

CONTENTS

Selection Guide
Correct Use of Vidicons
General Descriptions and Applications
Specifications and Typical Operating Conditions
Visible Vidicons
1 inch dia. MM Types
1 inch dia. SM, CM, SS Types
2/3 inch dia. and 1-1/2 inch dia. Types
Silicon Vidicons
Infrared Vidicons
UV, Visible Vidicons and X-Ray Vidicon
Spurious Signal Specifications
Bases and Sockets
Vidicon Yoke Assemblies

SELECTION GUIDE

	Focusing and Deflection Diameter mm	Magnetic Focusing Magnetic Deflection		Electr Magn	ostatic Fo etic Defle	ocusing ection	Combined Focusing Magnetic Deflection	Electrostatic Focus- ing Electrostatic Deflection	Heater Power	
	(inch) Mesh Connection	18 (2/3'')	25 (1′′)	18 (2/3'')	25 (1'')	38 (1-1/2'')	25 (1″)	25 (1′′)	(W)	
	Integral	-	7262A	-	-		-	·	0.6	
	Thegran	_	7735A	_	-	-	-	_	3.8	
Visible	Separate	8844 N747	8541 8573 N736	N887	8134	8480	8816	25PE12	0.6	
		_	8507		-	_	-	-	3.8	
Infrared	Integral	-	N156 N157	-	_	-	-		0.6	
	Separate	_	N214	-	-	-	_	-	0.6	
X-Ray	Separate	-	N603	-		_	-		0.6	
Ultraviolet	Integral	-	N371	_	-	-	-	_	0.6	
and Visible	Separate	-	N983		-	-	_	-	0.6	

MEASURING CONDITIONS

Scanning System	:	Interlaced 525 TV lines and 30 frames/second.
Setting Position	:	Keeping the plane containning the axis of the tube and the index pin horizontal, setting the index
		pin on the left hand side from the view of the photoconductive surface end.
Scanning Area	:	18 mm (2/3 inch) dia. Type 6.6 mm x 8.8 mm
		25 mm (1 inch) dia. Type
		38 mm (1-1/2 inch) dia. Type 15.3 mm x 20.3 mm
		*

CORRECT USE OF VIDICONS

Here are some notes for better usage on the vidicon type camera tubes. Please pay attention to the following cautions to get better performance from vidicons.

(There are normal cautions, so individual specifications shall be ahead of this note.)

MUST BE AVOIDED

- Beam current to be kept on target without normal scanning.
- Taking an image of the SUN.
- Under scanning or change scanning size.
- Rotate vidicon from its original position in coil assembly.
- Give higher target voltage than specified.

SHOULD BE DONE

- Adjust scanning area to provide specified target area.
- New scanning size should be matched to former raster pattern.
- Adjust beam current, target voltage, focusing, alignment and lens iris mutually to obtain uniform dark background image of target and detail on the highlight level portion in the picture.

WARNING

The high voltage used by vidicons may present shock hazard. They should be installed and handled only by qualified personal that have been instructed in handling of high voltage. Designs of equipment utilizing vidicon should incorporate appropriate interlocks to protect the operate and service personal.

WARRANTY

All Hamamatsu vidicons are warranted to the original perchasers for a period of 12 months following the date of shipment. The warranty is limited to repair or replacement of any defective material due to defects in workmanship or materials used in manufacture.

- A: Any claims of damage of shipment must be made directly to the deliverling carrier within 5 days.
- B: Customer must inspect and test all vidicons within 30 days after shipment. Failure to accumplish said incoming inspection shall limit all claims to 75% of invoice value.
- C: No credit will be issued for broken vidicons unless in the opinion of Hamamatsu the damage is due to a seal crack traceable to a manufacturing defect.
- D: No credit will be issued for any vidicons which in the judgement of Hamamatsu have been damaged, abused modified, or which the serial number or type number has been obliterated or defaced.
- E: No vidicons will be accepted for return unless permission has been obtained from Hamamatsu in writing, the shipment has been returned, prepaid and insured, the vidicons are packed in their original box and accompanied by the original datasheet furnished to the customer with the tube, and a full written explanation of the reason for the rejection of each vidicon.
- F: This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

GENERAL DESCRIPTIONS AND APPLICATIONS

The development and design of specialized image Pickup Tubes is a unique capability of HAMAMATSU. In the field of vidicon camera Tubes, HAMAMATSU offers the technique for the wide range of applications including visible, infrared, X-ray and ultraviolet. Our HAMAMATSU Vidicon type camera tube is compact, simple operation, low power and will be able to expect longer life.

