5.9) 

(2.5.10) 
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and 

(2.5.11) 

we obtain for the normalized detunings of the tuned circuits: 

xi = RiQi = SQi + bi  = x + bi, 
QQ 

(2.5.12) 
X2 =P2Q2 = NaQl+b2 = ax+b2. 

Here the quality x is the normalised frequency with respect to the centre 

frequencyfo. Now, the reduced determinant S may be written: 

S = {1 + j(x + bi)}{1 + j(ax + b2)} —T exp (j0). (2.5.13) 

Then: 

~5I2 = {1 — bib2 — T cos O — x(abj + b2) — ax2}2

+ {bi + b2 — T sin O + (a + 1)x}2 . (2.5.14) 

Now 8J 2 is a measure for the amplitude response curve of the amplifier which 
will be symmetrical with respect to x = 0 (f = fo) when the terms with x 
and x3 vanish from expression (2.5.14). That is when: 

{2(1 + a)(bi + b2 — T sin O) — 2(abi + b2)(1 — blb2 — T cos O)}x + 

+ 2a(abi + b2)x3 = 0. (2.5.15) 

A symmetrical response curve is thus obtained for: 

T sin O 
bl 

1—a  
, (2.5.16) 

and 
T sin O 

b2 — 1  . 

1— - 
a 

(2.5.17) 

It follows that a symmetrical response curve is only possible for a ~ 1, 
i.e. for Qi ~ Q2. To achieve symmetry the tuned circuits of the amplifier 
must each be tuned to such a frequency that bi and b2 have values given by 
Eqs. (2.5.16) and (2.5.17). This can readily be accomplished by means of 
tuning method A but also tuning methods B or C lead to the desired result 
provided the circuit to be tuned first is given the proper value of b and the 
second circuit is tuned with the signal generator adjusted at Jo. This will be 
shown for tuning method B. 
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Firstly the output circuit is tuned to such a frequency that has the value 
given by Eq. (2.5.17). Then the input circuit is adjusted, according to method 
B, to such a frequency that x = 0, that is, to a frequency f o. 
The tuning correction term xi' then follows from: 

1 + jxi' T exp (j(9) 

Im aT sin O = 0, 
1 1+j a— 1 

or 
Tsin 

Xi'  -
1—a 

(2.5.18) 

which equals the value of bi given in Eq. (2.5.16). 

2.5.2.3 Influence of the Stability Factor on the Amplitude Response Curve 

As pointed out in sub-section 2.2.4, the value of the regeneration coefficient 
T of a practical amplifier should be so chosen that it ensures a certain stabili-
ty factor. This stability factor should be sufficiently large to accommodate 
possible changes in environmental conditions and spreads in transistor para-
meters. However, the response curve of the amplifier also imposes certain 
requirements on the minimum value of the stability factor. 

In Fig. 2.18 a set of amplitude response curves of the single-stage amplifier 
(valid in the case of tuning method A being applied) has been plotted for 
several values of T. For the amplifier under consideration Ty = 5.07 so that 
instability occurs at T> 5.07. This is evidenced by the curves for T = 6. The 
curve for T = 0 represents the idealized case in which no feedback is pre-
sent. The curves for T = 1, 2 and 4 show an increasing departure from the 
symmetrical curve for T = 0. 

Now the designer of an amplifier must base his design on such a value of 
T that the requirements regarding the symmetry of the response curve are 
fulfilled. The value of T that fulfils these requirements best can most easily 
be ascertained by means of a family of curves for various values of T, as, 
for example, that shown in Fig. 2.18. 

Since the asymmetry of the response curves increases with increasing 
value of T, that is to say with decreasing value of the stability factor, it is 
possible to define a lower limit of s at which the asymmetry in a particular 
case is still acceptable. It should, however, be kept in mind that the same value 
of s will generally give a different amount of asymmetry in different amplifier 
arrangements. 

This point will be discussed later. 
It may thus be concluded that, although the value of s gives a rough 
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Fig. 2.18. Amplitude response curves of an amplifier with the value of T as parameter. At 
T = T9 = 5.07 this particular amplifier (® = 225°, xz = 2xi) becomes unstable. This 
graph clearly shows that the stability factors = Te1T has great influence on the asymmetry 
of the curves. 

indication of the amount of asymmetry that may be expected in a certain 
amplifier design, the acceptability or otherwise of this asymmetry can be 
judged only by plotting the response curve of the amplifier for the chosen 
value of T. The latter method will therefore be used in this book, especially 
for the more complex amplifiers. 

2.5.3 PHASE RESPONSE CURVE 

2.5.3.1 General 

In radio receivers for amplitude modulated signals it is important that 
every frequency component of the audio signal is amplified to the same 
extent, but phase shifts in the components of different frequencies of the 
signal have little influence on the quality of reproduction. This is because the 
human ear is sensitive to the amplitudes of the various frequency components 
which, together, constitute the signal, but not to the phase of these com-
ponents. 
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Fig. 2.19. Example of phase distortion. 
a) Input signal of a network. The signal is composed of two components of angular 
frequency w and 2w, as shown by the broken lines. 
b) Output signal of the same network. The phase delay tphl of the component of angular 
frequency w is assumed to exceed the phase delay tphz of the component of angular fre-
quency 2w, as a result of which considerable (phase) distortion occurs in the composite 
waveform. 

In radio receivers for frequency modulated signals, phase shifts occurring 
in the signal before detection are of importance because this detector is 
principally a phase-sensitive device. Phase shifts may therefore lead to a dis-
torted output of the detector. 

Furthermore, in television receivers phase shifts occurring in the video 
circuits have an important effect on picture quality. This is because the hu-
man eye is sensitive to the instantaneous amplitude of the complete signal. 
This means that stringent requirements are imposed on both the amplitude 
and the phase responses of the amplifiers and, in fact, of the whole network 
through which the video signal is transmitted. The video signal, which con-
tains pulse-shaped intelligence, can be resolved by means of Fourier analysis 
into a large number of sinusoidal components. For a faithful transmission 
of the video signal through a network it is therefore essential that neither 
the relative amplitudes nor the relative phases of these components are 
distorted by the network. 

This is illustrated in Fig. 2.19. The upper oscillogram represents the input 
signal of a network. This signal can be resolved into two components of 
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angular frequencies w and 2w. The lower oscillogram represents the output 
signal. The two components which constitute the signal are shifted by differ-
ent amounts along the time axis. It is clearly seen that due to these differing 
time delays serious distortion is introduced. 

It is obvious that no phase distortion will occur in the network if the time 
delay is independent of the frequency. The delay involved in the phase dis-
tortion considerations may either be normal phase delay or modulation phase 
delay, depending on whether the signal passes through the network directly 
or in the form of a modulated carrier. 

It is the purpose of the following sub-sections to illustrate that the enve-
lope delay characteristic of a network is a very good measure of the phase 
distortion occurring in that network. 

2.5.3.2 Phase Delay 

If a sinusoidal signal of angular frequency w is applied to the input terminals 
of a network the phase of the output will be delayed by a certain time tph, 

see Fig. 2.20. The output voltage of the amplifier thus lags with respect to 
the input voltage by an angle: 

97 = - tph w. (2.5.19) 

Fig. 2.20. Phase delay of a network (a) to which a sinusoidal input signal v¢ is applied (b). 
The output signal vo (see c) is delayed in phase by the phase delay time tPh, which corre-
sponds to a lagging phase angle q' = Wtph (see d). 

Fig. 2.21 shows the phase characteristic and the phase delay characteristic 
of a network in which phase distortion occurs. Since the phase characteristic 
is not a linear function of the frequency, the phase delay characteristic is not 
a horizontal line. In an amplifier which introduces no phase distortion 
the phase delay is independent of the frequency, as shown in Fig. 2.22a. 
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Fig. 2.21. (a) Phase characteristic of a network introducing phase distortion (fully drawn 
curve) and that of a network introducing no phase distortion (broken line). (b) Phase delay 
characteristics derived from the phase characteristics drawn in (a). 

The phase delay characteristic is then a straight line passing through the 
origin or a straight line with a zero frequency intercept equal to an integral 
multiple of radians, as shown in Fig. 2.22b. This zero frequency intercept is 
caused by the phase reversals occurring in the signal when the output signal 
current of the transistors or tubes in the network is converted into a voltage 
across their load; it does not introduce any phase distortion because the 
phase reversals do not require any time. 

The phase shifts which occur in the various frequency components of the 
signal during their transmission through the network may be quite consider-
able. It is therefore difficult to determine small discrepancies of the phase 
characteristic from the linear phase versus frequency relation required for an 
undistorted transmission of the signal. A much better method of judging the 
phase distortion of the network therefore consists in determining its enve-
lope delay, which will be dealt with in the following sub-sections. 
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O 

a 

Fig. 2.22. At a constant phase delay time tpa the phase angle q is proportional to the 
frequency (see a). The phase characteristic then assumes the form of a straight line through 
the origin or a line parallel to it, intersecting the vertical axis at — = niT (see b). The 
constant phase angle quo is the result of the frequency-independent phase reversals occur-
ring in the network under consideration. 

2.5.3.3 Envelope Delay 

It follows from the above that a network introduces no phase distortion 
when its phase characteristic has a constant slope. An obvious method of 
judging the phase response of a network therefore consists in determining 
the slope of the phase characteristic as a function of the frequency. Small 
discrepancies from the linear characteristic of phase versus frequency result 
in large differences of slope. 

This phase slope, which is usually referred to as the envelope delay or 
group delay of the network, is defined as: 

to = — dq~/dw. (2.5.20) 

The difference between the phase delay and the envelope delay is shown 



66 THE VARIOUS ASPECTS OF BANDPASS AMPLIFIER DESIGN 

1~ 
At w=w~: 
tph= ~D/W=tans 

to=d ~A/dw =ton li 

[2

Fig. 2.23. Geometrical significance of the phase and envelope delays. At an angular fre-
quency the phase delay is determined by tan a and the envelope delay by tan 1. 

by Fig. 2.23. The phase delay of the network is determined by tan a, whereas 

the envelope delay is equal to tan 3. 
To illustrate the meaning of the term envelope delay, it will be assumed 

that the input signal vj of the network consists of a carrier wo, modulated 
in amplitude by a signal of angular frequency Wm. Then: 

v~ = Y¢(1 + m cos wmt) cos wot, (2.5.21) 

in which m denotes the modulation depth. 
If wm << wo the phase characteristic of the network in the range of 

(wo — wm) to (wo + wm) may be considered as being linear, see Fig. 2.24. 

Therefore, if the network causes a phase lag equal to — q for the carrier 

frequency and phase lags equal to — (q + dqP) and — (p — dq) for the 

upper and lower side bands respectively, the output signal will be: 

vi  = Vo [cos(wot_) + cos {(wo — wm)t — (9 — dq,)} + 

+ 
Z 

cos {(wo + wm)t —(q7 + i99)}], (2.5.22) 

= Vo{ 1 + m cos(wmt — d q~)} cos (wot — 92), (2.5.23) 

whence: vo = Vo{1 + m cos wm(t — dq~/wm)} cos wo(t — t i). (2.5.24) 

This equation shows that the carrier is subject to a phase delay t~,h = — 92/coo, 
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~1 

Fig. 2.24. Phase characteristic of a network. Provided 4w << Wo, the phase characteristic 
may be considered to be linear over the range from Wo — Wm to cuo + corn. 

whilst the modulation signal is delayed in phase by Jq /wm ; this means that 

the envelope of the modulated carrier is delayed by a time dplwm = dpldw. 

Now, according to the definition of envelope delay: 

dIp
t0=_=    inn 

L192
 . 

dw dw ~ O dw 
(2.5.25) 

The phase diagrams of the input and output signals according to Eqs. 

(2.5.21) and (2.5.23) for the point T of the envelope curve of the input signal 

have been plotted in Fig. 2.25. These phase diagrams, together with the 

modulated carriers, also illustrate the meaning of envelope delay; this may 

thus be interpreted physically as the time required for a point T stituated on a 

sinusoidal envelope curve of a modulated carrier to travel through the 

network. 

2.5.3.4 Relation between Phase Delay and Envelope Delay 

It has been shown that the phase delay of a network is given by: 

tph = -, 
w 

whence: 

(2.5.26) 

qI = tphw. (2.5.27) 

Furthermore, the envelope delay of the network was defined by: 
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b d 

C 

Fig. 2.25. The envelope of a modulated signal (a) fed to a network undergoes a delay in 
this network equal to te, as shown in b, representing the output signal. The phase diagrams 
of the signals corresponding to point Tin a and b are shown in c and d respectively. The 
sideband phasors are both delayed in phase by an angle z1 = to dm. 

or 

whence: 

d 
to = — 

dw 

d \ 
to = 

dui 
' (tpla ' w) , 

to = tph + m ' 
d~ 

W 

(2.5.28) 

(2.5.29) 

Comparison of Eqs. (2.5.26) and (2.5.29) reveals that the envelope delay 
differs from the phase delay of the network only by the term which accounts 
for the speed with which the phase delay varies with the frequency. This 
illustrates once again why the envelope delay is a more accurate measure 
of the phase response of a network than the phase delay. 

It is true that the phase response of a network can conveniently be expres-
sed in terms of envelope delay, but to judge the performance of the amplifier 
it is important to know the phase response itself. Now, the envelope delay is 

the derivative of the phase response, which implies that the zero frequency 

intercept of the phase/frequency characteristic does not occur in the enve-
lope delay curve. This zero frequency intercept should be zero or an integral 
multiple of ar radians to ensure faithful transmission of a signal through the 
network. Therefore, if the phase characteristic is specified only in terms of 
envelope delay the assumption is tacitly made that the phase intercept dis-
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tortion for the range of significant frequencies is either zero or negligible. For 
a signal passing through the network as a modulation on a carrier, there is, 
however, no need for the phase characteristic to fulfil this phase intercept 
requirement. In fact, only the phase characteristic over the band occupied 
by the modulated signal is then of importance. 

For the bandpass amplifiers under consideration, therefore, the envelope 
delay fully characterizes that part of the phase response of the amplifier 
which is of interest. For low-pass amplifiers, for example, this would not be 
the case. 

Hitherto the term "envelope delay" has been used for dp/dw. This term 
suggests that the signals under consideration are modulated in amplitude, 
and although it has a main significance in this field, the definition to = d9 /dw 
refers only to the slope of the phase/frequency characteristic. The envelope 
delay is therefore very frequently referred to as "group delay". This term 
indeed seems to be more appropriate because group delay — physically to 
be interpreted as the time delay of a small group dw of frequencies situated 
around wo in passing through a network — is a more general term which 
refers neither to modulated nor to unmodulated signals. The present treatise, 
however, is confined to bandpass amplifiers in which the transmitted signals 
are normally modulated, so that there is no reason why the term envelope 
delay should not be used in the context of this book. 

2.5.3.5 Envelope Delay as a Function of the Normalized Detuning 

The envelope delay to = dcp/dw of a network may also be written: 

dq dx 
to =--, 

dx dw 
(2.5.30) 

in which x denotes the normalized detuning. Now dx/dw is a constant equal 
to: 

( 
0 0 

whence: 

(2.5.31) 

The envelope delay is then: 
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Q /wO\ 2 dq~ 
to 

wp 
1+

Provided wo/w ^ 1, this expression reduces to: 

2Q dq~ 

wo dx 

(2.5.32) 

(2.5.33) 

The envelope delay of a network can thus be ascertained by determining 

dq~/dx, which is in turn given by the transfer function of the network. In 
order to investigate the envelope delay of a bandpass amplifier, it is thus 
sufficient to consider the differential quotient dq~/dx, the factor 

w 2 _Q o ( 2Q 

w0 1 + ~ w ~ w0 

merely influencing the envelope delay as a scale factor. 
For a single-tuned circuit, for example, the phase angle equals: 

Hence: 

and 

= tan 1(— x) . 

dq 1 

dx 1 + x2 
' 

2Q 1 
to —

wp 
1 +  

x2 
. 

(2.5.34) 

(2.5.35) 

(2.5.36) 

For amplifiers or networks, the transimpedance function of which has a 
complex character, dq~/dx would become even more complex. 
This differential quotient can then be approximated by dq /Jx, in which 
dp is derived from the phase versus x characteristic. For a given value of x: 

99 = tan-I[Im{Zt(x)}/Re{Zt(x)}]. (2.5.37) 

Provided 99 is determined with sufficient accuracy and the intervals dx 
are chosen small enough, dg9ldx will very closely approximate dq/dx. 

Assuming this to be the case, and putting: 

Eq. (2.5.20) becomes: 

d cp 

dx = 
Te' 

dx 
to = Te  , 

dw 

(2.5.38) 

(2.5.39) 
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or: 

to = Te 2Q 
wo 

(2.5.40) 

It is thus seen that a very simple relation exists between the quantity r e

(expressed in terms of radians) and the actual envelope delay t o of the am-
plifier. Now Te can be evaluated as a function of the normalized detuning x 
by means of Eqs. (2.5.37) and (2.5.38), so that it is possible to plot curves which 
represent the envelope delay of the amplifier, except for a scale factor dx/dw. 
These curves can then be used universally for various values of w, w0 and Q. 

2.5.3.6 Envelope Delay of the Single-Stage Amplifier 

The quantity Te can now be calculated according to the method outlined 
above for the single-stage amplifier with two single-tuned circuits, it being 
assumed that tuning is achieved by method A, B or C. The parameters of 
the amplifier are taken to be identical to those mentioned in sub-section 
2.5.2.1 (Fig. 2.14). 

Fig. 2.26 shows the results thus obtained, curves I, II, and III being appli-
cable to tuning methods A, B and C respectively. For the sake of comparison 
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Fig. 2.26. Curves representing the envelope delay, except for a scale factor, of a single-stage 
amplifier with two single-tuned circuits (T = 2, © = 225°, xa = 2x1). The curves show 
the great influence of the method of tuning on the trend of these curves (curves I, II and III 
apply to tuning methods A, B and C respectively, curve IV to T = 0.) 
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the curve for T = 0 (curve IV) has also been plotted. It is seen that, so far as 
the envelope delay is concerned, tuning method C gives the best results for 
this amplifier (see curve III). As previously shown (sub-section 2.5.2.1) this 
also applies to the amplitude response curve. 
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CHAPTER 3 

NEUTRALIZATION 

As was seen from the analysis of the single-stage amplifier in Chapter 2, 
the internal feedback of the transistor has a large influence upon the perform-
ance of the amplifier. In the case of a potentially unstable transistor, its 
feedback may lead to instability of the amplifier unless special measures are 
taken. If the internal feedback does not result in instability, it may have a 
detrimental effect upon the amplitude and phase response of the amplifier. 
This may even occur when the transistor is inherently stable. 

In many cases it will therefore be desirable to eliminate this feedback. 
This may be achieved by applying a technique referred to as neutralization. 

Considering the transistor as a four-terminal network, this amounts to 
eliminating the reverse transfer parameter. This process is known as unila-
teralization. 

By definition, a four-terminal network is unilateral if an excitation applied 
to one of its pairs of terminals produces a response at the second pair, whereas 
an excitation applied to the second pair does not produce a response at the 
first pair, or vice-versa. 

Worded differently: in a unilateral network, no "backward transmission" 
is possible. This implies that only a perfectly neutralized transistor may be 
said to be unilateral. 

Because in practical amplifiers the neutralization will often not be perfect, 
preference is given to the term "neutralization" 1) to describe the technique 
to reduce or to cancel the internal feedback of the transistor. 

3.1 Principle of Neutralization 

If the relation between input and output currents and voltages of the 
equivalent transistor four-terminal network are expressed in terms of either 
the Y, Z, H or K-matrices, we can generally write: 

1) Unilateralization is always a kind of neutralization but the reverse need not necessarily 
be the case. 
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al Vu V12 P1 
(3.1.1) 

a2 y21 V22 P2 

in which the symbols a and depend on the matrix environment chosen. 

Furthermore, we assume that another network in the same parameter 
system may be described by: 

al, 1'11 1'12 P1' 
(3.1.2) 

a2 1'21 1'22 P2' 

If these networks are interconnected in such a way that Nl'  = Sl and 

P2 '  = P2, without disturbing the relationships between currents and volt-
ages in the original networks, see Appendix I, the combined network can 
be described by: 

al + 
al' 

a2 + a2' 

yll + 1'11 V12 + 1'12 

Y21 + 1'21 V22 + 1'22 

P1 

P2 
(3.1.3) 

It is now said that the combined network is unilateral or perfectly neu-
tralized if: 

V12 + 1'12 = 0. (3.1.4) 

This means that a transistor can be perfectly neutralized by correctly connect-
ing to the transistor a second network with properties such that Eq. (3.1.4) 
is satisfied. 

3.2 Basic Neutralizing Network Connections 

There are four basic methods of connecting a neutralizing four-terminal 
network to the transistor. These methods differ in the way in which the input 
and output terminal pairs of both networks are interconnected. This may 
be either in 

parallel — parallel, 

series — series, 
series — parallel, 

or parallel — series. 

To satisfy the condition imposed in the preceding section on the independ-
ent variable (~) of the matrix equations, it is required that both networks 
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Basic neutralizing network connections 
Y-neutralization Z-neutralization 

c 

H-neutralization K-neutralizotion 

iii 

are expressed in the correct parameter system depending on the method of 
interconnection. According to Appendix I, this is the Y, Z, H or K parameter 
system respectively. 

In Table 3.1 the four methods of interconnection are shown. These methods 
will further be referred to as 

Y-neutralization, Z-neutralization, H-neutralization, 
and K-neutralization. 

3.3 Y-Neutralization 

3.3.1 GENERAL 

For a Y-type neutralization, both transistor and neutralizing networks are 
connected in parallel at the respective input- and output terminals. If the 
transistor parameters are indicated by lower case y's and those of the neutral-
izing network by capital Y's, for perfect neutralization (see Eq. (3.1.4)) : 

y12+Y12=0. 

Since the y12 parameter of a transistor suitable for use in I.F. amplifiers lies 
in the 3rd or the 4th quadrant, (see Book II, Chapter 2) Y12 must be situated 
in the 1St and 2nd quadrants to enable Eq. (3.1.4) to be satisfied (see Fig. 
3.1). In practice it is required that the neutralizing network should consist 
of passive elements only. Because of the sign conventions adopted the Y12 

parameter of such a network always lies in the 2nd or 3rd quadrant. Therefore 
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Fig. 3.1. Location of the yi2 parameter of the transistor and of the Yi2 parameter of the 
neutralizing network required to achieve neutralization. 

a phase inverting transformer is necessary between the neutralizing network 
and the transistor in case the latter has its y12 parameter situated in the 3rd 

quadrant. No transformer is required for transistors in which the y12 para-
meter lies in the 4th quadrant. 

For further considerations on Y-neutralization we will confine ourselves 
to transistors having y12 parameters in the 3rd quadrant. The complete Y.. 
neutralizing circuit then becomes as shown in Fig. 3.2. The polarity of the 
phase inverting transformer is indicated by means of dots. 

Furthermore, this transformer which is assumed to be ideal, has a trans-
former ratio of 1 : n. This implies that for perfect neutralization: 

fY12 +y12 = 0. 

phase 
inverting 
transformer 

(3.3.1) 

Fig. 3.2. Interconnection of a transistor four-terminal network of which it is assumed that 
the y12 parameter is situated in the 3rd quadrant and of a practical neutralizing network. 
The phase inverting transformer enables that the neutralizing network consists of passive 
elements only. The dots indicate the polarity of primary and secondary windings. 
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Y 

Fig. 3.3. Y-neutralizing network. ° 

3.3.2 NEUTRALIZING CIRCUIT 

 0 

0 

The Y-neutralizing network may consist of a single admittance Y as shown 
in Fig. 3.3. It is required that the Y12 parameter of this fourpole should be 
in the 31 quadrant; so Y may consist of either a series or a parallel combi-
nation of a capacitance and a resistance. In practice, the series combination 
is used in most cases because then the capacitor also separates the d.c. 
circuits at the transistor input- and output terminals. 

Including an ideal phase-inverting transformer, the admittance parameters 
of the neutralizing circuit become (see Fig. 3.4) : 

Y11= Y, Y12=nI', 

Y21=ny, Y22=n2Y, 

(3.3.1) 

With the condition for perfect neutralization 

y12 + nY = 0, (3.3.2) 

the admittance matrix of the combined network becomes: 

y 

y12 
yll — — 0 

n 

y21 — y12 y22 — ny12 

(3.3.3) 

from which we find the maximum unilateralized power gain: 

,  Iy21 — y121
2 1) 

~uM —
y12 

4 Re y11— 
n ) . Re(ym — nyl2) 

Fig. 3.4. Y-neutralizing circuit including ideal trans-
former. 

1) The quantity P ij indicates the maximum unilateralized power gain of a transistor 
when perfectly neutralized by means of a practical network. The quantity lUM (without 
dash) refers to the case of unilateralization by means of an ideal (loss-free) network, 
see Appendix V. 
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Fig. 3.5. Equivalent circuit diagram of a 
practical transformer. 

For a certain value of n, uM' becomes maximal. This value is found by 
putting: 

and is equal to: 

d 

do 
(~

uM') = 0 ' 

n 
r 
l/ g22

gii 
(3.3.4) 

3.3.3. NON-IDEAL TRANSFORMER 

The transformer used in practical neutralizing circuits at high frequencies 
suffers from various defects which result in a performance different from 
that of an ideal transformer. These defects, which will be considered separa-
tely, are 

a. non-unity coupling coefficient, 
b. losses, and 
c. stray capacitances. 

3.3.3.1 Non-Unity Coupling Coefficient 

A practical transformer, of which the primary and secondary open circuit 
inductances are denoted by Lp and L8 and the mutual inductance by M, 
can be represented by the basic equivalent circuit given in Fig. 3.5. 

For this equivalent circuit, the open circuit voltage ratio follows from: 

v2 M ~Lg

vi 
=k 

l L  ~/ Lp 
in which the coupling coefficient k is given by: 

M 
k=  

J/Lp L8

By putting: 

Lp
n= — 

Lg ' 

(3.3.5) 

(3.3.6) 

(3.3.7) 
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Fig. 3.6. Equivalent circuit of a practical transformer derived from that of Fig. 3.5. 

the transformer ratio according to Eq. (3.3.5) becomes: 

v2 k 
— = —. (3.3.8) 
vl n 

Furthermore, the open circuit input inductance of this equivalent circuit 
equals Lp, whereas the short-circuited input inductance equals: 

Lp — M + 
M(LL 

M) 
= LP(l — k2) . (3.3.9) 

s 

These calculations reveal that another equivalent circuit, equal to that of 
Fig. 3.5 is as shown in Fig. 3.6. The inductance k2Lp at the neutralizing net-
work side of the transformer, see Fig. 3.6, may be transformed to the transis-
tor side as shown in Fig. 3.7. 

This inductance then becomes, using Eqs. (3.3.5) and (3.3.7): 

n2
k2Lp 

k2 
= L8 . 

3.3.3.2 Influence of Losses and Stray Capacitances 

The losses associated with the transformer merely consist of parallel 

dampings which can be represented by a single damping gs across the tran-

sistor side. There are also losses associated with the spread-inductance 

Fig. 3.7. Modification of the equivalent 
circuit of Fig. 3.6. 

ideal transformer 
r 

Lp(t-k2) 

n.~ 
k' 
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ideal transformer

o--r 000  Oz'-cu1 h 1 
L(1-k ) rp Cp 

to 
neutralizing. 

network 

to 
transistor 

output 
terminals 

[3

Fig. 3.8. Complete equivalent circuit of the transformer used in the Y-neutralizing circuit 
showing all parasitic effects. 

LP(1— k2) but these are negligibly small in most cases. For completeness, 
however, they may be represented by a resistance rp in series with Lp (1— k2). 
Furthermore, the stray capacitances of the transformer may be represented 
by a capacitance C8 on the transistor side of the transformer and a capaci-
tance Cp (the influence of which can be neglected) on the other side. 

The complete equivalent circuit of the transformer then becomes as shown 
in Fig. 3.8. 

3.3.4 PRACTICAL Y-NEUTRALIZED AMPLIFIER CIRCUIT 

In practical amplifier circuits the output tuned circuit is used as the phase 
inverting transformer. 

In Fig. 3.9 a Y-neutralized single-stage amplifier with two single-tuned 
circuits is shown. 

It appears that the inductance L8 of Fig. 3.8 forms the tuning induct-
ance of the output circuit whereas the parasitic effects of losses and stray 
capacitances may be included in its damping and tuning susceptance. This 
means that only the term L(1— k2) due to the non-unity coupling of the 
transformer need to be taken into account when designing the neutralizing 
circuit. 

The effective admittance of the neutralizing circuit then becomes with 
Eq. (3.3.8) and Fig. 3.7: 

J 
0 
0 
0 
0 

1 

Y 
Fig. 3.9. Neutralized one-stage amplifier circuit. The quantities Y' and n' follow from Y 
and n taking into account the effects of a non-ideal transformer. 
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1 

1 ' 

Y +jwL2  n2(1 — k 2) 

in which L2 is the tuning inductance of the output circuit of the amplifier. 
Furthermore the effective transformer ratio equals: 

n 
n' _ 

k 

(3.3.10) 

(3.3.11) 

These values for Y' and n' substituted in Eqs. (3.3.1) to (3.3.4) give for per-
fect neutralization: 

n 
y12+ kY'=0, 

and for optimum c M' : 

n _ l/g22 

k Y gn 

3.4 H-Neutralization 

3.4.1 GENERAL 

(3.3.12) 

(3.3.13) 

As appears from sub-section 3.2, with an H-type neutralization the input 
terminals of transistor and neutralizing networks are connected in series 
whereas the output terminals are connected in parallel, see Fig. 3.10. The 
elements contained in the neutralizing network should be arranged such 
that the interconnection with the transistor, which is in fact a three-terminal 
device, is permissible, see Appendix I. 

transistor four-terminal 
network 

Fig. 3.10. Connection of a neutralizing network to a transistor for H-neutralization.Because 
the transistor is a three-terminal device care must be taken in arranging the elements of the 
neutralizing network in order that the interconnection of both networks is permissible. 
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Again capital letters are used to denote the parameters of the neutralizing 

network and lower case letters to denote those of the transistor. 
For perfect neutralization: 

hie + Hie = 0. (3.4.1) 

3.4.2 NEUTRALIZING NETWORK 

The H-neutralizing network consists of an impedance Z and an admittance 
Y as shown in Fig. 3.11. The elements of Z and Y are arranged such that a 
permissible connection is obtained when this neutralizing network is con-
nected to the transistor as indicated in Fig. 3.10. 

For this fourpole, the H-parameters are: 

Z 
Hii= YZ+1, 

Hie=H2i —

Y 
Hss YZ+1 . 

YZ 

YZ+1' 

(3.4.2) 

(3.4.3) 

(3.4.4) 

By suitably choosing Y and Z, the H12 parameter can be given any re-
quired phase angle. Hence, condition (3.4.1) can always be satisfied without 
the use of a phase inverting transformer as is necessary in the Y-neutralizing 
system. 

For perfect neutralization the H-parameters of the combination of tran-
sistor and neutralizing network become, using a determinant notation: 

0 

(3.4.5) 

Fig. 3.11. H-neutralizing fourpole with elements Z and Y arranged in such a way that 
interconnection with the transistor as indicated in Fig. 3.10 is permissible. 
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According to Eq. (3.4.3), for perfect neutralization: 

By putting 

Y Z — 
hie 

1 — hi2 

hie = Ihi21{cos (arg hie) + j sin (arg hie)}, 

Eq. (3.4.6) can be written as: 

and 

1h121 cos (arg hie) — Ih12I 2
Re(YZ) — , 

1— 21h121 cos (arg hi2) + Ih1212

Im(YZ) — 
Ih121 sin (arg hi2) 

1— 2Ih121 cos (arg hie) + Ihi212

Because Ihi2I << 1, these two equations can be written: 

Re(YZ) = ~hi2l cos arg (hie) — Ih1212, 

Im(YZ) = Ihi2 I sin (arg hi2). 

If furthermore Ihi2I cos (arg hie) >> Ihi2I 2, Eq. (3.4.7) becomes: 

Re(YZ) = Ihi2I cos (arg hi2), 

Im(YZ) = Ihi21 sin (arg h12). 

(3.4.6) 

(3.4.7) 

(3.4.8) 

There are two practical methods for realization of the H-neutralising 

circuit, viz: 

1. Z is made resistive and the necessary phase shift is obtained by means of 

Y, or 
2. Y is made conductive and the phase shift is obtained by means of Z. 

When, however, either Z or Y is made purely real the phase angle arg H12 
of the neutralizing network becomes situated in the 2nd or 3rd quadrant, 

which implies that only transistors with the argument of hie in the 1St or 4th 

quadrant can be neutralized. 

3.4.2.1 Z is chosen to be purely resistive 

If Z is made resistive and equal to R, the parameters of the combined 

fourpole become with Eqs. (3.4.5) and (3.4.6) : 
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hit + (1- h12)R 0 

h12 
h21 +h12 

h22 + 
R 

(3.4.9) 

The maximum unilateralized power gain of the combined fourpole reaches 
an optimum value for: 

1 / Re(hn) Re(h12) 
Ropt 

~l Re(1 — h12) Re(h22)' 

or, considering that h12 <<1: 

Ropt = j/  
1 /Re(hll) Re(h12) 

Re(h22) 

(3.4.10) 

(3.4.11) 

3.4.2.2 Y is chosen to be purely conductive 

If Y is made purely conductive and equal to G the parameters of the combi-
nation transistor and neutralizing fourpole become with Eqs. (3.4.5) and 
(3.4.6): 

hit + 
h12 

G 
0 

(3.4.12) 

h21 + h12 h22 + (1 - h12)G 

The optimum in maximum unilateralized power gain is obtained for: 

Re(h22) Re(h12) 
Gopt =   

Re(hll) • Re(1 — his) ,

or because h12 < 1: 

Go 
= J/Re(h22) Re(h12) 

pt 
Re(hil) 

3.4.3 PRACTICAL H-NEUTRALIZED AMPLIFIER CIRCUIT 

(3.4.13) 

(3.4.14) 

In Fig. 3.12 the circuit of a single-stage amplifier with an H-neutralization 
network is given. 

It is assumed that the Z term of the neutralizing networks is a resistance 

RN1 whereas the Y term is composed of the series connection of RN2 and 
CN, a combination of elements which has been chosen quite arbitrarily. The 
choice of the elements of which Z and Y are to be composed obviously 
depends on the phase angle of the hi2 parameter. 
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Fig. 3.12. Practical H-neutralized single-stage amplifier. 
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To allow one side of the voltage source to be connected to earth, an iso-
lating transformer is used at the input of the amplifier. 

An "H-type" neutralizing network may also be applied to an "Y-type" 
amplifier as shown in Fig. 3.13. Here the tuning capacitance of the input 
tuned circuit has been tapped such that the lower capacitance Cb forms (part 
of) the impedance Z of the neutralizing network. The design of the neutra-
lizing network can most easily be carried out by first converting the y-para-
meter of the transistor to h-parameters with the aid of Table I.1 of Appendix 
I. Then: 

h12+Hit=0. 

va

Fig. 3.13. Y-type of amplifier with H-type of neutralizing network. The capacitor Cn with 
an extra damping Gb connected in parallel forms the impedance Z of the neutralizing 
network. 
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3.5 K-Neutralization 

3.5.1 GENERAL 

In an amplifier with a K-type neutralizing network the input pairs of termi-
nals of both four-terminal networks are connected in parallel whereas the 
output pairs are connected in series. This type of neutralizing circuit can be 
analyzed in an analogous way to the H-type of neutralization considered in 
Section 3.4. Similar results and conclusions will be found. 

3.5.2 PRACTICAL K-NEUTRALIZED AMPLIFIER CIRCUIT 

A practical form of a K-neutralized amplifier stage is the circuit presented 
in Fig. 3.14. Here the K-neutralizing circuit is applied to a Y-type amplifier. 

M 

V Z 

vo

Fig. 3.14. Y-type of amplifier with K-type of neutralizing network. The capacitor C,, of 
the capacitive tap on the output tuned circuit forms part of the impedance Z of the neu-
tralizing network. 

The tuning capacitance of the output circuit is tapped and the tapping point 
is connected to earth. The lower capacitance Cb forms (part of) the impedance 
Z of the neutralizing network. 

The most convenient way of designing the neutralizing circuit is to convert 
the transistor y-parameters to k-parameters, and putting 

kit + K12 = 0. (3.5.1) 

3.6 The Intermediate-Basis Circuit 

The neutralizing circuits considered above employ a four-terminal network 
containing passive elements to achieve the neutralizing action. 

Another type of neutralizing circuit which, basically, does not require 
any extra element, is the "intermediate-basis" circuit as it is referred to in 
literature (see Bibliography [3.1]). In this circuit, a tapping on either the 
tuned circuit between the two input terminals or that between the two output 
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a b 

Fig. 3 15. Two possible forms of intermediate-basis circuit. By way of example, a transistor 
in common emitter connection is shown. Figures a and b present the K and H-interme-
diate-Basis circuits respectively. 
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terminals is connected to earth. In Fig. 3.15 the two possible forms of this 
terminals circuit are shown. 

To analyze these circuits use can conveniently be made of the K and H-
matrices respectively. 

3.6.1 THE K-INTERMEDIATE-BASIS CIRCUIT 

The K-intermediate-basis circuit or, as it is sometimes referred to, the 
"base-emitter drive" circuit, can be considered as a combination of two 
fourpoles connected in parallel at the input terminals and in series at the 
output terminals, see Fig. 3.16. For the two four-terminal networks the 
following equations may be written down, see Fig. 3.16.c: 

and 

it = kllvl + k12i2, 

v2 = k21v1 + k2212, 

= K11v1-  K12i2, 

v2' = K21v1 — K2212. 

The complete circuit is perfectly neutralized when: 

k12 - K12=0• 

If n is the tapping ratio of the input tuned circuit, K12 equals: 

n 

K12 = — 
•k

in which k is the coupling coefficient. 
From the last two expressions: 

n 

=-k12. 
k 

(3.6.1) 

(3.6.2) 

(3.6.3) 

(3.6.4) 

(3.6.5) 
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Fig. 3.16. K-intermediate-basis circuit. In Fig. 3.16a the tapping on the tuned circuit of 
Fig. 3.15.a has been replaced by a transformer with separate windings. In Fig. 3.16.b the 
same circuit has been drawn in a somewhat different form separating the transistor and the 
transformer. Fig. 3.16.c shows that the circuit may be considered as a K-combination of 
two fourpoles. 

When the transistor properties are expressed in y-parameters, (Eq. 3.6.5) 
becomes, using a matrix conversion table (see Appendix I). 

n y12 

k y22 
(3.6.6) 

It follows from Eq. (3.6.5) that, since n/k is real, perfect neutralization is 
only possible if k12 is real. According to Eq. (3.6.6), this means that the 
phase angles of — y12 and y22 must be equal. If the transistor proper does 
not fulfil this condition, — q'12 and q~22 can be made identical by increasing 
artificially either the real or the imaginary part ofy22 depending on whether 
q~22 must be made smaller or larger respectively. This is, however, only 
realizable in practice if the differences in the phase angles of (— y12) and 
y22 are not too large. 
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Fig. 3.17. H-intermediate-basis circuit with two fourpoles drawn separately. 

89 

3.6.2 THE H-INTERMEDIATE-BASIS CIRCUIT 

The H-intermediate-basis circuit as given in Fig. 3.15.b may be considered as 
a combination of two four-terminal networks the input terminals of which 
are connected is series whereas the output terminals are connected in parallel, 
see Fig. 3.17. If the properties of the fourpoles are expressed in the H-para-
meter system, for perfect neutralization: 

h12 - Hie=0. 

Taking into account the normal sign convention for currents and 
the Hie parameter of the transformer equals 

n 
1112 = - k , 

(3.6.7) 

voltages, 

in which n is the transformer ratio and k the coefficient of coupling. 
Combining the last two expressions: 

n 
h12 = — 

Ic 

Converting h-parameters to y-parameters gives: 

and hence: 

y12 
h12= -- , 

yl l 

n y12 

k yii • 

(3.6.8) 

(3.6.9) 

(3.6.10) 

(3.6.11) 

In analogy with the preceding sub-section, the phase angles of — y12 and 
yn must be equal. If the differences are not too large, this can be achieved 
by changing yii artificially. 
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3.7 Fixed-Component Neutralization 

In the preceding sections various cases of perfect neutralization have been 
considered. In each case the reverse transfer parameter of the neutralizing 
network has been chosen such that it completely cancels the reverse transfer 
parameter of the transistor under consideration. 

In practice, most parameters of a transistor of a given type spread 
around certain average values. This is also the case for the reverse transfer 
parameter. It is therefore necessary, in order to achieve perfect neutrali-
zation, to adjust the elements of the neutralizing circuit separately for each 
transistor of a given type. In practical amplifiers it is, however, often re-
quired that fixed elements are used in the neutralizing circuit. The question 
then arises how to design the neutralizing circuit in order that good results 
are obtained for all transistors of the type given. 

With fixed component neutralization, as this method will be referred to, 
perfect neutralization is achieved only for transistors which have a certain 
value of the feedback parameter. If the symbol y12 is used to denote the 
reverse transfer parameter and P12 to denote that of the neutralizing net-
work, perfect neutralization is obtained for: 

y12 + P12 = 0. (3.7.1) 

The amplifier is said to be "over-neutralized" if a transistor is used in the 
amplifier for which 

1)1121 < I Fi21, (3.7.2) 

and "under-neutralized" in case 

1)1121 > I ri2I• (3.7.3) 

In Fig. 3.18 the three cases of neutralization are shown. The resulting 
feedback in the case of over-neutralization as well as in the case of under-
neutralization may lead to instability of the amplifier. To ensure stability 
the best values for the components of the neutralizing network are therefore 
those which yield equal stability factors for the over-neutralized and the 
under-neutralized cases. To determine these values it is required to investigate 
the spreads in the y12 and y21 parameters of the transistors and to find out 
which values of these parameters are most critical with respect to stability. 

Furthermore, spreads occurring in the Fie parameter of the neutralizing 
network must also be incorporated in the design of this network. 

In Chapter 11 an extensive treatment will be given of the influences of the 
various spreads in parameter of transistors and neutralizing networks on the 
stability of the amplifier. For the purpose of this chapter, in the following 
sub-sections only the spreads in the moduli of the transfer parameters are 
considered. 
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3.7.1 SPREAD IN THE TRANSISTOR REVERSE AND FORWARD TRANSFER 
PARAMETERS 

As will be seen from Book II, Chapter 2, the spreads in the arguments of 
y12, y21, h12 and h21 are small compared with the spreads in the magnitudes 
of these quantities. To design the neutralizing circuit, it is therefore sufficient 
to consider the spreads in magnitude. Using a suffix M to indicate a maximum 
value of a quantity, a suffix m to indicate a minimum value and a suffix a to 
indicate an average value, Table 3.2 can be compiled 1). To investigate the 

rte 

1) 

7 12 

r12 

r12 -712 

712 

a b 

r1z 

1 

1 12 -r 12 

7 12 

C 

Fig. 3.18.a. Perfect neutralization Iy121 = I F121 
Fig. 3.18.b. Over-neutralization 1712! < I 1 421 
Fig. 3.18.c. Under-neutralization 1712! > I 1 'i21 

The 2a values are usually quoted as the extreme values of a spreading parameter where-
as the median is taken as the average value. 
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Table 3.2 
reverse 
transfer 
parameter 

forward 
transfer 
parameter 

M = y12 y21. 

Maximum value y 12 M Y 21 M MM 

Average value y i2 a y 21 a Ma 

Minimum value y 12 in Y 21 m Mm 

stability of a neutralized amplifier for which the product of y12 and y21 is 
required, the most severe combination of these parameters must be taken 
into account. Although it is not very likely that in a single transistor the 
extreme maxima and the extreme minima occur simultaneously, the stability 
calculation will be based on such extreme combinations. In any case this 
produces a safe design and it is, moreover, the only possible approximation 
of the problem because of the lack of a reasonable correlation between the 

y12 and y21 parameters of the transistor of a certain type at a given frequency 
and biasing point. 