Vidicons for visible light

Hamamatsu vidicons for visible light have varieties of 18 mm (2/3"), 25 mm (1") and 38 mm (1-1/2") diameter size and are classified in 4 types according to their focusing and deflection method, so Hamamatsu vidicons will mate with almost every cameras in the wide field applications. The "Target" of Sb_2S_3 features stable operation and moderate sensitivity. A simple ASC (Automatic Sensitivity Control) circuit with the target voltage control using series resister only can be necessary.

Silicon Vidicons

This vidicon type utilizes silicon photodiode array as a target and has the characteristics of high sensitivity, low dark current, very low lag and non burn-in. The capability of exposing to the direct sun light without any damage and the wide spectral response expanded to near IR region are also unique features of Si-target vidicon and applicable for wide field.

Ultraviolet Vidicons

The N371 has sensitivity for the ultraviolet radiation with As_2Se_3 target and fused silica faceplate. The covering spectral response is from 200 to 600 nm. The N983 is also ultraviolet vidicon having a target of CdSe and fused silica faceplate. It has low lag characteristic and the spectral reponse of 200 to 700 nm. Hamamatsu Ultraviolet Vidicons are suited to used with the Ultaviolet Microscope. Applications

Film pickup in broadcast Education Medicine Security Industry Process control Surveillance

Applications

Security Industry Medicine Surveillance Millitary Education

Applications

Judgment or inspection of jewels Check-up forged documents Study of Biology Investigation of flame.

Infrared Vidicons

The N156, N157 and N214 are infrared sensitive vidicons having a target of PbO-PbS layer. The spectral response covers visible to $2.0 \,\mu\text{m}$ with high sensitivity. N214 has separate field mesh connection to ensure high resolution.

Temperature distribution on the cement kiln.

Heated soldering iron

X-ray Vidicon

The N603 is a 25 mm (1'') type vidicon designed to be used for image pickup of X-ray. The target made by PbO has the capability of direct conversion of X-ray to electron image and output signal is read by the electron beam scanning, so the N603 provides high rosolution image of X-ray.

Applications

Nondestructive inspection for small parts, IC, insect and plant.

Temperature distribution of the surface of the molten iron in a blast furnace. The white portion indicates unbalance smelting.

Judgement of jewels or forgery document Reflectograpy of paintings or antiques Scientific analysis medical analysis Control of blast furnace

Laser pattern The curve on the left side shows the intensity of Laser light.

Applications

VISIBLE VIDICONS(I)

			Overall			Heate Unipot Cath	r for ential ode		
Туре	Typical Applications	Remarks	Length (mm)	Method	Method	Voltage AC or DC (V)	Current (mA)	Grid No. 6 Voltage (V)	Grid No, 5 Voltage (V)

25 mm (1 inch) Dia. Types

7262A(H)	Live TV Cameras	· Short Type	130	Magnetic	Magnetic	6,3	95	_	—
7735A(H)	Live TV Cameras	[.] Standard Type	159	Magnetic	Magnetic	6.3	600	-	-
8507 8507(H) 8507(K)	Film Pickup Cameras for Broadcast	[•] High Resolution	159	Magnetic	Magnetic	6.3	600	_	_
	Industrial TV Cameras								
8541 8541(H)	Film Pickup Cameras for Broadcast	• High Resolution	159	Magnetic	Magnetic	6.3	95	_	-
8541(K)	Industrial TV Cameras								
8573(H)	Industrial TV Cameras	 Short Type High Resolution 	130	Magnetic	Magnetic	6.3	95	-	_

L The Types of (H) and (K) are classified by Spurious Signal Specifications (See Page 18)

7262A 8573

	Typical Operating Conditions and Characteristics												
Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Illumina- tion (/x)	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре	
250	~ 200	200	15-2 100	10	10 ~ 50	10	20	200	700	25(4)	20/2)	7262A(H)	
250	- 300	300	-45-0-100	40	10.0.50	10	20	200	700	25(A)	20(a)	7735A(H)	
500 750	270 ~ 330 400 ~ 500	300 300	-45~-100 -45~-100	41 53	$20 \sim 40$ $20 \sim 40$	10 10	20 20	200 200	750 900	40(B) 50(C)	20(a) 20(a) 15(b)	8507 8507(H) 8507(K)	
750	400~500	300	-45~-100	53	10~20	100	5	350	900	50(C)		8541 8541(H) 8541(K)	
500	270 ~ 330	300	-45~-100	41	20~40	10	20	200	750	40(B)	20(a)	8573(H)	