3.7.2 CALCULATION OF 1'12

As already stated the best value from the point of view of stability of I'12 
is that which renders the stability factors of extreme (with respect to y12 and 
y21) transistors equal in the over-neutralized and the under-neutralized cases. 

In the under-neutralized case, the regeneration phase angle of the transis-
tor equals 

arg y12 + arg y21 = 9, (3.7.4) 

and in the over-neutralized case this phase angle becomes (see Fig. 3.18) 

arg y12 — ~r + arg Y21 = O — ~-. (3.7.5) 

If the stability factor equals s (s = T9/T), the following condition is obtained 
(see sub-section 2.2.5) : 
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s= 

2 

1+COSe 

{ Iy12MI — I1'12I } ' IV21MI
A 

2 

1 + cos (0_ IT) (3.7.6) 
{ 11'121 — 1y12m1 } ' Iy21mI 

A 

{I1'121 —  Iy12ml } IV21m1 1 + COS 0 
(3 7 7) 

{ Iy12MI — I 1'121}  y21M1 1— COS 0 

from which, after some calculation: 

2Ma + dM cos 0 
1'121 =  

 
(3.7.8) 

2IV21ai + 4y211 COS 0 

Furthermore, according to Eq. (3.6.1): 

arg 1'12 = arg a12 + IT. (3.7.9) 

(Theoretically the arguments of 1'12 and Al2 may differ by (2k + 1)Ir in 
which k is an integer. In practical amplifier circuits, however, k = 0.) 

From the general expressions (3.7.8) and (3.7.9) corresponding expressions 
for admittance and hybrid parameters may be obtained by substitution. For 
the Y-neutralization system as well as the intermediate-basis circuit, the 
term IT in Eq. (3.7.9) is contained in the phase inverting transformer. 
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CHAPTER 4 

SINGLE-STAGE AMPLIFIER WITH SINGLE-TUNED 
BANDPASS FILTERS 

OPTIMIZATION OF POWER GAIN 

In Chapter 2 a single-stage amplifier with single-tuned bandpass filters 
was considered merely in order to present an introduction to the various 
aspects of the design of bandpass amplifiers. No attempt, however, was 
made to obtain an optimum design. The various design aspects of the single-
stage amplifier are therefore considered again in this chapter but with a 
view to optimizing the amplifier with respect to power gain, taking into 
account the other design requirements. 

4.1 The Various Kinds of Power Gain and their Significance 

In Chapter 2 it was pointed out that the gain performance of an amplifier 
equipped with transistors can best be characterized by its transducer gain. 
The transducer gain, denoted by t is defined as (see Fig. 4.1): 

dit 
_ power supplied to load _ PL 

4.1.1 
power available from source P a ( ) 

The transducer gain thus relates the power supplied by the amplifier to the 
load and the power that is delivered by the source when optimally terminated. 
This means that the transducer gain is a measure of the efficiency obtained 
by inserting the amplifier between source and load. Furthermore it follows 
that the transducer gain is a function of the source immittance, the load 
immittance and of the parameters of the amplifying network. 

Other important quantities expressing gain in power are the power gain 
qi, the available power gain and the maximum available power gain 

~aM 1). 

Source with 
source 

immittance 
Amplifier 

0 
P00 

~ PL 
o i

Load 
immittance 

Fig. 4.1. Amplifier with source and load terminations defining various power quantities. 

1) These and other quantities expressing gain in power are defined in Appendix IV. 
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j~max 

Re (1 ) 

Re  )opt 
Re (r) 

Fig. 4.2. The power gain of an amplifier becomes maximal for a certain value of the load 
immittance TL as shown here for the case of an amplifier having purely real parameters. 

The power gain of an amplifier is defined as 

power supplied to load PL 
F ' (4.1.2) 

power supplied to input of amplifier 

The power gain , which is only defined if the input immittance of the 
amplifier has a positive real part, is a function of the load immittance and 
the properties of amplifying network whereas it is independent of the source 
immittance. This is illustrated in Fig. 4.2 for the case of an amplifier having 
purely real parameters. For a certain value of the (real) load immittance 

Re(FL)opt the power gain becomes maximal. 
When the source immittance TS is selected such that it conjugately matches 

the input immittance of the amplifier, Pt = PSa and c = fit. Generally: 

(4.1.3) 

The available power gain a of an amplifier is defined as: 

power available from output of amplifier Poa 

power available from source PSa 
(4.1.4) 

The available power gain, which is only defined if the output immittance 
of the amplifier has a positive real part thus depends on the source immittan-
ce and on the parameters of the amplifying network. It is independent of the 
load immittance. This has been illustrated in Fig. 4.3 for the case that the 
parameters of the amplifier are purely real. For a certain value of the source 
immittance Re(l'S)opt the available power gain becomes maximal. 

Furthermore, if a load immittance is selected which conjugately matches 
the output immittance of the amplifier, Po becomes equal to Poa and lha = fit. 
Generally: 

tl)a (4.1.5) 
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Fig. 4.3. The available power gain of an amplifier depends on the source immittance PS
as shown here for an amplifier with purely real parameters. 

The maximum available power gain aM of an amplifying network is 
obtainable when both load and source immittances are selected such that 
maximum values are obtained for P and a. Then the source immittance 
and the load immittance are optimally matched to the input immittance 
and the output immittance of the amplifier respectively. We may write for 
this case: 

~aM t max = Amax a,max• (4.1.6) 

The maximum available power gain is a very important property of the 
amplifier. If it is finite (i.e. if the amplifier is stable) source and load termi-
nations can be selected such that the transducer gain becomes maximal and 
equal to aM. 

Fig. 4.4 gives a geometrical presentation of the conditions under which the 
maximum available gain of an amplifier is achieved, again assuming purely 
real parameters for the amplifier (and hence, real optimal terminations). 
Intersections of the plane of Fig. 4.2 for Re(FL)opt and of the tha plane of 
Fig. 4.3 for Re(Fs)opt are drawn in Fig. 4.4. The transducer gain becomes 
maximal and equal to cPaM at the point of crossing of these intersections. 
Optimizing an amplifier with respect to power gain thus means that such 

~aM 

R rJ 

Fig. 4.4. If load and source immittances of the amplifier are so chosen that simultaneously 
the power gain and the available power gain are maximum it is said that the amplifier 
delivers its maximum available power gain. This is illustrated in the figure for an amplifier 
with purely real terminations. 

~t 
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terminations are selected which provide simultaneously conjugate matching 
at input- and output pairs of terminals. Such a power optimizing procedure 
is, however, only possible when the amplifier remains stable over a wide 
range of terminations which is the case for amplifiers employing inherently 
stable amplifying elements (see sub-section 2.2.5) as will be proved in a 
following section. Amplifiers employing potentially unstable amplifying 
elements are stable only over a restricted range of source and load termina-
tions. For such amplifiers the conditions must be investigated under which 
the transducer gain becomes as large as possible thereby fulfilling the stability 
requirements. 

Apart from the restrictions imposed upon the source and load terminations 
of the amplifier when a potentially unstable amplifying element is used, 
there may be other restrictions due to a prescribed method of tuning the 
amplifier. The latter restrictions affect only the imaginary parts of the 
source and load immittances. In this chapter, however, we will consider 
only those conditions of tuning which render the transducer gain maximal. 

Furthermore there may be restrictions upon the real parts of source and 
load immittances due to requirements other than stability. These restrictions 
occur when it is attempted to achieve as large a value as possible of the 
transducer gain of an amplifier operating between a source and load having 
prescribed values of the real parts of the immittances. 

In cases in which the design for optimum noise performance of the am-
plifier is of prime importance, special restrictions are also imposed on 
source terminations, see Section 4.4. 

The various cases mentioned above will be dealt with in the following 
sections. Only amplifiers in the admittance matrix form will be considered 
in the analyses. When necessary, relations valid for amplifiers in the H 
matrix or any other environments may be derived analogously. 

4.2 Single-Stage Amplifier with Variable Regeneration Coefficient 

As follows from the preceding section, the maximum transducer gain of a 
single-stage amplifier is Obtained for conjugate matching at input and output 
terminals of the transistor. Then source and load admittances depend on the 
transistor parameters. Because GS and GL are thus variable the regeneration 
coefficient T is also variable. 

4.2.1 CONJUGATE MATCHING 

Source and load admittances are simultaneously conjugately matched to the 
input and output admittances of the transistor respectively if: 
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Ys = yin* = gin— jbin, (4.2.1) 

and 

YL = gout* = gout — jbout• (4.2.2) 

The asterisk in yin* and yout* denotes the complex conjugate of yin and gout 
respectively. 

4.2.2 INPUT AND OUTPUT ADMITTANCES OF AN AMPLIFIER UNDER 
CONJUGATELY MATCHED CONDITIONS 

The input and output admittances of a fourpole are given by (see Fig. 4.5) : 

y12y21 
yin = yll   (4.2.3) 

y22 + YL 

y12y21 
gout = y22 

yll + Ys 

Combining these two equations: 

(yin — yll)(y22 + YL) _ (yout — y22)(yll + Ys)• 

(4.2.4) 

(4.2.5) 

By equating the real parts of this expression and with Eqs. (4.2.1) and (4.2.2) 

we obtain: 

(gll — gin)(g22 + gout) + (bii — bin)(bout — b22) 

= (g22 — gout)(gll + gin) + (b22 — bout)(btn — bll), 

from which: 

2gugout — 2ging22 = O, 

or: 

gll gin 

g22 gout 

Furthermore, from Eq. (4.2.3) : 

yl2y2l 
YL =  y22. yll — yin 

From Eqs. (4.2.1) and (4.2.2): 

YS + yin = 2gin, 

1 
Ys

T

Fig. 4.5. Single-stage amplifier with terminations. 'Yin 

Ytt Yu 

Y21 Y22 

(4.2.6) 

(4.2.7) 

(4.2.8) 

Yout 

Y~ 
T



100 AMPLIFIER WITH SINGLE-TUNED BANDPASS FILTERS [4 

YL +gout = 2gout, 

and by adding Eqs. (4.2.4) and (4.2.7) : 

y12y21 
+ 

y12y21 

y + Ys 
— 2gout, 

ll yll — yin 

or: 
y12y21(Ys + yin) = 2gouc . 

(yll + Ys)(yll— yin) 

With Eq. (4.2.8), Eq. (4.2.10) becomes: 

y12y21 gout 

(y11 + Ys)(yll — yin) gin 

and with Eq. (4.2.6) : 

gll 
(yll + YS)(yll — yin) = — ' y12y21 • 

g22 

By putting (see sub-section 2.2.5) : 

and 

t= lyl2y2ll 
gl 1g22 

(4.2.9) 

(4.2.10) 

(4.2.11) 

(4.2.12) 

O = arg y12 + arg y21, (4.2.13) 

in which t denotes the intrinsic regeneration coefficient of the transistor, 
Eq. (4.2.11) becomes: 

(yll + Ys)(yll — yin) = g112t • exp (JO). (4.2.14) 

Separating real and imaginary parts and using Eq. (4.2.1) we obtain: 

gll2 — gin2 — (bll — bin)2 = g112t COs 0, 
and 

2g11(bll — bin) = g112t sin O. 

Substituting (bll— bin) from Eq. (4.2.16) into Eq. (4.2.15) yields: 

gin = gu[1 — t cos 0 — 3t2 sine O]+. 

From Eq. (4.2. 16) 

(4.2.15) 

(4.2.16) 

(4.2.17) 

bin = b,,— gilt sin 9. (4.2.18) 

For the output admittance we can derive in a similar manner: 
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Yin = pgtt +j (bit -1 gtt t sin 6) Yout = pg22 +j (b?, - Z g?2 t sin 6) 

Fig. 4.6. Conjugately matched single-stage amplifier. 

gout = g22[l — t cos (9—  I] t2 sin2 0]}, 

bout = b22 — -4g22t Sin (9. 

By putting: 

(4.2.19) 

(4.2.20) 

p = [1— t cos €— t2 sine O] , (4.2.21) 

= [(1— t cos 9)2 - +t2]#, (4.2.22) 

Eqs. (4.2.17) and (4.2.19) become: 

gtn = pgii, (4.2.23) 

gout = pg22. (4.2.24) 

Obviously, only positive (real) values of p are significant for our amplifier 
analysis. When p becomes zero the amplifier is at the boundary of stability, 
see sub-section 4.2.5.1. 

In Fig. 4.6 the conjugately matched amplifier is represented together with 
the calculated values of input and output terminations. Obviously transform-
ers may be used to connect source and load to the transistor terminals. Then 
the transformer ratios must be incorporated in the values of Ys and YL. 

In Fig. 4.7, the quantity p has been plotted as a function of t with O as 
parameter. 

4.2.3 MAXIMUM AVAILABLE POWER GAIN 

The transducer gain of an amplifier is given by (see sub-section 2.4.1): 

~t = 4GsGLIZtol2, (4.2.25) 

in which Gs and GL denote the source and load conductances respectively 
and Zto denotes the transimpedance of the amplifier at the frequency at 
which the gain is required. 
Now: 

y2i 

Zto = — 
'J0 

(4.2.26) 
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2 

101 1.0 10 f 
Fig. 4.7. The quantity p applicable to the conjugately matched amplifier as a function of 
the intrinsic regeneration coefficient t of the transistor and the regeneration phase angle 
8 as parameter. The quantity p relates gsu = Gs to gii and gout = GL to gis. 

8=180° 

0 
8 3 30° 
8=0° 8= 

60° 8=90° 8=120° 3001 270° 240° 
8=150° 210° 

[4 

d= 
Yl y12y21 

1 Y2 

Yi=Ys+yu, 

Y2 = YL +y22. 

(4.2.27) 

(4.2.28) 

(4.2.2 9) 

If source and load admittances have the conjugate matching values we may 
write for Y1: 

Yi = gtn — jbsn + gll + jbil• 

With Eqs. (4.2.23) and (4.2.18), Y1 becomes: 

Yi = gli(1 + p + jet sin t9). (4.2.30) 

Similarly: 
Y2 = g22(1 + p + jet sin t9). (4.2.31) 

With these expressions for Yi and Y2 the determinant of Eq. (4.2.27) becomes 
at the frequency at which the maximum in transducer gain occurs: 

d0 = g11g22 So, (4.2.32) 



4.2] SINGLE-STAGE AMPLIFIER WITH VARIABLE REGENERATION COEFFICIENT 103 

1 + p + jet sin 0 t exp (j0) 
and So = 

Furthermore: 

and 

1 1 + p + jet sin O 

GS = gin = pgll, 

GL = gout = pg22. 

Then the transducer gain becomes: 

or: 

~t = 4g11g22p2 ' 

2y2122 

gll g22 I S021 ' 

2t _ 
Iy2112 16p2

4811 g22 18012 
. 

(4.2.33) 

(4.2.34) 

(4.2.35) 

According to Appendix V, the maximum unilateralized gain u~l of the 
transistor equals: 

This gives for fit : 

_  Iy2112 
~uM 

4g11 g22 

16p2
~t = ~uM I8o12. (4.2.36) 

Evaluating the reduced determinant So, we obtain from Eq. (4.2.33): 

15012 = {(1 + p)2 — 4t2 sine 0 — t cos O}2 + p2t2 sine O. 

With Eq. (4.2.21) this reduces to: 

18012 = 8p2(1— 1-t cos O + p). (4.2.37) 

Then the transducer gain fit, which under conjugately matched condi-

tions equals the maximum available gain aM becomes: 

~aM = ~uM 2 (4.2.38) 
1-2tcoSe+p 

Obviously, aM has a significant value only if: 

1— t cos 0 + p >0,  (4.2.39) 
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Fig. 4.8. The relation between the maximum available gain and the maximum unilateral-
ized gain of a transistor is a function of t and ©. This ratio is obviously maximum when 
the amplifier is at the boundary of stability which is indicated by the curve for s = 1. 

[4 

and furthermore, p has a real value. 
For an unilateral amplifier t = 0 and p = 1. Then: 

~aM = ~uM• (4.2.40) 

The second factor of Eq. (4.2.38) is plotted in Fig. 4.8 as a function of t 
with (9 as parameter. 

4.2.4 REGENERATION COEFFICIENT 

The regeneration coefficient T of the amplifier is defined as (see sub-section 
2.1.2): 

in which: 

and 

T 
= Iy12y2I1 

GIG2

Gi = Gs + gii, 

G2 = GL + g22• 

(4.2.4 1) 

(4.2.42) 

With Eqs. (4.2.12), (4.2.23) and (4.2.24) we obtain from Eq. (4.2.41) for the 
conjugately matched amplifier: 

t 
T— . (4.2.43) 

(1 + p)2
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4.2.5 STABILITY 

4.2.5.1 Boundary of Stability 

In the conjugately matched amplifier under discussion the source and load 
dampings have fixed values (pgil and pg22) whereas the source and load sus-
ceptances are frequency-dependent. At the frequency at which the transducer 
gain is maximum these susceptances have values as required for conjugate 
matching. For such an amplifier it has been derived in Chapter 2 that the 
boundary of stability is given by: 

2 

Tg 1 + cos O 
(4.2.44) 

The boundary of stability may also be obtained by considering that the 
total input and output dampings of the amplifier become zero at this bound-
ary. According to Eqs. (4.2.23) and (4.2.24) this is the case for p = 0. Then 
it follows from Eq. (4.2.21) that: 

2 
tg — 

1 + cos O 
(4.2.45) 

in which tg is the value of the intrinsic regeneration coefficient t which ren-
ders p=0. 

Hence: 

( 1 
Tg — tg 

—y12y21 

g11g22/g '
(4.2.46) 

and, apparently, conjugate matching in an amplifier is only possible if: 

or: 
t < tg, 

2 
t <  (4.2.47) 

1 -~-cos0~ 

This implies that conjugate matching in an amplifier is only possible if the 
transistor employed is inherently stable (see sub-section 2.2.5). 

4.2.5.2 Stability Factor 

The stability factor of an amplifier, defined as the reciprocal of the maximum 
real loopgain of the amplifier is given by: 

Tg
s=—. , (4.2.48) 
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Fig. 4.9. The stability factor of a conjugately matched amplifier is dependent on the tran-
sistor properties t and 0. For a certain combination oft and 0 the stability factor becomes 
s = 1 which means that for this value of 0, the amplifier cannot be matched conjugately 
for larger values of t. 

With Eqs. (4.2.34) and (4.2.44), the stability factor becomes: 

2(1 + p)2
S .-

t(1 + cos 0) 

In Fig. 4.9 the stability factor s has been plotted as a function of t with 0 
as parameter. For the point at which the curves for the various values of O 
intersect the (horizontal) line for s = 1, we have t = tg. 

Using the plots of s in Fig. 4.9, lines of constant stability factor have been 
drawn in Fig. 4.8 for s = 1, s = 2 and s = 4. 

As follows from Fig. 4.8 a maximum gain in amplification of 6 dB above 
the maximum unilateralized gain of the transistor with (9 = 0° can be ob-
tained by conjugate matching at input and output terminals. Then the ampli-
fier is at the boundary of stability (s = 1). For stability factors of s = 2 and 
s = 4 the increase in transducer gain (for (9 = 0) amounts to 2 dB and 1 dB 
respectively. 
4.2.6 INCLUSION OF TUNED CIRCUITS IN THE CONJUGATELY MATCHED 

AMPLIFIER 

In the preceding sub-sections the terminations of the conjugately matched 
amplifier have been referred to as the admittances Ys and YL. Obviously, 
Ys and YL may partly be formed by the admittances of input and output 
tuned circuits YI* and Y2* respectively (in which Y* = G* + jB*). Then 
the actual values of source and load conductances become: 

(4.2.49) 
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Gs = pgii — Gi*, 

GL' = Pg22 — G2*• 
By putting: 

and 

we obtain: 

* * wig 
= 

Gi 
—  

Gi 
= 

Gi 
(4.2.50) 

Gi total Gs' + Gi* + gtn 2gii P 

G2* 
W2'  —

2g22 ' P 

Gs' = giip(1 — 2wi'), 

GL' = g22p(1— 2w2'). 

(4.2.51) 

(4.2.52) 

The susceptances Bs + Bi* and BL + B2* must be adjusted such that the 
correct values for conjugate matching are achieved. In most cases Ys' and 
Yi are made real and equal to Gs' and GL' given by Eq. (4.2.52) and the 
tuned circuits are detuned to such an extent that the required matching sus-
ceptances are obtained. 

In Fig. 4.10 such an amplifier circuit is represented. The source and load 
dampings as well as the transistor input and output terminals are connected 
to tappings on the tuned circuits. In determining the proper values of Gs' 
and GL' the tapping ratios must be taken into account. 

Inclusion of the tuned circuits leads to a decrease in the actual transducer 
gain of the 

amplifier.. 
The amount of power lost in the damping of the input 

tuned circuit equals ( 2Pgii—Gi*12 — (1 wi')2 times the total power supplied 
` 2Pgii / 

by the current source. Hence the transducer gain of the amplifier is decreased 

'Ste 

In 
n 

n2 G1

)'p Yi2 

Y21 Y22 
01 

I 
n3G2 1 

n4 

T
Cn4)

G,

Fig. 4.10. Circuit diagram of a conjugately matched amplifier. The matching susceptances 
at input and output terminal pairs of the transistor are achieved by properly tuning the 
tuned circuits. 



108 AMPLIFIER WITH SINGLE-TUNED BANDPASS FILTERS [4 

by this factor. Due to the damping of the output tuned circuit, the trans-
ducer gain is further reduced by a factor (1— W2')2. The transducer gain of 

the amplifier including the tuned circuits then becomes with Eq. (4.2.38) 1): 

2 
~t max = c1 M ' 

1— cos 0 +
• (1— w1')2(1— w2')2 . (4.2.53) 

1~t p 

4.2.7 EXAMPLE 

To illustrate the theory presented in the preceding sub-sections the gain and 
the terminations will be calculated for a conjugately matched amplifier with 
a transistor having the following parameters: 

gu = 10 mt5 

Y12 = 0.25 mZ5 

Y21 = 100 mt5 

g22 = 0.5 mZS 

It follows from these parameters: 

b11 

X12 

9221 

b22 

=15 mz5 

=260 

=310 

= 0.5 m J 

0=210°,tg = 14.9,t=5and M =25 dB. 

Because t < tg, the transistor is inherently stable (at the assumed frequency 

and biasing point) and hence conjugate matching of the amplifier is possible. 
For t = 5, it follows from Fig. 4.9 that the stability factors equals s = 15. 
From Fig. 4.8 it follows that the maximum available gain of the transistor 

is 4.2 dB below the maximum unilateralized gain. For M = 25 dB, 

~aM = 20.8 dB. 
Furthermore, from Fig. 4.7 it follows that p = 2, so that Gs = 2g11 = 

= 20 mtY and GL = 2g22 = 1 mZ5. 
According to Eqs. (4.2.1) and (4.2.18) the susceptive part of the source 

admittances follows from: 

Bs=—b11+2giltsinO=-15+12=-3mZ5, 

and from Eqs. (4.2.2) and (4.2.20) : 

BL= - b22+ ag22t sin O=-0.5+0.125=-0.375mi. 

1) The factors (1 — w')2 are not identical to the insertion losses (1 — w)2 of a single-tuned 
bandpass filter as derived in Appendix II. The relation between w and w' follows from 

w = w' 1 
P 

For a unilateral amplifier w = w'. 



4.3] SINGLE-STAGE AMPLIFIER WITH DEFINED REGENERATION COErriCIENT 109 

4.3 Single-Stage Amplifier with Defined Regeneration Coefficient 

In amplifiers in which potentially unstable transistors are employed measures 
must be taken in order that stability of the amplifier is ensured. According to 
Chapter 2 this means that there is an upper limit for the regeneration coeffi-
cient T. In view of gain, as large a value of T as possible is desired. The upper 
limit for T mentioned can therefore be considered as being fixed when 
attempting to optimize the design of the amplifier with respect to power 
gain. 

Similar conditions occur if the amplifier must operate between a source 
and load having given values of their damping. Then T is also constant. 

In such an amplifier the parameters that may be varied to achieve maxi-
mum gain are the source and load susceptances only. 

4.3.1 THE AMPLIFIER DETERMINANT 

For an amplifier circuit as shown in Fig. 4.5 the main determinant (see sub-
section 2.1.2) can be written as: 

Y1 y12 

d= (4.3.1) 

in which: 

Y21 Y2 

Yi = Gi + jBi, 

= Gs + $11 + j(Bs + b11), 

and 

(4.3.2) 

Y2 = G2 + jB2, 

= GL +g22 + j(BL + b22)• (4.3.3) 

Furthermore we put: 

B1` 
Y1= G1(1 +j G11 = Gl(1 +j  tan 9~i) , (4.3.4) 

and 

( B2\ 

Y2 = G2 \ 1 + i G21 = 
G2(1 + j tan q32) . (4.3.5) 

Then d can be written as: 

A = GiG2 S, 

in which: 

(4.3.6) 
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1 + j tan i Texp (jO) 
S = (4.3.7) 

1 1 + j tan q22 

4.3.2 TRANSDUCER GAIN 

The transducer gain of the amplifier is given by: 

~c  
IYZII

= 4GSGL 
Z 

(4.3.8) G12GZZI SIZ
 
. 

For the type of amplifier under consideration Tis constant, which implies 
that also the product GIG2 = A must be constant. To optimize 1c the quan-
tities 6, GI and G2 may thus be varied taking into account constant values 
for T and A. Because S only contains the constant T (the quantity 0 is a 

transistor parameter) whereas GsGL only contains the constant A, the opti-

mization procedures for t with respect to I Sj and GI, G2 may be carried out 
separately. 

As stated in the introduction to Section 4.3, a certain class of amplifiers 
have to operate between a source and load with fixed values of Gs and GL. 
For these amplifiers both Gi and G2 must remain constant and only 1S! 
may be varied to find the optimum value for

4.3.2.1 Gl and G2 are constant 

As follows from Eq. (4.3.8) the maximum value of Dc is obtained when 
1512 has the minimum value. According to Eq. (4.3.7) the variable quantities 
in X512 are tan q i and tan q~z. In order to find the minimum value of 15!2
we put: 

and 

d 
  S 2 = 
d(tan ryI) 

0 , 

d 

d(tan ~i) 
1612 = 0. 

(4.3.9) 

From Eq. (4.3.7): 
S = (1 + j tan q~i)(1 + j tan q2)— Texp (jO), (4.3.10) 

or: 
612 = (1— tan q i tan 2 — T cos 0)2 + (tan q i + tan q~2 — T sin 0)2. 

(4.3.11) 

With Eq. (4.3.9) we then obtain: 

— tan 2(1— T cos 0) + tan q' tang 9 2 + tan q + tan 922— T sin 0 = 0, 
(4.3.12) 
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— tan 9i(1— T cos 0) + tan2 q tan 92 + tan q + tan 92—  T sin 0 = 0 
(4.3.13) 

Subtracting these two equations gives: 

{tan 7i tan 72 — (1— T cos ©)}(tan q72 — tan 7 i) = 0 (4.3.14) 

tan 9'2— tan 91 = 0 (4.3.15) 

tan q i tan 922— (1— T cos 0) = 0. (4.3.16) 

The solution given by Eq. (4.3.16) may be ignored because it leads to 
S = 0 as is shown by substitution in Eq. (4.3.11). Hence only the solution 
presented by Eq. (4.3.15) is useful. This indicates that the minimum value of 
S occurs for: 

Hence: 

and 

tan q'i = tan 922 = tan 92. (4.3.17) 

In order to evaluate Smjn, tan q: must first be calculated. Substitution of 
Eq. (4.3.17) into Eq. (4.3.12) leads to a third order polynomial in tan Q, 
which cannot generally be solved. 

However, because we are mainly interested in the optimum value of the 
transducer gain and hence in the minimum value of I S I, the value of tan 97 
need not necessarily be known. Then ISlmin may be obtained graphically 
as follows: 

Substitution of Eq. (4.3.17) into Eq. (4.3.10) gives: 

S = (1 + j tan q~)2 — T exp (j©). (4.3.18) 

The first term of the right hand side of this equation represents a parabola 
equivalent to the parabola (1 + jx)2 considered in Chapter 2. Hence ~Slman 
may be found by determining the distance between the extremity of the vec-
tor T exp (j0) and the parabola as shown in Fig. 4.11. The determination of 

ISlmtn is facilitated by Fig. 4.12 opposite page 112 in which a number of lines 
have been constructed which are equidistant to the parabola. For a given 
value of T and © the value of I S I min may be read directly from the scale 
indicating the distance from the parabola to the line on which the extremity 
of T is situated. 

In analogy with sub-section 2.4.3 the expression for the transducer gain 
can be written as: 

or: 

_  IY2112 4Gsgii 4GLg22 1 
~t 

4g11g22 (Gs + gii) 2 (GL + gm) 2 ISI2min ' 

1 
~t = ~uM ~mm1 mm2 '  

1 S 12min 

(4.3.19) 

(4.3.20) 
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Fig. 4.11. To optimize the transducer gain of an amplifier of which the value of T is fixed 
for stability reasons or otherwise, the minimum value of I SI must be found. This minimum 
is equal to the shortest distance between the extremity of the vector T and the parabola as 
indicated by ISIm{n in the figure. The shortest distance between the extremity of T and the 
parabola is found by constructing a line through this extremity perpendicular to the para-
bola. By drawing a line parallel to the real axis through the point of intersection of the 
perpendicular and the parabola the value 2 tan q at which ISI = I sl min is found on the 
vertical axis. 

In this expression mm1 and mm2 denote the mismatch losses at the input 

and output sides of the transistor if the transistor is taken to be unilateral. (See 

the footnote on page 51). 

4.3.2.2 Gl and G2 are variable 

In Eq. (4.3.8) the product GSGL involves the variables Gi and G2 separately. 
In order to optimize 't with respect to these variables we put (because the 
optimum value of S has already been found) : 

d

d Gl 
(GsGL) = 0. 

Now: 

(4.3.21) 
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GsGL = (Gl - 

= (Gi — 

Hence we obtain for the optimum value 

REGENERATION COEFFICIENT 

gn)(G2 - g22), 

A 
gii) I—

of Gi : 

113 

(4.3.22) 

G1 
= ]/1i

A , (4.3.23) 
g22 

and for the optimum value of G2 (because GiG2 = A): 

g22 A G2 = (4.3.24) V gii 

If: 

N= 
y21 

y12 
(4.3.25) 

Eq. (4.3.8) may be written: 

~ t = 4 
Gs GL 

T N 1 (4.3.26) 
Gl G2 SI2min 

taking into account the optimum value of 8 obtained in the preceding sub-
section. 
With: 

M = Iyi2y21I (4.3.27) 

and Eqs. (4.3.22) to (4.3.24), Eq. (4.3.26) may be written: 

 T  2 1 
~c = 4 1— —gng22 T N   (4.3.28) 

M Is zmZn 

4.3.3 INCLUSION OF TUNED CIRCUITS IN THE AMPLIFIER 

In the same way as in sub-section 4.2.6 for the conjugately matched amplifier, 
tuned circuits may be incorporated in the amplifier with constant T. The 

admittances Y1* and Y2* of these tuned circuits form part of the load and 

source admittances. Again we assume that the susceptive parts of source 

and load admittances as required for maximum transducer gain are provided 

by the tuned circuits. Then the actual source and load admittances may be 

real and equal to Gs' and GL'. Now: 

Gs' = G1 — gll — Gl*, 

and 

GL' = G2 — g22 — G1*. 
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By putting: 

and 

we obtain: 

and 

AMPLIFIER WITH SINGLE-TUNED BANDPASS FILTERS 

W l = 

G1* 

G1 

G2* 
W2 =  , 

G2
Gs, = Gi(1 - wl) — gll, 

GL = G2(1 - W2) - g22• 

[4

(4.3.29) 

(4.3.30) 

(4.3.3 1) 

According to sub-section 2.4.3 the transducer gain of the amplifier is 
reduced by a factor (1— wl)2(1— w2)2 due to losses in these tuned circuits. 

If the losses in the tuned circuits are denoted by ail and i2 respectively, 
the transducer gain for an amplifier with constant T operating between a 
source and load with prescribed dampings becomes: 

1 
`fit, max = `Y7LM ' 1̀'m l  ~m 2 `yt l ~t 2  ~ 

I S 12min 

and for the amplifier in which Gs and GL may be varied: 

(4.3.32) 

2 

max = 4 1 / ,1— V/ T gllg22) • T N • ~tl ~t2 
I 12mIn 
  (4.3.33) 

M S 

4.3.4 SOURCE AND LOAD SUSCEPTANCES FOR OPTIMUM TRANSDUCER 
GAIN 

As follows from the preceding sub-sections the susceptive parts of source 
and load admittances must be given certain values in order to achieve the 
optimum transducer gain. These susceptances have, however, not been 
calculated because of the complexity involved (see sub-section 4.3.2.1). If 
necessary these susceptances can be calculated after a graphical evaluation 
of tan q, which relates: 

Bs + bll BL -I- bu 
4.3.34tan = 

Gs -f- g1I GL -I- gii ( ) 

in which Bs, Gs, BL and GL include the admittances of the input and output 
tuned circuits. 

The value of tan for optimum transducer gain for a given value of T and 
O can be determined as shown in Fig. 4.11. Fig. 4.13 (opposite page 113) 
presents a chart for determining tan q for any value of T and ©. 

4.3.5 TUNING PROCEDURE FOR OPTIMUM TRANSDUCER GAIN 

In single-stage amplifiers in which the source and load susceptances are 
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provided by means of tuned circuits, these tuned circuits can easily be adjust-
ed such that optimum transducer gain is obtained. This can be achieved by 
repeatedly tuning the output and input tuned circuits for maximum gain of 
the amplifier. The tuning of both circuits must be carried out repeatedly 

because the feedback of the transistor alters its output susceptance when 
tuning the input circuit and vice versa. 

4.3.6 COMPARISON OF AMPLIFIER PERFORMANCE TUNED FOR OPTI-
MUM TRANSDUCER GAIN AND TUNED ACCORDING TO TUNING 
METHOD A 

Comparison of Fig. 2.15 which is valid for a single-stage amplifier with 
given T tuned according to method A and Fig. 4.11 valid for the amplifier 
tuned for optimum transducer gain reveals that the only difference between 
the two amplifiers amounts to having the maximum transducer gain at 
different frequencies with respect to the tuning frequency. The tuning proce-

dure for optimum transducer gain as described in the preceding sub-section 

produces the maximum gain at the tuning frequency whereas the (same) 

maximum in gain occurs at a frequency different from the tuning frequency 

when the amplifier is tuned according to method A. (see sub-section 2.5.2.1) 

4.3.7 EXAMPLE 

To illustrate the theory presented in this section we consider a single-stage 
amplifier which should be designed with a stability factor of s = 4 thereby 

delivering maximum gain. We assume that the transistor to be used has the 

following parameters: 

gll = 15ZJ m b11 = —3 mtl 

Iy12I = 0.45 mt 12 = 250° 

1y211 = 16 mt 21 = 95° 

g22 = 0.3 m?J b22 = 1.5 m5. 
Then it can be calculated: 

~uM = 11.5 dB, M= 7.2.10-8) 2, N= 36, 

©=345° Ty= 1.0 T= 49=0.25. 

Then from the chart of Fig. 4.12, ISImm = 075, and from the chart of Fig. 
4.13, tan q = 0.125. With Eq. (4.3.28) the transducer gain becomes 11.0 dB. 
The optimum values of Gl and G2 are obtained from Eqs. (4.2.23) and 
(4.3.24) which yield Gi = 38 mZS and G2 = 0.76 mZS. Assuming that no 
tuned circuits are used the source and load dampings become 
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Gs = GI — gil = 23 mZs, 

GL = G2 —g22 = 0.46 mTS, 

and with Eq. (4.3.34) we obtain for the source and load susceptances BS = 
_ — 1.75 mZY and BL = — 1.6 mZs. 

4.4 Single-Stage Amplifier with Prescribed Regeneration Coefficients and 
Prescribed Source Admittance 

As already referred to in Section 4.1 for optimum noise performance of an 
amplifier certain values of real and imaginary parts of the source admittance 
are required. These values depend on the type of transistor used in 
the amplifier, its biasing point as well as on the frequency for which the am-
plifier has to be designed (see Bibliography [4.17]). 

The design of the type of amplifier mentioned must thus be carried out 
taking into account a prescribed value of the source admittance. To opti-
mize the gain of such an amplifier the real and imaginary parts of the load 
admittance are the only variables. In most amplifiers, however, potentially 
unstable transistors will be employed. This implies that the regeneration 
coefficient must also remain constant. This case will be considered in the 
following sections. 

4.4.1 OPTIMIZATION OF TRANSDUCER GAIN 

The transducer gain of the amplifier is given by Eqs. (4.3.8) and (4.3.7). Eq. 
(4.3.8) reads: 

~t 
_ 

4GSGL  I 
GIZ 

G: 
I Z 

(4.4.1) 
2 S 

. 

For constant value of T the quantities Gi and hence G2 are constant because 
GS and hence GL have prescribed values. The only variable is therefore: 

1 +jtanci 

1 

T exp (j0) 

1 ± j tan y'2 

(4.4.2) 

The transducer gain e can thus be optimized by finding the minimum value 
of ISI. Since tan 2 is the only variable in S we may put: 

d 
  I81=0.
d(tan 9 2) 

(4.4.3) 
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This yields for the optimum value of tan q'2: 

tan cp2 = cos2 q~iT cos 0(tan 0 — tan q~i). (4.4.4) 

4.4.2 OPTIMUM VALUE OF LOAD ADMITTANCE 

The value of G2 follows from 

T T 
G2=—= 

Gi. Gs + gll 

Then the load damping GL follows from: 

GL = G2 — g22, 

or: 

The value B2 then becomes 

T 
GL =  g22. (4.4.5) 

Gs + gn 

B2 = G2 tan q72. 

This gives for the load susceptance BL: 

BL = B2 — b22 

or: 

BL = tan c2 
T 

b22 . (4.4.6) 
Gs + gu 

When the amplifier is terminated by an admittance YL according to Eq. (4.4.5) 
and (4.4.6) the transducer gain becomes maximal taking into account the 
prescribed values of Ys and T. 
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CHAPTER 5 

SINGLE-STAGE AMPLIFIER 
WITH TWO DOUBLE-TUNED BANDPASS FILTERS 

5.1 General 

In considering single-stage amplifiers comprising two double-tuned band-
pass filters, the investigations will be based on the results previously ob-
tained from the analysis of single-stage amplifiers with two single-tuned 
circuits. For the present analysis use will be made of the four-terminal net-
work representation of the double-tuned bandpass filter as derived in Ap-
pendix III. The amplifier may then be considered to consist of three four-
terminal networks in cascade, the first and last of which are passive (double-
tuned bandpass filters), and the second active (transistor or electron tube). 
For this chain of four-terminal networks a matrix equation will be derived 
by means of which the transfer function of the complete amplifier can easily 
be evaluated. This transfer function then enables important amplifier pro-
perties such as stability, transducer gain, amplitude response and envelope 
delay to be determined. 

The analysis of the single-stage amplifier with double-tuned bandpass 
filters is not only of practical importance in itself, but it also serves as an 
introduction to the analysis of multi-stage amplifiers comprising double-
tuned bandpass filters, to be dealt with in Chapters 7 and 8. 

5.2 Single-Stage Amplifier with Parallel-Parallel Tuned Double-Tuned 
Bandpass Filters 

Fig. 5.1 shows a circuit of the single-stage amplifier comprising two double-
tuned bandpass filters with parallel-tuned primary and secondary. In this 
circuit, a transistor in common emitter connection is shown, but any other 
transistor configuration or an electron tube might be used instead. The 
amplifier is driven by a current source having an admittance i's and loaded 
by an admittance YL. 

It is assumed that inductive coupling is used for the double-tuned band-
pass filters. However, both the method of analysis and the results obtained 
are the same if other types of coupling are employed. 

In the multi-stage amplifiers to be investigated later, it will prove to be 
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Fig. 5.1. Schematic circuit of a single-stage amplifier with two double-tuned bandpass 
filters with parallel-tuned primaries and secondaries. 

convenient to start the analysis at the output side of the amplifier. For this 
reason the double-tuned bandpass filters and the resonant circuits forming 
these bandpass filters in the circuit of Fig. 5.1 are numbered consecutively, 
starting at the output side of the amplifier. The same procedure is used for 
numbering the voltages appearing at the terminals of the double-tuned 
bandpass filters. 

By replacing the double-tuned bandpass filters by their equivalent four-
terminal networks based on admittance parameters as derived in Appendix 
III, the equivalent circuit of Fig. 5.2 is obtained. In this circuit the active 
device is also represented as an admittance parameter equivalent circuit. 
To distinguish the admittance parameters of the passive and active four-
terminal networks capital Y's are used to denote the former, and lower-case 
y's to denote the latter. 

The indices which precede the admittance parameter symbols in Fig. 5.2 
indicate the passive or active four-terminal network to which the parameters 
appertain. The symbol 2Yu, for example, denotes the input admittance para-
meter of the penultimate bandpass filter of the amplifier. 
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Fig. 5.2. Single-stage amplifier with two double-tuned bandpass filters. The bandpass filters 
and the active device (transistor or electron tube) are represented by four-terminal equi-
valent network based on admittance parameters. 
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Fig. 5.2 can be further simplified by combining the two admittances at 
the common points of the four-terminal networks into a single admittance. 
By so doing, the circuit of Fig. 5.3 is obtained, in which: 

Y1=lY22+YL, 

Y2 = 1y22 + lYll, 

Y3 = 2Y22 + lyll, 

Y4 = Ys + 2Yi1. 

(5.2.1) 

It is thus seen that the admittances Yi to Y4 consist of an inductance, a capa-
citance and a conductance connected in parallel, forming a single-tuned 
circuit. According to Appendix lithe admittances can then be expressed by: 

Y = G(1 + jx). (5.2.2) 

It is therefore possible to represent the complete single-stage amplifier by 
an equivalent circuit containing four single-tuned resonant circuits and a 
number of current sources, as shown in Fig. 5.3. 

node 
No.4 

4 

node 
No.3 

Fig. 5.3. Simplified equivalent circuit of the amplifier of Fig. 5.2. 

node node 
No.2 No.1 

1 

 0 

According to Kirchhoff's first law, the following equations apply to the 
various nodes of the equivalent circuit of Fig. 5.3, viz, 

to node 1: 

to node 2: 

to node 3: 

and to node 4: 

1Y21 ' v2 + Yl ' vl = O, (5.2.3) 

1y21'v3+Y2'v2+1Y12'vl=O, (5.2.4) 

2Y21 ' v4 + Y3 ' v3 + lyl2 ' v2 = O, (5.2.5) 

— is + Y4 ' v4 + 2Y12 ' va = 0. (5.2.6) 
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These four equations can be combined in a single matrix equation: 

l,g Y4 2Y12 0 0 D4 

0 2Y21 Y3 1y12 0 113 
(5.2.7) 

0 0 1y21 Y2 1Y12 112 

0 0 0 1Y21 Yl V1 

The first matrix of the right hand side of this equation is the definite admit-
tance matrix of the amplifier circuit presented in Fig. 5.3. The method of 
deriving this matrix employed is in fact equivalent to that of Appendix I, 
Section 4. 