See Amplitude Response Characteristic Curves Below —

See Decay Lag Characteristic Curves Below

SPECTRAL RESPONSE

AMPLITUDE RESPONSE (See "Amplitude Response" in the Table)

LIGHT TRANSFER CHARACTERISTICS

DECAY LAG CHARACTERISTICS

(See "Decay Lag" in the Table)

7

VISIBLE VIDICONS(II)

			Overall		Definition	Heate Unipo Cath	r for tential ode		
Туре	Typical Applications	Remarks	Length (mm)	Method	Method	Voltage AC or DC (V)	Current (mA)	Grid No. 6 Voltage (V)	Grid No.5 Voltage (V)

25 mm (1 inch) Dia. Types

8134 8134(H)	Film Pickup Cameras for Broadcast Industrial TV Cameras	• High Resolution • Low Shading • Low Distotion	159	Electro- static	Magnetic	6.3	95	500 750 750	300 450 450
8816(H)	Film Pickup Cameras	 Very High Resolution Low Shading Low Distotion 	159	Cambined	Magnetic	6.3	95	500 750 750	300 450 450
25PE12	Industrial TV Cameras for Special Scanning Systems	 Electrostatic Focus and Deflection 	159	Electro- static	Electro- static	6.3	95	-	350 500

The Types of (H) are classified by Spurious Signal Specifications. (See Page 18)

	Typical Operating Conditions and Characteristics												
Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Illumina- tion (Ix)	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре	
$50 \sim 100$ 90 ~ 150 90 ~ 150	500 750 750	300 300 300	_45~_100 _45~_100 _45~_100	-	$20 \sim 40$ $20 \sim 40$ $10 \sim 20$	10 10 100	20 20 5	200 200 350	700 800 800	25(A) 35(B) 35(B)	20(a) 20(a) 15(b)	8134 8134(H)	
150~250 150~250 150~250	500 750 750	300 300 300	-45~-100 -45~-100 -45~-100	26 26 26	$20 \sim 40$ $20 \sim 40$ $10 \sim 20$	10 10 100	20 20 5	200 200 350	800 1000 1000	40(C) 50(D) 50(D)	20(a) 20(a) 15(b)	8816(H)	
200 300	$\begin{array}{c} 0 \sim 60 \\ 0 \sim 60 \end{array}$	300 300	-45~-100 -45~-100	-	$20 \sim 40$ $20 \sim 40$	5 5	20 20	100 100	350 450	—(E) 15(F)	25(c) 25(c)	25PE12	

See Amplitude Response Characteristic Curves Below-

See Decay Lag Characteristic Curves Below

SPECTRAL RESPONSE

AMPLITUDE RESPONSE (See "Amplitude Respanse" in the Table)

LIGHT TRANSFER CHARACTERISTICS

DECAY LAG CHARACTERISTICS (See "Decay Lag" in the Table)

9

VISIBLE VIDICONS(III)

			Overall	Feeting	Deflection	Heate Unipo Catl	er for itential node		
Туре	Applications	Remarks	Length (mm)	Method	Method	Voltage AC or DC (V)	Current (mA)	Grid No. 6 Voltage (V)	Grid No. 5 Voltage (V)

18 mm (2/3 inch) Dia. Types

8844	Compact Live TV Cameras	• Very Small Type • Hihg Resolution • Low Lag	103	Magnetic	Magnetic	6.3	95	-	_
N887	Compact Live TV Cameras	· Very Small Type · Low Lag	103	Electro- static	Magnetic	6.3	95	500	300

38 mm (1-1/2 inch) Dia. Type

	Film Pickup Cameras for	·Very High Reso-							
8480 8480(H)	Broadcast	lution	260	Electro-	Magnetic	6.3	95	1400	$700 \sim 840$ $700 \sim 840$
0400(11)	Data Transmission Applications	· Low Shading		static				1400	/00 040

8480

The Type of (H) is classified by Spurious Signal Specifications (See Page 18)