As follows from the preceding chapters the determinant of the square 
matrix of Eq. (5.2.7) is important in analyzing the amplifier with respect to 
stability, gain and frequency response. This determinant, which will be denot-
ed by d can be simplified by separating out the G's, making use of Eq. (5.2.2). 
Hence: 

1 + jx4 
2Y12 

0 0 
G4 

2Y21 12 

1G 
d = G1G2GaG4 

1 + jx3 0
(5.2.8) 

G3 s 

0 
1}21 1 + x2 1Y12 

G2 

l Y21 

G2 

0 0 1 + jxi
Gl 

Eq. (5.2.8) can be further simplified by dividing each column of the deter-
minant by the Y21 (or y21) term it contains, and multiplying the correspond-
ing row (of equal index) by this same term, which gives: 

2 Y12 ' 2Y21 
1 + jx4 0 0 

G3G4 

d = G1G2G3G4 
1 1 + jx3 

1y12 ' 1y21 
0 

(5.2.9) G2G3 

0 1 1 + jx2 
1Y12'1Y2' 

G1G2 

0 0 1 1 + jxl
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In Eq. (5.2.9) the index y in dy indicates that d is obtained from the ana-
lysis using admittance parameters. 

By putting the reduced determinant of Eq. (5.2.9) equal to 8y we obtain: 

and 

dy = 

1 + lx4 

GiG2G3G4 

2Y12 ' 2Y21 

' Sy, 

0 0 

(5.2.10) 

G3G4 

1 1 F 'x3 
1y12 ' 1y21 

0 
G2G3 Sy = (5.2.11) 

1Y12' 1Y21 
0 1 l + jx2 

G1G2 

0 0 1 1 + jxi 

5.3 Single-Stage Amplifier with Two Parallel-Series Tuned Double-Tuned 
Bandpass Filters 

Fig. 5.4 shows a circuit of a single-stage amplifier comprising two double 
tuned bandpass filters with parallel-tuned primaries and series-tuned secon-
daries. The amplifier is driven by a current source with admittance YS and 
loaded by an impedance ZL. 

1st 

Node no.4 

T

1 

l TC`
Gy Ly 

Mesh no.3 

R3 h~ 
~3 

Mesh no.! 

Fig. 5.4. Schematic circuit of a single-stage amplifier with two double-tuned bandpass 
filters with parallel-tuned primaries and series-tuned secondaries. 

To analyze this amplifier the double-tuned bandpass filters are replaced 
by the equivalent four-terminal networks based on K-parameters as derived 
in Appendix III and the transistor is replaced by an H-parameter equivalent 
circuit. Then the output side of the K-network and the input side of the H-
network form a series connection of two voltage sources and two impedan-
ces. To obtain a uniform direction of the current in this mesh it is necessary 
to assume a direction opposite to that of the adopted sign convention (see 

1L 
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h 
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KII= 

i2

Fig. 5.5. K-four-terminal network with current directions K11 K12 
according to the adopted sign convention. To ease the v 

K21 K2 2 amplifier analysis the output current should have a rever-
-~ sed direction. 

Chapter 1 and Fig. 5.5) for either the output current of the K-network or the 
input current of the H-network. Here an opposite direction will be assumed 
for the output current of the K four-terminal network representing the 
double-tuned bandpass filters. The K-matrix of this network then becomes: 

K = 
Kul -K12 

K21 — K22

whereas its equivalent circuit becomes as shown in Fig. 5.6. 

j-Kr2i2 V2 

(5.3.1) 

Fig. 5.6. Equivalent circuit for the K-four-
terminal network with reversed direction of 
output current. 

With these equivalent four-terminal networks the circuit of Fig. 6.4 
becomes as shown in Fig. 5.7. By putting: 

and 

Zl = - 1K22 + ZL, 

Y2 = 1h22 -f- 1K11, 

Z3 = - 2K22 + 1h11, 

Y4 = Ys + 2K11, 

(5.3.2) 

the circuit of Fig. 5.7 may further be simplified to that presented in Fig. 5.8. 
Furthermore, according to Appendix II: 

Z = R(1 + jx), 

Y= G(1 + jx). 
and (5.3.3) 
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1 

Node no.4 Mesh no.3 Node no.2 

2K11 

13 L I 
2K22 

-2Ki2.i3 

2K21Y~0

lhrr 

0 ~1h12v2 

,h2, 

v2

Mesh no.! 

1 

1 ° 
-1Kz2 

4 -
,K2', Ot 

rKzt~ 

i,1 
ZL

Double - tuned bandpass 

_J L 

Transistor no.1 Double- tuned bandposs 
filter no.2 filter no.! 

Fig. 5.7. Single-stage amplifier with two double-tuned bandpass filters according to 
Fig. 5.4. 

For the equivalent amplifier circuit of Fig. 5.8 the following equations 
may be written down: 

for mesh l: 

for node 2: 

for mesh 3: 

and for node 4: 

1K21v2 + Z1i1 = 0, 

1h21 ' is + y2v2 — 1K12 ' Zl = 0, 

—2K21 ' V4 + Z3 ' l3 + 1h12 ' V2 = 0, 

Y4 ' v4 — 2K12 ' I3 = iS• 

(5.3.4) 

(5.3.5) 

(5.3.6) 

(5.3.7) 

Again these four equations may be combined in a single matrix equation: 

Node 
no.4 

Y. 

r 

Mesh 
no.3

— I 1--

Z3 3 

_ K,2 13 TO ,h12 1 0
1h2t 3 

Node Mesh 
no.2 no./ 

1-
ZI 

1i, 

,K12'l ,K21V2 

Za=- 2K22+,h,, V2=fh22t;K1f Z,= —,K22l-ZL 

Fig. 5.8. Simplified equivalent diagram of the amplifier of Fig. 5.7. 
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is I'4 -2K12 0 0 114 

0 2K21 Z3 1h12 0 i3 
(5.3.8) 

0 0 1h21 Y2 -1K12 112 

0 0 0 -1K21 Zi it 

The determinant of Eq. (5.3.8) which will be denoted by dh can be sim-

plified using Eq. (5.3.3) to: 

-2K12 
1 0 0 +]X1 

G4 

- 2K21 1h12 
1 + 0 jx3 

dh = R1G2R3G4 
R3 G3 (5.3.9) 

1h21 - 1K12 
0 

1 + Jx2G2 G2 

0 0 1 + 
R1K21 

jxl 

or, by putting the reduced determinant equal to Sh: 

dh = R1G2R3G4 Sh• (5.3.10) 

By rearranging the elements of Sh: 

1 2K12 • 2K21 
0 0 

+ 
Jx4 
 R3G4 

1 1 'x3 
1h12. 1h21 

0 { 
G2R3 Sh = (5.3.11) 

1K12 1K21 
0 1 1 + jx2 

R1G2 

0 0 1 1 + jxl 

5.4 The Reduced Determinant 

The reduced determinants S as defined by Eqs. (5.2.11) and (5.3.11) may be 
further simplified as follows: According to Appendix III, Eqs. (III.1.15) and 
(III.1.22) we have: 

Ii2 = Y21 = jq j1 GpGB, (5.4.1) 
and: 
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K12 = — K21 = — q }'GpR8, (5.4.2) 

in which the indices p and s refer to primary and secondary of a double-
tuned bandpass filter. With Eqs. (5.4.1) and (5.4.2): 

Y12 Y21 K12K21 
— — q2. 

GpGs GpR3
(5.4.3) 

According to Chapter 2, sub-section 2.1.2, the term 
y12y21 

equals the 
G2G3 

complex regeneration coefficient Ty • exp (j0~) in the Y-matrix environment. 
Also (see sub-section 2.1.3) : 

h12h21 — Th exp (jOn) . 
G2Rg 

Then the reduced determinant becomes: 

1 + jx4 —q22 0 0 

Sy = 
1 
0 

1 + jx$
1 

Ty • exp (j 9 ) 
1 + jx2

0 
- q12 (5.4.4) 

0 0 1 1 + jxi 

in which the index y refers to either the Y or H-matrix environments 1). 

5.5 The Transfer Function of the Amplifier 

The transfer function of an amplifier is defined as the ratio between a charac-
teristic output parameter and a characteristic input parameter. For the 
amplifier circuit shown in Fig. 5.1 these characteristic parameters are vl and 
is respectively. Hence the transfer function equals the forward transfer 
impedance or transimpedance Zt of the amplifier, i.e.: 

vl 
Zt = — . 

is 
(5.5.1) 

For the circuit represented by Fig. 5.4 the characteristic quantities are ii 
and is. The transfer function therefore equals the forward transfer current 
ratio or current gain Ht 2) of the amplifier. Hence: 

1) It will be obvious that the index y may also refer to the Z or K matrix environments 
provided the parameters of the transistor(s) and double-tuned bandpass filters are 
expressed in the appropriate matrix environments. 

Z) See note on page 24. 
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Ht = 
al 

. (5.5.2) 
is 

To find Zt for the amplifier with parallel-tuned double-tuned bandpass 
filters first vl is calculated using Eqs. (5.2.7) and (5.2.8). This gives: 

Y4 2 Y12 0 
2Y21 Y3 1y12 

0 1y21 Y2 

0 0 1 Y21 

is 
0 
0 
0 

It then follows for Zt using Eqs. (5.2.10), (5.4.1), and (5.4.4): 

1y21 ' glg2 
Zt = — 

,/Y G1G2G3G4 Sy 

(5.5.3) 

(5.5.4) 

In an analogous way it follows for Ht of the amplifier with parallel-series 
tuned double-tuned bandpass filters using Eqs. (5.3.10), (5.4.2), and (5.4.4): 

H 
1h21 ql q2 

t — —_.—
YRlG2R3G4 5h 

(5.5.5) 

Expressions (5.5.4) and (5.5.5) reveal that the factor Sy given by Eq. (5.4.4) 
is the only frequency-dependent part of the transimpedance function 1). 

Furthermore, the factor Sy comprises the regeneration coefficient of the 
transistor; stability, transducer gain, amplitude response and envelope delay 
depend on the magnitude of this coefficient. 

5.6 Stability 

5.6.1 BOUNDARY OF STABILITY 

In the single-stage amplifier with two double-tuned bandpass filters to be 
considered here, instability occurs as soon as the transfer function as given 
by Eq. (5.5.4) or Eq. (5.5.5) becomes infinite. This will be the case when Sy 
becomes zero. The amplifier is then said to be at the boundary of stability. 
Therefore, at the boundary of stability: 

1) The forward transfer immittance y21 of the active four-pole is assumed to be frequency-
independent with respect to modulus and argument (see Chapter 1). 
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1 + Jx4 - q22 0 0 
S = 1 1 + jx3 Tg1 exp (j0) 0 

0 1 1 + jx2 -q 12 

0 0 1 1 + jx1 

= 0, (5.6.1) 

in which Tgi is the value of the regeneration coefficient on this boundary 1). 
It can be calculated that: 

q12

 l 
I q22

 l Tgi exp (Jc9) = (1 + Jx2 + 1 + xl ) \1 + Jx3 + 1 + x4/ 
. (5.6.2) 

J J 

The right-hand side of this expression consists of the product of the re-
duced immittances presented to the transistor by the bandpass filters at its 
output and input terminals respectively (see Section 2.1 of Appendix III). 
This is analogous to the case of the single-stage amplifier with two single-
tuned circuits. By putting q2 = 0 in Eq. (5.6.2), Eq. (2.2.2) is obtained. 

Working out the right-hand side of Eq. (5.6.2) gives: 

1 
Tgi 1— +q12

-+1x3 1 +x2x4 1  X1X4 
+q22 +g12 + exp (JO) = x2x3 1+x12 q22 (1 +x12)(11 +x42 +x42)

X3- Xi 
+q22 

X2- X4 xl+x4 
(5.6.3) + J x2 +x3+g12 1 +x12 g12g22 (1

+x 12)(1 +x42) 1+X42

If all circuits are assumed to be tuned synchronously, all values of x 
disappear at the tuning frequency, and the locus of Tgi exp (j©) plotted in 
the complex plane will by symmetrical with respect to the real axis. 

In order to calculate the boundary of stability of the amplifier, it will be 
assumed that the geometrical means of the primary and secondary quality 
factors of both bandpass filters are identical. Since all values of are identi-
cal, it is permissible to put: 

1/xix2 = j'x3x4 = x. (5.6.4) 

It is now convenient to introduce 

Q1 xl 

Q2 x2 
rl , 

1) The suffix y has been omitted here for reasons of simplicity in writing the various 
equations. 
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whence: 

x.= x ~rl , and x2 = x/1"rl , (5.6.5) 

and, similarly: 

Q3 x3 
_— =r2, 

Q4 x4 

whence: 

x3=x Yr2, and x4 = x/ 1 r2 . (5.6.6) 

Substitution of these expressions in Eq. (5.6.3) gives: 

,/ 1 + x 2 Y rlr2 1 + x 2/Y rlr2 
Tgl exp (j 0 ) = 1— x 2 1 r2I rl + q12 1 + x2r1 

+q22  
l  +x2  /r9 + 

2 2  1 — x2 Y 'r1/r2 

+ ql q2 (1 + x2r1)(l + x2/r2) + 

1 — 
2 
}1r 2— 1 rl 2 Y rl Yr2 

2 2 +jx ,/~1 + Yr2+ql 1 + x2r1+q2 l + x2/r2 ql 
q2 ( 1+x2r1)(1+x 2/r2) YY

 (5.6.7) 

The latter expression enables Tgi exp (j&1) to be calculated with x as the 
independent variable and to be plotted in the complex plane. This has been 
done in Figs. 5.9 and 5.10 for the various cases tabulated below. 

graph curve rl r2 q12 
= l/22 = 

Q2 

Fig. 5.9 A 1 1 0.5 
Fig. 5.9 B 1 1 1 
Fig. 5.9 C 1 1 2 
Fig. 5.10 D 2 2 1 
Fig. 5.10 E 2 0.5 1 
Fig. 5.10 F 0.5 2 1 
Fig. 5.9 
Fig. 5.10 

G (two single-tuned circuits) 

The coupling factors q2 of both double-tuned bandpass filters are assumed 
to be equal. In Figs. 5.9 and 5.10 Tgl • exp (j01) has been plotted only for 
positive values of x, because the corresponding curves for negative values of 
x are image-symmetrical to the former with respect to the real axis. 
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Fig. 5.9. Boundaries of stability of a single-stage amplifier with two double-tuned band-
pass filters. The curves clearly show the influence of the value of q2 on the boundary. For 
the sake of comparison curve G, representing the boundary of stability for a single-stage 
amplifier with two identical single-tuned circuits: (q2 = 0), has also been plotted. Various 
values of x are indicated along the curves. Only the upper halves of the curves are drawn 
since the curves are symmetrical with respect to the real axis. 

The curves in Figs. 5.9 and 5.10 thus represent the boundaries of stability 
for the single-stage amplifier with two double-tuned bandpass filters for 
several different cases. For the sake of comparison the boundary of stability 
for a single-stage amplifier with two identical single-tuned circuits has also 
been plotted in these graphs (curves G). All boundaries of stability for the 
stage with double-tuned bandpass filters are seen to lie outside the boundary 
for the stage with two single-tuned circuits. Fig. 5.9 moreover shows that Tg
increases with the value of q2 (cf. curves A, B and C). Fig. 5.10 further reveals 
that, when the quality factors of the primary and secondary are so chosen that 
circuits 1 and 4 have the highest quality factors (curve F), Tg assumes a larger 
value than when circuits 2 and 3 have the highest quality factors (curvc E). 

According to Eq. (5.6.7), the angle O corresponds to the argument of the 
right-hand side of this expression. Because O is a parameter which depends 
exclusively on the properties of the transistor with which the amplifier is 
equipped, it will be most useful to express T9 as a function of O. This has 



132 SINGLE-STAGE AMPLIFIER WITH TWO DOUBLE-TUNED BANDPASS FILTERS [5 
7453 

F 

D 
E 
G 

■-~~■- ■~ 

1    
~U1~~_■ ■~■~ 

_ulo_l_ 35 ~■_■■■ I ■ 

• 

• .~~'■' 6 

I~w  

T sin 

!9

i8 

-9 -8 7 -5 4 3 a -1 

2 
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been done in Figs. 5.11 and 5.12 for the amplifier under consideration for 
several values of q2 and r. A logarithmic scale has been used for Tg in order 
to obtain the same relative accuracy for small and large values of Tg. 

5.6.2 GRAPHICAL METHOD FOR DETERMINING THE BOUNDARY OF 
STABILITY 

In the preceding sub-section the boundary of stability of the amplifier con-
figuration in question has been considered using an analytical way of 
approach. There is, however, also a graphical method to determine this 
boundary. This method will prove to be very important in some specialized 
cases and, moreover, will be of help in understanding the stability problem in 
general. 

Using Eqs. (III.2.8) and (I11.2.9) of Appendix III, Eq. (5.6.2) can be written 

as: 

Tgi exp (J9) = Y 1 yo2 = kuI kt2. (5.6.8) 

In the following considerations, which will lead to the graphical method for 
determining Tg, only the admittance matrix notation will be used. For the 

5 
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Fig. 5.11. Boundaries of stability of a single-stage amplifier with two identical double-tuned 
bandpass filters for r = 1 and several values of q2 = (kQ)2. For the sake of comparison 
the boundary of stability of a single-stage amplifier with two single-tuned circuits has also 
been plotted (curve in broken line). 
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hybrid matrix notation corresponding results can be obtained by means of 
analogies. Eq. (5.6.8) may be written as: 

Tgi = IyiiI IYo2I (5.6.9) 
and 

O—(q~i+q~2)=0+k 27r, k=0,1,2,. . . (5.6.10) 

in which pi and q~2 are the phase angles of yn and yo2 at the frequency at 
which instability will occur. If conditions (5.6.9) and (5.6.10) are satisfied, the 
internal loop gain of the amplifier stage is real and equal to unity. In Fig. 
5.13 condition (5.6.10) is shown for two values of O. It follows that for values 
of O in the first or the second quadrant both I and 92 will be positive where-
as for values of O in the third or the fourth quadrant and will be 
negative. 

The graphical construction for Tgl is based on the fact that the phase 
shifts q l and 9Q2 necessary to fulfil condition (5.6.10) must be provided byyn 
and y02 at the same frequency. In Fig. 5.14 such a construction is presented. 
The construction of the diagrams for yci and yo2 is carried out according to 
the method given in Appendix III, sub-section III.2.1. 

It is assumed that 0= 250°; then q~i + q~2 = 110° and both phase shifts 
will be negative. This implies that instability will occur at a frequency below 
the resonant frequencies of the (synchronously tuned) double-tuned bandpass 
filters i.e. at negative values of the normalized detunings x2 and x3. 

Furthermore, it will be assumed that the tuned circuits of which the two 
double-tuned bandpass filters are composed are identical; thus xi = x2 = x3
=x4 = x, r = 1. The coupling factor of the bandpass filter at the output 

Fig. 5.13. At the boundary of stability of the amplifier the internal loopgain must be real. 
This is the case if 0 + q i + q s = 0 ± k. 21T (k = 0, 1, 2, . . .) which condition is shown 
for two values of O. 
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Fig. 5.14. Graphical construction for determining T9 of a single-stage amplifier with two 
double-tuned bandpass filters. Both bandpass filters are assumed to be identical except for 
the coupling factor q 2. For bandpass filter 1 (at the output terminals of the transistor), 
q 2 = 2 and for bandpass filter 2, q 2 = 1.5. For the angle O indicated, T9 equals the product 
of the sections OA and OB of the line OP. The line OP is drawn through the pole O such 
that it intersects the yii and yoz diagrams at the same detuning (x = — 2.18). 

terminals of the transistor (bandpass filter No. 1) is assumed at q12 = 2.0 
whereas that of bandpass filter No. 2 equals q22 = 1.5. 

In Fig. 5.14 the diagram for yi1 has been drawn in a normal position. The 
diagram for yoz has been constructed using the same pole O as for the dia-
gram for yi1. Furthermore the real axis of the yo2 diagram has been turned 
through an angle 0 and the yoz diagram itself has been reflected with respect 
to this real axis. This means that + j and — j are interchanged. Thus the 
real axes of both digrams form an angle 360— O = cp1 + 92 and the parts 
of the respective diagrams for negative values of x intersect. 

A line OP is drawn through the common pole O in such a way that it 
intersects the yii and yoz curves at the same frequency. Then the line OA 

equals Iyiil and the line OB equals o2 at the frequency at which instability 
will occur. Because of the synchronous tuning of the double-tuned bandpass 
filters this happens at x2 = x3 = x = 2.18. With Eq. (5.6.9): 

Tg1 = OA • OB. (5.6.11) 

Taking into account the proper scale factor we obtain from Fig. 5.14: 

Tgi = 4.7. 

In Fig. 5.14 the construction for Tgi for the case of a single-stage amplifier 
with two single-tuned bandpass filters is also carried out. This yields 
Tgi = (OC)2, which equals Tgi = 2.9. 
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The construction for Tg as presented in Fig. 5.14 may be carried out for a 
single-stage amplifier with two double-tuned bandpass filters which need not 
be identical. In the case of non-synchronous tuning, the construction is also 
possible if the polar diagrams of yti or yo2 are provided with a frequency 
scale. 

In fact the graphical determination of Ti may be carried out for any net-
work for which polar plots of yn and ya2 can be constructed. This renders it 
very useful, especially if in complicated cases the value of Tg is required 
for a limited number of values for 0. In Chapter 12 we will demonstrate this 
when dealing with non-ideal transformers used to connect the bandpass 
filter terminals to the transistor terminals 

5.6.3 STABILITY FACTOR 

By means of either the graphs of Figs. 5.9 to 5.12 or Eq. 5.6.3 as presented in 
sub-section 5.6.1 or the graphical method of sub-section 5.6.2 the value of 
T9I can be ascertained for the single-stage amplifier. 

As pointed out in sub-section 2.2.4, practical amplifiers should be de-
signed with a certain margin of stability. For this purpose a stability factor s 
was introduced that relates the magnitude of the regeneration coefficient T 
on which the design of the amplifier is based, to the value of the boundary of 
stability Tg

(5.6.12) 

The same argument holds for the single-stage amplifier with two double-
tuned bandpass filters, the only difference being that the curve representing 
Tg as a function of e has a different shape from that given in Section 2.2. 
However, this is of importance only for the value of s, because for this 
type of amplifier also the value of Tis chosen by considering the shape of the 
amplitude response and envelope delay characteristics for several values of 
T (cf. sub-section 2.5.2.2). It is therefore by no means certain that the exact 
value of Tgi as can be determined using the methods of sub-sections 5.6.1 or 
5.6.2 is actually required for designing an amplifier. 

It will often be sufficient to know the approximate value of the stability 
factor and hence, only an approximate value of Tg is required. A very rough 
approximation of the boundary of stability for this type of amplifier is 
obtained by using that for the single-stage amplifier considered in Chapter 2. 

5.7 Tuning Procedures 

In Section 2.3, dealing with single-stage amplifiers having single-tuned cir-
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cuits, it has been pointed out that distinction should be made between three 
practical methods of aligning. The consequences of these tuning methods on 
the performance of the single-stage amplifier with double-tuned bandpass 
filters are dealt with in this section. 

5.7.1 TUNING PROCEDURES FOR AN AMPLIFIER IN THE Y-MATRIX EN-
VIRONMENT 

The type of amplifier analyzed in the chapter using the Y-matrix represen-
tation comprises double-tuned bandpass filters with parallel-tuned primary 
and secondary. In the following sub-sections this type of amplifier will be 
considered with regard to either of the tuning methods A, B and C. 

5.7.2 TUNING METHOD A 

As described in sub-section 2.3.2, tuning an amplifier according to what is 
referred to as method A amounts to each resonant circuit of the amplifier 
being tuned to the desired frequency whilst the resonant circuits immediately 
preceding and following it are so heavily damped that the remaining part of 
the amplifier has no influence on the circuit to be tuned. Its admittance can 
then be expressed by: 

Y= G(1 + ix), (5.7.1) 

as shown in sub-section 2.3.1. In the preceding calculations on the single-
stage amplifier with double-tuned bandpass filters it has been tacitly assumed 
that the amplifier was tuned according to this method A. (Hence, in deriving 
the matrix equation (5.4.4); Eq. (5.7.1) was assumed to be applicable. 

5.7.3 TUNING METHOD B 

The tuning procedure referred to as method B consists in aligning the vari-
ous tuned circuits of the amplifier successively, starting at the output side. 
During alignment of a particular resonant circuit, the circuit immediately 
preceding it must then be heavily damped or detuned. In so doing, the pre-
ceding part of the amplifier has no influence on the admittance of the circuit 
to be tuned, whereas the part of the amplifier which follows this circuit does 
influence its admittance. 

The admittances of the various tuned circuits of the single-stage amplifier 
will now be calculated in succession for the case in which tuning method B 
is applied. At the same time it will be shown how this tuning procedure may 
be carried out in practice, reference being made to Figs. 5.1, 5.2 and 5.3. 

Tuned Circuit 1 

To align circuit 1, circuit 2 must be made inoperative. This can be achieved 



138 SINGLE-STAGE AMPLIFIER WITH TWO DOUBLE-TUNED BANDPASS FILTERS [5 

most easily by connecting a low-impedance signal generator across its ter-
minals. The signal generator is adjusted to the desired frequency and 
circuit 1 is tuned for maximum deflection of a detector voltmeter connected 
to the output terminals of the amplifier. This voltmeter must not load the 
tuned output circuit (circuit 1) to any appreciable extent. 

The output voltage vo depends, except for a constant, exclusively on the 
frequency-dependent part of the circuit, so that: 

vo = C1(1 + jx), (5.7.2) 

in which the constant Ci is inversely proportional to the damping Gi of circuit 
1 and to the amplitude of the signal supplied by the generator. 

Putting Pi = 1 + jxi and denoting the value of Pi at which vo is at a 
maximum for the chosen tuning frequency by P1M, gives: 

P1M = 1. (5.7.3) 

Tuned Circuit 2 

In order to align circuit 2, circuit 3 must be made inoperative, for example by 
connecting the low-impedance signal generator which supplies the signal 
for aligning the amplifier, across it, Circuit 1 remains operative. Now circuit 
2 is tuned in such a way that the deflection of the output meter is at a maxi-
mum. 

The output voltage v0 depends, except for a different constant, C2, on the 
frequency-dependent part of the admittance of circuit 2, and on the coupling 
coefficient of the double-tuned bandpass filter. Hence: 

C2 
vo — 1 +jx2 q12 

1 1 + jxi 

but, since circuit 1 has been tuned previously, xi = 0, whence: 

C2 C2 

P2 1 + j x2 
vo

— q12 

1 1 

(5.7.4) 

It can be shown that in this case the constant C2 depends on the amplitude 
of the signal supplied by the generator, on the dampings Gi and G2 and on 
the forward transconductance iY21 of the double-tuned bandpass filter. 

The output voltage vo is at a maximum when x2 = 0 and 
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P2M = 1 + q12. (5.7.5) 

To align circuit 3, circuit 4 is made inoperative, whereas circuits 2 and 1 re-
main operative. In this case too, correct tuning is achieved when the deviation 
of the output meter is at a maximum, which gives: 

C3 C3 
V 0 = _ 

P3 1 + jx3 T1 exp (j01) 0 

1 1 

0 

- q12 

1 1 

(5.7.6) 

The output voltage v0 is at a maximum when the imaginary part of the first 
term of the determinant is equal to: 

T1 sin 01 ' 
1 + 

1 

12 
— x3'. (5.7.7) 

q 

It is seen that v0 is now at a maximum when x3 0, and this conflicts with 
the requirement that x3 should disappear at the tuning frequency. The rela-
tive admittance 1) of this resonant circuit will therefore be defined by (cf.: 
Appendix II and sub-sections (2.1.2) and (2.3.3) : 

(1 + j(x3 + x3'). (5.7.8) 

Substitution of this relative admittance for the first term of the determinant 
in Eq. (5.7.6), using x3' as defined by Eq. (5.7.7), gives: 

P3M = 1 + q12 — T1 cos 9i. (5.7.9) 

Tuned Circuit 4 

The tuned input circuit 4 of the single-stage amplifier is aligned with all 
other circuits operative, whence: 

C4
v0 =-=

C4 
(5.7.10) 

1 + jx4 - q22 0 0 P4 

1 1 + jx3' T1 cos O1 0 

0 1 1 - q12 

0 0 1 1 

1 ) The term "relative admittance" employed here denotes the tuned circuit admittance with 
respect to the admittance at resonance (x = 0). 
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The output voltage vo is therefore at a maximum when x4 = 0, which gives: 

P4M = ( 1 + g12)(1 + q2) - Ti cos 
e. 

(5.7.11) 

Summarizing the tuning procedures for circuits 1 to 4, it is seen that the 
numerator of the expressions for uo consists of those terms of 8 j (given by 
Eq. (5.4.4)) which are operative during the particular alignment, the results 
of the previous alignments being taken into account. The numerator of Ee. 
(5.2.6), for example, applicable to the alignment of circuit 3, consists of the 
3 

x 

3 minor determinant derived from the determinant 8j  with xi = x2 = 0 
because the tuning of circuits 1 and 2 has been carried out previously. The 
following chapter, dealing with multi-stage amplifiers, will show the useful-
ness of this conclusion. 

If the relative admittance of each tuned circuit is represented in the form 

1 + j(x + x'), 

it follows from the above comments that the various tuning corrections term 
are as follows: 

Xi'  = 0, 

x2'-0 ' 1 
X3' = T1 sin 0l 1 +  

12 
x4'=0 q 

- T1 sin 01 
P1M 

P2M 

(7.5.12) 

Now the determinant 8 according to Eq. (5.4.4), can be rewritten as 
follows, taking the influence of tuning method B into account: 

1 + j(x4 + x4') - q22 0 0 
1 1 + j(x3 + x3') Ti exp (j01) 0 

8y = 0 1 1 +j(x2 + x2' ) -q 12 

0 0 1 1 + j(xi + x21' ) 

(5.7 13) 

Furthermore, the quantities PM are seen to be the magnitudes of the minor 

determinants of 8 at the tuning frequency: 

P1M = 1, 
P2M = P1M + g12 = 1 + g12, 

P3M = P2M -  T1 cos 01 ' P1M = 1 +q1 2-   T1 COS 01, 

P4M = P3M + g22P2M = (1 + g12)(1 + q22) - T1 cos 01. 

(5.7.14) 
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5.7.4 TUNING METHOD C 

As described in sub-section 2.3.4, the tuning procedure referred to as method 
C consists in aligning the various tuned circuits in succession, starting at the 
input side and rendering inoperative the tuned circuit which immediately 
follows the circuit to be aligned. In practice this tuning method can be 
carried out by connecting a signal generator, which is adjusted to the desired 
frequency, to the input circuit of the amplifier that is to be tuned. The ad-
mittance of this signal generator must be sufficiently low so that the circuit 
is not loaded to an appreciable extent. The exact tuning point can be ascer-
tained by means of a detector voltmeter connected across the circuit follow-
ing that which is to be tuned. The input admittance of this voltmeter should 
be increased to such an extent that the resulting quality factor of the circuit 
across which the voltmeter is connected becomes very low, thus fulfilling the 
condition that the circuit is made inoperative. The sensitivity of the voltmeter 
should remain sufficiently high to give an indication of the correct tuning 
point. 

To tune circuits 4, 3 and 2, the detector voltmeter (with increased input 
admittance) is similarly connected across circuits 3, 2 and 1 respectively. It 
should be recognized that, since for tuning the output circuit the detector 
voltmeter must be connected directly across this circuit, it should not appre-
ciably load the circuit in this particular case. 

The influences of this tuning procedure can be calculated on the same lines 
as explained for method B. The minor determinants derived from Sy will 
now be denoted by Q4, Q3, Q2 and Qi, and their maximum values at the 
tuning by Q4M, Q3M, Q2M and Q1M respectively 1). The tuning correction 
factors applicable to tuning method C will be denoted by x", in analogy with 
section 2.3. Therefore: 

and 

1) 

X"4 , 

x3n = 0, 
x2" = Ti sin O1  — Ti sin 01

rr xl = 0, 

Q4M = 1, 
Q3M = 1 + q22, 

Q2M = 1 + q22-  Ti cos

Q1M = (1 + g12)(l + q22) - T1 cos 01. 

1 
1 + q22 

Q4M 

Q3M '

(5.7.15) 

(5.7.16) 

The symbols Q and QM used here to denote the minor determinants obtained 
with tuning method C should not be confused with the symbols Q and Qo used to 
denote the quality factors of the tuned circuits of the amplifier. In all cases it 
will be obvious from the context which quantity is actually meant. 
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Taking the influence of tuning method C into account, the determinant 
Sy can be rewritten: 

1 + j(x4 + x4" ) - q22 0 0 
1 1 + j(x3 +x3) Tiexp (j0) 0 

Sy = 0 1 1 + j(x2 + x 2) - qi2) 
0 0 1 1 + j(xi + xi") 

(5.7.17) 

5.7.5 SUMMARY OF TUNING PROCEDURES FOR AMPLIFIERS IN THE Y-
MATRIX ENVIRONMENT 

In Table 5.1 all practical aspects of tuning methods A, B and C for amplifiers 
in the Y-matrix environment as considered in the preceding sub-sections have 
been set out. Columns 2 to 5 indicate the method in which the tuning pro-
cedure is carried out. Inspection of the table learns that tuning an amplifier, 
especially a complicated one, according to methods B or C requires approx-
imately two thirds of the number of operations as are required to tune the 
same amplifier according to method A. 

5.7.6 TUNING PROCEDURES FOR AN AMPLIFIER IN THE H-MATRIX EN-
VIRONMENT 

In sub-section 2.3.6 it is shown that for a single-stage amplifier with single-
tuned bandpass filters, identical mathematical expressions which describe 
the influences of the tuning methods A, B and C for amplifiers in either the 
Y- or the H-matrix environment can be derived. Also for single-stage ampli-
fiers with double-tuned bandpass filters the expressions obtained for the 
various tuning methods for amplifiers in both matrix environments are iden-
tical. This may be shown by deriving the expression for the amplifier in the 
H-matrix environment. This can easily be done by means of analogies to the 
preceding sub-sections. 

When considering the various methods of tuning for amplifiers in either 
the Y- or H-matrix environments it is essential to take into account the basic 
definitions for tuning methods A, B and C as presented in sub-section 2.3.5. 

The practical methods of carrying out these tuning procedures for ampli-
fiers in the H-matrix environment are set out in Table 5.2. 

5.7.7 REDUCED DETERMINANT FOR THE VARIOUS METHODS OF TUNING 

The three different methods of tuning can be combined in a single mathemati-
cal expression by using co-factors pi and p2, as given in the table below: 
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Tuning method A Tuning method B Tuning method C 

P1 
P2 

0 
0 

1 
0 

0 
1 

From Eqs. (5.7.13) and (5.7.17) the amplifier determinant then becomes: 

1 +j(x+plx' +p2x" )4 
- 

q22 0 0 

8 = 
1 1+j(x+pix+p2x")3 Tiexp(jOi) 0 
0 1 1+j(x+pix'+p2x")2 - q12 

0 0 1 1+j(x+plx +p2x')I 

(5.7.18) 

The quantities x' and x" occurring in this expression are given by Eqs. 
(5.7.12) and (5.7.15) respectively. 

To evaluate the transfer function of the amplifier from Eqs. (5.5.4) and 
(5.5.5), the determinant S as given by (5.7.18) must be used because the in-
fluences of the different tuning methods are then incorporated. 

5.7.8 INFLUENCE OF THE VARIOUS METHODS OF TUNING ON THE STA-
BILITY FACTOR 

As a matter of fact, the boundary of stability should actually also be deter-
mined from S as given by (5.7.18). However, since the tuning correction 
terms depend on T sin 0 it would then be necessary also to take into account 
the parameter s which relates T to Tg = sT. Considering the large variety in 
parameters already used in section 5.6.1 to calculate the boundary of stabili-
ty of the single-stage amplifier tuned according to method A, the general cal-
culation of the boundary of stability for other methods of tuning would 
become very complex. 

Using the graphical method of determining the boundary of stability as 
considered in sub-section 5.6.2, however, the change of stability factor due to 
tuning methods B and C can easily be determined. This can probably best be 
illustrated by means of an example which extends the case considered in 
sub-section 5.6.2 (0 = 250°, r1 = r2 = 1, qi2 = 1.5, q22 = 2.0). For tuning 
method A it was found that Tg = 4.7. For s = 4, the regeneration coefficient 
becomes T = Tg/s = 1.18. With Eq. (5.7.12) the tuning correction term for 
tuning method B becomes x3 = — 0.34. The construction for Tg is carried 
out in Fig. 5.15. The line OP' joins points of the same frequency on the yii 
curve and the (shifted) yo2 curve. The boundary of stability equals Tg' = 

= OA'. OB' = 4.9. For T = 1.18 (the value for which x3' and, hence, the 
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Fig. 5.15. Graphical construction for determining the stability factor of an amplifier design-
ed with a certain value of s for tuning method A when it is tuned according to method B. 

shift of the yo2 curve was determined), the stability factor now becomes 
s' = 4.2 

From the above considerations it may be concluded that when an ampli-
fier is designed for, say, s = 4 for tuning method A, this stability factor 
slightly increases (in this particular case to s = 4.2) when the amplifier is 
tuned according to methods B or C. This is in accordance with the effects 
found for the single-stage amplifier with single-tuned bandpass filters, see 
sub-section 2.3.8. 

However, it is in most cases not essential to know the exact value of Tg, 
the more so because it is judged from the amplitude and envelope delay 
characteristics whether an amplifier design is acceptable or not. It is only 
necessary to know the value of Tg approximately for determining the stability 
factor s with a view to interchangeability requirements (cf. sub-sections 2.2.4. 
2.5.2.3 and 5.6.3 and Chapter 11). For these reasons the exact calculation 
of Tg is omitted here. 

5.8 Transducer Gain 

The transducer gain 't of the single-stage amplifier with two double-tuned 

bandpass filters, defined at the tuning frequency (x = 0), is given by: 

~t = 4GsGr,IZtoI2, (5.8.1) 
or: 
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~t = 4GsRi Htol2, (5.8.2) 

in which (see Eq. (5.5.4)) : 

and (see Eq. (5.5.5)) : 

— 1y21 ql q2 
Zt o =  

}1G1G2G3G4 So 

1h21 ' ql ' q2 
Hto— ,/  . 

Y RiG2R3G4 SO 

Furthermore (see Eq. (5.7.18)) : 

So = 

(5.8.3) 

(5.8.4) 

1 + 1(pix' + p2x ')4 —q22 0 0 
1 1 + j(pix' +p2x")3 TieXp (j0) 0
0 1 1 + j(pix' + p2x")2 - qi2

0 0 1 1 +j(pix' +p2x' )1 

(5.8.5) 

The values of x' and x" in this expression are given by Eqs. (5.7.12) and 
(5.7.15) respectively, whilst the values of pi and p2 again follow from the 
table on page 145. 

For tuning method A (pi = p2 = 0) : 

So = (1 + gi2)(1 +q22)—  T exp (j0), (5.8.6) 

and for tuning methods B (p1 = 1, p2 = 0) and C (pi = 0, p2 = 1): 

bo = (1 + g12)(1 + q22) — T COs O. (5.8.7) 

Eqs. (5.8.6) and (5.8.7) may be combined as: 

bo = (1 + gi2)(1 + q22) — T cos 0 — j(1— p1 — p2)T sin O. (5.8.8) 

This expression shows that, in general, with tuning methods B and C the 
value of So will be smaller, in other words: It will be larger than with tuning 
method A. 

From Eqs. (5.8.3) and (5.8.1): 

~t = 4GsGL 
G1G2G3G4 • 15012

1y2112g12g22

or 

(5.8.9) 
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_ I)~21I2 GL g22 gll GS ( 2 q1 l2 (  2q2 2
~t 

4g11g22 Gl G2 G3 G4 \1 + q12) 11 + q22) 

According to Appendix I: 

By putting: 

(1 + g12)(l +q2 2)2

16012

Y21I2 = 
~uM 

4g11 g22 

G* 
= w, 

G 

it follows that (c.f. Fig. 5.2): 

Gl = GL + Gl*

G2 = 1g22 + G2*

G3 = lgll + G3*

G4=GS+G4* 

or GL = (1 — wl)Gi, 

or 1g22 = ( 1 — w2)G2, 

or lgll = (1— w3)G3, 
or GS = (1— w4)G4. 

(5.8.10) 

(5.8.11) 

(5.8.12) 

According to Appendix III, Section III.6, the transducer losses of a double-
tuned bandpass filter 2 tb are equal to 

~tb = 

2q 2 

\1 q2) (1 — wp)(1— w~) . 

From Eqs. (5.8.10) to (5.8.13) the transducer gain becomes: 

(1 + g12)(l +q22)2
~t = ~uM ' ~tb1 

16012

(5.8.13) 

(5.8.14) 

It follows from Eq. (5.8.8) that if T = 0, that is to say if the amplifier has 
no feedback, 't becomes: 

~t = ~uM tb2 

The last factor of Eq. (5.8.14) thus represents the losses due to the feed-
back. These losses will be denoted by ), which gives: 

(l 
+  g12)2(l 

+q22)2
(5.8.15) 

18012 
> 

and: 

~t = ~uM ' 'tbl ~tb2 ' ~j• (5.8.16) 

1) In analogy with sub-section 2.4.3 the quantity represents the losses due to the extra 
admittance present at the input terminals of the transistor because of its non-unilateral 
character. If tuning methods B or C are applied, represents the losses due to the real 
part of this extra admittance. 
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In some cases it will be more convenient to write the expression for in a 
somewhat different form. For this purpose the various factors of Eq. (5.8.9) 
are rearranged as follows: 

GS GL Iy21I Iy12I 1y211 g12g22

G4 G1 G2G3 Iy12I ISo!2
By putting 

1y211 _ N, 
Iy12I 

Eq. (5.8.17) becomes: 

(5.8.17) 

(5.8.18) 

g 2 2 • GL • 
T~ • N •  

1g 2 
(5.8.19) 

G4 Gi Isol2

in which Ty is the regeneration coefficient in the V-matrix environment (see 
Section 5.4). 

The above expressions for the transducer gain are derived for an amplifier 
in the V-matrix environment. Starting with Eqs. (5.8.2) and (5.8.4) corre-
sponding expressions can be derived in an analogous way for an amplifier 
in the H-matrix environment. This results in: 

Gs g2g2 
~ t 4 

G4 • Ri 
Th N (5.8.20) 

ISoI2 

in which Th is defined in Section 5.4, 

N= 

and 

h21 

h12 

y21 

y12 
(5.8.21) 

If Eq. (5.8.16) is used to determine fit, 1 UM is given by (see Appendix V): 

Ih21I2
~uM =4Re(hli)Re(h22)' (5.8.22) 

and dab and i f are given by Eqs. (5.8.13) and (5.8.15) respectively. 
Since, for a given transistor, the value of T is determined by the required 

stability, Eqs. (5.8.19) and (5.8.20) clearly show the influence of the ratio 
N on the transducer gain of the amplifier. 

5.8.1 THE OPTIMUM VALUE OF q2

The expressions (5.8.19) and (5.8.20) for the transducer gain of the amplifier 
contain a factor: 
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g 12g 22

Ibol 2

which accounts for the influence of the coupling factors of the double-tuned 
bandpass filters and the feedback of the transistor. Hence, k maybe optimiz-
ed by optimizing 

After some calculations 

F. Therefore we put: 

a 
= 0 —

— 
=0. 

A, B or C: 

(5.8.24) and 
dql aq2 

for either of the tuning methods 

(1— g12)(1 + q22) — T cos O = 0, 
(5.8.25) 

(1 +q 12)(1 - q22) -   T COS 0 = 

From Eq. (5.8.25) it follows that: 

0. 

and 
gl 2opt = g22opt = g 2opt, (5.8.26) 

g 2opt = vl — T cos0. (5.8.27) 

=

(5.8.23) 

In Fig. 5.16 the optimum value of q 2 according to Eq. (5.8.27) has been 
plotted as a function of T cos 0. At T = 0, q2 =1 which is the value of 
critical coupling of a double-tuned bandpass filter. This critical coupling 
gives maximum transfer of energy from primary to secondary. 

Substituting g2opt from Eq. (5.8.27) into Eq. (5.8.23) gives: 

1'Fopt — 
1 

4(1 + V1- Tcos O)2

(5.8.28) 

In Fig. 5.16, the factor Fopt expressed in dB's has been plotted as a function 
of T cos 0. The value of F at T = 0 is taken as 0 dB. It should be noted 
that Eq. (5.8.29) is only valid when T has such a value that stability of the 
amplifier is ensured over the entire passband. 

5.9 Amplitude Response Curve 

In analogy with sub-section 2.5.2, the normalized amplitude response curve, 
that is to say the amplitude response curve having unity magnitude at x = 0, 
is given by the relation I6o/81, which is the reduced determinant of the entire 
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Fig. 5.16. At a certain value g2opt of the coefficient of coupling of the double-tuned band-
pass filters of the single stage amplifier the transducer gain becomes maximal. This opti-
mum value is plotted as a function of Tcos ®. At this optimum value of go2e2 the losses 
due to feedback of the transistor and the coefficients of coupling of the double-tuned band-
pass filters have a minimum value as appears from the plot of Fopt = g12g22/I So12. 

amplifier, as given by Eq. (5.7.18). The quantity So which equals 8 at x = 0, 
is given by Eq. (5.8.5) or Eq. (5.8.8). 

The amplitude response curve for a single-stage amplifier with two identi-
cal double-tuned bandpass filters is plotted in Fig. 5.16. It is assumed that 
the bandpass filters have equal primary and secondary quality factors 
(whence r = 1), that q2 = (KQ)2 = 1 and, moreover, that T = 2 and 
O = 225°. For the sake of comparison the amplitude response curve for the 
unilateral amplifier (T = 0) has also been plotted. 

This figure shows that the curve for this amplifier with T = 2 differs only 
slightly from that for the amplifier with T = 0. This means that in this ampli-
fier with two double-tuned bandpass filters the feedback of the transistor 
distorts the symmetry of the response curve to a lesser extent than in the 
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Fig. 5.17. Amplitude response curves of a single-stage amplifier with two identical double-
tuned bandpass filters having the following data: qi2 = Q22 = 1, r = 1, T = 2 and 0 = 
= 225°. The fully drawn curve is applicable to tuning method A and the dash-dot curve to 
tuning methods B and C. For the sake of comparison the response curve of the unilateral 
amplifier (T = 0) has also been plotted (curve in broken line). 

amplifier with two single-tuned bandpass filters (cf. the curves given in Fig. 
2.17). Considering that the stability factor s = T9/T is roughly equal to 4 in 
both cases, this emphasizes once again that the performance of the amplifier 
cannot be judged from the stability factors. 

Because all resonant circuits of this amplifier are identical, it makes no 
difference to its performance whether tuning method B or C is used. However, 
tuning method A will lead to different results. This is also illustrated by Fig. 
5.17 which shows that better symmetry is obtained with tuning method B or 
C than with method A. Since methods B or C also yield a higher gain 
than method A, these methods are preferable for tuning the amplifier. 

Fig. 5.18 illustrates another important aspect of the design of bandpass am-
plifiers equipped with transistors. In this graph the amplitude response curves 
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have been plotted for an amplifier (also with (9=225°)  with two identical 
double-tuned bandpass filters of which q2 = (KQ)2 = 2. The curve for T = 0 
is double humped (because of the overtransitional coupling). The curve for 
T = 2, however, has a flat top, whereas that for T = 3 is even slightly round-
ed off. This can be explained as follows: 

Assume that tuning method B is employed. Then the output bandpass 
filter of the amplifier is tuned as if the amplifier had no feedback. Further-
more, assume that the admittance parameter notation is used. When the 
secondary of the first bandpass filter is tuned, the input admittance of the 
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Fig. 5.18. Curves similar to those plotted in Fig. 5.17 but for qiz = qzz = 2 and r = 1, the 
dash-dot curve being valid for T = 2, the fully drawn curve for T = 3 and the curve in 
broken line for T = 0 (unilateral amplifier). These curves illustrate the disappearance of the 
humps due to the presence of negative real feedback. 
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transistor is 1) : 

y12y21 
Yin = y11 — 

G2(1 +q2 
. 

This means that, in addition to g11, an extra damping: 

Re(yi2y2i) 
gin (b — G2(1 +q2), 

(5.9.1) 

(5.9.2) 

appears at the input terminals of the transistor. 
With Eqs. (2.1.11) and (2.1.12) this extra damping can be expressed by: 

1 
gin fn =— Gi T cos O 1 

±q2
 . (5.9.3) 

For (9 = 225°, T cos O is negative, as a result of which, according to Eq. 
(5.9.3), the damping on the secondary of the first double-tuned bandpass 
filter is increased. The "working" quality factor Q of the secondary is 
therefore decreased, and since the coupling coefficient k between the primary 
and secondary is constant, the "working" KQ is also decreased. This explains 
the disappearance of the humps at T = 2 and T = 3 in Fig. 5.18. If T cos O 
had been positive, this would obviously have resulted in an increase of the 
"working" KQ and hence in an increase of the humps. 

From the above argument it can be concluded that when choosing q = 

= KQ it is necessary also to take the quantities T and t9 into consideration. 
(In fact, this is one of the points which render the syntheses of amplifiers in 
which T differs from zero extremely complex.) 

5.10 Envelope Delay Curve 

According to section 2.5.3, the envelope delay of the amplifier is given by: 

2Q 
to ^ Te • - , 

in which (cg. Eq. (2.5.38) : 

(5.10.1) 

(5.10.2) 

The angle 92 must be derived from the transfer function of the amplifiers: 

Zt —  
1y21 ' q1 ' q2 

 
1'G1G2G3G4 8 , 

(5.10.3) 

1) Eq. (5.9.1) is in accordance with Eq. (2.3.2 )in which Yz has been replaced by the input 
damping at x = 0 of the second bandpass filter of the amplifier (cf. Appendix III). 
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1h21 ' ql ' q2 
(5.10.4) H t =   , 

17R1G2R3G4 • S 

in which S denotes the general amplifier determinant, including the influences 
of the tuning procedure as given by Eq. (5.7.18). 

Since the relative bandwidth of the amplifier under consideration is fair-
ly small, the phase angle ofy21 may be assumed constant. (In fact, this is one 
of the assumptions on which this theory is based; cf. Chapter 1.) In order to 
evaluate q~, only S need therefore be considered. 

= tan-1
Im(S)
Re(S) 

(5.10.5) 

Fig. 5.19. Reduced envelope delay Te of a single-stage amplifier with two identical double-
tuned bandpass filters having the following characteristics: qi2 = qz2 = 2, r = 1, ® _ 
= 225°, it being assumed that tuning method B or C is applied. The dash-dot curve applies 
to T = 2, the fully drawn curve to 7' = 3, whilst the curve in broken line is applicable to 
the unilateral amplifier (T = 0). 

The reduced envelope delay Te has been determined by way of example for 
a single-stage amplifier with two identical double-tuned bandpass filters, it 
being assumed that q2 = (k Q)2 = 2, r = 1, and 9 = 225°. The values of Te

thus obtained for T = 0, T = 2 and T = 3 have been plotted in Fig. 5.19. 

It should be recognized that the curves for T = 2 and T = 3 in the graph 

of Fig. 5.19 are slightly flatter than the corresponding curve for T = 0. This 
means that the feedback which is present in the amplifier has a flattening 

effect on the envelope delay characteristic, provided the feedback is not 
excessive. 
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CHAPTER 6 

MULTI-STAGE AMPLIFIERS WITH SYNCHRONOUS 
SINGLE-TUNED BANDPASS FILTERS 

The design of multi-stage transistor amplifiers is complicated by the fact 
that transistors are non-unilateral devices. A transistor considered as an 
active four-terminal network will have a mutual interaction between its 
input and output terminals. If then a number of stages containing such 
transistors are cascaded, the interaction between the input and output ter-
minals of any transistor influences to a certain degree the operating condi-
tions of all other transistors. The degree of interaction between successive 
stages obviously depends on the degree of coupling of the stages due to 
the interstage network employed. The larger this coupling, the larger the 
interaction. 

It is, therefore, not possible to design a multi-stage amplifier on a stage-
by-stage basis. This means that the conventional theory of linear amplifier 
circuits employing unilateral amplifying elements is not applicable to tran-
sistor amplifiers and recourse must be made to an analysis of the multi-
stage amplifier as a whole. 

In amplifiers employing single-tuned bandpass filters as interstage coupling 
networks, as considered in this chapter, there is a very light coupling between 
the successive stages. In this type of amplifier, problems due to the inter-
action between the stages present themselves very seriously. 

These problems, relating to stability, power gain amplitude response and 
envelope delay, will be considered in detail in the following sections. 

6.1. General Amplifier Circuit 

In Fig. 6.1 a circuit diagram of an amplifier containing n transistors and 

Tuned circuit Transistor Tuned circuit 
no.(n.q no.n no.n 

i 

Tuned circuit Transistor Tuned circuit 
no.2 no.! no.! 

Fig. 6.1. Circuit diagram of an n-stage amplifier with n + 1 single-tuned bandpass filters. 
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Tuned circuit Transistor Tuned circuit 
no. (r+i) no. r no. r 

L*r 

* 
Gr+l ~r+1 

Fig. 6.2. Stage No.r of the amplifier showing the taps on the single-tuned bandpass filters 
and the notation thereof. 

(n+1) single-tuned bandpass filters is presented. The input and output ter-

minals of the transistors, which are, by way of example, shown in the 

common emitter configuration, are connected to taps on the single-tuned 

circuits. To arrive at a more uniform and more schematic circuit diagram, 

we consider the rth stage of this n-stage amplifier, see Fig. 6.2. This rth stage 

comprises transistor No. r and the rth and (r+1)th tuned circuits. The 
notations used for the elements of these single-tuned circuits as used in the 

diagram are analogous to those of Chapter 2. 
The output terminals of the transistor are connected to a tap rtl on the 

rth tuned circuit and the input terminals of the transistor to a tap (r+1)t2 
on the (r+l)th tuned circuit. We may replace the tuned circuits having taps 

by an admittance Y* and two ideal transformers with transformer ratios 

ti : 1 and 1 : t2 as shown in Fig. 6.3. Furthermore, let the transistor be 

replaced by an equivalent four-terminal network based on admittance param-

eters and let the input and output currents and voltages of the transistor 

network be related as: 

il '  = yll ' vl'  + y12' v2'  , 

l2' = y21' vl' + y22 '2 

(6.1.1) 

The transistor equivalent network can now be transformed to the top of 
the tuned circuits taking into account the proper transformer ratios. Then 
a normalized equivalent four-terminal network is obtained as indicated in 
Fig. 6.3. Now: 

11 = ryllvl + ry12v2, 

l2 = ry21v1 + ry22v2, 

(6.1.2) 



6.2] GENERAL AMPLIFIER DETERMINANT 159 

tuned circuit transistor tuned circuit 
no. (r+1) no. r no. r 

i2 

V. 

1 

I 
I 
I 
L 

equivalent transistor 
ideal i • four-terminal network 

transformer 

fr+t)12 

v; 

yii 

y2i~'vi 

ideal 
1 ~ 2 transformer 

I 
22 

I 
J 

i~z 

I 
F 

J 

V2

Vr *

normalized equivalent four-terminal 
network of the transistor 

Fig. 6.3. Equivalent circuit diagram of the rth stage of an amplifier. The taps on the single-
tuned bandpass filters are represented by ideal transformers. These transformers are 
included in a normalized equivalent four-terminal network representing the transistor. 

in which: 

rY11 = (r+1)t22 • rYll'  , rY12 = rtl ' (r+1)t2 ' rY12~ , 
r (6.1.3) 

rY21 = rtl ' (r+1)t2 ' rY21' , rY22 = rtl2 ' rY22'

Using this normalized equivalent four-terminal network, the amplifier 
circuit around the rth transistor can be represented as shown in Fig. 6.4 

r+2 

transistor 
no. (r+1) 

I rr-

L 

node 
no. (r1) 

r 

transistor 
no. r 

•

-J 

f+1 

L.  

1 

node 
na r 

transistor 
no. (r-1) 

• J
L~ 

H 
j >l 

_J 

Fig. 6.4. Equivalent circuit diagram of a part of the n-stage amplifier. 

which may further be simplified to Fig. 6.5 by combining the output self-
admittance of the rth transistor, the admittance of the rth tuned circuit and 
the input admittance of the (r-1)th transistor into a single admittance Yr. 

6.2 General Amplifier Determinant 

An amplifier comprising n transistors and (n+1) single-tuned bandpass 



160 AMPLIFIERS WITH SYNCHRONOUS SINGLE-TUNED BANDPASS FILTERS [6 

node 
no. (r+2) 

node 
no. (r+1) 

■ 
(r+1J-(r+fJy22+ (r+1J+~1 

node 
no. r 

node 
? no. (r-1) 

Fig. 6.5. Simplified equivalent circuit diagram of a part of the n-stage amplifier. 

filters driven by a current source with admittance YS and loaded by an ad-

mittance YL is represented in Fig. 6.6. When: 

Yn+i = YS + Yn*+1 + nyu, (6.2.1) 

Vi = 1y22 + Y1* + YL, (6.2.2) 

and the further notations are as indicated in the preceding section we may 

write the nodal equations for the n-stage amplifier in the form of a matrix 

equation: 

is Yn+1 nY12 — 0 0 vn+1 

0 nY21 Yn — 0 0 vn

(6.2.3) 

0 0 0 — Y2 1y12 v2 

0 0 0 — — 1y21 Vi vi 

The determinant d of this equation may be simplified by firstly: dividing all 
rows by the Y-term it contains, and secondly: by dividing all columns by the 
y21/Y term it now contains and multiplying the corresponding rows by this 
same term. Then d may be written as: 

node no. 
I, 1 

m=n+ 1 

d = H Y1n 8 , 
m=1 

node no. 
n 

node no 

(6.2.4) 

node no. 
/ 

Fig. 6.6. Simplified equivalent circuit diagram of the n-stage amplifier showing source and 
load terminations. 
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S = 

1 

1 

nY12 ' nY21 — — O 
0 

Yn+I Yn 
1 — — 0 0 

0 
0 

1 1y12 ' 1,Y21 

12 ' Yi 
0 0 — 1 1 

(6.2.5) 

6.3 Loopgains and Stability 

Use will be made of the loopgain concept to analyze the multi-stage amplifier 
with single-tuned bandpass filters with respect to stability. Using this concept 
enables us to illustrate the various stability and instability phenomena in a 
multi-stage amplifier in a plausible manner. 

6.3.1 THE LOOPGAIN OF AN ISOLATED AMPLIFIER STAGE 

In order to illustrate the loopgain concept we will first consider an isolated 
amplifier stage. Let such an isolated amplifier stage be represented by Fig.6.7. 
The amplifier determinant for this stage equals: 

d = 
Y1 

Y21 

112 

12 

(6.3.1) 

which may also be written as: 

d = Y1Y2 
1 

Y12 ' Y21 

(6.3.2) Y1Y2 

1 1 

Furthermore, the forward voltage gain of the stage equals: 

,Y21 

Y2 

Fig. 6.7. Isolated amplifier stage. 
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whereas the reverse voltage gain is given by: 

Y12 

Yi 

Hence, the loopgain of the stage amounts to 

Y12 Y21 

Y1 Y2 

If we denote the loopgain of the isolated amplifier stage by 

Y12 Y21 
U =  , 

Yi Y2 

we may write for the general amplifier determinant: 

1 u 
d = Y1Y2 

1 1 

(6.3.3) 

(6.3.4) 

If the isolated amplifier stage forms a single-stage amplifier and does not 
constitute a part of a chain of amplifier stages (see next section), Eq. (6.3.3) 
represents the complete amplifier determinant, and, apparently, when ui = 1 
(= lug) the amplifier is at the boundary of stability (because then dl = 0). 

6.3.2 ISOLATED STAGE LOOPGAINS IN THE REDUCED AMPLIFIER DETER-
MINANT 

The reduced determinant for the n-stage amplifier given by Eq. (6.2.5) may, 
taking into account Eq. (6.3.3.), be written as 1): 

1 u 0 — — 0 0 0 
1 1 un-1 — — 0 0 0 

Su = (6.3.5) 

0 0 0 1 1 ui 
0 0 0 0 1 1 

in which Ur denotes the loopgain of the rth stage of the n-stage amplifier 
when considered as isolated. Expressed in a formula: 

1) 

rY12 ' rY21 
Ur = 

Yr ' Yr+i 
(6.3.6) 

The index u in I, indicates that I, refers to the reduced amplifier determinant expressed 
in terms of isolated loopgains. Remember that I (without index u) denotes the reduced 
determinant in terms of regeneration coefficient. 
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6.3.3 BOUNDARY OF STABILITY OF AN n-STAGE AMPLIFIER 

The boundary of stability of an n-stage amplifier comprising (n+1) single 
tuned bandpass filters is obtained by equating 8n given by Eq. (6.3.5) to 
zero (provided all Y's are different from zero). In the case where all transis-
tors and all single-tuned bandpass filters are identical, all loopgains at the 
boundary of stability are equal. These loopgains, which will be denoted by 
nug, are calculated in Appendix VI. The results are compiled in Table 6.1 
for amplifiers comprising up to 10 stages. For a single-stage amplifier lug = 1, 
whereas for an infinite number of stages nug = 0.25. 

When the various stages of the amplifier are not identical, instability will 
occur for values of Ur other than nug. Substituting values for Ur in Eq. (6.3.5) 
it can be checked whether the amplifier is stable (8 <0) or not by evaluating 
this determinant (or by checking the cascaded loopgains of the various stages, 
see sub-section 6.3.4). 

Using the notations of Chapter 2, Eqs. (2.1.4), (2.1.11), (2.1.12) and (2.2.6) 
we may write for Eq. (6.3.6): 

Tr exp (JOr) = Ur (1 + Jxr) (1 + jXr+i). (6.3.7) 

At the boundary of stability we obtain for the amplifier with identical 
stages by eliminating x from the last expression (all x'es are assumed to be 
identical) : 

or: 

nTg — 
2nug 

1 + COS O 

nTg = nug ' iTg• 

TABLE 6.1 

n nug

1 1.0000 
2 0.5000 
3 0.3820 
4 0.3333 
5 0.3081 
6 0.2928 
7 0.2831 
8 0.2764 
9 0.2715 

10 0.2680 

0.2500 

(6.3.8) 

(6.3.9) 
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6.3.4 CASCADED LOOPGAINS IN A MULTI-STAGE AMPLIFIER 

In a multi-stage amplifier the loopgain 1) of any stage depends on the transfer 
parameters of the transistor in the stage in question and on the total admit-
tances seen by the forward and reverse current generators of the transistor. 

Let nUr denote the loopgain of the rth stage of the cascade of n stages. 
Then, for a single-stage amplifier, obviously, 

1 Ul = ui (6.3.10) 

(see sub-section 6.3.1). 
In a two-stage amplifier the forward transfer current generator of the 

output transistor sees an admittance Y1, see Fig. 6.8, whereas the reverse 
transfer current generator sees an admittance 

2}12 ' $y21 
Y2 — 

1'3
— Y2 (l — u2) . 

The loopgain 2Ui of this output stage therefore becomes: 

or: 

2U1 -
y1. Y2 (1 - u2) 

1,y12 ' 1Y21 

ul 
2U1 = 

1 — u2 

In the same way the loopgain of the input stage is found to be: 

1 

I

1Yi2'"a 

1 1 
1Y21 V3 

I 

'I I i 
I 

I -y2(I-u2) ; - t --

(6.3.11) 

Fig. 6.8. Simplified equivalent circuit diagram of a two-stage amplifier illustrates the de-
finitions of cascaded loopgain. 

1) The method of considering the loopgain of a stage out of a cascade of stages in terms 
of the loopgains of these stages considered as isolated, has been indicated firstly 
by C. J. McCluskey in a private communication to the author. 
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U2 
2U2  -

1—ui 
(6.3.12) 

When the loopgain of any of the stages of the amplifier becomes unity, the 
amplifier is at the boundary of stability. For the two-stage amplifier this 
boundary is therefore reached if 2U1 = 1 or 2U2 = 1, or: 

1 —u1 -u2=0. 

For identical stages u = 0.5, which is also obtained 
In an analogous way we can derive for the various 

amplifier: 
ul

in the preceding 
stages of 

(6.3.13) 

section. 
a three-stage 

(6.3.14) 

(6.3.15) 

u2 
1 

1-u3 

U2 
3U2= 

(l - 111) (1 — u3) ' 

U3 
U3 - (6.3.16) 3 

u2 
1 —

1— ul

The boundary of stability is reached for 

3U1= 1,3U2= 1 or3U3= 1 , 
or: 

ul + u2 + u3 - UiU3 = 1, (6.3.17) 

. which leads to 3ug = 0.38 if ui = u2 = U . 

For a four-stage amplifier we may derive: 

ul 
U1 - (6.3.18) 4 

U2 
1 

U3
1 

1— U4 

U2 
U2 = (6.3.19) 4 , 

u3 
(1 — ui) (1  

1-U4) 
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U3 
4 U3 - , 

u2 

(i_1  ul
(1 — u4) 

-

U4 

1 
U3 

1 
1— ui 

u2 

whereas at the boundary of stability: 

ul .+ u2 + u3 + y4 - ulu3 - ulu4 - u2u3 = 1. 

In an analogous way we obtain for an n-stage amplifier: 

fl u3 = 

ul

1 
U2 

1 
U3 

etc. 

U2 

(1 — ui) (1 
u3 

1 

U3 

U4 ) 

etc. 

(1- 1 u)2  
\1 ç  Z14u5 

/ 

etc. 

For the rth stage we may write (see also Fig. 6.9) : 

or: 

rY12 ' ry21 
Ur  

Pr Qr+1 

Yr  
Pr-i Qr+2 

n Ur — 
Ur 

Pr Qr+1 

Pr-1 Qr+2 

(6.3.20) 

(6.3.21) 

(6.3.22) 

(6.3.23) 

(6.3.24) 

(6.3.25) 

(6.3.26) 

(6.3.27) 
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in which P and Q are minor determinants of 8 defined as indicated in 
Eq. (6.3.28) : 

Su= 

1 un 0 
1 1 un-1 
0 1 1 

0 0 0 
0 0 0 

0 0 
0 0 
0 0 

r+1 

1 
1 1 

0 0 0 0 1 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 
Ur 0 

0 0 0 
0 0 0 

1 ur_1 0 0 0 
1 1 0 0 0 

0 0 
0 0 
0 0 

1 U2 0 
1 1 ui 
0 1 1 

(6.3.28) 

The minor Pr is thus obtained by starting at the lower right hand side of Su
and taking so many rows and columns from 8, that the loop gains ul up to 
and including Ur-1 are contained in the minor (r columns and rows). The 
minor Qr+i is obtained by starting at the upper left hand side of 8 ; the 
loop gains ur+1 up to and including un are to be contained in this minor 
(n + 1 — r columns and rows). 

The quantity Yr Pr in Eq. (6.3.26) denotes the total admittance seen by 
Pr-1 

the forward transfer current generator of the rth transistor. Analogously, 

Stage no.r 

yr 

Yr Pr 2 T~ 
Qi Y r+1_ 

r+t 
pr+2 

Fig. 6.9. Part of an n-stage amplifier illustrating the cascaded loopgain of the rth stage. 
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the quantity Yr+i Qr+i denotes the total admittance seen by the reverse 
Qr+2 

transfer current generator. These total admittances can easily be written as 
continued fractions. This might also be concluded from the expressions 
obtained for the simpler cases first considered. If, therefore, all u's of the 
n-stage amplifier are known, all n U's can be calculated. Interesting questions 
which might be put forward in view of amplifier stability are: 
a) what are the values found for the various n U's of an n-stage amplifier 

if all u's are made equal? 
b) if equal values for all n U's of the n-stage amplifier are required, what 

values are to be given to the various u's? 
These questions will be dealt with in the next section. 

6.3.5 STABILITY FACTORS IN AN n-STAGE AMPLIFIER 

The stability factor of an amplifier is generally defined as the reciprocal of 
its maximum real loopgain. In an n-stage amplifier with single-tuned band-
pass filters this loopgain may either be an isolated loopgain (u) or a cascaded 
loopgain (n U). This implies that stability factors associated with both kinds 
of loopgain should be considered. 

The "isolated" stability factor sr for the rth stage is therefore defined as: 

1 
Sr = —

ur 

whereas the "cascaded" stability factor nSr is defined as: 

1 
nSr = 

n Ur 

(6.3.29) 

(6.3.30) 

The two questions put forward in the preceding section thus refer respec-
tively to: 
a) equal isolated stability factors, 
b) equal cascaded stability factors. 
Both cases will be considered in the following sub-sections (see also Biblio-
graphy (6.1)). 

6.3.5.1 Equal Isolated Stability Factors 

If in an amplifier the isolated stability factors of the various stages are (made) 
identical, we may calculate the cascaded stability factors of these stages by 
using the expressions derived in sub-section 6.3.4. In Figs. 6.10 and 6.11 
the cascaded stability factors nSr are plotted as a function of the isolated 
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boundary of stobil, ' 

'U, 

169 

Fig. 6.10. Relation between the cascaded stability factors and the isolated stability factors 
of a two and a three-stage amplifier. The isolated stability factors of all stages are taken to 
be identical. 

w 

9— nsrI 

$ 4U,.' U' 

7 

6 4 U2.4 U3 I 
i 

/ 5 J3 

5

4 ;/ sU2. sU4 

3 

51 55 2 ,r

boundary of stability 

1 2 3 4 5 6 7 8 9 

Fig. 6.11. As Fig. 6.10, but for four and five-stage amplifiers. 
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stability factor s for the various stages of amplifiers comprising up to five 
stages. It follows from these graphs as well as from the expressions presented 
in sub-section 6.3.4 that, for a three-stage amplifier or for a multi-stage 
amplifier having an odd number of stages, the centre stage has the lowest 
cascaded stability factor. In a multi-stage amplifier with an even number of 
stages this applies to the two centre stages. Furthermore, the cascaded 
stability factors of the various stages have values which are symmetrical 
with respect to the centre stage(s) of the amplifier and which increase grad-
ually going from the centre stage(s) to the outer stages. This has also been 
illustrated in Table 6.2 below, which presents the various stability factors 
of a five-stage amplifier of which each stage has an isolated stability factor 
of s = 6. 

TABLE 6.2 STABILITY FACTORS IN A FIVE-STAGE AMPLIFIER 

Stage no S 5Sr 

1 6 5.25 
2 6 3.95 
3 6 3.75 
4 6 3.95 
5 6 5.25 

6.3.5.2 Equal Cascaded Stability Factors 

If it is required that the cascaded stability factors of the various stages of 
the amplifier are identical, it can be calculated by means of the expression 
derived in sub-section 6.3.4, which values of isolated stability factor should 
be given to the various stages in order to fulfil this condition. 

Considering a three-stage amplifier we find that for equal cascaded stability 
factors S of the various stages: 

1 1 1 
S =  =  

3U1 3U2 3U3 
(6.3.31) 

From Eqs. (6.3.14), (6.3.15) and (6.3.16) it then follows for the isolated 

stability factors (s = l 
/u/ 

si=s2=1-{-S, 

(1 + S)2 

S2 =  S

In an analogous way it follows for a four-stage amplifier using Eqs. (6.3.18) 
to (6.3.21): 

(6.3.32) 
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Si=S4= 1 +S 

(1 + S)2
S2=S3= S 

171 

(6.3.33) 

Using Eqs. (6.3.23) to (6.3.28) it can be calculated for an n-stage amplifier 
with equal cascaded stability factors: 

and 
Si=Sn=1+S, 

(1 + S)2
Sm = 

S 

in which m = 2,3, . . . n — 1. 

(6.3.34) 

(6.3.35) 

It thus follows that for equal cascaded stability factors of the amplifiers 
the first and the last stages have isolated loopgains different from those of 
the inner stages. In Fig. 6.12 the isolated loopgains as given by Eqs. (6.3.34) 
and (6.3.35) have been plotted as a function of the cascaded loopgain S. 

Fig. 6.12. Relation between the iso-
lated stability factors and the casca-
ded stability factors for an n-stage 
amplifier. The cascaded stability 
factors are identical for all stages. 
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6.3.5.3 Choice of Stability Factor System for Practical Amplifier Constructions 

Whether, in a practical amplifier, the cascaded stability factors or the isolated 
stability factors should be made equal depends on the relative merits of the 
two systems in amplifier design and construction. 

When the isolated stability factors are made equal, all single tuned 
bandpass filters of the amplifier become identical which production 
problems. When equal cascaded stability factors are required the input and 
output bandpass filters are different from the others. Equal isolated stability 
factors are therefore preferable in the light of production techniques. This 
however, implies a certain sacrifice in gain of the amplifier compared with 
the case of equal cascaded stability factors. This may become apparent from 
the following considerations: In an amplifier the most important stability 
factors are those which apply to the various stages under actual operating 
conditions: the cascaded stability factors. These cascaded stability factors 
should have a certain minimum value. This minimum value, defined for a 
nominal amplifier, depends on spreads in transistor parameters and tolerance 
of components as well as on the allowable distortion of the response curve. 
If the isolated stability factors are made equal, the worst cascaded stability 
factor (centre stage of the amplifier) should have this minimum value. The 
cascaded stability factors of the remaining stages are then higher than 
required. This means that more gain than necessary has been sacrificed in 
achieving stability. For amplifiers with practical values of stability factors 
this extra sacrifice in gain, compared with the case of equal cascaded stability 
factors, is generally very small, see sub-section 6.6.11 and Bibliography (6.1). 

From these considerations it may be concluded that there are no distinct 
advantages in either of the two systems, except that the system with equal 
isolated stability factors is generally preferable from the point of view of 
amplifier construction. For this reason we will confine ourselves in the further 
analysis of this type of amplifier mainly to the equal isolated stability factor 
system. 

6.4 Regeneration Coefficients 

6.4.1 REGENERATION COEFFICIENTS IN THE GENERAL AMPLIFIER DE-
TERMINANT 

Considering that: 
I'r = Gr (1 + Jxr), (6.4.1) 

and 
ry12 ry21 _ Tr , exp (J©r) , 
Gr Gr+1 

(6.4.2) 
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the determinant of Eq. (6.2.3) can be written as: 
m=n+1 

173 

4= H 
m=1 

and 

Gm s , (6.4.3) 

S= 

1 + jxn+i Tn exp (j&n) — 
1 1 + jxn — 

0 
0 

0 
0 

(6.4.4) 

0 0 — 
0 0 - 

— 1 + jx2
- 

T1 exp(jei
1 + jxi 

With Eq. (6.4.4) we have obtained the normal form of reduced amplifier 
determinant which will be used for investigating gain and frequency response 
of the amplifier. 

6.4.2 REGENERATION COEFFICIENTS AND STABILITY FACTORS 

According to Chapter 2 the boundary of stability, in terms of regeneration 
coefficients, of an isolated amplifier stage is given by: 

2 
Tg 

1 + cos O 
. (6.4.5) 

The isolated stability factor s relates this boundary to the actual regeneration 
coefficient as: 

T 
T=—. 

S 
(6.4.6) 

To obtain values for the regeneration coefficients T of the various stages the 
isolated stability factors are thus required. The design on stability of an 
amplifier should, however, be based on cascaded stability factors. When these 
factors are known, the isolated stability factors can be ascertained by means 
of the graphs of Figs. 6.10, 6.11 and 6.12. 

If the amplifier is equipped with identical transistors in the various stages, 
the equal isolated stability factor system leads to equal values of T for all 
stages. When the equal cascaded stability factor system is employed the 
values of Ti and Tn are larger than from those of T2 . . . Ta-i. 

6.5 Tuning Procedures 

In the multi-stage amplifier with synchronous single-tuned bandpass filters 
tuning may also be carried out according to either of the methods A, B or C 
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as described for the single-stage amplifiers in Chapters 2 and 5. We therefore 
introduce tuning correction terms x' for tuning method B and x" for tuning 
method C. With pi and p2 having values given in Table 2.1 on page 46 
the relative admittance of the rth tuned circuit of the amplifier becomes: 

yr = 1 + j (Xr + 
Plxr' + p2xrii). (6.5.1) 

Then the reduced determinant of the amplifier may be written as: 

yn+i Trc exp (~0 ) — — 0 0 
1 yn — 0 0 

6 = (6.5.2) 

0 0 y2 Ti exp (j01) 
0 0 — 1 yl 

The tuning methods A, B and C as well as the calculation of the tuning 
correction terms have been considered in detail in Chapter 2 for a single-stage 
amplifier with two single-tuned bandpass filters, and in Chapter 5 for a single-

stage amplifier with two double-tuned bandpass filters (comprising four single-

tuned circuits). 
Calculation of the tuning correction terms for this particular amplifier, 

which may be carried out analogously, yields for tuning method B: 

xi' = 0, 

1 
X2' T1 sin 01 

p1M 
Ti sin 01 , 

P1M 1
x3' = T2 Slri 02 

P2M 
T2 sin 02 

1 — Ti cos O1 ' (6.5.3) 

P2M 1—T1coSO1 
X4' T3 sin 0 3 -  = T3 sin 0 3 , 

P3M 1— Tl cos Ol — T2 cos 02

andxr' Tr Sin Or  • P(r-2)M . 

P (r-i) M 

For tuning method C we obtain: 



6.6] GAIN 175 

x"n+1 = 0, 

1 
xn" = Tn sin On   = T n stn On , 

Q (n+l) M 

x"n-i = Ti Sin On  -1 
Q (n+l) M — Ta-i Sin On-1 ' 1

QnM 1 — Tn COS 9n

xr" = Tr Sin Or
Q (r+2) M 

Q (r+1) M 

(6.5.4) 

In these expressions P and Q are minor determinants obtained from 
Eq. (6.3.28) when starting at the lower right hand side corner and the upper left 
hand side corner respectively. The first index of P and Q denotes the order 
of the minor which is, obviously, equal to the number of tuned circuits 
included. The index M in PrM and QrM denotes that these minors apply to 
parts of an amplifier tuned according to method B or method C respecti-
vely in such a way that these parts give maximum response at the tuning 
frequency. 

In Chapter 5 an analogous notation has been used for the minors of the 
determinant for a single-stage amplifier with two double-tuned bandpass 
filters. 

6.6 Gain 

6.6.1 TRANSDUCER GAIN 

The transducer gain of an amplifier is given by: 

~t = 4 GsGL ' IZt~2, (6.6.1) 

in which Zt represents the transimpedance of the amplifier. For the n-stage 
amplifier this transimpedance can be obtained from Eq. (6.2.3) as: 

or, with Eq. (6.4.3): 

Zt —

=mn 

my21 
m=1 

d 

m=n 

H mY21 
m=1 

Zt m=n+1 
H Gm 8 

m=1 

(6.6.2) 

(6.6.3) 

The reduced determinant 6 including the effects of the tuning procedures 
is given by Eq. (6.5.2). At the tuning frequency all x'es in 6 vanish and the 
transducer gain becomes: 
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m=n 
H mY21~ 2

m=1 4 

FILTERS [6 

(6.6.4) = GSGL m=n+1 
II Gm2. ISoI2 

m=1 

in which 

Y (n+1 ),0 Tn exp (jen) — 0 0 
1 Yn,0 0 0 

80 = (6.6.5) 

0 0 - - Y2,0 Ti eXp (jOi) 
0 0 — 1 Yi,o 

and 

Yr,o = 1 + j (P1xr '  + p2xr'). (6.6.6) 

In analogy with sub-section 2.4.3 we may express the transducer gain of the 
multi-stage amplifier given by Eq. (6.6.4) as the product of the maximum 
unilateral gains of the transistors 1), uM, the insertion losses of the tuned 
circuits 2), Oa, the mismatch losses across the tuned circuits 3), Omm and a 
factor l/jn8o12, nOf, accounting for the non-unilateral properties of the tran-
sistors. In a similar way as we obtained Eq. (2.4.15), we find: 

m=n m=n+1 

~t,n = H m~uM  II (m~i ' m~mm) ' n~,f 
m=1 m=1 

(6.6.7) 

For an amplifier consisting of identical stages, this expression reduces to: 

= ~uMn ' di n ' ~mmn ' n~f (6.6.8) 

Expressions (6.6.7) and (6.6.8) are of special importance for amplifier 
designs in which the contribution of the various parts to the total transducer 
gain is known (as a design requirement) or is required afterwards for other 
purposes. If, however, the transducer gain of the amplifier obtainable with 
a certain type of transistor is of prime interest, Eq. (6.6.4) can better be 

expressed in an alternative form. If N = - , Eq. (6.6.4) can be written as: 
y12 

1) See Appendix V. 
2) See Appendix II. 
3) See Appendix II and footnote on page 51. 
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Gs GL m=s 
H (T'N)m n~f , 

Gn+i Gi n=1 

in which T is generally determined by stability requirements. 
For the purpose of comparing various transistors, it may be assumed that 

the ratios Gs/Gn+i and GL/G1 are kept constant (which may be achieved 
by a change of tapping ratio) and, furthermore, that all stages of the ampli-
fier are identical. Evaluation of TnNn/I Sol t  then gives the transducer gain 
of the amplifier (except for a constant) obtainable with the different types 
of transistors. 

(6.6.9) 

1 
The factor 

ISoI2 
= n~f appearing in the various transducer gain ex-

pressions may be obtained by evaluating the determinant given by Eq. (6.6.5). 
When tuning methods B or C are applied and the various stages of the 
amplifier are identical with respect to T and O, ISoI is a function of T cos 
only and can therefore easily be represented graphically. Fig. 6.13 shows 
such a graph for amplifiers comprising up to five stages. For tuning method A, 
representation of I SoI in a single graph is not possible because the quantities 

iO 

102

10 

1 

n=4 =5 

n= 

n=2 
1 

n-1 S.

1 

10~ 
-4 3 2 -1 

1 
0 1 

—► Tcas 9 

Fig. 6.13. The value of the reduced determinant SI at x = 0 for an amplifier tuned accord-
ing to methods B or C as a function of T cos ®. 
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Fig. 6.14. Comparison of values of I Sod for an amplifier tuned according to either method 
A or methods B or C for 0 = 225O and 0 = 270°. It follows that the differences in Sa fi
are larger for larger values of Isin 01. 

T cos (9 as well as T sin (9 are contained in bob. To show the differences in gain 
obtained with tuning methods A and B or C, Sod has been plotted in Fig. 6.14 
as a function of T for O = 270° and O = 225°. 

6.6.1.1 Comparison of Equal Isolated Stability Factor and Equal Cascaded 
Stability Factor Systems 

As pointed out in sub-section 6.3.5.3 some gain is sacrificed when the equal 
isolated stability factor system is applied in an amplifier which must have a 

given minimum cascaded stability factor. The difference in gain obtained 

with the two systems will be calculated for a four-stage amplifier in which 
S > 4. For the case of equal isolated stability factors it then follows from 
Fig. 6.11 that s = 6. For the case of equal cascaded stability factors it follows 

from Fig. 6.12 that s = 6.25 for stages 1 and 4 and s = 4.4 for stages 2 and 3. 
The various regeneration coefficients T can now be ascertained from T = Ty/s, 

With Eq. (6.6.9), can be calculated for the two systems taking into 
account the different values of T and ISo1. The factors Gs/Gs and GL/G1 do 
not change noticeably because for the outer stages the isolated stability factors 
equal either s = 6 or s = 6.25. Then the ratio of the transducer gain ob-
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tamed from the amplifier with equal cascaded stability factors and from the 
amplifier with equal isolated factors becomes: 

~t,4 equal S 

~t,4 equal s 
2 

64 
1-4 

6g 
cos 0 + 3 (- !  cos ©1 

(4.4)2. (6.25)2 
1-2 (T g + T g I cos O S (

Tg
) 2+ 2 (65 ) 2 cos2  0 

4.4 6.25/ ( 4.4  1 

(6.6.10) 

in which Tg is the boundary of stability of an isolated amplifier stage: 

2 
Tg =  (6.6.11) 

1 -}- cos O 

in Fig. 6.15, Eq. (6.6.10) has been plotted as a function of the regeneration 
phase angle 9. It follows from this curve that for a four-stage amplifier with 
a cascaded stability factor of S > 4, an increase in transducer gain can be 
obtained of 3.3 dB at O = 0° by making all cascaded stability factors equal 
instead of making all isolated stability factors equal. At O = 270° (or 90°) 
this increase amounts to 2.4 dB whereas at O = 210° (or 150°), 1.5 dB is 
gained. 

5 

f 

3 

2 

I 

} l 4 equals 

4 equal s 
!dB L 

9. 0f—► 
0 

360 330 
40 

300 270 
120 
240 210 

ls0 180 
180 

Fig. 6.15. Difference in transducer gain as a function of T of a four-stage amplifier designed 
with equal cascaded stability factors and with equal isolated stability factors for ® = 225O 
and S=4. 
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stage 4 
1 stage 3 stage 2 L. stage t 

Fig. 6.16. Diagram illustrating the numbering of stages of the amplifier. 

From these considerations it may be concluded that the increase in gain 
per stage obtained in this way is generally less than 1 dB (see also sub-section 
6.3.5.3). 

6.6.2 POWER GAIN PER STAGE 

The power gain of the rth stage of an amplifier comprising the rth transistor 
and the rth single-tuned bandpass filter (see Fig. 6.16) is composed of the 
factors r~uM, the maximum umlateralized power gain of the transistor; 
r~i and r~mm, the insertion losses of the rth single-tuned bandpass filter 
and the mismatch losses across this bandpass filter and Mfr, the losses in 
power gain due to the feedback of the transistor. Therefore: 

~r = r~uM ' rPB ' r~mm ' 'Pfr• (6.6.12) 

As we have found in Chapter 2, the losses (or gain) due to the feedback of 
the transistor, defined at the tuning frequency, equal the squared ratio of 
the total admittance at the transistor input terminals without feedback to 
that with feedback. The total admittance including the influences of the feed-
back will be calculated in the following sub-section. 

6.6.2.1 The Input Admittance of a Particular Stage of the Ampler 

In order to calculate the input admittance of the rth transistor of the ampli-
fier, we consider the circuit of Fig. 6.17. For this part of the amplifier we can 
write down the following matrix equation: 

(im)r rj'll r.Y12 — 0 0 (VBn)r 

0 r,Y21 Yr — 0 0 71r 

(6.6.13) 

0 0 0 — Y2 1y12 712 

0 0 0 — 1,Y21 Yl vl 
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The first term of the determinant of this matrix equation equals the input 
self-admittance of the rth transistor. Now: 

rYll = rgii + rbn. (6.6.14) 

In order to manipulate with the determinant in such a way that for each 
transistor its regeneration coefficient T appears, we must relate rgii to Gr+i, 
which is a factor of the denominator of 

rIY12Y21I 
Tr = 

Gr ' Gr+1 

Therefore we put: 

Y 
— 

Gr+i — rgii 
br+1 

Gr+i 

or: 

rgii = (1— ~r+i) Gr+i . (6.6.15) 

Eq. (6.6.14) then becomes: 

rgii=Gr+i(1—br+i+j  
bll~ 

ll\ Gr+1 

After substituting 

(6.6.16) 

Y = G {l + j(x + pix')} , 

and ryll given by Eq. (6.6.16) in the determinant of Eq. (6.6.13), the G's 

may be separated out. Let the reduced determinant be denoted by Pr+i. 
Then Eq. (6.6.13) may be written: 

(Im)r 
m=r+1 

= II Gm . 
m+1 

Pr+1 

0 

Furthermore, the determinant Pr+i becomes: 

(In)r 

' I k12'~r 

1 1 
ry2r'r+, 

(1 )r1
rYi1 

(vjn)r 

Vi 

(6.6.17) 

rY22 

Fig. 6.17. The input admittance of the rth stage of an n-stage amplifier is defined with this 
transistor loaded by the amplifier stages Nos. 1 to (r — 1). 
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Pr+i = (1 — Cr+i + j 
rbii 

I Pr — Tr exp (jor) ' Pr-i. 
Gr+i 

From Eqs. (6.6.17) and (6.6.18) it then follows for ryin 

Pr+i 
ryin = Gr+I ' 

P 
, 

r 

or: 

(6.6.18) 

rYin = Gr+i S 1— Cr+i F j G +i —Tr exp (j©r) 
bii PPri 

t . (6.6.19) 

For tuning method B the minors P are real at the tuning frequency. If 
these values of the minors are denoted by PM, we may write: 

and 

(
1 P(r-1)M

rein = Gr+i S 1 — r+i — Tr cos °r 
PrM 

rbin = rbii — Tr sin ©r 
P(r-i)M 

Gr+i . 
PrM 

(6.6.20) 

(6.6.21) 

Eqs. (6.6.19) to (6.6.21) give the input admittance of any of the transistors 
in the amplifier for tuning methods B and C at the tuning frequency. These 
expressions may be used to calculate the power gain of a particular stage 
of the amplifier. 