8844 N887

(bottom view)

unit:mm

		Typical Op	erating Cond	litions and C	haracteristi	CS						
Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Illumina- tion (Ix)	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре
400 500	230 ~ 270 280 ~ 340	300 300	$-35 \sim -80$ $-35 \sim -80$	50 55	10~40 10~40	15 15	20 20	200 200	700 750	25(A) 30(B)	15(a) 15(a)	8844
60~85	500	300	-45~-100	_	10~40	15	20	200	600	17(C)	15(a)	N887
230 ~ 260 230 ~ 260	1400 1400	300 300	-45~-100 -45~-100	_	20 ~ 50 10 ~ 30	10 80	20 5	300 350	1200 1200	60(D) 60(D)	25(b) 20(c)	8480 8480(H)

See Amplitude Response Characteristic Curves Below -----

See Decay Lag Characteristic Curves Below

SPECTRAL RESPONSE

AMPLITUDE RESPONSE (See "Amplitude Response" in the Table)

LIGHT TRANSFER CHARACTERISTICS

f

DECAY LAG CHARACTERISTICS (See "Decay Lag" in the Table)

SILICON VIDICONS

				Maximur	m Ratings			Heate Unipot Cath	er for tential tode		
Туре	Typical Applications	Remarks	Overall Length (mm)	Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Focusing Method	Deflec- tion Method	Voltage AC or DC (V)	Current (mA)	Grid No.6 Voltage (V)	Grid No.5 Voltage (V)

18 mm (2/3 inch) Dia. Types

High Sensitivity

TV Cameras

N736(S)

N747(T) N747(S)	TV Telephones High Sensitivity TV Cameras	 Very High Sensitivity Low Dark Current No Burn-in Very Low Lag 	103	400	400	Magnetic	Magnetic	<u>6.3</u>	95	_	_
25 mm (1	inch) Dia. Type	\$									
N736(T)	TV Telephones	· Very High Sensitivity · Low Dark Current	159	500	500	Magnetic	Magnetic	6.3	95	_	_

- The Types of (T) and (S) are classified by Spurious Signal Specifications (See Page 18) Ł

· No Burn-in

· Very Low Lag

		Typical Op	erating Cond	litions and C	haracterist	ics						
Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Illumina- tion (/x)	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре
300	160~200	300	-35~-80	40	10	1	5	250	400	8	6	N747(T) N747(S)
300	160~200	300	-35~-100	33	10	0.5	10	250	500	20	12	N736(T) N736(S)

See Amplitude Response Characteristic Curves Below —

See Decay Lag Characteristic Curves Below

SPECTRAL RESPONSE

AMPLITUDE RESPONSE (See "Amplitude Response" in the Table)

LIGHT TRANSFER CHARACTERISTICS

DECAY LAG CHARACTERISTICS (See "Decay Lag" in the Table)

INFRARED VIDICONS

•				Target E	Voltage sj			Heate Unipot Cath	r for ential ode		
Туре	Typical Applications	Remarks	Overall Length (mm)	Recom- mended Value	Maximum Value	Focusing Method	Deflec- tion Method	Voltage AC or DC (V)	Current (mA)	Grid No.6 Voltage (V)	Grid No.5 Voltage (V)

25 mm (1 inch) Dia. Types

N156 N156-01		$^{\circ}$ Spectral Response Range 0.4 \sim 2.0 μ m	159	2		Magnetic	Magnetic	6.3	95	_	_
N157 N157-01	Infrared TV Cameras	$^{\circ}$ Spectral Response Range 0.4 \sim 2.0 μ m $^{\circ}$ Short Type	130	described in each data sheet	described in each data sheet	Magnetic	Magnetic	6.3	95	_	-
N214 N214-01		$^{\circ}$ Spectral Response Range 0.4 \sim 2.0 μ m $^{\circ}$ High Resolution	1 <u>5</u> 9			Magnetic	Magnetic	6.3	95	_	_

The Types of -01 are classified by Spurious Signal Specifications. (See Page 18)