6.6.2.2 The Feedback Losses of the rth Stage of the Amplifier 

Consider an amplifier with single-tuned bandpass filters tuned according 
to either tuning methods A or B. The total admittance at the input terminals 
of the rth transistor of this amplifier, disregarding the feedback of the (r+1)th 
transistor (this feedback is accounted for in stage (r + 1)), equals: 

(r+i)Y22 + Y*r+i + ryin. (6.6.22) 

At the frequency of tuning and for tuning method A this total admittance 
becomes with Eq. (6.6.19): 

Pr-i
Gr+i 1 — Tr exp (j er) 

Pr 

and for tuning method B with Eq. (6.6.20): 

(6.6.23) 
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(  
Gr+1 S 1 — Tr cos Or • 

P (r-1) M 

PrM 

If the rth transistor has no feedback, Tr = 0 and the admittance amounts 
to Gr+i in both cases. 

The losses due to feedback of the rth stage then become for tuning method A: 

Mfr = 
Gr+12

Pr-1 
Gr+i (1 — Tr exp (j Or) 

p r l 

1 

Pr-i
1 — Tr exp (jOr) 

Pr 

and for tuning method B: 
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(6.6.24) 

Fig. 6.18. Amplitude response curves for a two-stage amplifier with Ol = ©2 = 225° for 
tuning methods A and B. 
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Mfr -
P(r-1)M 2 

(l_T r coser . 
PrM 

1 
(6.6.25) 

The power gain of any stage of the amplifier can now be calculated from 
Eq. (6.6.12) together with Eqs. (6.6.24) and (6.6.25). 

6.7 Response curve 

6.7.1 AMPLITUDE RESPONSE CURVE 

The amplitude response curve of the amplifier, which is defined as a = o/8 I, 
can be determined by evaluating S as a function of the normalized detuning x. 

In Fig. 6.18 the amplitude response curve of a two-stage amplifier with 
three single-tuned bandpass filters has been plotted for tuning methods A 
and B. For this amplifier O = 225° and xi = x2 = x3 = x. It follows from 
these curves that they become more asymmetrical for increasing values of T 
and that the response curves obtained with tuning method B are less asym-
metrical than those obtained with tuning method A taking the same values 
for T. 

10 

5 

1; 

2 

1 

5 

2 

r.

I,t 
I

I 

i~ 
/`r=0 

 r

LL
15-  

r-15 
a  

I 

10
10 5 2 -1 5 2-10'10' 2 5 1 2 5 10 

—max 

Fig. 6.19. Envelope delay curves for a two-stage amplifier with ®1 = ®a = 225° for tuning 
methods A and B. 
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6.7.2 ENVELOPE DELAY CURVE 

According to sub-section 2.5.3 the envelope delay curve of an amplifier can 
be determined by evaluating dq~/dx, in which q' = tan- ' {Im(8)/Re(b)}, as 
a function of x for suitably small values of the interval dx. 

In Fig. 6.19 envelope delay curves have been plotted for the two-stage 
amplifier considered in the preceding sub-section. 
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CHAPTER 7 

MULTI-STAGE AMPLIFIERS WITH DOUBLE-TUNED 
BANDPASS FILTERS 

In the preceding chapters the analyses of single-stage amplifiers with two 
single-tuned bandpass filters and with two double-tuned bandpass filters as 
well as the analysis of multi-stage amplifiers with single-tuned bandpass filters 
were given. In practice, however, most bandpass amplifiers, for example those 
used in radio and television receivers, contain more than one stage, the inter-
stage coupling usually being formed by double-tuned bandpass filters. 

This chapter deals with such multi-stage amplifiers, use being made of the 
results of the analyses of the preceding chapters. Again use will be made of 
a determinant method to represent the amplifier performance following the 
method indicated by McCluskey (See Bibliography [7.4]). The higher order 
determinants encountered in this analysis will prove to be simple extensions 
of the determinants used for the single-stage amplifier of Chapter 5. 

7.1 Equivalent Circuit of an n-Stage Amplifier with (n +1) Double-Tuned 
Bandpass Filters 

7.1.1 AMPLIFIERS IN THE ADMITTANCE MATRIX ENVIRONMENT 

In Section 5.2 it was shown how the equivalent circuit of a complete single-
stage amplifier with two double-tuned bandpass filters in the admittance 
matrix environment is obtained. The transistor(s) and the parallel-parallel-
tuned double-tuned bandpass filters are both represented by equivalent 
admittance parameter four-terminal networks and placed in the correct 
sequence. 

The output terminals of the first four-terminal network are now connected 
to the input terminals of the second network, and the output terminals of the 
latter to the input terminals of the third network. Next, the self-admittances 
of the networks at the points where they are interconnected are combined 
into one admittance. In this way the equivalent circuit of the single-stage 
amplifier shown in Fig. 5.3 was obtained. 

The same procedure can be followed to combine n transistors (or electron 
tubes) and (n + 1) double-tuned bandpass filters into an equivalent circuit. 
Fig. 7.1 shows a block diagram of such an amplifier and Fig. 7.2 its equivalent 
circuit. 
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The numbering of the transistors, the double-tuned bandpass filters and 
the single-tuned circuits of which these bandpass filters are composed is 
again consecutive, beginning at the output side of the amplifier. Suffixes 

which precede the admittance parameters indicate to which four-terminal 
network the parameter belongs. As in Chapter 5, capitals are used for the 
admittance parameters of the double-tuned bandpass filters, and lower case 
letters for the admittance parameters of the transistors. 

The symbol 2Y12 for example, denotes the l'12 parameter of the last but 
one double-tuned bandpass filter, and the symbol ny21 denotes the y21 para-
meter of the nth transistor, numbered from the output side of the amplifier. 

7.1.2 AMPLIFIERS IN THE H-MATRIX ENVIRONMENT 

In Section 5.3 the equivalent circuit of a single-stage amplifier with two 
parallel-series tuned double-tuned bandpass filters is derived. It was shown 
that this equivalent circuit could easily be derived if the properties of the 
transistor were expressed in the hybrid H-matrix environment and those of 
the double-tuned bandpass filters were expressed in the K-matrix environ-
ment. Using the same method, the equivalent circuit of the n -stage amplifier 
with (n + 1) double-tuned bandpass filters as represented in Fig. 7.3 can 
be derived. 

7.2 The Reduced Amplifier Determinant 

Considering the amplifier in the admittance matrix environment it follows 
that there are 2n + 2 nodal points, see Fig. 7.2, at which, according to 
Kirchhoff's first law, the sum of the currents equals zero. These current 
equations for all nodes can be combined into the following matrix equation: 

is 
0 
0 

O 
0 
0 

Y2n+2 n+iYlz 0 - -
n+1Y21 Y2n+1 ny12 — —

0 ny21 Y2n — — 

0 0 0 
0 0 0 
0 0 0 

O O O 

0 0 0-
o 0 0 - 

V3 1y12 O 
1y21 Y2 1Y12 

— 0 iYzi Yi 

V3 

112 

111 

(7.2.1) 

By proceeding in similar manner to that in Section 5.4 it can be derived 
that the main determinant of Eq. (7.2.1) becomes: 
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node no. crash no. 
1n+2 2n+1 

z2n+t

node no. node no. 
2o 

i V2n v4 —"' 
rt t)' Y 

t 4 r 4J 
I j 

Fig. 7.3. Schematic diagram of an amplifier consisting of n active four-terminal networks 
and n + 1 double-tuned bandpass filters with parallel-tuned primaries and series-tuned 
secondaries. In this diagram 

Y2n+2 = Ys + n+iK11 Y4 = 2h22 + 2K11 
Z2n+2 = — n+1K22 + nhll Z3 = — 2K22 + 1h11 

Y2 = 1h22 + iKi1 
Zl = —1K22 + ZL 

m=2n+2 

d y = H Gm ' S+✓, (7.2.2) 
m=1 

in which the reduced determinant 3, is given by: 

1 +J x2n+2 
n+1Y12 n+1Y21 

G2n+2 ' G2n+1 
0 

n,y12 ' nY21 
1 1 +Jx2n+1 

G2n+1 G2n 

0 1 1 +jxan 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 --1+ •x3 
1}12 ' 1J 21 

0 J Ga , G2

0 0 0 1 1-f 'x2 
1Y12 lYzl 

J G2 Gi 

0 0 0 0 1 1+jxl
(7.2.3) 

By introducing transistor regeneration coefficients T~ and regeneration 
phase angles Oy, see Eq. (2.1.11) and (2.1.12), and also the coupling factors q2
for the double-tuned bandpass filters, see Eq. (5.4.3), the reduced determin-
ant becomes 1) : 

1) The suffixes y in Ty and ©v have been omitted for reasons of simplicity in writing 
Eq. (7.2.4). 
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1+jx2n+2 —q2n+i 0 -- 0 0 0 
1 1+Jx2n+1 Tn exp(jOn)— 0 0 0 
0 1 1+jx2n -- 0 0 0 

8= 

0 0 0 — — 1+jx3 Ti exp (j01) —
0 0 0 1 l+jx2 -qi2
0 0 0 0 1 l+jxi 

(7.2.4) 

The amplifier in the hybrid-matrix environment can be considered in an 
analogous way. The various mesh and nodal equations of the equivalent 
circuit represented in Fig. 7.3 may also be combined in a single matrix 
equation. By manipulating with the determinant of this equation in the same 
manner as above using the method of Section 5.4, the reduced determinant 
of the amplifier becomes as given by Eq. (7.2.4). Values for the quantities T 
and O related to transistor parameters expressed in the H-matrix environ-
ment must be substituted, see Eqs. (2.1.24) and (2.1.25). 

7.3 Stability 

As in the case of the single-stage amplifiers considered in Chapters 2 and 5, 
the n -stage amplifier is on the boundary of stability when the reduced deter-
minant 8, as given by Eq. (7.2.4), becomes zero, and this depends on the 
magnitude of T exp (jO). If all quantities T exp (j0) are assumed to be 
identical, there exists a certain upper limit at which the amplifier is on the 
verge of self-oscillation. (As pointed out in the preceding chapters, e is 
determined exclusively by the transistor transfer properties, whereas T 
depends also on the tuned circuit dampings. Hence, when the type of tran-
sistor to be used and its working point have been chosen and the operating 
frequency is known, then c9 is fixed, but T is still variable.) 

Denoting the boundary of stability of the n -stage amplifier by nTg and 
assuming moreover that all double-tuned bandpass filters of the amplifier 
are identical, nTg can be calculated from Eq. (7.3.1). In this expression the 
quantities x P and x$ represent the normalized frequencies of the primary 
and secondary of the bandpass filters respectively: 
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S= 

l +jxz, 
1 
0 

-q 2 0 
l+jx$ nTg exp(jO) 

1 l +jxz, 

0 0 0 
-- 0 0 0 
-- 0 0 0 

=0 

0 0 0 -- 1+jxs nTg exp(jO) 0 
(7.3.1) 

0 
0 

0 0 
0 0 

-- 1 1 +jxp -q 2

-- 0 1 l+jx$

By writing out S as given by Eq. (7.3.1), an nth order polynomial with com-
plex coefficients is obtained. This means that, for an n -stage amplifier, there 
are n values of nTg for a given value of O. 

In the case of a two-stage amplifier Eq. (7.3.1) leads to a quadratic in 2Tg 

with complex coefficients, which can be solved analytically. For xp = x8 = x 
(r = 1) the result is: 

q2 

2Tg exp (J®) 1  
q2

+ 1 + 
x

2 + j x  (1 1 + x 2
1 

l (1 + jx + jq). (7.3.2) 

In Fig. 7.4 this expression has been plotted in the complex plane for q = 1. 
Values of x are indicated on the curves. Apparently, there are two values 
of 2Tg for every value of O that gives rise to instability phenomena at different 
values of x. Because x is variable over a wide range of values the smallest 
value of 2Tg must be considered as the boundary of stability. This boundary, 
which is indicated by shading in Fig. 7.4, consists of parts of both mathe-

4 

-8j - 

Fig. 7.4. The mathematical expression of the boundary of stability in a two-stage amplifier 
leads to two curves as drawn in this figure for q = 1. The boundary of instability which is 
important in practical amplifier design is the curve indicated by shading. 
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3 

-16 -16 -12 -10 -8 -6 

8j 

1 0.5 
0 

Fig. 7.5. Mathematical boundaries in a two-stage 
amplifier with q 2 = 2. 

20 
Fig. 7.6. Boundary of stability in a 
three-stage amplifier with q 2 = I. 

[7

Fig. 7.7. Boundaries of stability for a four-stage amplifier with identical T's and ®'s and q ' s; 

r = 1 and q 2 = 1. The points for x = 0 of the various curves are indicated. Other values of 
x are marked by means of dots placed at intervals of 0.5. 
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matical boundaries. Fig. 7.5 gives the mathematical boundaries of stability 
for the same amplifier but now with the coefficient of coupling of the double-
tuned bandpass filters equal to q 2 = 2. 

In Figs. 7.6 and 7.7 the mathematical boundaries of stability for a three 
and four-stage amplifier with q 2 = 1 and r = 1 are plotted. The practical 
boundary of stability is again indicated by shading. For amplifiers with 
double-tuned bandpass filters consisting of three or more stages an analytical 
calculation of the boundaries of stability is no longer possible. These boun-
daries have been calculated by means of an electronic computer using an 
iterative method. 

In Fig. 7.8 the practical boundary of stability of the four-stage amplifier 
is plotted for q 2 = 2, together with that of a single-stage amplifier with two 
single-tuned bandpass filters (q2 = 0) for which: 

150° 

810° 225° 240° 255° 270° 285° 
7460 

135° 120° 105° 90° 75° 

Fig. 7.8. Boundaries of stability of a four-stage amplifier for q2 = 2.0 and of a single-
stage amplifier with two single-tuned circuits (q2 = 0). 
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135° 
225° 

120° 
240° 

105° 
255° 

90° 
270° 

75° 
285° 

[7 

Fig. 7.9. Boundaries of stability of a two-stage amplifier for r = 1 and several values of q2. 

The fully drawn curve is applicable to a single-stage amplifier with two single-tuned cir-
cuits. This figure clearly shows that this curve closely approaches the exact curves and 
may therefore be considered as an approximate boundary of stability that is sufficiently 
accurate for most practical cases. 

2 
Tg 

1 + cos 
(7.3.2) 

(see Section 2.2). Practical boundaries of stability for values of q 2 smaller 
than 2 lie even closer to that applicable to the single-stage amplifier. The 
curve for Tg given by the simple expression (7.3.2) thus very nearly coincides 
with the practical boundaries of stability for this four-stage amplifier, 
irrespective of the value of q 2. The same considerations hold for the three-
stage amplifier and, to a lesser extent, for the two-stage amplifier. This also 
follows from Figs. 7.9, 7.10 and 7.11 in which the boundary of stability 
according to Eq. (7.3.2) is plotted together with the exact boundaries. 

As already mentioned in Chapters 2 and 5, the parabola representing 
expression (7.3.2) may therefore be considered as the basic boundary of 
stability for almost every bandp ass amplifier (with double-tuned bandpass 
filters). 
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105° 90° 75° 60° 
255° 270° 285° 300° 

101 5 2 10 10 2

Fig. 7.10. As Fig. 7.9, but for a three-stage amplifier. 
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Fig. 7.11. As Fig. 7.9, but for a four-stage amplifier. 
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It approximates T 9 with sufficient accuracy for most practical I.F. amplifier 
designs. 

In those cases which require a more accurate value of T 9 use can be made 
of the graphs plotted in Figs. 7.9, 7.10 and 7.11 which give nTp for two-, 
three- and four-stage amplifiers respectively. 

7.4 Tuning Procedure 

The n-stage amplifier can be aligned either according to tuning method A, 
B or C as explained in detail in Section 5.7. 

Analogous to the method outlined in sub-sections 2.3.7 and 5.7.7, tuning 
correction terms pix' + p2x" are introduced for the n-stage amplifier. In so 
doing the reduced determinant for the n -stage amplifier becomes: 

y2n+2 —q2n+i 0 -- 0 0 0 
1 y2n+1 Tn exp(j 9) — — 0 0 0 
0 1 y2n -- 0 0 0 

0 0 0 Y3 T1'eXp(jei) 0
0 0 0 I y2 —qi2
0 0 0 — 0 1 yi 

(7.4.1) 

in which y stands for 1 + j (x + pix' + p2x"). 

It can be derived from this expression that the tuning correction terms and 
the minor determinants for tuning methods B and C become as given in 
Table 7.1. Using ,, as given by Eq. (7.4.1) and the tuning correction 
terms from this table, together with the values of p1 and p2 as indicated 
in the table in section 5.7.7 (page 145), the performance of the n -stage 
amplifier can be calculated for each of the three methods of tuning. 

7.5 Gain 

7.5.1 TRANSDUCER GAIN 

The transducer gain of 
n

-stage amplifiers with double-tuned bandpass filters, 
defined at the tuning frequency (x = 0) is again given by: 

n®t = 4 GSGL ' InZtoI 2, (7.5.1) 
in which: 
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TABLE 7.1. GENERAL FORMULAE FOR n-STAGE AMPLIFIERS WITH (n+l) 
DOUBLE-TUNED BANDPASS FILTERS 

Tuning method B Tuning method C 

Major determinant: see Eq. (7.4.1), page 196. 

Minor determinants at the tuning frequency; r = 1, 2, 3, . . . n: 

P1M = 1 

P2rM = P(2r-1)M ± gr2P(2r-2)M 

P(2r+1)M = P2rM — Tr cos ©r P(2r-1)M 

P(2n+2)M = P(2n+1)M + q 2n+1P(2n-2)M 

Q(2n+2)M = 1 

Q(2r+1)M = Q(2r+2)M + q 2(r+1)Q(2r+3)M 

Q2rM = Q(2r+1)M — Tr COS ®r ' Q(2r+2)M 

Q1M = Q2M + g12 Q3M 

Tuning correction terms; r = 1, 2, 3, . . . n: 

Xi' =0 

x2r = 0 

x ' 2r+1 = Tr sin ®r •P(2r-1)M 

P2rM 

x 2n+2 = 0 

x"2n+2 = 0 

x" 2r+1 = 0 

x2r' = Tr sin ®r 
Q(2r+2)M 

x1" = 0 

Q (2r+1)M 

Transducer gain: 

or: 

where: 

Gs GL m=n m=n+1
•

 1 
nit = 4 

Gzn+z Gi mfl 
m(TN) II 

 m=1 qm2 nS0I2 
. 

m=n m=n+1 

nit = H mcPuM ' H m~tb ' o f , 
m=1 m=1 

m=n+1 

n~f = 
Inb0I 2 m 1 

( 1 +' gm2) 2 . 

m=n m=n+1 

II mY21 ' 11 jqm 
m=1 m=1 

nZtO — 
/m=2n+2 1 ' 

I H Gm) /2 ' nS0 
\ m=1 

(7.5.2) 

where nSo follows from Eq. (7.4.1) by putting x = 0. The quantities p1 

and p2 occurring in the expression for nSo depend on the tuning method 
and follow from the table on page 145. 

In an analogous way to that employed in Section 5.8, the transducer gain 

n t can be split up into the maximum umlateralized power gains Ji at of the 
transistors, the transducer losses ktb of the double-tuned bandpass filters 

and a factor which accounts for the losses caused by the real part of 

the feedback of the transistors in the amplifier. Hence: 
s 
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m=n m=n+1 

nit = it m~uM ' H mPtb ' nPf, 
m=1 m=1 

in which: 

[7

(7.5.3) 

1 m=n+1 

n~f =  H (1 + gm2)2 . (7.5.4) 
InSOIa m=1 

With Eq. (5.8.18) the transducer gain of the n-stage amplifier can alter-
natively be expressed by: 

4G8 GL 
m=n m=n+1 1 

nit = — • — H m(T.N) H qm2   (7.5.5) 
G2n+2 G1 m=1 m=1 InSOI 2

7.5.2 GAIN PER STAGE 

7.5.2.1 Voltage Gain 

For amplifiers of which the constants are expressed in the admittance matrix 
environment the voltage gain per stage can readily be calculated. The voltage 
at the input terminals of the rtti transistor of the amplifier is denoted by 
v2r+1 (see Fig. 7.2). From Eqs. (7.2.1), (7.2.2) and (7.2.4) it follows, using 
Cramer's Rule: 

m=2r 

H Gm m=n+1 m=n 
m=1  P2r 

v2r+1 = tS• mm+2 
 • H mY21 ' H my21 
P2n+2 m=r+1 m=r+1 11 Gm 

m=1 

(7.5.6) 

A corresponding relation can be derived for the input voltage of stage (r — 1) 
(denoted by v2r-1). The voltage gain (V.G.)r between the input terminals of 
the rtn and the (r — 1)th transistor then becomes: 

(V.G.)r = 
v2r+1 1 P2r-2 

IrY211 Iry211 (7.5.7) • 
v2r-1 Gtr G2r-1 P2r 

With rY21 = qrY G2r G2r-1, (7.5.8) 

Eq. (7.5.7) becomes: 

(V.G.)r — 
1 P2r-2 

qr Iry21I . (7.5.9) 
Y G2r ' G2r-1 P2r 

Now we may write: 

P2r = P2r-1 + qr2 P2r-2, 

= P2r-2 — Tr-i exp (J€r-1)  Par-3 + qr2 P2r-2, 

= (1 + qr2) P2r-2 — Tr—i exp (j©r-1) P2r-3• 
i 
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Hence: 
P2r-2 1 

P2r P2r-3 
1 + qr2 — Tr-i exp (Jer-i)  

P2r-2 

Substituting Eq. (7.5.10) into Eq. (7.5.9) gives: 

1 qr 1 + qr2
(V.G.)T , rY21 

y/ 1 
I 

Gtr ' G2r-1 + qr2
1 + qr2 — Tr-1 exp (jar-1) 

(7.5.10) 

P2r-3 

P2r-2 

(7.5.11) 

For Tr-i = 0 (no feedback in transistor (r— 1)) this becomes: 

(V.G.)r = (Zt)r IrY21~. (7.5.12) 

Here (Zt)r denotes the transimpedance of the rth double-tuned bandpass 
filter at the tuning frequency (see Appendix III). The last factor in Eq. (7.5.11) 
thus accounts for the extra admittance due to the feedback of the tran-
sistor loading the rth double-tuned bandpass filter. 

7.5.2.2 Power Gain 

The power gain r of the rth stage of the amplifier is given by: 

~r = r~uM ' r1 tb ' ~Pr' (7.5.13) 

In this expression r~uM denotes the maximum unilateralized power gain of 
the rth transistor, rig denotes the transducer losses of the double-tuned band-
pass filter following the rth transistor and cPr  denotes the losses attributed 
to the feedback of the rth transistor. 

The feedback losses Pr are caused by the extra input admittance of the 
transistor due to its feedback. In analogy with Section 6.6.2.2 the extra input 
admittance can be calculated as: 

P2r-1
—G2r+i . Tr exp (j'9r) 

P2r 

The total admittance at the input terminals of the rth transistor therefore 
becomes: 

P2r-1 
G2r+i 1 + qr+1 — Tr exp (jer) • P2r 
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Fig. 7.12. Feedback losses (or gain) of the four stages of a four-stage amplifier as a function 
of Tcos O. All stages have identical elements and the coupling coefficient of the double-
tuned bandpass filter equals q2 = 1. Furthermore, it is assumed that tuning method B 
is applied. 

and the losses due to the feedback become: 

1 fr = 
(1 + q2r+1)2

(7.5.14) 
P2r-1 2 

1 + (j Or) q2r+i —Tr exp 
P2r 

this expression reduces to: For tuning method B, 

Mfr — 
(1 + q2r+1)2

(7.5.15) 
P (2r-1) M) 2

-I- Tr Or . (1 q2r+1 — cos 
P2rM 

In Fig. 7.12 the feedback losses of each stage of a four-stage amplifier with 
identical stages and q2 = 1 are plotted as a function of T cos O. It is assumed 
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that the amplifier is tuned according to method B so that Eq. (7.5.15) is 
applicable. It follows from these curves that the feedback losses of stages 2, 
3 and 4 are almost equal and larger than those of stage 1. The small differences 
in feedback losses between stages 2, 3 and 4 can be explained by considering 
that in a chain of amplifying stages the influence of one stage on the foregoing 
stage becomes identical for all stages if the chain is infinitely long. The differ-
ence in losses between stage 1 and stage 2 is therefore larger than that 
between stage 2 and stage 3, which is in turn larger than that between stage 3 
and stage 4. 

7.6 Response Curve 

7.6.1 THE COMPLEX RESPONSE CURVE 

The reduced determinant nS derived for an n-stage amplifier is a complex 
function of the normalized frequency x with T and O as parameters. In order 
to ascertain the complex response curve (cf. sub-section 2.5.1) it is necessary 
to relate the values of x of the various tuned circuits to a normalized value 
for the complete amplifier. 

Since this book is confined to synchronously tuned amplifiers 1) the 
a

-values 

of the various resonant circuits are all identical. The x-values can 
then simply be related by incorporating the Q-values of all resonant circuits 
into a normalized Q-value for the complete amplifier. Denoting this normal-
ized frequency for the complete amplifier by x gives: 

n8(x) = Re {nS(x)} + Jim {nS(x)}. (7.6.1) 

By plotting n8 in the complex plane, the complex response curve of the 
n-stage amplifier is obtained. 

7.6.2 THE AMPLITUDE RESPONSE CURVE 

In accordance with sub-section 2.5.2, the normalized amplitude response 
curve of the n-stage amplifier is given by: 

nS0 
nS 

in which nS is given by Eq. (7.4.1) and ,8o is equal to nS at x = 0. 

(7.6.2) 

1) Although the amplifier is synchronously tuned, it is inherent to tuning methods B 
and C that the circuits resonate at different frequencies. 
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Fig. 7.13. Amplitude response curves of a three-stage amplifier with four identical double-
tuned bandpass filters, applicable to tuning methods B and C. ® = 225°, r = 1 and q2 = 2. 

Fig. 7.13 shows the amplitude response curve of a three-stage amplifier 
of which qz = 2 and r = 1. The regeneration phase angle is taken to be 
2250  These curves have been calculated for T = 0, T = 2 and T = 3. They 
are applicable to both tuning methods B and C. 

Comparison of the curves for T = 0 and T = 2 clearly shows that the 
humps of the curve for T = 0, which are to be attributed to the overtransi-
tional coupling of the double-tuned bandpass filters, have disappeared at 
T = 2. This is due to T cos O assuming a negative value (cf. Section 5.9). 

7.6.3 THE AMPLITUDE RESPONSE CURVE FOR A LARGE VALUE OF THE 
REGENERATION COEFFICIENT 

Fig. 7.14 represents the amplitude response curve for the same amplifier 
as in sub-section 7.6.2 but now for T= 8 and for tuning method A. Accord-
ing to Fig. 7.10 the value of Tg for this case amounts to Tg = 8. This implies 
that for T = 8 the amplitude response must become infinite which, also 
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appears from Fig. 7.14 for x = —2.9. According to sub-section 7.3 there 
are three mathematical boundaries of stability for this three-stage amplifier. 
This also follows from Fig. 7.14 which indicates instability phenomena at 
two other frequencies. 
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Fig. 7.14. Amplitude response curve for the same amplifier as in Fig. 7.13 but now for a 
value of regeneration coefficient almost at the boundary of stability (T = 8) of the ampli-
fier. According to the theory presented in sub-section 7.3 instability phenomena should 
occur at three different frequencies, which is clearly illustrated in this figure. The curve has 
been calculated for tuning method A for which also Fig. 7.10 is valid. The dashed curve 
is valid for a four-stage amplifier with the same combination of parameters. Now, 
instability phenomena are present at four different frequencies. 
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Fig. 7.15. Envelope delay curves of the amplifier the amplitude response curves of which are 
given in Fig. 7.13. 

7.6.4 THE ENVELOPE DELAY CURVE 

As shown in section 2.5, the envelope delay of an amplifier is given by the 

expression: 

to =T e — 
, 

wp 

in which re represents thereduced envelope delay: 

dq2 
Te = 

dx 

(7.6.3) 

(7.6.4) 

Now 1q is defined as the difference between the p-values calculated from: 

92 = tan
-11m {n8(x)} 

, (7.6.5) 
Re {n8(x)} 

provided the values of x are not too far apart. The difference between the 
x-values obviously corresponds to dx. 

Fig. 7.15 shows the reduced envelope delay curve for the same amplifier 
as the one the response curves of which were given in Fig. 7.13. The 
graph reveals that the envelope delay curves are slightly flattened due to the 

presence of feedback. 

7.7 Table of Formulae 

In Table 7.1 given on page 197, general formulae are set out for the n-stage 
amplifier with (n + 1) double tuned bandpass filters. The determinant for nS 
given by Eq. (7.4.1) on page 196 is applicable to these general formulae. 

In this table the index r denotes either the rth transistor or the rta double-
tuned bandpass filter of the amplifier, starting to count in both cases at the 
output side of the amplifier. In Fig. 7.16 the quantities PM (valid for tuning 
method B) have been plotted for an amplifier consisting of identical stages 
with q2 = 1. 
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Fig. 7.16. Plot of PM (minor determants in case of tuning method B) has been 
plotted as a function of T cos 0 for an amplifier consisting of identical stages and 
9 2 = 1, 

The equations given in the tables for the minor determinants (required 
for calculating the tuning correction factors) are recurrent relations. This 
implies that for multi-stage amplifiers the final results become extremely 
complicated unless these amplifiers consist of identical stages, as is often 
the case. 
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CHAPTER 8 

MULTI-STAGE AMPLIFIERS WITH ARBITRARY 

TYPES OF INTERSTAGE COUPLING NETWORKS 

8.1 General 

In Chapters 6 and 7 multi-stage amplifier are considered employing only 
single-tuned or only double-tuned bandpass filters. There is however no 
limitation to the method of analyzing the amplifier on account of the types 
of coupling networks between the various stages. The interstage networks 
may either be single-tuned bandpass filters (as employed exclusively in 
Chapter 6), double-tuned bandpass filters (as employed exclusively in Chapter 
7) or multiple-tuned bandpass filters. Also complicated networks may be 
used as interstage coupling devices. 

The method of analysis in all cases amounts to determining the definite 
admittance matrix (assuming that all active and passive networks contained 
in the amplifier are expressed in the admittance matrix environment) of the 
amplifier according to the method considered in Appendix I using the nor-
malized detuning concept of specifying the admittance of the tuned circuits. 
Then this definite admittance matrix may be simplified by introducing regener-
ation coefficients for the transistors and coupling factors for the double-
tuned or multiple-tuned bandpass filters. 

When all bandpass filters of the amplifier consist of one or more single-
tuned circuits which are parallel-tuned, all tuned circuit admittances will 
appear in the main diagonal of the definite admittance matrix, whereas all 
forward and reverse transfer admittances of the transistors and bandpass 
filters will appear in the diagonals adjacent to the main diagonal. If, fur-
thermore, no couplings are present in the amplifier between the various 
stages except those via the interstage coupling networks, the definite ad-
mittance matrix will contain zero entries at all places except at the three 
diagonals mentioned. 

The order of the admittance matrix will be equal to the number of nodal 
points in the amplifier. In the cases considered above, the order of the matrix 
thus equals the number of tuned circuits contained in the amplifier. 

When one or more complicated interstage coupling networks are used in 
the amplifier it is often convenient to determine the definite admittance 
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matrices of these networks separately before considering the whole amplifier. 
Sometimes it will be advisable to reduce the order of these separate matrices 
to 2 x 2 before incorporating them in the definite admittance matrix of the 
complete amplifier. The matrix reduction method is considered in Appendix I. 

Up to now all amplifier analyses are confined to synchronous tuning of 
the various tuned circuits using either of the methods A, B or C. In the case 
of non-synchronous tuning of the various circuits "frequency shift terms", 
v, must be introduced in the tuned circuits admittances. These frequency 
shift terms relate the tuning frequencies of the various circuits to that of a 
reference circuit. 

For tuning methods B and C, which are applicable only in the case of 
synchronous tuning, tuning correction terms, x', must be added to the tuned 
circuit admittances. These tuning correction terms can be calculated accord-
ing to the methods outlined in the preceding chapters. 

When the (loaded) quality factors of the tuned circuits of the amplifier 
are not identical, these quality factors must be related to the quality factor of 
a reference circuit using certain proportionality factors. 

The various steps in arriving at the representation of the admittances o 
the tuned circuits in the general amplifier determinant may be summarized as 
follows: 

Consider the rtb tuned circuit of the amplifier and assume that the ampli-
fier is tuned according to method A. Then its relative admittance may be 
written as: 

1 + jxr. (8.1.1) 

If the amplifier is tuned either according to methods B or C, a tuning 
correction term x', the value of which is generally different for the two tuning 
methods, appears in the expression for the relative admittance of the tuned 
circuit, namely: 

1 + j(xr + x,•'). (8.1.2) 

Now the relative admittance of this tuned circuit must be related to that 
of the reference circuit. Let the quality factor of this reference circuit be 
denoted Qref and its relative detuning by: 

f f0,ref 
fl ref = —  (8.1.3) 

f0,ref f 

Then the normalized detuning of this circuit becomes: 

xref = Qref ' Nref• (8.1.4) 

When the rth tuned circuit resonates at a frequency 11 we may put: 
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~l = 
fi  _ fo,ref 

. (8.1.5) 
fo,ref fl 

Together with the quality factor Qr of this circuit, we can define a frequency 
shift term: 

Vr = Qr fi, (8.1.6) 

which adds to the relative admittance of the circuit as: 

1 + J(xr + Vr + xr'). (8.1.7) 

Next the quality factor Qr of the rth tuned circuit is related to that of the 
reference circuit by: 

Qr 
ar = 

Qref 
(8.1.8) 

Then the relative admittance of the rth tuned circuit becomes with Eq. 
(8.1.7): 

yr = 1 + j{ar(xref + Vr) + xr'}. (8.1.9) 

If the general amplifier determinant has been written down and the various 
correction terms are included in the representation of the relative admittance 
of the tuned circuits as shown in Eq. (8.1.9), the determinant can be evaluated 

as a function of the normalized detuning of the reference circuit. This evalua-
tion then yields information regarding the stability, the gain and the ampli-

tude response as well as the envelope delay curves of the amplifier in the same 
manner as considered in the preceding chapters. 

8.2 n-Stage Amplifier with n Double-Tuned Bandpass Filters and One Single-
Tuned Bandpass Filter 

A very important class of multi-stage amplifiers is that in which the output 
bandpass filter is a single-tuned circuit and the coupling networks between 
the various stages are double-tuned bandpass filters. This type of amplifier 
is mostly used in those cases in which the amplifier drives a detector circuit 
and an optimum match between amplifier and detector circuit is of prime 
importance. 

According to the method outlined in the preceding section the general 
determinant for this type of amplifier can be derived. The reduced form of 
this determinant is given by Eq. (8.2.1), in which it is assumed that all tuned 
circuits are tuned synchronously either according to methods A, B or C: 
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Yen+1 — qn2 0 — 

1 Yen Tnexp(j&n) — 
0 1 Y2n-1 - 

— 0 
0 
0 

0 
0 
0 

0 
0 
0 

nS = (8.2.1) 

0 0 0 y3 - q12 0 

0 0 0 1 Y2 Tiexp(j01) 
0 0 0 0 1 Y1 

TABLE 8.1 GENERAL FORMULAE FOR n-STAGE AMPLIFIERS WITH n 
DOUBLE-TUNED AND ONE SINGLE-TUNED BANDPASS FILTERS. 

Tuning method B Tuning method C 

Major determinant: see Eq. (8.2.1). 
Minor determinants at the tuning frequency; r = 1, 2, 3, . . . n: 

P1M = 1 
P2rM = P(2r-1)M — TrcOS er • P(2r-2)M 

P(2r+1)M = P2rM + gr2P(2r-1)M 

Q1M = Q2M — Tlcos &1 • QM 

Q2rM = Q(2r+1)M + q(r+1)2 Q(2r+2)M 

Q(2r+1)M = Q(2r+2)M —

Trcos ®r ' Q(2r+3)M 

Q(2n+1)M = 1 

Tuning correction factors; r = 1, 2, 3, . . . n: 

xl '  = 0 QM 
x1 = Tisin Ol

P(2r-1)M X2r ' = 0 
X2r' = Trsln ®r 

P(2r-2)M 

X 2r+1 ' = 0 

or: 

where: 

and 

Q2M 

Q(2r+3)M 
x(2r+1)"  = TrSln dr  

Q(2r+2)D1 

x (2n+1)"  = 0 

Transducer gain: 

4G8 GL m=n m=n 1 

nit = H m(TN) H --
G2n+1 G1 m=1 m=1 nS0 2

m=n m=n 

nit = H mI'uM ' H m~tb i '  ' Imm 
. 

n~f> 
m=1 m=1

( 2 

~tb = (1 — wp)(1 — w8) • \1 + g2) , (transducer losses double-tuned 
bandpass filter) 

= (1 — wi)2, (insertion losses single-tuned bandpass filter) 

~mml = 
(g22 +GL)2 

mismatch losses across the single-tuned band-
4g22GL pass filter. 

1 m=n 

n~f = 
nS0 2 . m=) (I + )
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The transimpedance of this type of amplifier can be derived as: 
m=n m=n 

11 my21 ' H jqm 
Zt,n 

= 

::x1 x 1 
m=1 

(8.2.2) 
2n 

~ 
1 n 

m=1 Gm 
G' S 

from which the transducer gain can be calculated. 
In Table 8.1 the most important results obtained when analyzing this type 

of amplifier are compiled, using the same scheme as for the n-stage amplifiers 
with n + 1 double-tuned bandpass filters as analyzed in Chapter 7 (see 
Table 7.1). 

Amplitude response and envelope delay curves of this type of amplifier 
may be obtained from the reduced determinant of Eq. (8.2.1) in the usual 
manner. 
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CHAPTER 9 

AMPLIFIERS WITH DOUBLE-TUNED BANDPASS 

FILTERS WITH COMPLEX COUPLING 

COEFFICIENTS 

In transistor bandpass amplifiers, unless special precautions are taken, some 
asymmetry in the amplitude response curve always occurs due to the internal 
feedback of the transistors employed. This asymmetry may be compensated 
by a special method of adjusting the various resonant circuits of the ampli-
fier. This, however, requires complicated tuning procedures and, moreover, 
reduces the obtainable gain. 

Another method of compensating this asymmetry, which does not have 
the drawbacks of the special tuning methods is the use of double-tuned 
bandpass filters with complex coupling. These are bandpass filters in which 
the coupling system contains resistive as well as reactive elements. 

To analyze this method of achieving symmetrical amplitude response cur-
ves a single stage amplifier will first be considered. Then the analysis will be 
extended to multi-stage amplifiers. 

9.1 Conditions for Symmetry of Response Curve in a Single-Stage Amplifier 

As already referred to, the asymmetry of the response curve of an amplifier 
in which amplifying elements with internal feedback are employed can al-
ways be compensated by means of a special method of adjusting the various 
resonant circuits. In general, however, a trial and error method will be re-
quired which does not lend itself to a mathematical analysis. This implies 
that it is not possible to predict, on a theoretical basis, the performance of 
such an amplifier. These systems will therefore not be considered further in 
this book. 

Another method of achieving symmetry is the use of synchronously tuned 
double-tuned bandpass filters with complex coupling. This method, which 
lends itself well to a mathematical analysis, will be developed in the following 
sub-sections. 

9.1.1 THE SINGLE-STAGE AMPLIFIER WITH TWO SINGLE-TUNED BAND-
PASS FILTERS 

In Fig. 9.1 a simplified diagram of a one-stage amplifier with two single-
tuned circuits has been given. This type of amplifier has been analyzed in 
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Fig. 9.1. Equivalent circuit diagram of a single-
stage amplifier with two single-tuned bandpass 
filters. 

detail in Chapter 2, in which it was concluded that its transimpedance func-
tion could be written as: 

Y21 
Zc 

GiG2 
_ 

S ' 

and 

(9.1.1) 

S = (1 -I- jxi)(1 -I- jx2) — Texp (j&), (9.1.2) 

assuming that tuning method A has been applied. 
If y21 is assumed to be constant over the passband considered, the ampli-

tude response curve will be symmetrical with respect to the centre of the 
passband if I  is symmetrical with respect to x1 = x2 = 0. 

The first part of the expression for S, see Eq. (9.1.2), represents a parabola 
in the complex plane which is symmetrical with respect to the real axis. In 
Fig. 2, this parabola has been plotted for x1 = x2 = x. Also the vector 

x=2 urn
 (1+jx)2 

x-1 

x=-2 

Fig. 9.2. Polar plot of the reduced determinant of the single-stage amplifier with single 
tuned bandpass filters showing the case of asymmetry of the amplitude response curve. 
For symmetry, T sin 9 = 0. 
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Texp (j0) has been shown. Since b equals the distance between the parabola 
and the extremity of T (see Section 2.5) only a symmetrical response curve 
will be obtained for T sin O = 0. 

Furthermore, since the parabola is fitted with a frequency scale with 
x = 0 at the real axis, it appears that maximum amplitude response (mini-
mum value of ) occurs at x < 0 if T sin (9 <0  and at x> 0 if T sin (9 >0. 
This suggests that it would be possible to achieve a symmetrical response 
curve if a passive four-terminal network is incorporated in the amplifier 
with a regeneration coefficient which is the complex conjugate of Texp O. 
Then a certain amount of "left asymmetry" would be compensated by the 
same amount of "right asymmetry". 

9.1.2 THE SYMMETRICAL AMPLIFIER STAGE 

In Fig. 9.3 an equivalent circuit diagram of an amplifier stage which would 
have the supposed symmetry is given. It consists of two four-terminal net-
works coupled together. 

To distinguish between the two four-terminal networks, the current sources 
of the first network are denoted by capital Y's whereas those of the second 
network are denoted by lower case y's. 

For the circuit of Fig. 9.3 we may write: 

is 
0 
0 

By putting 

and 

Y3 Y12 0 
Y21 Y2 Y12 

0 Y21 Yi 

Y= G(1 + ix), 

x1=x2=x3=x, 

the determinant of Eq. (9.1.3) becomes: 

J = G1G2G3 ' S, 
and 

'S1 

V3 

V2 

Vi 

(9.1.3) 

(9.1.4) 

(9.1.5) 

(9.1.6) 

Fig. 9.3. Equivalent circuit diagram of an asymmetry-compensated single-stage amplifier. 
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1 + jxs T2exp(j02) 0 
8 = 1 1 + jx2 Tiexp(j01) (9.1.7) 

0 1 l + jxi 

In this equation T2, 02 and Ti, 01 are the regeneration coefficients and phase 
angles of the first and the second four-terminal networks. 