TRANSMITTANCE OF IR FILTER

	Typical Op	erating Cond	litions and C	haracteristi	CS						
Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Illumina- tion	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре
A lamp op	erated at 2	856K and To	oshiba IR-D8	30A are use	d1						
					10 /						N156 N156-01
~300	300	-45~-100	40	20~80	+ IR-D80A	20	200	600	18	60	N157 N157-01
270~330	300	-45~-100	41	20~80	10 /x +	20	200	700	24	60	N214 N214-01
	Grid No.3 Voltage (V) A lamp op ~ 300 270 ~ 330	Typical OpGrid No.3 Voltage (V)Grid No.2 Voltage (V)A lamp operated at 2~ 300300270 ~ 330300	Typical Operating Cond Grid No.3 Voltage (V) Grid No.2 Voltage (V) Grid No.1 Voltage (V) A lamp operated at 2856K and To ~300 300 -45~-100 270 ~ 330 300 -45~-100	Typical Operating Conditions and CGrid No.3 Voltage (V)Grid No.2 Voltage (V)Field Strength at Center of Focus- ing Coil (G)A lamp operated at 2856K and Toshiba IR-D8~300300-45~-10040270~330300-45~-10041	Typical Operating Conditions and CharacteristiGrid No.3 Voltage (V)Grid No.2 Voltage (V)Field Strength at Center of Focus- ing Coil (G)Target Voltage (V)A lamp operated at 2856K and Toshiba IR-D80A are used~300300-45~-1004020~80270~330300-45~-1004120~80	Typical Operating Conditions and CharacteristicsGrid No.3 Voltage (V)Grid No.2 Voltage (V)Grid No.1 Voltage (V)Field Strength at Center of Focus- ing Coil (G)Target Voltage (V)Faceplate Illumina- tionA lamp operated at 2856K and Toshiba IR-D80A are used 40 $20 \sim 80$ $10 / x$ + IR-D80A ~ 300 300 $-45 \sim -100$ 40 $20 \sim 80$ $10 / x$ + IR-D80A	Typical Operating Conditions and CharacteristicsGrid No.3 Voltage (V)Grid No.2 Voltage (V)Grid No.1 Voltage (V)Field Strength at Center of Focus- ing Coil (G)Target Voltage (V)Faceplate Dark Current 	Typical Operating Conditions and CharacteristicsGrid No.3 Voltage (V)Grid No.2 Voltage (V)Grid No.1 Voltage (V)Field Strength at Center of Focus- ing Coil (G)Target Voltage (V)Faceplate Illumina- tionDark Current (nA)Signal Output Current (nA)A lamp operated at 2856K and Toshiba IR-D80A are used-1-100-45~-10040 $20 \sim 80$ $\frac{10}{x}$ + IR-D80A20200270 ~ 330300 $-45 \sim -100$ 41 $20 \sim 80$ $\frac{10}{x}$ + HR-D80A20200	Typical Operating Conditions and CharacteristicsGrid No.3 Voltage (V)Grid No.2 Voltage (V)Grid No.1 Voltage (V)Field Strength at Center of Focus- ing Coil (G)Target Voltage (V)Faceplate Illumina- tionDark Dark Current (nA)Signal Output Current (nA)Limiting Resolu- tion at Center (TV Lines)A lamp operated at 2856K and Toshiba IR-D80A are used	Typical Operating Conditions and CharacteristicsGrid No.3 Voltage (V)Grid No.2 Voltage (V)Grid No.1 Voltage (V)Field Strength at Center of Focus- ing CoilTarget Voltage (V)Faceplate Illumina- tionDark Current (nA)Signal Uput Current (nA)Limiting Resolu, tion at tion at tion at tion at tions, (%)A lamp operated at 2856K and Toshiba IR-D80A are used-45~-10040 $20 \sim 80$ $\frac{10}{+}$ HR-D80A2020060018270 ~ 330300 $-45 \sim -100$ 41 $20 \sim 80$ $\frac{10}{+}$ HR-D80A2020070024	Typical Operating Conditions and CharacteristicsGrid No.3 Voltage (V)Grid No.1 Voltage (V)Field Strength at Center of Focus- ing CoilTarget Voltage (V)Faceplate Illumina- tionDark Dark (InA)Signal Output (InA)Limiting Resolu- tion at 2000Amplitude Response at 400 TV LinesDecay after a Tot (Resolu- (Resolu- (Resolu- (RA))Amplitude Response (InA)Decay Output (InA)Amplitude Output (InA)Amplitude Resolu- tion at 2400 TV Center (INA)Decay Resolu- Center (INA)Amplitude Response (INA)Decay Response (INA)A lamp operated at 2856K and Tothiba IR-D80A are used4020 ~ 8010 /x + HR-D80A202006001860300 $-45 \sim -100$ 40 $20 \sim 80$ $\frac{10}{+}$ + R-D80A202006001860270 ~ 330300 $-45 \sim -100$ 41 $20 \sim 80$ $\frac{10}{+}$ + R-D80A202007002460

See Amplitude Response Characteristic Curves Below. ----

See Decay Lag Characteristic Curves Below. ----

SPECTRAL RESPONSE

LIGHT TRANSFER CHARACTERISTICS

DECAY LAG CHARACTERISTICS (See "Decay Lag" in the Table)

X-RAY VIDICON 25 mm (1 inch) Dia. Type

				Target E	Voltage sj			Heate Unipo Cath	er for tential node		
Туре	Typical Applications	Remarks	Overall Length (mm)	Recom- mended Value	Maximum Value	Focusing Method	Deflec- tion Method	Voltage AC or DC (V)	Current (mA)	Grid No.6 Voltage (V)	Grid No.5 Voltage (V)
N603	X-ray TV Cameras	Beryllium Faceplate	159	described in each data sheet	described in each data sheet	Magnetic	Magnetic	6.3	95	-	_

ULTRAVIOLET~VISIBLE VIDICONS

25 mm (1 inch) Dia Types

				Target E	Voltage isj			Heate Unipot Cath	r for ential ode	Grid No 6	Grid No 5
Туре	Typical Applications	Remarks	Overall Length (mm)	Recom- mended Value	Maximum Value	Focusing Method	Deflec- tion Method	Voltage AC or DC (V)	Current (mA)	Voltage (V)	Voltage (V)
N371	Ultraviolet	 Spectral Response Range 0.2 ~ 0.6 μm Fused-Silica Faceplate 	159	described	described	Magnetic	Magnetic	6.3	95	_	_
N983	TV Cameras 2 Dimensional Spectroscopy	 Spectral Response Range 0.2~0.7 μm Fused Silica Faceplate 	159	in each data sheet	in each data sheet	Magnetic	Magnetic	6.3	95	_	_

SPECTRAL RESPONSE

LIGHT TRANSFER CHARACTERISTIC OF N983

unit:mm

N983 N371

		Typical Op	perating Con	ditions and (Characterist	tics						12000
Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Irradiance (R/min.)	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре
430	250~300	300	-45~-100	40	10~50	100	1	100	500	10(A)	20	N603

Approx. 250 lp/cm -

See Apmlitude Response Characteristic Curves Below. See Decay Lag Characteristic Curves Below. -

	The second	Typical Op	perating Cond	ditions and (Characterist	ics						der con la
Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage (V)	Field Strength at Center of Focus- ing Coil (G)	Target Voltage (V)	Faceplate Illumina- tion (Ix)	Dark Current (nA)	Signal Output Current (nA)	Limiting Resolu- tion at Center (TV Lines)	Amplitude Response at 400 TV Lines (%)	Decay Lag after 3 TV Fields (%)	Туре
270	~ 300	300	-45 ~ -100	40	10~50	30	1	200	700	25(B)	35	N371
500 750	270 ~ 330 400 ~ 500	300 300	-45 ~ -100 -45 ~ -100	41 53	15∼45 15∼45	0.5 0.5	1 1	160 160	750 900	40(C) 50(D)	20 20	N983
					See Amplitu	ide Respons	e Characte	eristic Curv	es Below		t	

See Amplitude Response Characteristic Curves Below. ----See Decay Lag Characteristic Curves Below. -

LIGHT TRANSFER CHARACTERISTIC OF N371

AMPLITUDE RESPONSE

(See "Amplitude Response" in the Table)

RADIATION TRANSFER CHARACTERISTIC OF N603

DECAY LAG CHARACTERISTICS (See "Decay Lag" in the Table)

SPURIOUS SIGNAL SPECIFICATIONS

Specification 1

This test is performed using an uniformly diffused white test chart that is separated into two zones as shown in the right. The tube is operated under the conditions specified in "Typical Operating Conditions" with the lens adjusted to provide an output current of 200 nanoamperes after setting the target voltage at a value of typical condition. The focusing voltage or coil current is also adjusted to provide maximum picture resolution.

Spurious signals are evaluated by size which is represented by equivalent numbers of raster lines in a 525 TV line system. The following each table shows the maximum allowable spot numbers for each zone.

To be classified as a spot, a contrast ratio greater than 1.4:1 must exist for white spot and greater than 2:1 for black spot. The spurious signals such as smudges, lines, streaks, mottled background, graying background and uneven background having contrast ratio greater than 1.4:1 will apply correspondingly to spots.

Minimum separation between any 2 spots greater than 2 TV lines is limited to a distance equivalent to 16 TV lines.