By writing out the reduced determinant we obtain with Eq. (9.1.5) : 

8 = (1 + jx){(1 + jx)2 — Tiexp(j01) — T2exp(j02)}. (9.1.8) 

Since X81 represents the amplitude response curve of the amplifier, X81 
must be symmetrical with respect to x = 0 for a symmetrical response curve. 
The first factor of 161 according to Eq. (9.1.8), 1 + jxi, is symmetrical and 
hence it is required that the second factor (1 + jx)2 — Tiexp(j01) —
T2exp (j02)l also has this symmetry. This second factor is represented in 
Fig. 9.4. The term (1 + jx)2 is again the parabola, and it follows that for sym-
metry it is required that: 

Tl sin 01 + T2 sin 02 = 0 . (9.1.9) 

This is, indeed, in accordance with the assumption made in the preceding 
subsection. 

x=2 

Tj sin Oj+T2sin 02 

12 02

x=2 

urn (1+J2 

x=0 

Re(l+jx)2

Fig. 9.4. Polar plot of the asymmetrical factor in the reduced determinant of the amplifier 
arrangement of Fig. 9.3. For symmetry, T1 sin 0 1 + T2 sin O2 = 0. 
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9.1.3 GENERAL CONDITIONS FOR SYMMETRY 

In the preceding sub-section the conditions for symmetry are derived for a 
single-stage amplifier with x1 = x2 = x3. In general, however, x1, x2 and x3
will be different due to different quality factors of these tuned circuits. We 
therefore put: 

(9.1.10) 

and 

By writing out the reduced determinant of Eq. (9.1.7) we then obtain: 

8 = — x2(ab + ac + bc) + x(aTi sin 01 + cT2 sin 02) 
+ 1—Tlcos01—T2cos02

+ j[— abcx3 + x(a + b + c — aT1 cos 01 — cT2 cos (92) 
— Ti sin &l-1'2 sin 02]. (9.1.11) 

We now put: 
ab+ac+bc=—A, 

aT1 sin 01 + cT2 Sin 02 = B, 
1 — Ti cos 0 1 — T2 cos 02 = C, 

abc = — D, 
a+b+c — aTl cos 01—cT2 cos 02 =E, 

T1 cos01 +T2 sin02 =—F. 
Then 8 can be written as: 

(9.1.12) 

8 =Ax2 +Bx+C+j(Dx 3 +Ex+F), (9.1.13) 

and I8~ 2 as: 

1812 = D2xs + (A2 + 2DE)x4 + (2AB + 2DF)x3 + (B2 + 2AC + E2)x2 
(2BC + 2EF)x + C2 + F2. (9.1.14) 

For symmetry the terms with odd powers of x must vanish. Hence: 

BC + EF = 0, 
and 

AB+DF=0. 

Condition (9.1.15) is fulfilled for: 

B=F=0, 
or for: 

(9.1.15) 

(9.1.16) 

A = C = D = E = 0. (9.1.17) 

The second condition, Eq. (9.1.17), cannot be satisfied because A and D can-
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not become zero, see Eq. (9.1.12). The first condition, Eq. (9.1.16), leads with 
Eq. (9.1.12) to: 

aTi sin 01 + cT2 sin 02 = 0, 
and 

T1 sin 0i+ T2 sin 02 =0. 

It then follows that for symmetry: 

a=c, 
and (9.1.19) 

T1sin 9i + T2sin 02 = 0. 

(9.1.18) 

S 

Expression (9.1.19) thus represents the general conditions for symmetry 
of the response curve of a single-stage amplifier. It is required that the 
regeneration coefficients of the two four-terminal networks are their complex 
conjugates and that the quality factors of the input and output-tuned circuits 
are equal. 

An alternative method of deriving the conditions for symmetry is the 
following: Again assume that xl = x2 = x3 = x and write Eq. (9.1.8) as: 

S = (1 + jx)3 + (1 + jx)(m + jn). (9.1.20) 

Here m + jn stand for — Tlexp (j01) — T2exp (j02). To determine the 
quantity S, the two terms of Eq. (9.1.20) must be added vectorially. The 
first term is always symmetrical around x = 0. The vectorial sum of 
the first and the second factor can then only be symmetrical if the real axis 
of the polar diagram of the second term coincides with that of the first 
factor. This is the case for n = 0, or, generally, if the co-factors of the 
(1 + jx) terms are real. 

9.1.4 PRACTICAL REALIZATION OF THE SYMMETRICAL AMPLIFIER STAGE 

For a symmetrical response curve of the single-stage amplifier under consi-
deration, condition (9.1.19) must be satisfied, i.e. 

T1 sin Ol+T2 sin 02 =0. 

If we assume Ti cos Ol = T2 cos 02 (as is required for symmetry of a multi-
stage amplifier, see following section) it follows that: 

02 = 2it — 01 + 2kn. (9.1.21) 

The angle 01 follows from the admittance parameters of the transistor at 
the chosen d.c. operating point and, therefore, has a fixed value. This means 
that the passive four-terminal network of Fig. 9.3 must be so arranged that 
equality (9.1.21) is satisfied. Hence: 
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argYi2+argY2i=2argY2i=—®+(k+ 1)2ir, 
or: 

øi 
arg Y2i = — - + (k + 1)7c, 

k=0, 1,2,3, . . .. 

(9.1.22) 

For all values of 9i of the transistor, arg Y21 (of the passive four-terminal 
network) may be situated in the 2nd or 3rd quadrant which implies that the 
required symmetry can be achieved by taking for the first four-terminal 
network a double-tuned bandpass filter in which a resistance is added to the 
coupling elements. Examples of such bandpass filters are given Figs. 9.5a 
and 9.5b (for these bandpass filters k = 0 in Eq. (9.1.22)). 

9.1.5 AMPLITUDE RESPONSE CURVE 

The amplitude response curve of the symmetrical amplifier stage becomes 
with Eq. (9.1.14), taking into account Eqs. (9.1.16) and (9.1.19): 

{D2x6 + (A2 + 2DE)x4 + (2AC + E2)x2 + C2} . (9.1.23) 

For identical tuned circuits (a = b = c = 1) and T2 = Ti, this becomes 
with Eq. (9.1.12): 

161 = {xs + (3 + 4T cos ©)x4 + (3 + 4T2cos2 O)x2 + (1 — 2T cos ©)2} 
(9.1.24) 

Further consideration of Eq. (9.1.8) in combination with Eq. (9.1.9) or 
the expressions given by Eqs. (9.1.23) and (9.1.24) reveals that the amplitude 
response curve of the symmetrical amplifier stage is identical to that of 
a triple-tuned bandpass filter, for which: 

R~ 

Fig. 9.5. Examples of double-tuned bandpass filters with complex coefficient of coupling. 
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ISM _ {xs + (3 — 482)x4 + (3 + 484)x2 + (1 + 2q2)2} . (9.1.25) 
Then: 

qi2 = q22 = — T cos 0. (9.1.26) 

For the amplitude response curve of this amplifier stage the same remarks 
can therefore be made as are applicable to the triple-tuned bandpass filter, 
see Bibliography [9-1] and [9-2]. It can hence be concluded that the amplitude 
response curve of amplifier arrangement under consideration has the follow-
ing properties: 
a) symmetry, provided the quality factors of input and output tuned cir-

cuits are equal (a = c); 
b) single-humped top for equal quality factors of the three tuned circuits 

(a=b=c); 
c) triple-humped top when the quality factor of the second tuned circuit is 

large compared with those of the first and the third tuned circuit (b > a= 
= c). The three humps become equal for a particular value of T1 cos OI = 
= T2 cos 02; 

d) no flat topped response curve can be obtained assuming that tuning 
method A is applied. 

In Fig. 9.6 the amplitude response curves of the single amplifier stage are 
represented assuming a = b = c = 1 and Ti = T2 = T for T cos0 = 0, 1, 

Fig. 9.6. Amplitude response curves for a single-stage-asymmetry-compensated amplifier. 
The curve for T cos 0 = 0 is valid for the case of a cascade of three single-tuned bandpass 
ffiters coupled by means of unilateral devices. 
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and 2. The well known properties of the triple-tuned bandpass filter referred 
to above are evidently present in this set of curves. 

Condition c for three equal humps can generally not be met in transistor 
amplifiers because, in view of stability or otherwise, b . a. 

The round-off character of the top of the amplitude response curve limits 
the application of this amplifier arrangement to cases in which a flat-topped 
response curve is not essential. Furthermore, this type of symmetry-compen-
sated amplifier may advantageously be used in cases where a very flat envel-
ope delay curve is required as will become apparent form the curves given 
for the three and four-stage amplifiers considered in the following section. 

9.2 Multi-Stage Amplifier with Double-Tuned Bandpass Filters with Complex 
Coupling Coefficients 

9.2.1 CONDITIONS FOR SYMMETRY OF RESPONSE CURVE 

In Fig. 9.7 the equivalent circuit diagram of a two stage amplifier with two 
double-tuned bandpass filters and one single-tuned bandpass filter is given. 
Before deriving the conditions for symmetry of amplitude response curve 
we will make the following assumptions: 
a) the two transistors are identical and their regeneration coefficients are 

denoted by Ti exp (jO1). 

b) the two double tuned bandpass filters are identical and their complex 
coefficients of coupling are denoted by T2 exp (jO2). 

c) all tuned circuits of which the bandpass filters are composed are identic-
al and their admittances are denoted by Y = G(1 + jx). 

The reduced determinant for this amplifier can then be written as: 

S = 

in which 

y b 0 0 0 
1 y a 0 0 
0 1 y b 0 
0 0 1 y a 
0 0 0 1 y 

(9.2.1) 

(9.2.2) 

Fig. 9.7. Equivalent circuit diagram of a two-stage asymmetry-compensated amplifier. 
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a = Ti exp (j0i), (9.2.3) 
and 

b = T2 exp (j02)• 

By writing out S, we obtain: 

S = y 5 - y3(a ± b) + y(a2 + ab + b2). 

(9.2.4) 

(9.2.5) 

Since y is a symmetrical function of x, the condition for symmetry of 8 
around x = 0 is that the coefficients of the terms y and y 3 are real, see also 
sub-section 9.1.3. 

For symmetry: 
Im(a + b) = 0, (9.2.6) 
Im (a2 + ab + b2) = 0. (9.2.7) 

After substitution of Eqs. (9.2.3) and (9.2.4) it follows from Eqs. (9.2.6) and 
(9.2.7): 

and 
02 = — 0i, 

T1 = T2. 
(9.2.8) 

Extending the above analysis, it may be concluded that a multistage ampli-
fier has a symmetrical amplitude response curve if the asymmetry of the 
amplitude response curve of the amplifier due to the feedback of each 
transistor is compensated by an asymmetry of opposite direction of 
a double-tuned bandpass filter with complex coupling coefficient. For 
an amplifier consisting of identical "stages", the regeneration coefficients and 
regeneration phase angles of transistors and double-tuned bandpass filters 
must meet with the conditions expressed by Eq. (9.2.8). 

9.2.2 RESPONSE CURVE 

In Fig. 9.8 the amplitude response curves of a three and a four-stage ampli-
fier with complex coupling coefficients in the double-tuned bandpass filters 
are plotted. The curves are valid for 01 = 210° and 02 = 150° and Tl = T2 
= T = 3.5 and T = 7.0 respectively. Fig. 9.9 gives the corresponding envel-
ope delay curves. 

It appears that the envelope delay curves are substantially flat over the 
range of normalized detunings considered. 

9.3 Stability 

Instability in an amplifier occurs if its reduced determinant becomes zero. 
In the assymetry-compensated single-stage amplifier this is the case for (see 
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Fig. 9.8. Amplitude response curve for three and four-stage asymmetry compensated am-
plifiers with transistor regeneration phase angles ®=210 and T= 3.5, respectively T = 7.0. 

sub-section 9.1.2): 

8 = (1 + jx){(1 + jx)2 — 2Tcos 0} = 0, (9.3.1) 

assuming equal quality factors for the tuned circuits and equal values for 
the regeneration coefficients of the active and passive four-terminal networks. 

It follows from Eq. (9.3.1) that instability occurs at 

1 
T cos 0 = 

2 
. (9.3.2) 

This means that instability in this amplifier is only possible if O is situated in 
the first or the fourth quadrant. 

1Te (rnd/sec.) 

10 

-1 0 2 
-max 

Fig. 9.9. Envelope delay curves for the amplifier arrangements of Fig. 9.8. 
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If this single-stage amplifier is to be protected against instability by a stabil-
ity factor s, we obtain the condition: 

1 
Tcooe —. (9.3.3) 

A similar condition can be derived for an asymmetry-compensated multi-
stage amplifier. 

The stability condition given by Eq. (9.3.3) is, however, only valid in an 
amplifier in which the asymmetry due to the feedback of the transistors is 
exactly compensated. In practical amplifiers the complex regeneration coeffi-
cients of the transistors and the double-tuned bandpass filters will spread 
around a certain average value. Due to these spreads a considerable decrea-
se of the value of s according to Eq. (9.3.3) is possible. To accomodate with 
these spreads it is generally advisable to choose T smaller than or equal to 
the value Tg = 2/(1 + cos 9), the value of the regeneration coefficient at 
the "basic" boundary of stability as considered in the preceding chapters. 
If T=Tg/s', in which s' expressses the amount of protection against instabil-
ity due to spreads, we obtain as a second requirement: 

2 
T < 

s'(1 + cos (9) 
(9.3.4) 

For a safe design of an asymmetry-compensated amplifier, both conditions 
(9.3.3) and (9.3.4) should thus be satisfied. 

9.4 Transducer Gain 

The transducer gain of the amplifier is again given by 

= 4G.SGL !Zt,nI2, (9.4.1) 

in which for an n-stage amplifiers with n transistors and n double tuned band-
pass filters and one single-tuned bandpass filter, see Chapter 8: 

m=n m=n 
n mj~21 ' mY21 

Zt 
n 

_ m=1 m=1 
m=2nf l 

II Gm ' Sn 
m=1 

(9.4.2) 

If the regeneration coefficients of all transistors are denoted by Tar and 
those of the double-tuned bandpass filters by Tbr, we obtain for the transducer 
gain of the n-stage amplifier: 
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GL 
I1t,n = 4 

Gs . — . N'a • Ttrn ' Tbfn  1
G2+1 Gi 6n12 (9.4.3) 

For Ttr = Tbf  it can be calculated that at the centre frequency of the 
asymmetry-compensated amplifier: 

for n = 1: 

for n=2: 

for n=3: 

SI  o = 1 — 2Tcos O, (9.4.4) 

62,0 = 1 — 4T cos O + 3T2 cos2 O, (9.4.5) 

Sa,o = 1— 6Tcos O + lOT2 cos2 (9—  4T3 cos3 O, (9.4.6) 
and for n = 4: 

64,p = 1- 8T COS © + 21T2 coS2 O - 2OT3 coS3 O + 5T4 cos4 O. 
(9.4.7) 

With these expressions ~t,n can be calculated. Obviously, the transducer 
gain at the tuning frequency of this asymmetry-compensated amplifier is 
equal to that of the amplifier with a single tuned bandpass filter at the output 
considered in Section 8.2, when tuned according to method B and q2 = 
— Tcos©. 
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CHAPTER 10 

STAGGERED TUNING IN TRANSISTOR 

BANDPASS AMPLIFIERS 

A well known technique in selective amplifiers equipped with valves is the 
application of the staggered tuning principle. This technique which utilizes 
simple single-tuned interstage networks, enables a desired bandpass charac-
teristic to be obtained with gain levels comparable with those achievable 
with more complicated interstage networks. The success of the staggered 
tuning technique in valve amplifiers rests on the fact that here the amplifi-
cation is limited by the maximally possible tuned circuit impedance. This 
maximum tuned circuit impedance depends on the required bandwidth of the 
circuit and the minimum value of tuning capacitance of which the lower limit 
is set by the parasitic capacitances present across the circuit. In a stagger-
tuned amplifier the quality factors of the individual tuned circuits can be 
made larger than in a synchronously tuned amplifier with the same overall 
bandwidth to such an extent that the overall amplification of the stagger-
tuned amplifier is larger (see Bibliography [10.2]). 

In selective amplifiers with transistors the impedance levels of the tuned 
circuits are generally much lower than in the valve case. The lower impe-
dances are required for reasons of stability of each stage of the amplifier and/ 
or to make all transistors of a given type interchangeable in the amplifier, 
taking into account their spreads in parameters (see Chapter 11). No in-
crease in (power) gain can hence be obtained by narrowing the bandwidth of 
the various tuned circuits and, in fact, a reduction in gain occurs when 
staggering the tuning of the interstage networks. This implies that, general-
ly, staggered tuning offers no advantages in transistorized amplifiers. There-
fore synchronous tuning of the various tuned circuits is used almost exclusi-
vely. 

Despite the lower gain the staggered tuning principle is sometimes used in 
transistorized amplifiers to achieve a better response characteristic compared 
with the synchronously tuned case. Unless all stages of the amplifier are 
perfectly neutralised the design calculations of, say, flat-staggered doubles or 
triples become extremely complex because of the feedback inherent to the 
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transistors. These calculations are therefore considered to be beyond the 
scope of this book. 

The determinant method on which the analysis of the synchronously tuned 
amplifiers considered is based is however also suitable for non-synchronously 
tuned amplifiers, as already referred to in Chapter 8. This method may there-
fore also be applied in the analysis of the performance of staggered ampli-
fiers as soon as the staggering scheme, the tuning frequencies of the individual 
circuits and their quality factors are known. 

For the case of O = 270° (valve case) Jenolek and Sidorowicz (see 
Bibliography [10.1]) have investigated the influence of the feedback on the 
amplitude response curve for staggered pairs and staggered triples also 
using a determinant method. In this analysis various staggering sequences 
are considered. The quality factors and tuning frequencies of the individual 
tuned circuits were determined using the normal stagger diagram for unilat-
eral amplifiers. 

From this analysis it follows that even at small values of the regeneration 
coefficient T a severe distortion of the amplitude response curve occurs 
which is mainly to be attributed to the deterioration of stability of each 
stage due to the cascade of stages (see Chapter 6). This deterioration de-
pends, obviously, on the sequence of the resonant frequencies of the indivi-
dual tuned circuits in the amplifier. It might be concluded from the analysis 
mentioned that the staggered tuning technique can only successfully be em-
ployed in a transistor amplifier if the stability factor of each stage is made 
very large (s > 20). This may be achieved either by neutralization or by 
sufficiently damping the transistors at their input and output terminals. In 
the latter case, as already referred to, the power gain will generally be con-
siderably less than in the case of synchronous tuning. 



CHAPTER 11 

SPREADS IN TRANSISTOR AMPLIFIERS 

In designing practical bandpass amplifiers the spreads and tolerances of the 
properties of the active as well as the passive devices to be used must be 
taken into account. The design must be such that the performance of the 
amplifier remains within allowable limits over the range of possible spreads 
of transistor parameters as well as component tolerances. 

We will restrict ourselves to investigating in some detail the consequences 
of the deviation of the admittance parameters of the transistors to be used in 
the amplifier from the nominal values. Tolerances in the circuitry external 
to the transistors will only be considered in as far as they influence the spreads 
in the transistor admittance parameters. 

Parameter spreads of the transistors affect the stability of the amplifier 
as well as the gain and the response curve. Because an amplifier is useless 
in practice unless it is adequately stable, the design based on stability taking 
into account spreads will be considered in detail. The consequences of transis-
tor parameter spreads on gain and response curve will not be considered in 
detail because for this investigation actual transistor parameters should be 
taken into account. This thus leads to different parameters for each transis-
tor of the amplifier. When the amplifier determinant is written down taking 
into account these parameters, questions regarding gain and response curve 
can be answered after evaluation of the determinant. Such procedures are, 
however, outside the scope of this book because they only yield results for 
specific cases which cannot be used in general. In Book II, an example of 
such an investigation is given for a three-stage vision I.F. amplifier of a tele-
vision receiver. 

As already referred to, only transistor admittance parameters will be con-
sidered in this chapter. Investigations for other parameter systems may be 
carried out by using similar methods. 

11.1 Stability 

As already pointed out, in amplifier designs for a certain type of transistor 
care must be taken that all transistors of that type are interchangeable with-
out impairing the performance of the amplifier too much due to spreads in 
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transistor parameters. Usually it will be accepted that when other transistors 
of the same type are inserted in the amplifier, the amplifier must be realigned. 
It is, however, not acceptable that the amplifier can become unstable with 
transistors with parameters satisfying the published data inserted in it. 
Therefore the stability of the amplifier has to be considered for transistors 
with a combination of parameters which set the severest stability require-
ments to the amplifier. 

As will be obvious from the preceding chapters such a transistor has mini-
mum values of gil and g22, maximum values of lyl2l and Iy2lI and an angle 

0 = Q~I2 + X21 such that cos 0 has a maximum value. 
We will denote a minimum value of a parameter by adding a suffix m and 

a maximum value by adding a suffix M. No extra suffix denotes a nominal or 
typical parameter value. 

In the amplifier design on stability for a nominal transistor a certain stabil-
ity factor s> 1 was taken into account, see sub-section 2.2.4. 

For the design on stability of an amplifier in which transistors with a com-
bination of extreme parameters as mentioned above are assumed to be insert-

ed we will allow that s reduces to s = 1. Then the amplifier is on the boundary 

of stability. This is allowable for the following reasons: 
A single transistor with a combination of extreme parameters as men-

tioned, or as it further will be referred to, an "extreme transistor", never 
occurs in practice. Therefore the stability factor of an amplifier equipped 
with practical transistors will always be larger than unity when it is 
allowed that s reduces to s = 1 for the "extreme transistor". 

Based on these principles the influences of spreads of the transistor para-
meters will now be investigated by considering a single-stage amplifier with 

two single-tuned bandpass filters. This simple type of amplifier has been 
chosen because of the straightforwardness of the analysis and, moreover, 
because its boundary of stability may be considered as a general boundary of 
stability for all selective amplifier configurations, see Chapters 2, 5, 6 and 7. 

Because the influences of the parameter spreads on the stability present 
themselves somewhat differently in neutralized and non-neutralized ampli-
fiers, the two cases will be dealt with separately. 

11.2 Non-Neutralized Amplifiers 

To investigate the influences of the transistor parameter spreads in a non-
neutralized amplifier we will consider the spreads of the various parameters 
separately. In this way a clear picture of the influence of each parameter 
will be obtained. 
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In investigating the various spreads in the non-neutralized amplifier use 
will be made of the T-plane representation of the amplifier stability. 

11.2.1 SPREADS IN V12 

According to Chapter 2, we may write for a single-stage amplifier with a 
stability factor s: 

(1 + jx)2 — sTexp (j0) = 0. (11.2.1) 

At the boundary of stability s = 1 and T = Tg. 
Since 

T= 
IY12I Y2il 

GiG2
and 

=9'12+ 21, 

Eq. (11.2.1) can also be written as: 

or 
sTexp (jq 12) _ (1 + jx)2 . eXp (— j9 21), 

/, Y211 
IY12I eXp (Jq~12) ' s ' G1G2 

= (1 jx) 2 eXp ( — J~21). (11.2.5) 

In investigating the influences of the spreads in y12 we will assume in this 
sub-section that the parameters yli, y22 and ysi are constant. 

The influence of the spreads in y12 can clearly be seen from Fig. 11.1 which 
is a plot of the right-hand side of Eq. (11.2.4) in the complex T exp (jq~12) 
plane. The vector Texp.(jq~12) represents the nominal case. The modulus of 

y12 is assumed to spread between 

IY12I + QIY12I = IY12MI, 

and (11.2.6) 

IY12I — 4IYi21 = IY12ml, 

wheras the phase angle 9212 spreads between 

9212+ 4 9212=912M, 

and (11.2.7) 
9212 - 4 9212 = 1P12m• 

The spreads in Iyi2 Read to extreme values of the regeneration coefficient T: 

and 

IY21I
TM = IY12MI GiG2 ' 

IY211 
Tm = IY12mI ' 

G1G2

(11.2.8) 
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Fig. 11.1. Location of spread area of the transistor feedback admittance yi2 in the complex 
T plane. It is assumed that ysi, gii and g22 are not subjected to spreads so that spreads in 
T are only due to spreads in yi2. The real axis of the parabola denoting the boundary of 
stability is shifted over an angle — q si with respect to the real axis of the T plane so that 
spreads in qi2 can easily be incorporated. 

The shaded area in Fig. 11.1, bounded by Tm, TM, 12m and q~12M , is thus 
the area in which the regeneration coefficient T will be situated taking into 
account spreads of y12. Obviously the stability factor of the amplifier is 
smallest for the combination TM and g212M. 

11.2.2 SPREADS IN Y2i 

If also the parameter y21 is subjected to spreads, the situation becomes slight-
ly more complex. If the angle 21 spreads between 

q~21 + 4921 = 921M, 

and (11.2.9) 

q~21 - 4921 = 921m, 

the angle through which the real axis of the parabola must be rotated with 
respect to the axis T cos q12 varies between these two values as shown in 
Fig. 11.2. 
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Fig. 11.2. Spreads in IY211 enlarge the spread area of T. The maximum value of T is obtained 
for a combination of maximum values of Iy121 and Iy211 whereas the minimum value holds 
for a combination of minimum values of Iy121 and Iysil- The double hatched spread area 
is considered to be due to spreads in y12 only. Spreads in X21 present themselves as spreads 
in the location of the symmetry axis of the parabola. 

Assuming Iy21I to spread between 

IY21I + dJY21I = IY21MI, 
and (11.2.10) 

IY21I — dIY21I = IY21mI, 

the regeneration coefficient has extreme values of: 

and 

Iy12MI IY21MI 
TM

G1G2 ' 

Tm 
_ IY12ml IY21ml 

GiG2 

(11.2.11) 

These extreme values are indicated in Fig. 11.2. The double hatched area 
in this figure refers to the spread area of y12 whereas the single hatched area 
represents the additional spread of Iy211. The spreads in X21 become apparent 
from the rotation of the parabola in the T exp (j'12) plane. 



11.2] NON-NEUTRALIZED AMPLIFIERS 231 

11.2.3 COMBINATION OF SPREADS IN yla AND yai 

The influences of spreads of the yi2 and y21 parameters of the transistors on 
the stability of the amplifier as illustrated separately in Fig. 11.1 and Fig. 11.2 
can also be expressed in a combined form in the T exp j0 plane as illustrated 
in Fig. 11.3. The extreme values of the angle 0 then become: 

0+ 4 812+ 21 =OM, 
and (11.2.12) 

0- 4 9912 -4 4721 = Om• 

The extreme values TM and Tm of the regeneration coefficient are given by 
Eq. (11.2.11). 

The double hatched area in Fig. 11.3 again refers to the spread area of yla 
whereas the single hatched area indicates the additional spreads due to y21. 

The severest case with respect to stability in Fig. 11.3. is the combination 
of TM and OM. 

11.2.4 SPREADS IN gll AND gat 

Until now it has been assumed that the conductances gi1 and g22 are not 
subjected to spreads. In practical transistors these parameters also spread 

Fig. 11.3. Combined influence of the spreads in yia and yai in the T exp (j0) plane. 
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around their nominal values and hence influence the value of the regenera-

tion coefficient T. 
In the single-stage amplifier under consideration we have 

G1=gll+ Gi* +Gs, 

and (11.2.13) 

G2 = g22 + G2*  + GL• 

For minimum values gum and g22m, Gi and G2 become: 

Glm = gum + Gi* + Gs, 
(11.2.14) 

G2m = g22m + G2*  + GL 

After the design on stability for the nominal transistor has been carried out 

the quantities (Gi* + Gs) and G2* + G2) are known and Gim and G2m can 

be calculated. The extreme values for T then follow from: 

and 

Iy12Ml ' IY21M~ 
TM_ 

Glm ' G2m 

Tm = 
1y12m1 ' ly2iml 

G1M ' G2M 

(11.2.15) 

In Fig. 11.4 the spread area of T taking into account the extreme values of 

all admittance parameters is shown. The shaded regions indicate the extra 

increase of the spread area due to the spreads in gii and g22. 

The spreads of the susceptive parts of yii and y22 need not to be taken into 

account because they are incorporated in the tuned circuit susceptances 

when tuning the amplifier. 

11.2.5 PRACTICAL DESIGN PROCEDURE WITH INTERCHANGEABILITY 
CHECK 

In designing practical amplifiers the design is first carried through for tran-

sistors with nominal values of parameters. According to the introductory 

section of this chapter it must then be ascertained whether for the so-called 

"extreme transistor" the stability factor sm is larger than unity or not. 
If Sm > 1 all transistors of the type under consideration may be inserted 

in the amplifier without any risk of instability. If sm < 1 some of the transis-
tors of the given type may give rise to instability when inserted in the ampli-
fier. To remedy this, sm must be increased to unity by increasing the tuned 
circuit dampings or the source and load dampings. 

This then means that the stability factor for the nominal transistor becomes 
larger than was initially provided for. 
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Fig. 11.4. Further enlargement of the spread area of T due to spreads in the dampings gii 

and g2a. The shaded area indicates the influences of these parameters. 

In order to check the interchangeability conditions the smallest value of 
T 9 that may occur in the amplifier must be determined. Therefore that ex-
treme value of 0 (OM in common emitter connection and em in common 
base connection) must be taken that gives the minimum value for: 

Tgm 
= 1 + cos O 

2 
(11.2.16) 

After TM has been determined from Eq. (11.2.15) the minimum value of the 
stability factor s m follows from: 

Tgm
sm  =

TM 

11.2.6 EXAMPLE 

To illustrate the theory presented in the preceding subsections a single-stage 
amplifier will be designed with respect to stability. The transistor to be used 
in the amplifier is assumed to be of a type of which the admittance para-
meters are as given in Table 11.1. 
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TABLE 11.1 ADMITTANCE PARAMETERS 

minimum value nominal value maximum value unit 

gii 
IY12I 
qi2 

IY21I 
q21 
g22 

2.5 
50 

260 
75 

300 
50 

5 
100 
265 
100 
315 
100 

10 
200 
270 
130 
330 
200 

mu 
µ~ 
° 
mn 
° 
µ~ 

For the nominal case: 

For s=4,T=2.15 

Then 

e=9i2+ 2i=220 °

2 
T9 8.6. 

1 + cos O 

IYl ~21 I G1G2 _ — 4.65 l0-6 52. 

Assuming 
Gl _ gll , it follows that 
G2 g22 

Gi = V g11 GiG2 = 15.3 mZs 
g22 

and G2 = 300 µZS. 

As Gl = gll + Gl* + Gs, 

G2 = g22 + G2*  + GL, also 

G1* + Gs = 10.3 mZs; 

G2* + GL = 200 µZ5. 

For reasons of interchangeability we must take into account 

gum, IY12MI, q212M, IY21MI, 221M and g22m, 

This leads to: 

Furthermore, 

OM= 12M+ 21M=240 °, 

2 

T9m  _ 1+ cos &M -4 ' 

Gim = gum + G1* + Gs = 12.8 m?s, 

Gem = g22m + G2* + GL = 250 µZS, 

Iy12MIIY2IMI 
TM _ 

 
- 8.1. 

Glm G2m 
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This gives for the minimum stability factor 

Tgm 
sm = 7, =0.5. 

A stability factor sm = 0.5 indicates that the amplifier may become unstable 
for a transistor of the type under consideration with an unfavourable com-
bination of parameters. To meet with the interchangeability criterion sm
must be increased to sm = 1 by increasing (Gi* + Gs) and (G2* + GL). 

For sm = 1, TM = Tgm = 4 and Gim • G2m = 6.5 ' 10-6 T32. 

Assuming 
giim = Gim 

it follows that: 
$22m G2m 

and Gim = 18 mtY, 
G2m = 360 µTS. 

This yields Gi* + Gs = 15.5 mtY, 

and G2* + GL = 310 µTS. 

For the nominal case we then find: 

G1 = 20.5 m?3 and G2 = 410 µT5. 

The regeneration coefficient then becomes: 

100 10-3 100 ' 10-6
T=205

 10 3 .410. 10-6 — 12, 

and the stability factor: 

8.6 
s = — = 7.2. 

1.2 

11.3 Neutralized Amplifiers 

As regards spreads in transistor parameters two methods of neutralization 
must be considered which were already referred to in Chapter 3 as "perfect 
neutralization" and "fixed-component neutralization". 

In the case of perfect neutralization the y12 parameter of every transistor 
of the given type which is inserted in the amplifier will be exactly neutralized 
by adjusting the components of the neutralizing network. This implies that 
we need not to consider the stability of this type of amplifier in view of the 
transistor parameter spreads. 

In practical amplifier constructions, however, the y12 parameters of the 
transistors are subjected to variations during life or due to environmental 
conditions. These variations must be catered for by sufficiently large values 
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of the dampings at the transistor input- and output terminals. To determine 
the required value of the product of these dampings the same method may 
be followed as for the amplifier with fixed neutralizing components considered 
in the next section. 

11.4 Amplifiers with Fixed-Component Neutralization 

In Chapter 3 various methods for neutralizing the reverse transmission of 
signals through a transistor are considered. For perfect neutralization the 
neutralizing components must have values which are different for each tran-
sistor because of the spreads in the reverse transmission properties. As al-
ready referred to in Section 3.6, in practical amplifier constructions fixed-
component neutralization is employed. Then perfect neutralization is achiev-
ed for a transistor which has a particular value of y12. Transistors having 
different values of y12 are either over-neutralized or under-neutralized. 

The aim of the following sub-section is to investigate which value of y12 
can best be perfectly neutralized by the fixed-component network taking into 
account the spreads in the four transistor admittance parameters as well as the 
spreads in the components of the neutralizing network. After having found 
the best values for the neutralizing components it must be assured that all 
transistors of the type considered are interchangeable in the amplifier with 
this neutralizing network without giving rise to instability phenomena. 

11.4.1 COMPONENT VALUES OF THE NEUTRALIZING NETWORK 

11.4.1.1 No Spreads in the Neutralizing Components 

To determine the values of the fixed components of the neutralizing network 
we will, in the first instance, disregard the spreads in the neutralizing compo-
nents themselves and only take into account the transistor parameter 
spreads. 

As y12 is the parameter to be neutralized the effect of a neutralizing net-
work can best be illustrated by expressing the stability conditions of the 
amplifier in the y121 exp (jq 12) plane. This can be done by rewriting Eq. 
(11.2.5) as: 

1 G1G2 
Iy121 exp = (1 + jx)2 exp (— jq'21). (11.4.1) Jq~12) 

S ly21I 

The right-hand side of the expression can be represented by a parabola in 
the y12 plane. Its focus is located at the origin of the y12 plane and its axis of 
symmetry is shifted over an angle (— X21) with respect to the real axis. The 
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i /Y12/S co12 

PafatGla for stability 
factor s. 

Directrix 

Q21) 

• 1y,2/ 
\OS c11 

\ 

Fig. 11.5. Location of the stability parabolas in the complex you plane. 

directrix of the parabola is located at a distance 2 GiG2/sIy2il from the ori-
gin. In Fig. 11.5 such a parabola has been constructed. The location of the 
parabola in the y12 plane is thus dependent on the values of y21, Gi, G2 and s 
and for each set of values of these parameters a new parabola must be con-
structed. For values of y12 on the parabola for s = 1 the amplifier is on the 
verge of oscillation for the particular values of y21, Gi and G2 assumed. For 
values of y12 located outside this parabola the amplifier is unstable. 

In Fig. 11.6 the spread area of y12 of a particular transistor has been shown. 
Assuming certain values of y21, Gi and G2 and takings = 1 the parabola thus 
represents the boundary of stability. Also a parabola for s = 2 has been 
shown. It follows that for a large number of transistors of this type the am-
plifier is unstable if no further measures are taken. 

As already referred to, one of the measures that can be taken is the appli-
cation of a neutralizing network. Assuming that this network has a transfer 
admittance Y12NI eXP (J9'12N) and that its influence on the y21, yll and y22 

parameters of the neutralized transistor four-terminal network is negligible, 
the effect of the neutralizing network may be represented as shown in Fig. 
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Fig. 11.6. Location of spread area of y12 of the transistor and the feedback admittance 
I Y12NI of the neutralizing network in the yiz plane. The hatched area represents the remai-
ning spread area of ylz after neutralization with Y12N. 

11.6. Here, the vector Y12N represents the transfer admittance of the neutral-
izing network. The hatched area represents the remainder of the feedback 
of the transistor after neutralization of an amount Y12N of it. 

It follows that, due to this particular choice of the value of Y12N, for 
over-neutralized transistors the stability factor of the amplifier is much smal-
ler than for under-neutralized transistors. The value of Yi2N should prefer-
ably be chosen such that the stability factor in the over-neutralized case is 
equal to that in the under-neutralized case. In sub-section 9.6.2 this value has 
been calculated, assuming zero spreads in the phase angles 12 and q i. 

After neutralization with this value the points a and b appear on the same 
parabola for a certain value of s, see Fig. 11.7. Strictly speaking, spreads in 

q12 should also be taken into account. This requires that the points a' and 
b' are both situated on a parabola for a certain value of s (different from that 
for the points a and b). Moreover, spreads in y21 should also be taken into 
account. Consideration of the spreads in q12 and g721, however, only leads 
to second order variations of the (nominal) value of YizN• The assumption of 
nominal values for 12 and 921 for determining the nominal value of Y12N 

is therefore justified. 
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As follows from Fig. 11.7 the value of the transistor feedback admittance 
which is perfectly neutralized lies between the minimum value and the 
average value of y12. This means that most transistors of a given type are 
under-neutralized. 

11.4.1.2 Spreads in the Neutralizing Components 

In practice normal capacitors and resistors are used for the components of the 
neutralizing networks. This implies that we have to take into account the 
tolerances of these components which are equal to 10 %, say. Furthermore, 
spreads may occur due to spreads in the transformer ratio of the phase invert-
ing transformer. The component tolerances influence both magnitude and 
phase of the neutralizing admittance whereas the spreads in transformer 
ratio only affect the magnitude. 

As it is probable that the spreads in the magnitude are larger and, hence, 
more important than the spreads in phase, the magnitude spreads will be 
considered first. 

Fig. 11.7. Location of the remaining spread area of y12 for equal stability in the extreme 
over- and under-neutralized cases. 
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s=1 

i 

location of spread area of Y72 
❑ for neutralisation withIY12N/M; 
~dito for/Y12N/m 

Fig. 11.8. Effects of spreads in Y12NI. 

t i/Y12 12 

4 IY72NIM 
1 ~ Y12N~ 
i IY72NJm 

Y127 
cos So 12 

[11 

In Fig. 11.8 the effects of spreads in magnitude of Y12N are shown. 

The spread area of y12 indicated by the dashed lines is valid for the correct 
nominal value of Y12N as found in Fig. 11.7. The hatched spread areas apply 

to the cases with a positive spread, IY12NMI, and with a negative spread, 

i Y12N m l • It follows from the figure that for the over-neutralized and under-

neutralized cases the stability factor is again different.This means that with a 

fixed-component neutralizing network the nominal value of Y12N must be 

determined by taking into account the spreads in y12 of the transistor as well 

as the spread in Y12N of the neutralizing network. 
As the spreads in IY12NI are usually specified as a certain percentage of 

deviation from the nominal value, difficulties occur when it is attempted to 
take these spreads into account. This is due to the fact that, to determine the 
nominal value of Y12N, the absolute magnitudes of the spreads are required 
whereas for the spreads in Y12N only the relative values are know. (The abso-
lute values depend on the nominal value to be found.) For practical ampli-
fiers the correct nominal value of Y12N can be determined with sufficient 
accuracy by assuming that the absolute spreads in Y12N are equal to the 
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percentage spread multiplied by the minimum value of the transistor feed-
back admittance y12• This might be seen as follows: In the preceding sub-
section we have found that due to spreads in the transistor feedback ad-
mittance only the correct value of IY12NI lies between Iy121 and 1v12m1, 
assuming y21 to be situated in the fourth quadrant. As, due to the neutra-
lizing network, the total spread in both directions increases, the correct, 
nominal, value of I Y12N1 will approach more closely the value Iy12mI. For 

y21 situated in the second quadrant, IY12NI more closely approaches Iy12MI• 

To determine the nominal value of IY12NI the absolute spead of IY12N1 ob-
tained in this way should be added to the absolute spreads in Iy121 of the 
transistor. 

These points will be elucidated by means of an example: let atransistor 
have an average feedback admittance Iyi2I of 100 µZS which spreads be-
tween 50 µZS and 150 µZS. Then Idy121 = 150-50=100 µZS. Let further-
more the neutralizing network have a spread of 20%. We assume that 

I J Yi2N l is equal to 20% of 50 µT5 or d Y12N = 20 µZS. The total spread to 
be taken into account then becomes 100 + 20 = 120 µT5. If we assume that 
the transistor has a forward transfer admittance of 100 m?5 at the average with 
spreads from 80 m J to 120 m3 and that the average value of ® equals 
® = 225°, we obtain with Eq. (3.6.8) for the nominal value of IY12NI : 

IYi2Nl = 48 µZS. 

We have now taken into account spreads in Iy12I, Iy21I and I Y12N1 for finding 
the optimum nominal value for the magnitude of the feedback admittance 
of the neutralizing network. This value yields the same stability factor in the 
extreme over-neutralized and under-neutralized cases and we are therefore 
able to design the amplifier with a certain stability factor s for these extreme 
cases. The parameters mentioned are, however, not the only spread para-
meters which contribute to the stability of the amplifier. Spreads in X12, 9721, 

g11, g22 and 9712N should also be considered. To investigate whether the in-
fluences of these spreads are tolerable the interchangeability criterion refer-
red to in the introductory section of this chapter will be applied. 

11.4.2 SPREADS IN 9712N 

In the preceding sub-section we have investigated how the spread area of 
the transistor feedback admittance y12 is influenced by the spreads in IY12N1• 

In this sub-section we will take into account spreads in the phase angle 9712N 

of the feedback admittance of the neutralizing network. 
In Fig. 11.9 the y12 spread area obtained in Fig. 11.8 drawn for a properly 

chosen value of Y12N (dashed lines) is shown. Also the spread area of Yi2N 
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Fig. 11.9. Combined effect of spreads in modulus and argument of YISN. 
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which is assumed to be rectangular, has been indicated. The spread in 12N 

enlarges the remaining spread area of y12 as shown in the figure. It follows 
that when y21 is situated in the fourth quadrant (common emitter connection) 
negative spreads of g121V seriously decrease the stability of the amplifier 
whereas positive spreads of 12N increases the stability. For y21 situated in 
the second quadrant (common base connection) the reverse is true. 

11.4.3 SPREADS IN Jy2i1, gii AND g22 

According to sub-section 11.4.1.1 the distance between the directrix of the 
parabola representing the boundary of stability in the y12 plane and the 

origin equals 2G1G2. If G1 and G2 are calculated for minimum values of 
Iy21 

gil and g22 (Gim and G2m) and the maximum value is taken for y21, a para-
bola is obtained which represents the stability boundary in this extreme case. 
To achieve interchangeability the total spread area of y12 must be located 
inside this parabola. Fig. 11.10 represents a case in which this condition is 
met for the nominal value of 21 (drawn curve). 
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11.4.4 SPREADS IN q, 

According to sub-section 11.2.2 spreads in 21 can be taken into account 
by shifting the axis of symmetry of the parabola as shown in Fig. 11.10. It 
appears that for this particular choice of parameters a part of the spread area 
ofy12 is located outside the parabola valid for the positive spread of q'21(dashed 
curve). The amplifier oscillates with transistors having y12 located outside 
the parabola. To remedy this the value of the damping product Glm Gem 
must be increased by increasing the tuned circuit dampings. Then the para-
bola becomes wider and encloses a larger part of the y12 plane. 

11.4.5 INTERCHANGEABILITY CHECK AND SUMMARY 

It will be apparent from the preceding sub-sections that the check on inter-
changeability of transistors in a neutralized amplifier can best be carried out 
graphically. After the optimum value of the feedback admittance of the 

j J/yi?l sin °l? 

- +e1~111

Fig. 11.10. Interchangeability check. The spread area of yls including the spreads of Yiziv 
should in any case be situated inside the parabola for s = 1 in the yis plane taking into 
account the most unfavourable combination of parameters. It follows that in this particu-
lar case the amplifier may become unstable for a number of transistors of the given type 
because part of the spread area of y12 is situated outside the parabola for s = 1 and a 
positive spread of q 2i. 
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neutralizing network has been calculated according to the method outlined 
in sub-sections 11.4.1.1 and 11.4.1.2, the remaining spread area of y12 can be 
drawn on a piece of properly scaled graph paper. Then two parabolas are 
constructed having the symmetry axes shifted with respect to the real axis of 
the yi2 plane over angles equal to — (— 9221m) and — (— The direc-

2G1mG2m 
trices of the two parabolas are at a distance  from the origin 

1y21 M 

of the y12 plane. If the spread area of y12 is located inside the two parabolas 
all transistors of the given type are interchangeable in the amplifier without 
any risk of oscillations. If not, the parabolas must be enlarged and this can 
be achieved by an increase of the dampings Gim and/or G2m. 

In carrying out the interchangeability check, possible variations of the 
transistor feedback admittance which may occur during life and those which 
are due to environmental conditions should also be taken into account. 

11.5 Stability of Multi-Stage Amplifiers 

11.5.1 AMPLIFIERS WITH SINGLE-TUNED BANDPASS FILTERS AS INTER-
STAGE COUPLING DEVICES 

In multi-stage amplifiers with single-tuned bandpass filters the relative in-
fluences of the transistor parameter spreads on the stability are the same as 
those considered in the preceding sub-sections except for the fact that the re-
duction of the stability factors due to the cascade of stages should be taken 
into account. This has been dealt with in Chapter 6. 

In carrying out the interchangeability checks a factor u n  should be taken 
into account in constructing the parabola which represents the boundary of 
stability. 

11.5.2 AMPLIFIERS WITH DOUBLE-TUNED BANDPASS FILTERS AS INTER-
STAGE COUPLING DEVICES 

In multi-stage amplifiers with double-tuned bandpass filters as considered in 
Chapter 6 the boundary of stability can, with sufficient accuracy, be approxi-
mated by the parabola considered in the preceding sub-sections. This implies 
that for these amplifiers the results of the interchangeability analysis are 

immediately applicable. 
For the single stage amplifier with double-tuned bandpass filters, consider-

ed in Chapter 5, the boundary of stability differs appreciably from the para-
bola. For this type of amplifier the parabola should be replaced by the proper 
polar diagram representing the boundary of stability, especially if large 
accuracies are required. 
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CHAPTER 12 

E1'r'ECTS OF NON-IDEAL TRANSFORMERS FOR 

COUPLING TRANSISTORS AND BANDPASS FILTERS 

In bandpass amplifiers the transistors are nearly always employed in the 
common emitter or common base configurations. This implies that their 
input admittance is usually large compared with that of practically realizable 
bandpass filters, whereas the output admittance of the transistors is in the 
same order of magnitude as that of the bandpass filters. 

For stability, variations in response curve due to spreads of transistor para-
meters or for other reasons the admittance presented by the bandpass filters 
at the transistor terminals must be equal to or larger than the driving point 
admittances yl l and y22 of the transistors. This requires the use of impedance 
transforming devices at the input terminals of the transistors. These transfor-
mations may be achieved by either two winding transformers, tapping of the 
tuning inductance of the bandpass filters (auto-transformers) or tapping of the 
tuning capacitance of the bandpass filters. The last two methods are referred 
to as inductive tapping and capacitive tapping respectively. 

In this chapter we will consider the influences of these "transformers" on 
the performance of the amplifier as far as stability is concerned. Special atten-
tion will be paid to deviations from the case of the ideal transformer (i.e. 
a device providing impedance transformation with a real transformer ratio 
and nothing else). 

12.1 Stability of an Amplifier Stage with Practical Impedance Transforming 
Networks 

In an amplifier in which potentially unstable active elements are employed, 
stability is achieved either by suitably dimensioning the immittances present-
ed to the terminals of each active element or by means of unilateralization. 
We will restrict ourselves to the case of transistors in the admittance matrix 
environment in which stability is ensured by means of sufficient damping at 
the transistor terminals. These dampings are provided by bandpass filters 
connected to the transistor either directly (at the output side) or by means of 
impedance transforming networks (at the input side) as already referred to. 
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= C G " 

Fig. 12.1. Single tuned interstage coupling network providing impedance transformation 
between the top of the tuned circuit and the input terminals of the transistor by means of a 
double-winding transformer. 

To design these bandpass filters with respect to stability of the amplifier, 
the effects of the non-ideal conditions of the impedance transforming net-
works on the dampings presented to the transistor must be taken into 
account. 

12.1.1 OUTPUT IMPEDANCE OF PRACTICAL IMPEDANCE TRANSFORMING 
NETWORKS 

To enable the effects of the non-ideal conditions of the impedance trans-
forming networks on the amplifier stability to be investigated equivalent 
circuit diagrams will be derived. These diagrams will enable us to obtain a 
qualitative insight into these effects and, by substituting circuit values, to 
decide whether or not they must be taken into account in the design of the 
amplifier. The various impedance transforming networks will first be con-
sidered in connection with single-tuned bandpass filters after which the ana-
lysis will be extended to double-tuned bandpass filters. 

12.1.2 THE DOUBLE-WINDING TRANSFORMER 

In Fig. 12.1 a single-tuned bandpass filter is used as the coupling networks 
between two transistors of an amplifier. The tuning inductance has been 
provided with an extra winding to achieve the required impedance transfor-
mation between the bandpass filter and the transistor and vice-versa. 

When we put: 

2 
n 

= 

L2 
- 

(12.1.1) LI' 

and 
M 

k (12.1.2) 
vLiL2 

' 

an equivalent circuit diagram for this bandpass filter as shown in Fig. 12.2 is 
obtained, see sub-section 3.3.3. It includes an ideal transformer of ratio 
1 . nk. 
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idea( transformer with 
transformer ratio 
1: nk 

f -

Z ouf 

Fig. 12.2. Equivalent circuit diagram of the interstage network of Fig. 12.1. The non-ideal 
transformer has been replaced by an ideal transformer and a series inductance. 

For further analysis of this equivalent circuit it is assumed that all capa-
citances are contained in C and that all dampings (of the bandpass filter, not 
including those of the transistor connected to L2 in Fig. 12.1) are contained in 
G1. Inspection of Fig. 12.2 then shows that the impedance of the bandpass 
filter seen at the output terminals equals: 

1 
Zout = n2k2 + jwLin2(1 —k2), (12.1.3) 

G(1 + jx) 
or: 

1 w 
Zout = n2k2 G(1+ 

jx)T jwo woLin2(1 —k2). (12.1.4) 

Expression (12.1.4) reveals that the output impedance of the circuit of 
Fig. 12.2 compared with the case of an ideal transformer is increased by an 
amount 

assuming 
jwoLin2(1 — k2) = jwoL2(1 — k2), (12.1.5) 

w 

coo 

When plotted in the complex plane the impedance Zout expressed by Eq. 
(12.1.4) consists of a circle of diameter n2k2/G the origin of which is situated 
at the top of a vector jwoLln2(l — k2) on the imaginary axis, see Fig. 12.3. 

12.1.3 THE AUTO-TRANSFORMER 

Fig. 12.4 shows a single-tuned bandpass filter with a tap on the tuning 
inductance which provides an impedance transformation between the top of 
the bandpass filter and the terminal (tap) to which the transistor has to be 
connected. The tapped tuning inductance may be replaced by an arrange-
ment of inductances as shown in Fig. 12.5. 
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n2k 2

Im (Zout)T G 

G _I+jx 
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Fig. 12.3. Polar diagram showing the variation of the output impedance of a practical 
double-winding transformer as a function of the normalized frequency x. The effect of the 
series inductance is represented by the vector jwoLin2(1 — k2). 

Fig. 12.4 Single-tuned interstage net-
work in which impedance transforma-
tion is obtained by tapping the tuning 
inductance. 

Fig. 12.5. Equivalent circuit diagram 
for the interstage network of Fig. 12.4. 

In order to calculate the impedance seen when looking into the output 
terminals of Fig. 12.5, we consider the four-terminal network containing only 
the elements C, G, Li + M and L2 + M, (see Fig. 12.6) for which the ad-
mittance parameters are equal to: 

1 
Yii = 

G+jwC+jw(Li + M)
,

1 
Yi2 = Y21 -

jw(Li + M) 

Y22 

1 

jwLp ' 

(12.1.6) 
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r 

f-

Zwt 

Fig. 12.6. As Fig. 12.5. The effects of the part of the diagram indicated by the dashed 
lines on the output impedance are calculated separately after which the inductance — M 
is added to obtain the total output impedance. 

in which 
(Li + M)(L2 + M) 

Lp — L c 

and 

Furthermore we put: 

(12.1.7) 

L = Li + L2 + 2M. (12.1.8) 

dY = Y11Y22 — Yi2Y2i, 

for which it follows from Eq. (12.1.6): 

dY= j Lp (G+jwC+. L ), 
c 

or: 

dY = . 
1 

1 
• G(1 + jx). (12.1.9) 

jwL 

The output impedance of the complete network of Fig. 12.6 then becomes: 

Yii 
dY' 

1
— JwM +  SJwLp + 

G (L1+M 
w2LpGl y • (12.1.10) 

1 + Jx ( 

w2LpC equals 

L2+M (w 2 Li+M 

Lc \wo/ Le 

Zout = — jwM + 

Now  Lp
Li+M 

Cu 

which for - N 1 reduces to: 
wo 

L2 +M 2 

L0

M\ 2
=n2, say. 

1 
(12.1.11) 
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ideal transformer with 
transformer ratio L2+M 

Lc

Z«≤t 

Lp 
l+jx 
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Fig. 12.7. Complete equivalent circuit diagram of a single-tuned interstage network with 
tapped tuning inductance. 

The quantity n as defined here denotes the voltage transformation ratio of 
the unloaded transformer. 

L2 
If p 2 = — , n2 becomes: 

Li 

n2 

— 
(  

p2 + kp 
l

2 

\1 + p2 + 2kpl 

Combining Eqs. (12.1.10) and (12.1.11) we obtain: 
2 \ 

Zout = 

\ n 1 + jx G // 
+ jwOLp l — jwoM. 

For normalizing 
Zout 

we put: 

1 
w0LpGn 

2 
= Qspr. 

n 
Then Eq. (12.1.13) becomes: 

2 

Zout = G(1 + jx) (1 + jQspr I — jwoM. 

(12.1.12) 

(12.1.13) 

(12.1. 14) 

(12.1.15) 

Here, QSpr denotes the quality factor of the spread inductande L. 

When 
Zout, 

according to Eq. (12.1.13), is plotted in the complex plane, a 
polar diagram as shown in Fig. 12.8 is obtained. It consists of a vector 

2 
— jwoM and a circle representing 1 

ix ( G + jwoLp ) with diameter 

( p2) 2+ wo2Lp . To construct this diagram it has arbitrarily been assu-

med that woL2 
G 

— 0.4 and  
MG 

— 0.05. The polar diagram for 
Zout 

being based on Eq. (12.1.13), is only correct as long as the approximation 
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lrm (Zout) 

with inductive tap 

with idea( transformer 

\~ 
\ 

bout 

\ \  / 

n2

4'

G

x= 0 

wo LP

Re (Zout) 

w 0 M 

Fig. 12.8. Polar diagram of the output impedance of the circuit of Fig. 12.7. The construc-
tion of this diagram is based on Eq. (12.1.13). 

w 
— . 1 is justified. This is the case for not too large values of the nor-
(00 
malized detuning x. 

It clearly follows from the polar plot that when woM and woLP are not 
small compared with n2/G a considerable discrepancy in magnitude and 
frequency dependency between the practical transformer and an ideal one 
occurs. For an ideal transformer the polar diagram of Zout is, obviously, a 
circle with its origin at 0 and of diameter n2/G as shown by the dashed curve 
in the diagram. 

12.1.4 THE CAPACITIVE TAP 

Fig. 12.9 represents a capacitively tapped single-tuned bandpass filter. Ana-
logous to the inductively tapped bandpass filter considered in the preceding 
sub-section, the capacitively tapped bandpass filter may also be considered 
as a four-terminal network. It can then easily be calculated that the output 
impedance follows from: 
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Fig. 12.9. Single-tuned interstage net-
work with tapped tuning capacitance to 
provide impedance transformation. 
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ideal transformer 
with transformer ratio 

C. 
C +C 1 2 

f 
CP(1+jx) 

F'g. 12 10. Equivalent circuit diagram for 
the capacitively tapped interstage network 
of Fig. 12.9. 

n2 1 1 1 
Zout = 

G 1 + jx + 
jwCp 1 + jx 

w 
or for — 1 and after normalization: 

wo 

In these expressions: 

n2
Zout = G( l+ jx) (1 — jQspr). 

(12.1.16) 

(12.1.17) 

n2 —  
Cl 

(12.1.18) 
Cl + C2 

and Cp = Ci -I- C2, 

G/n2
Qspr =  

woCp 
(12.1.20) 

Fig. 12.10 shows an equivalent circuit of this bandpass filter based on Eq. 
(12.1.16) whereas Fig. 12.11 shows a polar diagram of the output impedance 
again taking an arbitrary value of Qspr = 0.4. The construction of the polar 
plot of Zout is based on Eck. (12.1.16). 

12.1.5 SUMMARY ON PRACTICAL IMPEDANCE TRANSFORMING NETWORKS 

According to the preceding sub-section a single-tuned bandpass filter with a 
practical impedance transforming network may, with regard to its output im-
pedance, be represented as a single-tuned circuit with admittance G(1+ jx), 
an ideal transformer with transformer ratio n and a series impedance Z. 
The ideal transformer ratio n together with the impedance Z form a new, 
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IIm (Zout) 

n2
G 

/— 
—~ 

/ with ideal transformer 
with capacitive tap Re (Z) 

\ 

x=0 

Fig. 12.11. Polar diagram of the output impedance of Fig. 12.10. The construction of this 
diagram is based on Eq. (12.1.16). 

complex, transformer ratio transforming the impedance 
1

of the 
G(1 + jx) 

parallel tuned circuit. For not too large values of Z (such that the approxi-
mation w/wo . 1 is justified) the new, transformed, polar diagram is again a 

2  
circle with diameter 

G 
Vi + Q2spr which is shifted with respect to the 

real axis of the complex plane over an angle q~; tan-1 q = Q3pr• 
The quantities Q87, r for inductive and capacitive taps are given by Eqs. 

(12.1.14) and (12.1.20) respectively. 
Furthermore it follows from the foregoing consideration that the effects 

of the non-idealness of the practical impedance transforming networks on 
the output impedance may be minimized by reducing the tuned circuit 
damping G and, in case of an inductive transformation, by making the 
coupling as tight as possible. 
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ideal fransformer 
-, /: n 

255 

L J 

Fig. 12.12. General equivalent circuit diagram of a single-tuned interstage network taking 
into account practical methods for achieving impedance transformations. The impedance 
Z accounts for the spread capacitance or inductance of the practical transformer. 

12.1.6 DOUBLE TUNED BANDPASS FILTERS WITH PRACTICAL IMPEDANCE 
TRANSFORMING NETWORKS 

In an analogous way as for single-tuned bandpass filters it can be investigated 
how practical impedance transforming networks influence the output impe-
dance. It then follows that the same complex transformer ratio as for single 
tuned bandpass filters acts upon the output impedance 

1 

42 
Gs 

(1 + 
Jxs 

+ 1 + x ) D 

(12. 1.21) 

of the double-tuned bandpass filter. 
In Fig. 12.13.a. a circuit diagram for a capacitively tapped double tuned 

bandpass filter is given. Fig. 12.13.b. represents the equivalent circuit whereas 

M 

Fig. 12.13.a. Double-tuned bandpass filter with capacitively tapped secondary. 

M 

L J 

ideal transformer 

xp 

Fig. 12.13.b. Equivalent circuit diagram of the interstage network of Fig. 12.13.a. 
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Im (Zout) 

x 

Re (Zout) 

x<0 

x>0 

Fig. 12.14. Polar diagram of the output impedance of the double-tuned bandpass filter 
represented in Fig. 12.13 b. 

Fig. 12.14 gives a polar diagram for Zout assuming q2 = 1 and Q$pr = 0.4. 
The dashed curve is valid in the case of an ideal transformer (with Q8pr = 0). 

12.1.7 BOUNDARIES OF STABILITY IN A SINGLE-STAGE AMPLIFIER WITH 
PRACTICAL TRANSFORMERS 

Using polar impedance diagrams the boundary of stability of an amplifier 
stage can be ascertained in the same way as shown in subsections 5.6.2 and 
5.7.8 for polar admittance diagrams. With impedance diagrams 1/Tg is 
found instead of Tg which was obtained from constructions using polar 
admittance diagrams. 

In Fig. 12.15 the construction is presented for determining the boundary 
of stability of a single stage amplifier with two single tuned bandpass filters 
and O = 270°. The input bandpass filter is assumed to be connected to the 
transistor input by means a transformer with either an inductive — or an 
capacitive spread reactance. Again the arbitrary value of Qspr = 0.4 has 
been taken. 
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The case of an ideal transformer is also shown. The values obtained for 
Tg in these three cases are tabulated below. 

TABLE 12.1 BOUNDARY OF STABILITY OF AN AMPLIFIER STAGE 

Case Line of intersection Tg

inductive tap OA 1.25 
ideal transformer OB 2.00 
capacitive tap OC 2.50 

It follows from the table that an amplifier stage designed with a certain 
value of T, i.e. with a certain value of the stability factor s, assuming ideal 

output single tuned 
bandpass filter 

/ 

I 
i/ 

// ,T 

\ - - 7--
0 x= 0 

x=0~  x<0 

a 

/ A

\ / 
\ ' 
' B 

!: . vc 

x <0 

-e 
with inductive tap 

input single tuned 
bandpass filter: with ideal transformer 

with capacitive tap 

x,0 

x.0 

Fig. 12.15. Polar diagram for determining the boundary of stability (Tg) in a single-stage 
amplifier with two single-tuned bandpass filters and 0 = 270". The line OA intersects the 
polar impedance diagrams of the output bandpass filter and that of the input bandpass 
filter with an inductive tap. The products of the line lengths OA' and OA" equals the reci-
procal of Tg. The lines GB and OC are valid for input bandpass filters with an ideal trans-
former and with a capacitive tap respectively. 
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transformers to be employed becomes much less stable in the case of an 
inductive tap and much more stable in the case of a capacitive tap. 

Considering the location of the polar plot in the complex plane of the 
output impedance of a practical transformer and the value of e, certain con-
clusions regarding the stability of the amplifier compared with the case of an 
ideal transformer can be drawn. These conclusions are summarized in Table 
12.2: 

TABLE 12.2 STABILITY OF AN AMPLIFIER STAGE 

Case 0<0<1800  1800<0<3600 

inductive tap 
capacitive tap 

increases 
decreases 

decreases 
increases 

Depending on the location of 0 the stability of the amplifier increases by 
suitably choosing the kind of practical transformer. In practice, however, 
no advantage will generally be gained from this effect because for larger 
values of T a considerable deterioration of amplitude response curve of the 
amplifier occurs. In practical amplifier constructions it is therefore always 
attempted to make the transformers in such a way that their properties 
approach as nearly as possible those of an ideal transformer. 
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APPENDIX I 

APPLICATION OF MATRIX THEORY IN BANDPASS 
AMPL1HER ANALYSIS 

In this appendix a survey of the matrix theory of linear networks will be 
presented with special reference to the application in bandpass amplifier 
analyses. No attempt will be made to give an extensive treatment of the 
fundamental theory (see Bibliography I 1, 3, 4, 6,13 and 14 to 17) but mere-
ly to state and to illustrate the basic rules governing the manipulation 
of matrices and to derive these matrices for various four terminal-networks 

thereof. 

I.1 Matrix Algebra 

A matrix equation may be considered as a symbolic method of writing a set 
of linear simultaneous equations. Consider for example the general simul-
taneous equations below: 

am n xn = yl all xl + a12 x2 +  

a21 xl + a22 x2 +   a2n xn = y2 (I.1.1) 

(. amlxl + am2x2 +   amnxn = ym 

This set of equations may be expressed in symbolic form as: 

all a12 — — — amn 
a21 a22 — — — a2n 

xl 
x2 

yl 

y2 
(I.1.2) 

or shorter 

aml am2 — — — amn 

as: 

xn ym 

I laU HxI I = I IYI I • (1.1.3) 

The quantities between the double bars are known as matrices which are, 
in fact, displays of information, as a comparison with Eq. (I.1.1) reveals. 
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Matrices may be manipulated as algebraic quantities taking into account 
some basic rules governing these manipulations. Sub-section I.1.2 presents 
these basic rules and in sub-section I.1.1 definitions are given of the various 
forms in which matrices may occur. 

I.1.1 VARIOUS FORMS OF MATRICES 

Matrices may occur in various special forms depending on the character of 
the information displayed. The forms which are of importance in our 
amplifier analyses and the terms used in connection with these matrix forms 
are defined below: 
matrix : A rectangular array of m.n. quantities 

arranged in m rows and n columns. 
A matrix cannot be evaluated. 

determinant : A square array of n2 quantities. A deter-
minant can be evaluated by forming the 
sum of the products of the elements of any 
row or column and their respective co 
factors 

I=n i=h 

d = a~j AIj . = atp Aj1 . (I.1.4) 
I=1 1=1 

co factor : The co factor Atp of the element ad1 of a 
determinant equals the product of the 
factor (-1){+J and the (minor) determinant 
formed by deleting the row and column 
containing the element aI1 from the given 
determinant. 

column matrix . A matrix consisting of one column of 
m elements. 

row matrix : A matrix consisting of one row of n elements 
square matrix : A matrix consisting of an equal number of 

columns and rows. 
diagonal matrix : A matrix with all elements equal to zero 

except those in the principal diagonal. 
unit matrix : A diagonal matrix with elements equal to 

unity in the principal diagonal. 
null matrix or zero matrix : A matrix with all elements equal to zero. 
determinant of a square matrix: A determinant whose array of elements is 

identical with the array of the matrix itself. 
Clearly only square matrices have deter-
minants. 
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non-singular matrix : A matrix of which the determinant has a 
value different from zero. 

singular matrix : A matrix of which the determinant vanishes 
after evaluation. 

I.1.2.3 BASIC RULES OF MATRIX ALGEBRA 

1.1.2.1 Equality 

Two matrices are equal if their corresponding elements are equal; 

I lal I = I Ibl l, if, and only if, att = bt1. 

1.1.2.2 Addition and Subtraction 

The sum or difference of two matrices is another matrix of which the elements 
are equal to the sum or difference of the corresponding elements of the two 
matrices. This implies that the matrices to be added or subtracted must have 
the same number of columns and the same number of rows; 

Ilall + Ilbl l = IIcM, where cit = att + bt5. (I.1.6) 
E.g. 

all a12 bll b12 all + b11 a12 + b12 

+ 

a21 a22 b21 b22 a21 + b21 a22 + b22 

1.1.2.3 Multiplication by a factor 

If a matrix is multiplied by a factor, each element of the matrix is multiplied 
by that factor; 

k ' I lal I = I lbl l with bdf = k atif. 

E.g. 

k 

all a12 

a21 a22 

kale kai2 

ka21 ka22 

1.1.2.4 Multiplication of Two Matrices 

To obtain the element of the jth row and the jth column of a matrix l lcl l 
which is the product of two matrices Ilal l and Ilbl l, the elements of the jth 

row of I all are multiplied by the elements of the j th column of I Ibl I and the 
results are summed; 



262 APPLICATION OF MATRIX THEORY IN BANDPASS AMPLIFIER ANALYSIS [AI 

k=n 

I lan libll = Ilcl l, with ct1 = atk bk1. (I.1.8) 
k=1 

It is thus necessary that the second matrix has as many rows as the first 

has columns. If this is the case it is said that the matrices are conformable 

in the order. There is no limit to the number of rows of the first matrix or 

to the number of columns of the second matrix. E.g.: 

all a12 b11 b12 allbll + a12b21 allbl2 + a12b22 

a21 a22 b21 b22 a2lb11 + a22b21 a21b12 + a22b22 

bll b12 all a12 bllall + b12a21 bllal2 + b12a22 

b21 b22 a21 a22 b21a11 + b22a21 b21a12 + b22a22 

7.1.2.5 Distributive Law 

For matrices the distributive law is valid; 

(Ilan + IIbII) Ilcll = Ilall IIeU + Ilbll • hell. 

1.1.2.6 Commutative Law for Multiplication 

(I.1.9) 

For matrices the commutative law for multiplication is generally not valid; 

11a11 ' Ilbll ~ Ilbll • Ilan• 
This is also illustrated by the examples of point 4. 

The non-validity of the commutative law implies that great care must be 
exercized in determining whether in a certain case pre-multiplication or post-
multiplication is required. 

1.1.2.7 Inversion 

Inversion of a matrix I lan leads to a matrix I Ibi I in which the element bt, 
equals the quotient of the co factor Alt of the element alt and the determinant 
of matrix Mal l; 

Alt 

Ilan-1 = Ilbl l with bt1 = da ' 

E.g. 

(I.1.10) 
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hal l = 

all ail 

a21 a22 
; I lal

l_1 
= I lbl l = 

Ail A21 

da d a

Al2 A22 

d a da 

1 
(d a)2 
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a22 —a12 

—a21 all 

in which d a is the determinant of al I. Since inversion of a matrix requires 
obtaining its determinant, inversion can exist only for square matrices. 

1.1.2.8 Multiplication of a Matrix by its Inverse Matrix 

Multiplying a matrix by its inverse matrix yields a unit matrix; 

Hal l hal l
-1 = I la-'H hal l = 11111• 

E.g. 

all a12 

a21 a22 

I 
i 

I 

I ' 

I 

a22 a12 

d a d a

a21 all 

d a d a

1 

(I.1.11) 

a11a22 a12a21 —allal2 allal2 

d a da da + da 

a21a22 a22a21 —a21a12 a11a22 

da da + da d a

0 

0 1 

1.1.2.9 Division by a Matrix 

Division by a matrix must by carried out by multiplication by the inverse 
matrix. Consider, by way of example, the matrix equation: 

Then: 

Hence: 

IliH = Ilyl l I lvl l• 

Ilyll-1 Ilil l = I lyl
l_1 

Hyll I lvl l, 

=11111 • I lvl I, 

= Ilvl l• 

Ilvl l = Ilyl l-1 hill• (I.1.12) 
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I.2 Matrix Equations of a General Four Terminal Network 

For the general (linear) four-terminal network represented in Fig. I.1 six 
different pairs of simultaneous equations can be written down relating input 
quantities to output quantities and vice-versa. These equations written in 
matrix form are: 

vl Z11 Z12 it 
(I.2.1) 

v2 Z21 Z22 12 

it yll y12 vl
(L2.2) 

i2 y21 y22 v2 

Vi h11 h12 it 
(I.2.3) 

i2 h21 h22 V2 

it k11 k12 vl 
(I.2.4) 

V2 k21 k22 12 

vl all a12 112 
(1.2.5) 

it a21 a22 —l2 

V2 b11 b12 vl 
(I.2.6) 

—I2 b21 b22 it 

The matrices expressing the properties of the four-terminal network are 
termed respectively: 

the impedance matrix in Eq. (I.2.1), 
the admittance matrix in Eq. (I.2.2), 
the hybrid-h matrix in Eq. (I.2.3), 
the hybrid-k matrix in Eq. (I.2.4), 
the forward transfer matrix in Eq. (I.2.5) and 
the reverse transfer matrix in Eq. (I.2.6). 

With the elements of any one matrix given, the elements of all other 
matrices may be calculated by algebraic methods. Since such calculations 

11 

O 

' vi

f2 

 O 

O Fig. I.1. General four-terminal network. 
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are often required in matrix manipulations use can conveniently be made 
of tables of matrix and determinant interrelations as presented in Tables I.1 
and I.2 (see Biblography [I. 12]). 

I.3 Interconnection of Four-Terminal Networks 

The various matrix equations of the preceding sub-section may advantage-
ously be used to determine the resultant matrices when several four-terminal 
networks whose associated matrices are known are connected in various 
manners. In this sub-section we will consider two four-terminal networks 
connected either in: 

a) series, 
b) parallel, 
c) series-parallel, 
d) parallel-series or in 
e) cascade. 

Use will be made of that matrix which is fundamentally the most suitable 
for the kind of interconnection in question. 

When connecting together four-terminal networks care must be taken that 
the networks are combined in such a way that the matrix equations of the 
individual networks remain valid after interconnection. This is the case if, 
and only if, the current entering one terminal of an input or output pair of 
an individual four-terminal network also emerges from the other terminal 
of the same pair after interconnection of the networks. 

I.3.1 SERIES CONNECTION 

In Fig. I.2 two four-terminal networks connected in series are represented. 
The networks I and II may be represented by the matrix equations: 

I lv'I I = Ilz'II •
and 

I lv"I I = Ilz"I I • I ll''H. 

For the combined four-terminal network, we have: 

Fig. I.2. Series-connection of two four-ter-
minal networks. 

(I.32) 
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TABLE I.1. MATRIX INTERRELATIONS 

from 

to 
1 1211 IIYII Ilhil k IIYI I I lbll 

1121 1 

'll 

221 

z12 

Za2 

Y22 —Y12 dh hiz 1 —k12 all d a 

a21 

a22 

b22 

h21 

db 

I 

621 

b11 

dy 

—y z1 

dy 

dy 

y11 

h22 

— hat 

hag 

1 

kll 

k21 

kil 

dk 

aai 

I 

dy h22 ha E k11 k11 az1 aai b21 bat 

I IYI I 

-22 

J 

—221 

— Z12 
yli 

Y21 

yi2 

Yaa 

1 —hiz dk k12 a82 — da b11 — 1 

dZ 

zaz 

hu 

hai 

h11 

dh 

kaa 

— k21 

kaa 

1 

ala 

- 1 

ala 

all 

biz 

- db 

bja 

b22 

dZ dZ h11 h11 kaa k22 ala ala bia bia 

Ilhl l 

dZ 

zaa 

— 221 

212 1 —yia 

Y11 

dy 

Yii 

hu 

 h21 

hlz 

has  

kaa — kia a12 da b12 

b11 

— 4b 

1 

222 

1 

Yii 

Y21 

4k 

—k21 

dk 

dk 

kza 

aaa 

—1 

aaa 

aai 

bu 

bat 

zaz 222 y11 dk aaa azz b11 b11 

I lkl l 

1 

zit 

221 

—212 dY Y12 hza — h12 
kll 

k21 

k12 

k21 

a21 

all 

1 

—4a b21 —1 

211 

42 

Yzz 

—yai 

Yzz 

1 

dh 

—hai 

dh 

hl1 

au i 

ala 

baa 

db 

b22 

bla 

zll 211 Yzz Y22 dh dh all all baa baa 

Ilall 

211 dZ —Yzz —1 —dh —hli 1 kaa 
all 

 aai 

ale 

azz 

b22 b12 

Z21 

1 

221 

222 

Y21 

— dy 

Y21 

—Y11 

hai 

— hzz 

hai 

—1 

kai 

kli 

k21 

dk 

kz1 

db 

b21 

db 

db 

bii 

db 221 221 Y21 y21 hat hzi k21 

Ilbl l 

Z22 dz —yii —1 1 hii —dk —kaa aaa an 
bll 

bat 

612 

bza 

z12 

1 

zl2 

211 

Y12 

— dY 

y 12 

—Yzz 

h12 

has 

hia 

dh 

kla 

— k11 

k12 

—1 

da 

au l 

d a 

all 

212 212 Y12 Y12 h12 hla k12 kia da da 
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TABLE I.2. DETERMINANT INTERRELATIONS 

from 

to 
dz dy dh dk da db 

dz dz 
I hll k22 

k21 

a12 biz 

dy 1112 O21 b21 

dy 
1 

dy 
h22 k11 all b21 

dZ h11 k22 a12 b12 

dh 
zu y22 

dh 
1 

dk 

all b22 

Z22 Yll all b11 

dk 
z22 Yri 

Y22 

1 dk a22 bii 

zll d h all b22 

da 
zi2 Y12 h12 ki2 

da 
1 

z21 Y21 h21 k21 db 

db 
Z21 

z12 

Y21 h21 k21 

k12 

I db 

Y12 h12 da 

vl - 

vl'+ 

Vi" , 

v2 = v2 + V2 , 
(I.3.3) 

and, provided there is no circulating current in the inner loop of the com-
bination; 

Hence: 

By putting 

il =l l'=ll", 

12=12'= 
i2n (I.3.4) 

Ilvl l = Ilv'I I + Ilv"I I = (I lz'I I + Ilz"H • Ilil l. (I.3.5) 

Hz'U + Ilz"Il = HzH, (1.3.6) 

Ilzl l becomes, using the rule for the addition of matrices (see sub-section 

I.1.2.2): 
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network I 

network it 

I I Fig. I.3. Non-permissible series connec-r 
I I tions of two four-terminal networks. The 
I connection between the lower terminals 

' of network I short-circuits the elements 
I between the upper terminals of net- 

work II. 
L J 

Z11' + 
Z11" 

Z12~ + 
Z12ir 

Z21 + 
X21 

Z22~ + 
Z22ii 

HzH = (I.3.7) 

The relations derived above are thus valid if the two networks are connected 
in a permissible manner. The difference between a permissible and a non-
permissible interconnection is clearly illustrated by Figs. I.3 and I.4. In order 
that no circulating current will flow in the inner loop of the two series 
connected networks of Fig. I.2, the voltage between the lower (input and 
output) terminals of network I and that between the upper terminals of 
network II must be equal before interconnection. Clearly this condition is 
not fulfilled by the two networks of Fig. I.3 (V1 Vii); the interconnection 
as shown is therefore not permissible. By rearranging the network II as 
shown in Fig. I.4 the interconnection becomes permissible (now VI = Vii) 

0 

r 
Network I 

r 

VI- J 

Network if
V 

0 

Fig. I.4. Series connection of the same 
networks as in Fig. I.3, but now in a 
permissible manner. 
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I.3.2 PARALLEL CONNECTION 

Fig. I.5 shows two four-terminal networks connected in parallel. Let the 
networks I and II be characterized by: 

Ilil'II = Ily'II Ilv'I I, 

Ilil"I I = Ily"II Ilv' II• 
and 

Now: 
it = il' -}- it", 

12=i2 .
+12

" , 

1 
(I.3.8) 

(I.3.9) 

provided there is no current unbalance in the combined network; i.e. there 
is no circulating current in the loop formed across the upper terminals of the 
pairs of terminals of both networks. Furthermore: 

U1=v1'=v1", 

V2 = vs = V2 . 

Hence, from Eqs. (I.3.8) to (I.3.10): 

With 

IIYII = 

4 (I.3.10) 

Illll = Ili'II + Ili"II 

= (Ily'II + Ily"ID • Ilvll• (1.3.11) 

IIYI I = Ily I I + ily''II, (1.3.12) 

yll + yll "  y12'  + y12"

Y21'  + y21"  y22 + y22"

Fig. 1.5. Parallel connection of two four-
terminal networks. 

(I.3.13) 
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An example of the technique of adding admittance matrices when paral-
leling four-terminal networks is found in the systematic formation of a 

double-tuned bandpass filter. The procedure is shown step by step in Fig. 1.6. 

step no. four-terminal network admittance matrix 
IIYII 

/ 

prim. 

and 
sec.

rnpa-

citances 

jwCp o 

o jwCs 

2 

~ 

and 

sec. 
induc- 
tances 

Lp Ls

0   0 

o jWlp 

t
o 

jwLs 

3 

prim. 
and sec. 

dampings 

Gp o 

o Gs

Gp 
iii 

Gs 

coupling 
capa-

citance 

o 'I -- jwCm -jwCm 

jwCm jwCm0 

Cm
o 

o 

5 

complete 
double 
tuned 

bandpass 

filter 

Gp+jw(Cp+Cmj+ -1 Cm 
1 Lp 

Gs+jw(Cs+Cm)+JWLs 
• 

Cp 

Cm

Gp Lp Ls Gs' Cs 

• jwCm 

Fig. I.6. Systematic formation of a double-tuned bandpass filter showing a step by step 
method of obtaining its admittance matrix. 
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I.3.3 SERIES-PARALLEL CONNECTION 

Fig. I.7 presents a combination of two four-terminal networks connected 
in series at the input side and in parallel at the output side. Let the matrix 
equations of networks I and II be given by: 

Vi' 
11

= Ilh' I I 12r 
V2

and 
vi"

• 
12r' 

= Ilh"I I 
V2

(I.3.15) 

In order that the interconnection of the networks as shown is permissible, 
no circulating current may flow in the loop across the terminals marked 1', 
2', 2" and 1", see Fig. I.7. Then: 

vl = vi' + vl", 

12 = l2r 
+ 12,r ' 

vl

it = il, =

V2 = v2'  = V2 , 

= (I lh'I I + Ilh"I I) 
it 

(L3.16) 

(I.3.17) 
, 

and 
12 V2 

hll' + h11"  h12'  + h12"

I lhl l=l lh'I I+IIh"H= (1.3.18) 
h21'  + h21"  h22'  + h22"

I.3.4 PARALLEL-SERIES CONNECTION 

In Fig. I.8 a parallel-series connection of two four-terminal networks is 
shown. Let the matrix equations of the networks be given by: 

Fig. I.7. Series-parallel connection of two Fig. I.8. Parallel-series connection of two 
four-terminal networks. four-terminal networks. 
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and 

it , 

V2 r 

• il " 

V2rr 

= I lk' H • 

= Ilk"I I • 

Vl,
• 12, 

vl„ 
• 12,r 

(I.3.19) 

(I.3.20) 

If the interconnection of the networks is permissible (no circulating current 
flowing in the loop across the terminals marked 1', 2', 2" and 1" in Fig. 1.8): 

it = it '  + i2"  , 

V2 = V2'  + V2"  , 
(I.3.21) 

v1=v l'= V1

it 

£2 = 12r = 12rr ' 

= (I lk'I I + Ilk"I I) 
vl 

(L3.22) 
V2 l2 

and Ilkl l = Ilk' I I + Ilk"I I = 
kll '  + k11"  k12'  + k12" (I.3.23) 
k21'  + k21"  k22'  + k22"

I.3.5 CASCADE CONNECTION 

Fig. I.9 shows a cascade connection of two networks. Let the matrix equa-
tions of the networks be given by: 

and: 

'Ul' 
il, = II a II 

'v2' (I.3.24) 

From inspection of Fig. 

,Vl" 

i1„ 

I.9 it 

=l la"11 • 

follows: 

v2„ 

-12 ,r (I.3.25) 

V2•- 121

Vir, 

Il,r (I.3.26) 

Hence, by substituting Eq. (1.3.25) into (I.3.24) taking into account Eq.(I.3.26) 

Vt'

il' 
=11a II Ila"I l 

V2" 2 

-i2
„ (I.3.27) 

Now Ilan=hall Ila"I I , (1.3.28) 

which forms the new matrix of the two cascaded networks. 
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0El 
- 

Network I 

Ila'II 
Network d 

Iloll 

'l2 
0 

y2 —o 

Fig. I.9. Cascade connection of two four-terminal networks. 

Note that a cascade connection of networks is always permissible (a cur-
rent entering a network via one terminal of a pair emerges from the other 
terminal of the pair also after cascading). 

I.4 Admittance Matrix of a General n -Node Network 

In the preceding sections various matrices for four-terminal networks are 
considered. In amplifier analyses, however, it is often convenient to consider 
the complete amplifier or parts of it as a network having 

n nodes of which 
at least three are accesible from outside the network. (The network is then 
of the three-terminal type of which the input- and output pairs have one 
terminal in common). 

I.4.1 THE INDEFINITE ADMITTANCE MATRIX 

In Fig. I.1O an 
n -node network is represented with voltages yr applied to 

each of the terminals and currents Ir entering each of the terminals. The 
voltages yr are all measured with respect to the same reference level. 

If the n -node network only contains linear passive or active elements, it 
may be described by n independent simultaneous equations. These equations 
may be written down by considering that the current entering a certain node 
is a linear function of the voltages between this and all other nodes. For 
node r this equation reads: 

1r = Yrl (Vi - yr) + Yr2 (y2 - yr) + . . . . 

+ Yr(r-1) (yr-1 - yr) + Yr(r+1) (yr+1 - yr) + 

+ Yrn (yn — yr) . (I.4.1) 

Fig. I.10. General n-node network. 

Voltage 
reference 

level 
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This equation may also be written: 

it = Yr1 ' vl + Yr2 ' v2 + • • • + Yr(r-1) ' yr-1 + Yrr ' yr + 

+ Yr(r+1) ' yr+1 + • • • + Yrn ' Va. . (1.4.2) 

Apparently, in Eq. (I.4.2) a current Yrrvr has been intoduced which must be 
equal to the sum of the products of yr and the corresponding admittances. 
Therefore: 

m=n 

which may also be written as: 

Yrr = — F, 
m=1 

Yrm , 
mfr 

m=n 

Eyrm=~. 
m=1 

Furthermore, according to Eq. (1.4.2): 

m=n 

Ir = Fi (Yrm ' vm)• 
m=1 

(I.4.3) 

(I.4.4) 

(I.4.5) 

The n equations with which the n-node network may be analyzed may be 
represented by the matrix: 

IIiii = IIYII ' Ilv11 • (I.4.6) 

Here, I iYll is a square matrix of order n which, according to Eq. (1.4.4), 
is singular. By way of example, the matrix I I YI I for a network having four 
nodes is given by: 

Y11 Y12 Y13 Y14 

IlYll = 
y21 Y22 Y23 Y24 

(I.4.7) 
Y31 Y32 Y33 y34 

Y41 Y42 Y43 Y44 

The admittance matrix I I YI I which after Shekel (Bibliography [I.12]) is defi-
ned as the indefinite admittance matrix 1) has some special properties which 

will be discussed below. 
Considering Eq. (I.4.4) it follows that each row of the matrix II YI I must 

add to zero. 

1) The matrix I I YJ I is termed indefinite because its array of elements is defined relative 
to an arbitrary (indefinite) reference point. 
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Furthermore, by Kirchoffs first law the algebraic sum of all currents 
entering the nodes is zero. Thus: 

r=n 

it = 0. (L4.8) 
r=1 

With Eq. (I.4.5) we then obtain: 

r=n m=n 

Fi 
r=1 

Fi (Yrm ' Vm) j = 
m=1 1 

0; 

or: m=n r=n 

m=1 
(yrm Vm) = 

r=1 
0. (I.4.9) 

Since Vm is completely independent of r, Eq. (I.4.9) can only be satisfied if: 

:
: Yrm

= 0. (I.4.10) 

This implies that each column of the matrix I I Yl l must also add to zero. 

If two nodes of the network have the same voltage applied, it is permissible 
to interconnect these nodes. Then the current entering the combined node 
is equal to the sum of the currents entering the separate nodes. The indefinite 
admittance matrix of the new network may therefore be obtained by adding 
the corresponding elements of the columns and rows of the nodes which are 
combined. If, for example, the nodes 3 and 4 of the four-node network 
described by Eq. (I.4.7) are combined, the indefinite admittance matrix of 
the network becomes: 

Y11 y12 y13 + y14 

y21 y22 y23 + Y24 (I.4.11) 
Y31 + y41 y32 + y42 y33 + Y34 + y43 + y44 

If the n-node network contains isolated nodes, that are nodes which have no 
electrical connection with other nodes, the indefinite admittance matrix 
contains columns and rows with zero elements corresponding to these nodes. 
This may become apparent from the following reasoning: An isolated node 
draws no external current. This necessitates a row of zero entries to ensure 
that the currents constituting the node current are zero irrespective of the 
voltages of other nodes. Furthermore, the voltage of an isolated node can 
have no influence upon the currents of other nodes, and so the column 
corresponding to such a node must have all zero entries. 
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I.4.2 THE DEFINITE ADMITTANCE MATRIX 

The indefinite admittance matrix as considered in the preceding sub-section 
may be regarded as an array of elements displaying the properties of an 

n-node network with respect to some arbitrary reference point. If one of 

the nodes of the network is taken as the reference point the indefinite admit-

tance matrix becomes a definite admittance matrix (because now the reference 
point is defined). 