1) 7262A(H), 7735A(H), 8134(H), 8816 8507(H), 8541(H), 25PE12 8480(H), 8844, 8573(H), N983

Number of	Number	allowed
TV lines	Zone 1	Zone 2
6 over	0	0
6 to but not including 4	0	2
4 to but not including 1	3	4
1 and under	*	*

4) N736(T), N747(T)

Number of	Number allowed						
TV lines	Zone 1	Zone 2					
6 over	0	0					
6 to but not including 4	0	2					
4 to but not including 1	3	5					
1 and under	*	*					

2) 8507(K), 8541(K)

Number of TV lines	Number allowed						
	Zone 1	Zone 2					
4 over	0	0					
4 to but not including 3	0	1					
3 to but not including 1	2	3					
1 and under	*	*					

5) N736(S), N747(S)

Number of	Number allowed						
TV lines	Zone 1	Zone 2					
4 over	0	0					
4 to but not including 3	0	2					
3 to but not including 1	3	4					
1 and under	*	*					

3) 8134, 8507, 8541, 8480

Number of	Number allowed						
TV lines	Zone 1	Zone 2					
3 over	0	0					
3 to but not including 1	1	2					
1 and under	*	*					

* Spots with size of 1 TV line or under are allowed unless concentration causes a smudged appearance.

When the number of spots with certain size exceeds the number specified in the relevant column of tables above, the exceeding spots are allowed to be regard as spots of greater size than actually they are.

Zone

Zone2

Zone 3

Specification 2

This test is performed using an uniformly diffused white test chart that is separated into three zones as shown in the right. The tube is operated under the conditions specified in "Typical Operating Conditions" with the focusing coil current adjusted to provide the maximum picture resolution.

Infrared Vidicons (N156, N157, N214).

Adjusting target voltage for dark current to be a value of 20nA and also adjusting the lens to provide an output current of 200nA using tungsten filament lamp operated at a distribution temperature of 2856K as a light and infrared filter Toshiba IR-D80A.

Ultraviolet ~ Visible Vidicon (N371, Specification of N983 is listed above)

 Adjusting the lens to provide a faceplate illumination of 30 luxes and also adjusting the target voltage to provide an output current of 200nA. A 2856K tungsten filament lamp is used.

X-Ray Vidicon (N603)

 Adjusting the distance between the X-ray source and the vidicon to provide a faceplate irradiance of 13 miliroentgens/minute and also adjusting the target voltage to provide an output current of 60nA using alminium plate of 1.5 mm thick as a filter; the radiation source is Shimadzu WELTES-160E operated at a tube voltage of 70kVp and tube current of 6mA.

Then readjusting the tube voltage and the tube current to provide an output current of 200nA.

The following table shows maximum allowable spot size and maximum allowable degrading marks (see **Note**) for each zone. The maximum allowable spot size applies to all spots having contrast ratio greater than 1.4:1.

The types having suffix of "-01" are distinguished by specifications of shading and picture resolution as well as spurious signals.

Type No.	Maximu	um Allowable	Spot Size	Maxi De	mum Allo grading M	wable ark	Center Resolution min.	Shading max.	
	Zone 1	Zone 2	Zone 3	Zone 1	Zone 2	Zone 3	(TV lines)	(%)	
N156	_	0	7 to but not including 8	50			100	10	
N157	5 to but not	6 to but not including 7			60	80	400	40	
N214	including 6						600	30	
N156-01		6 to but not	7 to but not	60			400	55	
N157-01	6 to but not				90	120		55	
N214-01	including /	including /	including 8				550	45	
N603 N371	5 to but not 6 to but not 7 to but not including 6 including 7 including 8		50	60	80	400	40		

(Note) Degrading Marks

Contrast Ratio Size (equivalent TV lines)	1.4≤C.R<2	Over2
under 1.4	0	0
$1.4 \leq_a <2$	0	3
$2 \leq b < 3$	3	6
$_3 \leq_c < 4$	6	12
$4 \leq d \leq 5$	12	20
$5 \le e \le 6$	20	30
$6 \leq f < 7$	30	40
$7 \leq g < 8$	40	50

The spot size in this case is the average value. Spots of contrast ratio less than 1.4:1 will be excepted.

7.5

Zone 3

- When a spot consists of several parts having their several contrast ratio, at first caluculating digrading marks of each part and adopting maximum part marks.
- The spurious signals such as smudges, lines, streaks, mottled background, grainy background and uneven background will apply correspondingly to spots.