Suppose the r-th node of the network is taken as the reference point. Then 
the voltages of all other nodes must be expressed relative to this node, which 
is achieved by taking v, as zero. This means that the r th column of the 
indefinite admittance matrix may be deleted. 

Furthermore, the current flowing into the reference mode is usually not 
required. This implies that the rth row of the indefinite admittance matrix 

may also be deleted. 
The matrix now obtained is referred to as the definite admittance matrix 

or simply the admittance matrix of the network relative to the common 

node r. Consider, by way of example, the indefinite admittance matrix of 
a network having four nodes with nodes 3 and 4 connected as given by Eq. 
(1.4.11) If the combined node 3 is regarded as the common reference node the 
definite admittance matrix becomes: 

Y11 Y12 

y21 Y22 
(I.4.12) 

If the definite admittance matrix of a network is known, the indefinite 
admittance matrix can be obtained by using the condition that all rows and 
columns add to zero. This means that a row and a column have to be added 
to the definite admittance matrix containing elements of such a value that 
these conditions are satisfied. For example, let the definite admittance matrix 
of a network be given by Eq. (I.4.12). The indefinite matrix then becomes: 

Y11 Y12 —(Yll + Y12) 

I IYI I Yzl Y22 -((y21 +y22) (I.4.13) 

- (Y11 + y21) y12 + Y22) Yll + Y12 + Y21 + Y22 

I.4.3 SURVEY OF PROPERTIES OF THE INDEFINITE ADMITTANCE MATRIX 

In sub-sections I.4.1 and I.4.2 various properties of the indefinite admittance 
matrix are derived. In this sub-section these properties are summarized, for 
ease of reference: 
1) The indefinite admittance matrix is singular and the sum of the elements 

of any row or column is zero. 
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2) The definite admittance matrix of a network is obtained from the indefi-
nite admittance matrix by deleting a row and a column corresponding 
to the reference node. The definite admittance matrix is non-singular. 

3) The indefinite admittance matrix can be obtained from the definite ad-
mittance matrix by adding one row and one column with elements such 
that each row and column add to zero. 

4) When two nodes of the network are connected the corresponding rows 
and columns are added to form one row and column. 

5) Isolated nodes correspond to rows and columns of zero entries. Isolated 
nodes may be employed to increase the order of the indefinite admittance 
matrix. 

I.4.4 THE INDEFINITE ADMITTANCE MATRIX OF NETWORKS IN PARALLEL 

If two n -node networks have corresponding nodes at the same voltage level 
interconnection of these nodes is permissible (see Section I.3). If all permissible 
interconnections are made it is said that the two n -node networks are con-
nected in parallel. 

The indefinite admittance matrix of the paralleled networks can then be 
obtained by adding corresponding elements of the indefinite admittance 
matrices of the individual networks. To add these matrices it is required 
that they have the same number of rows and columns. This means that the 
networks must have the same number of nodes and this may be achieved 
by inserting a number of isolated nodes in one of the networks. 

Furthermore, if interconnection of two nodes in the networks to be con-
nected in parallel is not permissible an isolated node is inserted in each of 
the networks corresponding to the non-isolated node where interconnection 
was not permissible. 

It will be evident from the above considerations that "paralleling" net-
works making use of the isolated node concept covers a very wide field of 
circuit applications. Using this technique it is possible to write down by 
inspection the indefinite admittance matrix of almost any circuit. 

To elucidate the method of paralleling and obtaining the indefinite ad-
mittance matrix, the circuit of Fig. I.11 is analyzed step by step. This circuit 
has four nodes and therefore a 4 

x 

4 indefinite admittance matrix. In Fig. I.12 
the indefinite admittance matrices for each of the separate elements of the 
circuit are derived, whereas in the final step (5) the complete indefinite 
admittance matrix is obtained. In practical circuit analysis it is, of course, 
not necessary to follow a step by step method of deriving the indefinite 
admittance matrix of the complete circuit. It can be written down by merely 
inspecting the circuit. 
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G1

Fig. I.11. Four-node network (compensated trap circuit) used as an example for illustrating 
the method of employing the indefinite admittance matrix. 

Taking node (terminal) 3 as common the definite admittance matrix of 
the circuit of Fig. I.11 becomes: 

1 
Gl Gi 

1 

1 
+ 

jwLi jwLi 

1 
—GI Gi (I.4.14) + 

jwL2
—

jwL2

1 1 1 1 

+ + 
+Y 

jwLi jwL2 jwLi jwL2 

Obviously, the definite admittance matrix (I.4.14) of the circuit of Fig. I.11 
can also be obtained without the intermediate step of the indefinite admit-
tance matrix. For complicated circuits, however, the method employing the 
indefinite admittance matrix will prove to be more systematic. 

I.5 Application of the General Admittance Matrix in Amplifier Analysis 

The general admittance matrix of an n-node network as considered in the 
preceding section may readily be applied to the analysis of multi-stage ampli-
fiers dealt with in Chapters 5, 7 and 8. Such amplifiers generally have only 
two terminal pairs of which one terminal is common. 

To analyze the performance of the amplifier with respect to stability, gain 
and frequency response it is sufficient to calculate the transfer function from 
the input terminal pair to the output terminal pair. This calculation can be 
carried out either by the "determinant method" of solving a set of simultane-
ous equations using the definite admittance matrix or by reducing the order 
of the definite admittance matrix from (n—l) to 2 (assuming the amplifier 
has n-nodes). 
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Fig. I.12. Tabular diagram showing the step by step method of obtaining the indefinite 
(or definite) admittance matrix of the network of Fig. I.11. 

I.6 Reduction of the Order of an Admittance Matrix 

The method of reducing the order of an admittance matrix as presented 
here is based on an article by Nichols (Bibliography (I.7)). 

An admittance matrix of an n-node linear network may be split into 
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columns and rows corresponding to nodes which have external connections 
and columns and rows which correspond to nodes that have no external 
connections and so have zero node currents. Preferably the admittance 

matrix should be reduced to such a degree that all rows and columns cor-
responding to the latter kind of nodes disappear. Then the remaining matrix 
relates currents and voltages at the terminals and this is sufficient to analyze 
its performance. 

The reduction can be carried out as follows: Let r-1 nodes of the n-node 
network have external connections and let these nodes be numbered 1 to 
(r-1). Then n — (r-1) nodes have no external connections. Let these nodes 
be numbered r to n. The admittance matrix equation of this network then 

becomes as shown in Fig. I.13. The matrix: 

A B 

C D 

is the definite or indefinite admittance matrix of the system partitioned into 
four matrices A, B, C and D. The matrices A, B, C and D are defined in 
Fig. I.13. 

The matrix equation of Fig. I.13 can now be split into two matrix equa-
tions, namely: 

it 

and: 

A 

0=C 

V1 

yr-1 

V1 

Vr-1 

+B 

±D 

yr 

vn 

yr

vn 

(I.6.2) 

(I.6.3) 

The matrix D is a square matrix of order n — r + 1. Provided IDI ~ 0, 
the inverse I IDI I-1 exists (see sub-section I.1.2) and Eq. (I.6.3) may be written: 
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,2 

~rl 

0 

Y, 
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A 

Y 
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Yr-lr-1 'r-1,r 
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C 

Y~r-1 

n,r-1 

A 

V, 

V2

Vr4 

~r 

0 

nr Yn,n 

lost n-r,l cobmns 

yr

Vrt1 

Vn 

lost 
n-r+1 
rows 

Fig. 1.13. Partitioning of a general matrix equation for reduction of the order of the matrix. 

yr

_ —D-1 . C . 

vn

Substituting Eq. (I.6.4) into (I.6.2) gives: 

i1 

v1

yr-1 

_ (A — B• D-1 . C) . 

v1 

yr-1 

(I.6.4) 

(I.6.5) 

The matrix (A—B• D-1•C) is an admittance matrix of order (r-1), and Eq. 
(I.6.5) only contains voltages and currents appearing at the terminals of the 
network. 

In multiplying the matrices B D-1 and C care must be taken that these 

matrices are conformable in the order (see sub-section I.1.2.4). If not, this 
can be achieved by adding rows and columns of zeros at appropriate places 
in the complete matrix (as given in Fig. I.13). 
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APPENDIX II

SINGLE-TUNED BANDPASS FILTERS 

In this appendix single-tuned bandpass filters as used in the amplifiers 
analyzed in this book will be considered having regard to frequency-depen-
dent properties as well as to power losses. 

11.1 Frequency-Dependent Properties of a Single-Tuned Bandpass Filter 

In Fig. II.1 a single-tuned bandpass filter, or single-tuned circuit as it is 
usually referred to, with elements L, C and G connected in parallel is shown. 

For the admittance of this circuit we may write: 

or: 

1 

Y=G+jwC+:—, jwL 

Y = G ~ 1 + j 
(- Gu,LI , 

woC w 1 wo 
=G l+j — --  l 

( G wo cn0LG w 1 

Now the quality factor Q of a tuned circuit equals: 

woC 1 

Q G wo LG 

Introducing moreover: 

to wo 

wo w 

the admittance becomes: 

Fig. I1.1. Representation of a single-tuned circuit with 
the elements L, C and G connected in parallel. 

(II.1.1) 

(II.1.2) 

(II.1.3) 

(I1.1.4) 

G C 
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1.0 

0.5 

0 

--0.5 

[AI 

Fig. II.2. Polar plot of the normalized admittance of a single-
--1.0 tuned circuit. 

Y= G (1 + jPQ) (II.1.5) 

The quantity given by Eq. (II.1.4) is a measure of the relative detuning 
of the circuit with respect to the reasonance angular frequency wo = 2ifo• 
At the angular frequency wo, = 0 and, according to Eq. (II.1.5) the ad-
mittance of the circuit is real. 

By introducing: 

x=RQ, 
the admittance of the tuned circuit becomes: 

Y= G(1 + jx). (II.1.6) 

Denoting the admittance at the resonant frequency by Yo = G, the 
normalized admittance y equals: 

y= 1 + jx. (II.1.7) 

The quantity x, which forms the frequency-dependent part of the normalized 
admittance will be referred to as the normalized frequency. 

In Fig. II.2 a polar plot of y as a function of x is shown. Fig. II.3 gives 

1 

-®x 

Fig. II.3. Normalized amplitude 
response curve of a single-tuned 
circuit; a = Ii + lx . 
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Fig. II.4. Phase angle ¢ = tan-1 x of 
a single-tuned circuit. 
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the amplitude response curve a = ~yj = f(x) of the single-tuned circuit 
whereas Fig. II.4 represents the phase response curve p = f(x) in which 

= tan- lx. The envelope delay to of the circuit is shown in Fig. II.5. 
According to sub-section 2.5.3.5 the envelope delay as a function of x is 
given by: 

Q  
to 1 

u,p \1I2 1 2Q 1 

cup + \ of l 1+x 2  wp 1+x 2
  . (II.1.8) 

For a tuned circuit with the elements L, C and R connected in series as 
represented in Fig. II.6 analogous expressions may be derived. For the 
impedance of the circuit we may write: 

Z=R+jwL+.
1

jwC 

The quality factor of the series-tuned circuit equals: 

c 

Fig. II.5. Envelope delay curve of a single-tuned circuit. 

(II.1.9) 
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R 
6060 ~-10---

V 

Fig. II.6. Representation of a single-tuned circuit with the elements L, C and R connected 
in series. 

w0L 1 

Q R woCR 
(II.1.10) 

With Eqs. (II.1.4) and (I1.1.6) the impedance becomes: 

Z = R (1 + jx). (II.1.11) 

The normalised impedance z equals: 

z = 1 + ix, 

which is identical to the relation obtained for the normalised admittance of 
the parallel-tuned circuit. Hence Figs. 11.2 to 11.5 are also valid for the series-
tuned circuit by changing y into z where necessary. 

In the way described the frequency dependent properties of single-tuned 
circuits can easily be expressed provided the losses can be considered as a 
pure parallel damping or a pure series resistance. In practical circuits in most 
cases "mixed losses" will occur, but, except for low values of Q, these losses 
can be converted with sufficient accuracy in either of the two types considered. 

11.2 Power losses in a Single-Tuned Bandpass Filter 

If a single tuned circuit is inserted between a source and a load, power 
delivered by the source is lost in the parallel damping or the series resistance 
of the tuned circuit. 

Fig. II.7 shows an equivalent circuit diagram for a parallel-tuned circuit 
with source and load. In this figure: 

Gs denotes the conductance of the source, 

~sr 

Fig. II.7. Equivalent diagram of a parallel-tuned circuit with source and load connected. 
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GL is the load conductance, and 
G* is the damping of the tuned circuit itself. 

The imaginary parts of source and load admittances are assumed to be 
contained in the tuning elements of the circuit. 

At resonance the equivalent circuit of Fig. II.7 can be simplified to 
Fig. II.8. The power developed in the load is: 

_ iL2 2 

PL 
_ GL  1 

(II.2.1) 
GL 

is 
Gs + G* + GL GL,

whilst the power available from the source is: 

is2 

Psav = 
4 Gs 

The transducer gain is therefore: 

PL 4 GsGL
4it 

Psav (Gs + G* + GL) 2 
. 

Now, the quality factor Q of the loaded circuit is given by: 

woC 

Q Gs + G* + GL

and the quality factor Qo of the unloaded circuit by: 

woC 
Qo = G*

The ratio of these quality factors will be denoted by: 

Q G* 
w— —

Qo Gs + G* + GL 

Hence, with Eqs. (II.2.6) and (II.2.3) : 

_ 4 GsGL 
~t 

(Gs GL)2 
(1 — w)2 . 

1 

Fig. I1.8. Equivalent circuit diagram of a parallel tuned circuit at resonance. 

(II.2.2) 

(II.2.3) 

(II.2.4) 

(II.2.5) 

(II.2.6) 

(II.2.7) 
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Eq. (II.2.7) represents the transducer gain, or better, transducer loss of a 
single-tuned circuit from a source having a damping Gs to a load with a 
damping GL. The first factor represents the mismatch losses mm. When 
GL = Gs this term is unity. 

The second term represents the insertion losses of the tuned circuit. These 
losses can be minimized by making the quality factor of the non-loaded 
circuit, Qo, as large as possible, and that of the loaded circuit, Q, as small 
as possible. However, in practice the value of Qo will be limited by practical 
considerations or by stability requirements, whereas the value of Q will have 
to meet selectivity requirements. The limit imposed by stability requirements 
will become clear when it is realized that (1— w)2 represents the insertion 
losses. The losses may from necessity be such that they decrease the loop-
gain of each stage to a value at which stability is ensured. Denoting these 
insertion losses by t gives: 

and 

~t = (1- w)2, 

~t = ~mm ' ~£• 

(I1.2.8) 

(II.2.9) 

For a series connected single-tuned bandpass filter with a source with 
resistance Rs and a load with resistance RL analogous expressions for mm 

and t t can be derived: 

and 

~mm 
(Rs + RL)2 

, 
4 RSRL 

(II.2.10) 

R*
 l = (1 — w)2 = (1 Rs + R* + RL)/ 

(II.2.11) 

Here R* denotes the resistance at resonance of the tuned circuit itself. 



APPENDIX III 

DOUBLE-TUNED BANDPASS FILTERS 

In this appendix some of the properties of double-tuned bandpass filters 
are derived using the theory presented in Appendix I. The double-tuned 
bandpass filters are considered with respect to the frequency-dependent 
properties of input immittance, output immittance and transfer function. 
Also the power losses are calculated. 

III.1 Four-Terminal Network Parameters of Double-Tuned Bandpass Filters 

III.1.1 Y-PARAMETERS 

In Fig. III.1 below the circuit diagram of a double-tuned bandpass filter 
with indirect inductive coupling is given. This figure which shows the various 
elements of the double-tuned bandpass filter is also used for defining the 
symbols related to these elements. 

Furthermore, let the coefficient of coupling between the primary and 
secondary be defined by: 

M 
k = 

}'LPLs 

The admittance parameters of the circuit then become: 

1 
Yli=Gp+jwCp+ ' ]wLp(1 — k2) 

Iiz=Ysi=j' 
1 k 

w 1/LPLs 1 — k2

1 
82 = Gs + jwCs + • jwLs (1 —k2) 

(III.!.!) 

(III.1.2) 

Fig. III.1. Double-tuned bandpass filter with indirect inductive coupling and parallel 
tuning of primary and secondary. 
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These expressions show that Yii and Y22 denote admittances of single-tuned 
circuits with effective tuning inductances L9(1 — k2) and L8(1— k2) respec-
tively. 

If primary and secondary are tuned to the same frequency it is obvious that 

wo2CpLP (1 — k2) = wo2C8L8 (1 — k2) = 1. (III.1.3) 

By introducing: 

wOCp 
Qp = 

Gp 
(III.1.4) 

and: 
Q 

_ woC8 (III.1.5)
8 -  , 

G8

and with the considerations of Appendix H. Eq. (III.1.2) may be written: 

Yn = Gp (1 + jxp) , 

k 
Y12 = Y21 =j   , (111.1.6) 

w vLp (1— k2) L8 (1— k2) 

Yz2 = G8 (1 + jx8) . 

Let furthermore: 

G = vGPG8 , (III.1.7) 

L = VLp (1 - k2) L8 (1 - k2) , (III.1.8) 

and Q = y QPQS , (III.1.9) 

which gives: 

1 
L — wo GQ . (III.1.10) 

With Eqs. (III.1.7) to (III.1.10) the admittance Yi2 according to Eq. (III.1.6) 
can be written: 

Y12 = jkGQ 
— 

. (III.1.11) 
w 

By putting: 

(ho 
k•— =K, 

w 
(III.1.12) 
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and q = KQ, (III.1.13) 

this expression is reduced to: 

Y12 = jqG. (III.1.14) 

Eq. (III.1.6) is thus simplified to: 

Yil = Gp (1 + jxp) , 

coo 
Yiz = Y21 = jGQK— = jGq , 

w 

Y22 = Gs (1 + jx8) 

(III.1.15) 

The parameters Yii and Y22 are clearly frequency-dependent whereas Yl2 
maybe considered frequency-independent provided coo/co = 1, see Eq. (III.1.) 

Identical expressions as derived above can be obtained for the admit-
tance parameters of double-tuned bandpass filters with direct inductive 
or capacitive coupling. Because of the different arrangement of elements the 
effective tuning inductances or capacitances are different from those in the 
case of indirect inductive coupling considered above. In each case these 
effective inductances and capacitances are equal to the sum of the inductances 
and capacitances forming part of the admittances Yii and Y22. 

Furthermore the frequency dependency of the Y12 parameter is different 
for the various types of coupling. This is of special importance when the 
frequency range of interest is such that the condition w = coo is not always 
fulfilled. 

In Table III.1 relations giving the coefficient of coupling and the admittance 
parameter Y12 are compiled for double-tuned bandpass filters with the various 
types of coupling. The symbols Lm and Cm denote the coupling elements for 
direct inductive or capacitive coupling. 

v~ 

Fig. III.2. Double-tuned bandpass filter with indirect inductive coupling. The primary 
forms a parallel-tuned circuit whereas the secondary forms a series-tuned circuit. 
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TABLE III.1 

[AIII 

Type of coupling of the 
bandpass filter Transadmittance Coefficient of coupling 

indirect 
inductive 
coupling 

L 
} 12 = Yu jGQ k 

w 

M 
k — 

LpLa

capacitive 
IT 
coupling 

Yi2 = Yzi = —jGQ k —"̀ 
wo 

Cm k — 
(Cpl Cm)(Ca+Cm) 

inductive 
T 
coupling 

w 
Yiz = Y2i = —jGQ k wo

C C8k = 
p 

Y/ (Cp+Cm)(C8+Cm 

inductive 
I 
coupling 

r ,o
Yla = Y21 = —jGQ k — w 

k = 1/ LpL8

(Ln 1 Lm)(La+z m) 

inductive 
T 
coupling 

Yi2 = Y2i = —jGQ k — 
w 

Lm 
k — 

l'(Lp+Lm)(La+Lm) 

III.1.2 K-PARAMETERS 

For the indirect inductively coupled double-tuned bandpass filter with a 
parallel-tuned primary and a series-tuned secondary as represented in Fig.III.2 
the K-parameters can be written: 

Kii=Gp+jwCP+. 
1 

1/L8
K12=K21=—k 

`l L ~ 1e 

1 
K22=R8+jwL$(1—k2)+. 

~wCs

(II1.1.16) 

It follows from the expressions for Ku and K22 that the effective tuning 

inductances of primary and secondary now amount to Lp and L8 (1 — k2). 
Assuming that primary and secondary are tuned to the same angular 

frequency wo such that: 

woCpLp = wo CsLs (1 — k2) = 1, (III.1.17) 
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and introducing 

we obtain: 

Kit = —K2I = 

By putting: 

Eq. (III.1.16) becomes: 

1 
Qp 

cup Lp Gp 

cooLs (1—k2) 
Q8 — 

R3 

k 

vl — k2
yGp R8 • V QpQ8 . (III.1.20) 

k ,/ 
q -  VQpQ8, 

Vi - k2

KII = Gp ( 1 + jxp) , 

KI2 = - K2I = -q vGpRB , 

K22 = R8 (1 + jx8) . 

(III.1.21) 

(III.1.22) 

Other practical versions of the parallel-series tuned double-tuned bandpass 
filter are those with capacitive — or inductive — T coupling for which 
analogous expressions may be derived. With respect to the effective tuning 
inductances or capacitances the remark made in the preceding sub-section 
applies. 

1II.2 Input and Output Immittance of a Double-Tuned Bandpass Filter 

For a four-terminal network the input immittance can be expressed as: 

Y~ = Yu 
Yi2 Y2I 

Y22 

(III.2.1) 
Kit K2i 

or: Ki = K11  
K22 

With Eqs. (III.1.15) and (III.1.22): 

Y¢=Ks=Gp (1 + jxp + q2 (III.2.2) 
1 + Jxs~ 

The output immittances of a fourpole network are given by: 
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Yo = V22 
V12 Y21 

Y11 

K12K21 
Ko = K22  

K11 

With Eqs. (III.1.15) and (III.1.22) we obtain for the double-tuned bandpass 
filter: 

and 

2 

Yo=Gs (1+jxs+1 
X ) , (III.2.4) 
p/ 

q2 
Ko=Rs I / 1+jx s + 1+  x 1. 

\ ~ p 
(III.2.5) 

I1I.2.1 REDUCED INPUT- AND OUTPUT IMMITTANCES 

It follows from Eqs. (III.2.2), (III.2.4) and (III.2.5) that the input and output 
immittances consist of a factor G or R and a frequency dependent factor. 
This frequency dependent factor is usually referred to as the reduced input-
or output immittance respectively. 

Now: 

and 

in which: 

Y~=Gp•yl, 
K~ =

Vo = Gs ' Yo, 
Ko = Rs ' yo, C 

(III.2.6) 

(III.2.7) 

2 

= k = I + + (III.2.8) yi jxp 1 jxs , 

2 

= ko = 1 + + (III.2.9) Yo jxs 1 
x D 

It appears from these equations that the reduced input and output immit-
tances plotted in a polar diagram consist of the addition of the vectors 
(1 + jx) and q2/(1 + jx). The first vector (1 + jx) represents a straight line in 
the complex plane parallel to the imaginary axis through the point + 1.0 
as shown in Fig. II.2. The second vector q2(/l + jx) represents a circle with 
diameter q2 and centre at the point (+0.5, 0), see Fig. III.3. 

It follows from Eq. (III.2.8) that the polar diagram of the reduced input 
immittance can be constructed by adding to the vector (1 + jxp) a vector 
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Fig. III.3. Polar plot of the vector q 2/1 + ix. 
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q2/(1 + jxs) of which the extremity is situated on a circle moving along the 
(1 + jxp) line. This construction is given in Fig. III.4. 

Fig. III.4. Polar diagram of the reduced input immittance of a double-tuned bandpass 
filter with q 2 = 1 and xp = x$ = x (r = 1.0). The construction is shown for x = 1.2 and 
x = 1.8. The proper point on the circle for x8 is found by considering that tan' xp = 
_ — r. tan-' x8, which leads to the graphical construction as shown. Note that the 
distance 1/r indicated in the figure applies to the construction of x8 and not to the location 
of the point xp =0 on the input immittance curve. 
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111.3 Transfer Function of a Double-Tuned Bandpass Filter 

The transfer function of a double-tuned bandpass filter of which both primary 
and secondary consist of parallel-tuned circuits can best be expressed by 
means of its transimpedance Zt. For the case the primary consists of a parallel-
tuned circuit and the secondary of a series-tuned circuit the best method is 
found in the (forward) current transfer ratio H. 

According to four-terminal network theory: 

and 

Y21 
Zt = - dl,, 

K21 
Ht= -- K. 

(III.3.1) 

(III.3.2) 

For the sake of convenience we will use the reciprocal of the transfer func-
tions Zt and Ht in the calculations. With Eqs. (III.1.15) and (III.3.1): 

I   (I + jxp) (I + jxs) + q2

Zt 
= j vGpGs 

q 

(III.3.3) 

and with Eqs. (III.1.22) and (III.3.2) : 

1 
yGpRs 

(1+ jxp) (I + jxs) + q 2

Ht 
- q

III.3.1 NORMALIZED TRANSFER FUNCTION 

It follows from Eqs. (III.3.3) and (III.3.4) that at x = 0: 

and 

1   1 +q 2

Z— 
= j V GPG$ •  q

1   1 q2

Ho 
= — vGpRs •  q

(III.3.4) 

(III.3.5) 

(III.3.6) 

The normalized transfer function, that is the transfer function of the band-
pass filter relative to its value at x = 0 becomes therefore: 

By putting 

1 1 (1 + jxp) (I + jxs) + q 2

zt ht 1 +q 2

xs
—=r, 
xp 

(II1.3.7) 

(III.3.8) 
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and 

Eq. (III.3.7) becomes: 

VXpXs = x, 

1 

1 1 
1 + jx (Vr + ~) — x2 + q2

zt ht 1+q 2

(III.3.9) 

(III.3.10) 

III.4 Amplitude Response Curve of a Double-Tuned Bandpass Filter 

The amplitude response of the bandpass filter can be found by determining 
the modulus of the transfer function. The modulus of the reciprocal of the 
relative transfer function then represents the normalized amplitude response 
curve. By introducing an amplitude response curve shape factor: 

2q2 —1 r -{ 
1) 

T 
a= 

1+q 2
(III.4.1) 

which is zero for an amplitude response curve of maximum flatness, it follows 
from Eq. (III.3.10) that: 

2 2 2 } 1 1 x x ) 
a = — = — = 1 a 

Intl Ihtl 1+q 2  +\1+q2!
(III.4.2 

In fig. III.5 amplitude response curves are plotted for r = 1 and 
a = —0.67, 0 and 0.67 (that is for q2 = 0.5, 1.0 and 2.0). 

II1.5 Envelope Delay Curve of the Double-Tuned Bandpass Filter 

The normalized transfer function as given by eq. (III.3.7) can also be written 

as: 

{1 + J (xp + q)} {1 + J (xs — q)} 

1+q2
(111.5. 1) 

Hence it follows for the phase angle rp of this transfer function: 

= tan-1(xp + q) + tan-1(xs — q). (111.5.2) 

According to sub-section 2.5.3.5 the envelope delay to is given by 

2Q dq~ 
to = — —, 

wo dx 
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Fig. III.5. Amplitude response curves for a double-tuned bandpass filter with r = 1 and 
q2 = 0.5, 1.0 and 2.0 respectively 

in which Q = VQpQB, and x = Vxpxs. 

With Eq. (III.3.8) it follows from Eq. (III.5.2) : 

dg2_ 1 + 1 

dx 

In Fig. III.6 dq /dx is plotted as a function of x for r = 1 and q2 = 0.5, 
1.0 and 2.0. 

(III.5.3) 

III.6 The Transducer Gain of a Double-Tuned Bandpass Filter 

Fig. III.7 shows an equivalent circuit of a double-tuned bandpass filter with 
parallel-tuned primary and secondary. In this circuit Gs denotes the source 
conductance and GL the load conductance; the other symbols have the same 
meaning as in Fig. III.1, the asterisks accounting for the fact the corres-
ponding dampings are those of the bandpass filter proper. 

The transducer gain Pt at the tuning frequency is given by: 

It = 4 GSGL IZtol2, (IIL6.1) 

in which Zto is given by Eq. (III.3.5). Hence: 

1 q2
~t= 4 GSGL GAGS (1 

-f- 
q2)2 . (III.6.2) 
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Fig. III.6. Envelope delay curves for a double-tuned bandpass filter with r = 1 and 
q2 = 0.5, 1.0 and 2.0 respectively. 

Denoting the ratio of the damping of the tuned circuit itself to the total 
damping by w, that is: 

it may be written: 

whence: 

G* 
w = G , (III.6.3) 

Gp = Gs + Gp*, or Gs = (1 — wp)Gp, (III.6.4) 

G8 = GL + Gs*, or GL = (1 — ws)G8, (III.6.5) 

2 )2 
deb = (1 — wp) (1 — w3) 1 

~ 2 
} (111.6.6) 

4 

For the double-tuned bandpass filter with parallel-tuned primary and series-

'51 

Fig. III.7. Equivalent circuit of a loaded double-tuned bandpass filter with parallel-tuned 
primary and secondary. 
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Fig. III.8. Equivalent circuit of a loaded double-tuned bandpass filter with parallel-tuned 
primary and series-tuned secondary. 

tuned secondary as shown in Fig. III.8 analogous expressions can be derived. 
The transducer gain follows from 

~t = 4 Gs RL I Htol 2, 

which gives with Eq. (IIL3.6) : 

With 

(III.6.7) 

1 2 

~t = 4 GSRL  
4 (III.6.8) 

GpR3 (1 -I- q2)2

R* 
w= R , 

Rs = RL + R*, or RL = (1 — ws)Rs. (III.6.9) 

By substituting Eqs. (III.6.4) and (III.6.9) into Eq. (III.6.8), Eq. (III.6.6) is 
obtained. 

Expressions (III.6.6) and (III.6.8) thus represent the transducer losses 
(gain) of a double-tuned bandpass filter. By putting 

and 

gyp= 1—Wp 

~s = 1— ws

(  
2q 

l
2 

~~ — U+g 21 

the transducer loss becomes: 

~tb=~p . ~s . ~p. 

The quantities Shp and c s thus represent the ratio of the source and load-
damping to the total damping of the primary and secondary of the double-
tuned bandpass filter, respectively. 
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APPENDIX IV 

DEFINITIONS OF GAIN IN POWER 

The various definitions of gain in power used in this book are listed below. 

The definitions are in accordance with the "I.R.E. Standards on Electron 

Tubes: Definitions of Terms, 1957" (57.IRE 7.S2). 

The available power of a source is defined as the maximum power which 
can be transferred from the source to a load. 
Note: Maximum power transfer will take place when the immittance of the 

load is the conjugate of that of the source. The source immittance must 
have a positive real part. 

The power gain of a four-terminal network is defined as the ratio of 1) the 
power that the network delivers to a specified load to 2) the power delivered 
to the input of the network. In Fig. IV. 1: 

(IV.1) 

Fig. IV.1. The power gain of a four-termi-
nal network equals = PL/Pi. 

Note: The power gain of a network is not defined unless its input immittance 
has a positive real part. 

The maximum power gain of a four-terminal network is defined as the 
ratio of 1) the available power from the output of the network to 2) the 
power delivered to the input when the output is conjugately matched. In 
Fig. IV.2: 

Fig. IV.2. The maximum power gain of a four-terminal network is obtained when the load 
immittance is conjugately matched to the output immittance of the amplifier. The conjugate 
matching is indicated symbolically by means of a transformer. 
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Fig. IV.3. The available power gain of a four-terminal network relates the power available 
from the output of the network to the power the source has available. Under conjugately 
matched conditions the power in the load equals the power available from the output 
of the amplifier, see Fig. 3a. The power delivered to the network by the source is, generally 
smaller than the power available from the source, compare Figs. 3a and 3b. 

PLa _ F oci 

Pj P¢ 
(IV.2) 

The maximum unilateralized power gain of a four-terminal network is 
defined as the ratio of 1) the available power from the output of the net-
work to 2) the power delivered to its input terminals, when the network is 
unilateralized. 

The available power gain of a four-terminal network is defined as the ratio 
of 1) the available power from the output of the network to 2) the available 
power from the input source. In Fig. IV.3: 

PL a Foci
_ _ (IV.3) ~a 

Psa Psa 

Note: The available power gain of a network is a function of the match 
between the source immittance and the immittance of the input of 
the network. 

The maximum available power gain of a four-terminal network is defined 
as the available gain of the network when it is conjugately matched to source 
and load. In Fig. IV.4: 

PLa Po 
 _

a 
~aM — 

Psa PSa 

Y 

(IV.4) 

Fig. IV.4. The maximum available power gain of a four-terminal network is obtained when 
the input immittance of the amplifier is conjugately matched to the source immittance. 
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Fig. IV.5. The transducer gain of a four-terminal network equals e = PL/Psay. 

Note: The maximum available power gain of a network is not defined unless 
both input and output immittances of the network have positive real 
parts for arbitrary passive input and output terminations. 

The transducer gain of a four-terminal network is defined as the ratio of 
1) the actual power transferred from the output of the network to its load, 
to 2) the available power from the source driving the network. In Fig. IV.5: 

YS 
—~ 

PL 
c t =

PSa 

Q 

It 

yS 
optimum 
r\ 

(IV.5) 

Fig. IV.6. The insertion gain of a four-terminal network is the ratio of the power the net-
work, fed from a given source, delivers to the load to the power the source would deliver 
when the load was connected directly. 

The insertion gain or insertion loss of a four-terminal network is defined as 
the ratio of 1) the actual power transferred from the output of the network 
to its load, to 2) the power that the same load would receive if driven directly 
by the source. In Fig. IV.6: 

(IV.6) 



APPENDIX V 

MAXIMUM UNILATERALIZED POWER GAIN OF 
A TRANSISTOR 

According to Appendix IV, the maximum power gain of a four-terminal 
network is obtained when it is conjugately matched at its output terminals. 
When a transistor, considered as a four-terminal network is matched accord-
ingly it delivers the maximum unilateralized power gain when it is neutra-
lized by a loss-less external network (unilateralized) so as to make the 
resultant feedback admittance equal to zero. 

Fig. V.1. Equivalent admittance parameter fourpole network of a transistor. 

In Fig. V.1 an admittance parameter equivalent circuit of a transistor is 
given. The input power P¢ equals v12g11 and the output power in the matched 
load GL (which has a value equal to g22) is: 

(IY21I ' Vf 2 1 

PO 
—_ 

 \ 2 / GL' 

2 1 
= IY21I2 Vi — . 

gn 

The maximum unilateralized power gain is therefore given by: 

~uM - 
IY21I2 

• (V.1) 
4 g11g22 

It may be shown that does not vary with the matrix environment so that: 

Ih21I2 
~uM - 

4 Re(h11) ' 1(h22) 
(V.2) 



APPENDIX VI 

BOUNDARY OF STABILITY IN AN n-STAGE 
AMPLIFIER WITH (n+1) SINGLE-TUNED BANDPASS 

FILTERS 

Consider the reduced amplifier determinant given by Eq. (6.3.5), viz. 1): 

1 un -- 0 0 0 0 0 0 

1 1 —— 0 0 0 0 0 0 

0 0 1 U5 0 0 0 0 
Su = 0 0 1 1 U4 0 0 

P4 
0 

(VI.1 

0 0 0 1 1 U3 0 0 

0 0 0 0 1 1 U2 0 

0 0 0 0 0 1 1 ui 
P1 

0 0 0 0 0 0 1 1  Po 

and let minor determinants P be defined as indicated. Then we may write: 

Po = 1, 

Pi = 1— ui 

P2 = Pi — u2Po 

P3 = P2 — u3Pi 

Pn = Pn-i — unPn-2 

P1 
or— = 1 — ui , 

Po 

P2 Po 
or— = 1 — U2 — , 

P1 P1 

P3 
or —

P2 

P1 
= 1 —U3 —

p2 

Pn P-2 
oror =!—U  

Pn-i Pn-1 

(VI.2) 

1) The prefix n in the symbol nu, denoting that nu applies to an n-stage amplifier, and the 
suffix g in the symbol uq, denoting the value of u at the boundary of stability, are 
omitted in this appendix for simplicity in writing the various equations. 
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in which Pn equals S which should be equated to zero to find the boundary 
of stability. 

If all transistors and all single-tuned bandpass filters of the amplifier are 
assumed to be identical, all u's are equal (see Eq. (6.3.5)) and the quotient 
PnIPn-i may be written as a continued fraction. Consider, for example, the 
quotient P5/P4. According to Eq. (IV.2) this may be written as: 

P5 P3 
—=1—u—, 
p4 P4 

—1 

—1 

—1 

U 

P2~ 
1 —u—

P3 

U 
P1' 

1--
P2 

U 

1 
U 

1 
U 

1—
u 

1—u (VI.3) 

Hence, for solving P n = S, the theory of continued fractions may be applied 1) 
For finding the boundary of stability of this n-stage amplifier the smallest 

positive root of u must thus be determined from 

Pn Pn-2 
 =1—u , 
Pn-i Pn-1 

for Pn = 0. 

We try to solve this system by putting: 

Pn+1 = Assn, 

which, indeed, is possible provided: 

42a—Ea+u=0, 

(VI.4) 

(VL5) 

(VI.6) 

1) See e.g. H. S. WALL, Analytical Series of Continued Fractions, Van Nostrand and Co. 
New-York, 1948. 
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Thus we have: 

BOUNDARY OF STABILITY 

Cal = (1 + vl - 4u), 

Cal = . .(l- 1/1-4u). 

[AVI 

(VI.7) 

Pn = Ai n + BCa2 n , (VI.8) 

in which A and B are functions of u not depending on n and satisfying: 

Po= 1 = A + B 
(VI.9) 

Pl = 1— u = As" l  + BEa2

Solving A and B from Eq. (VI.9) and substitution in Eq. (VI.8) yields: 

Pn 
Eat — 1 + u 

n 
g al  — 1 + a 

— Cal + 
 
Cat n • 

Eat — Cal Cal — Cal 

With Eq. (VI.7) the last expression can be written as: 

1 
Pn =  { Cai(n+2) — Ca2(n+2)} 

vl — 4u 

Zeros of Pn are those values of u that make 

(VI. 10) 

Cal(n+2) = gaa(n+2) (VI.11) 

with a possible exception of u = 4. 

Since Cal Cal = u , (VI. 12) 

we have from (VI.11): 

C2al(n+2) = un+2 . (VI.13) 

k=0,1,2,3,. . . 

Taking the 2 (n+2)th root from the last expression, we get with Eq. (VI.7): 

k~r 

(1 + 1"l-4u) _ V C i nn+2. (VI.14) 

Solving for u yields: 

1 

nk 
4 cos2

n+2 

(VI.15) 



AVI] BOUNDARY OF STABILITY 309 

Since we have derived an expression for every possible root for j/u, we 
find every root for u twice. Moreover, instead of finding every root twice, 
we found it four times, since, by squaring repeatedly, we also solved: 

E2a2(n+2) = u n+2 . E 9 2 ak 

The value u = found from Eq. (VI.15) for k = 0, k = n + 3 and 
n = oo is a suspected value since it is also a zero of the denominator of 
Eq. (VI.10). 
Indeed, further consideration shows: 

lim Pn+1 = 0 

Because we are interested in the smallest root of u, we must take k = 1 
which gives: 

1 

7 
4 cost 

n+2 

(VL16) 



APPENDIX VII 

INFLUENCES OF IMPEDANCES IN SERIES WITH THE 

TRANSISTOR LEADS 

When connecting a transistor to its external circuitry in an amplifier series-
impedances for signals of the desired frequencies will be introduced between 
the (lumped) components of the circuitry and the transistor. These series-
impedances may either be due to parasitic effects or may be provided for 
intentionally. 

Series-impedances due to parasitic effects are, for example, the inductances 
of the wires connecting the transistors to the circuitry and the not completely 
decoupled d.c. biasing resistor in the lead common to input and output 
circuits of a transistor. Series-reactances due to the use of non-ideal trans-
formers may also be considered to belong to this group. Series-impedances 
which are connected into the circuit intentionally are, for example, resistances 
in the collector lead of the transistor to prevent parasitic oscillations at lower 
frequencies and impedances which are connected in series with the transistor 
lead in order to increase the stability of the amplifier in a particular range of 
frequencies. 

Because these series-impedances are, generally, constant over the pass band 
of the amplifier their influence can most easily be taken into account by 
calculating the parameters of a new four terminal network including the 
transistor as well as the series-impedances. 

In the following sections we will confine ourselves to an admittance para-
meter representation of the transistors. 

VII.! Calculation of the Admittance Parameters of a Transistor with Impe-
dances in its Leads 

In Fig. VII.1 a schematic diagram is given of a transistor with impedances Zi, 
Z2 and Z3 in leads 1, 2 and 3 respectively. The transistor four-terminal net-
work will be denoted by the matrix: 

H H= 
yll ,Y12 

,Y21 ,Y22 
(VII.!) 
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L J 

Fig. VIII. Transistor four-terminal network with series-impedances in the transistor 
leads. 

Using Table 1 of Appendix I this admittance matrix may be transformed 
into an impedance matrix I IziI as: 

Y22 -Y12 

I lzl l = 

which may also be written as: 

dy dy 

- y21 yll 

dy dy 

I I zI = I z zll 12 

Z21 z22 

(VII.2) 

(VII.3) 

The impedance matrix of the four-terminal network including the series-
impedances is now obtained as: 

or: 

I lzll' = 
zll+Zl+Z3 z12+Zs 

z21+Z3 z22+Z2+Z3 
(VII.4) 

I lz'I I = 
z11' z12' (VII.5) 
z21' z22'

Converting the impedance matrix of Eq. (VII.! .5) into an admittance matrix 
we get: 

Z22'  - Z12'

dz' d' 

- Z' 21 z 11 

dz' dz' 

(VII.6) 
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which we put equal to: 

IIY II = 
Yll, Y12, (VII.1.7) 
Y21 y22 

The dashes in Eqs. (VII.4) to (VII.7) refer thus to a new four terminal 
network including the transistor as well as the impedances Zl, Z2 and Z3. 

After some calculations it follows that the admittance parameters of the 
new four-terminal network are given by: 

Z22 Z22+Z2+Z3 
dy+Z2+Z3 

yll' 
dz' dz' dz' 

, 

_ yn+dy'(Z2+Z3) 

1 + Ey • Z3 + yliZi + y22Z2 + dy • EZ2 
, 

Z12 Z12+Z3 dy
+Z3

yl2 = - dz, = Az' — Az' , 

Y12 — dy • Z3 

1 + Ey Z3 + y11Z1 + y22Z2 + dy ZZ 2'

Y21 
+ Z3 

Z21' Z21 + Z3 dy 

Y21'=— dZ' =— Az' Az' 

(VII.8) 

(VII.9) 

Y21 -  dy • Z3  
( VII. 10) 

l + EY . Z3 + y11Z1 + y22Z2 + dy. • ZZ 2'

z11'  Z11 + Zl + Z3 _ Ay 
_ _ 

yz2 = Az Az' Az' ' 

In these expressions: 

and 

Y22 + dY (Z1 +  Z3) 
(VII.11) 

1 +Ey Z3 + y11Z1 + y22Z2 + Ay . EZ2 

dy = ylly22 - y12y21, 

Ey = yll + y12 + Y21 + y22, 

EZ2 = Z1Z2 + Z1Z3 + Z2Z3• 

(VII. 12) 

(VII.13) 

(VII. 14) 
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