VIDICON BASES AND SOCKETS

Base No. E8-11 (7262A, 8573, 7735A, 8507, 8541, 8134, 8816, N736, N156, N157 N214, N603, N371, N983

Socket No. S8-605E-00

-28 dia

Insulation Resistance \dots 1000 M Ω min. (at 500 Vdc) Withstand Voltage \dots 2000 Vac (for 1 minute) Contact Resistance

..... 7 m Ω max. (at 2Vdc, 1A)

Base No.E7-91(8844, N887, N747)

...... 700 Vac (for 1 minute) Contact Resistance 10 mΩ max. (at 2 Vdc, 1A)

YOKE ASSEMBLIES

Selection Guide

For Lies With				Focusing		Deflection Coil						Alignment			
FO	r Use with	Туре	Features	Coil		Horizontal			Vertical			Coil		Magnet	
Size mm(inch)	Туре			R (Ω)	mA/G	L (mH)	R (Ω)	l (mApp)	L (mH)	R (Ω)	l (mApp)	R (Ω)	mA/G	max. (G)	min. (G)
		KV-12S	For compact ITV, MM, Square	55	120/50	0.88	2.9	150	32	146	20	-	 .	4	1
		KV-12SB	High Impedance Type of KV-12S	175	65/50	0.88	3.2	150	32	146	20	-	-	4	1
	N747	KV-16BG	For Ultra Compact ITV, MM, Circular	104	75/50	0.84	4.2	180	32	140	20	-	-	4	1
18(2/3)		KV-22B	For Compact ITV, With F. B. Adj.	50	120/50	0.88	2.9	150	32	146	20	-	-	4	1
		KV-22C	High Impedance Type of KV-22B	175	65/50	0.88	2.9	150	32	146	20	-	-	4	1
	N877	KV-19G	For Ultra Compact ITV, SM, Circular	-	-	0.9	4.4	100	26	145	16		-	4	0.3
		KV-19JA	For Compact ITV, With F. B. Adj. SM, Circular	-	-	0.9	4.4	100	26	145	16	-	-	4	0.3
	7262A, 7735A N156, N157 N371	KV-9G	For Popular Type ITV, MM, Square	100	90/40	1.6	4.4	150	70	120	33	-	-	4	1
		KV-10	For Common Type ITV, MM, Circular	100	90/40	1.6	4.4	150	70	120	33		-	4	1
		KV-13J	Common ITV, With F.B. Adj. MM, Circular	100	90/40	1.6	4.4	150	70	120	33	-	-	4	1
	8541, 8573	KV-8L	For Broadcasting, MM, Square	120	110/55	1.0	4.6	170	55	200	35	148	40/4	-	
	8507, N736 N214, N983	KV-8G	For High Resolution Use, Shielded MM, Circular	171	100/60	1.4	5.4	220	31.5	205	40	160	40/4	-	-
25 (1)		KV-9L	For Multi-Use ITV, High Resolution Type of KV-9G	100	90/40	1.6	4.4	150	70	120	33	-	-	4	1
		KV-13M	For Malti-Use ITV High Resolution Type of KV-13J	100	90/40	1.6	4.4	150	70	120	33	-	-	4	1
	N603	E1164	For Side-tip Tube (similar to KV-8L)	120	110/55	1.0	4.6	170	55	200	35	148	40/4	-	-
	8134	KV-6A	For Broadcasting, SM, Square	-		0.45	2.0	140	18	88	13	130	50/4	-	-
	8816	KV-14CA	For High Resolution ITV, CM, Square	400	30/26	1.2	5.1	140	28	195	25	170	60/4	-	-
38(1-1/2)	8480	KV-15A	For Broadcasting, SM, Square	-	- 22	1.7	5.8	100	31	46	15	160	50/4	-	-

Made by chuomusen Co., LTD. (Tokyo Japan) except E1164

FOR OTHER HAMAMATSU PRODUCTS INFORMATION, OUR LATEST CATALOGS ILLUSTRATED ABOVE ARE AVAILABLE ON REQUEST.

HAMAMATSU TV CO., LTD

1126-1 Ichino-cho, Hamamatsu, Japan Phone: (0534) 34-3311 Telex: 04225-185

Azabudai Building 6F 2-2-1 Azabudai, Minatoku, Tokyo, Japan Phone: (03) 584-4931

HAMAMATSU CORPORATION

120 Wood Avenue, Middlesex, N.J. 0884C U.S.A. Phone: (201) 469-6640 Telex: 833-403

(WESTERN U.S.A. OFFICE) 2680 Bayshore Frontage Road Mountain View, Calif. 94043 U.S.A. Phone: (415) 965-2300 Telex: 345594

FOR MEASURING TV SYSTEMS.

HAMAMATSU SYSTEMS INC.

332 Second Avenue, Waltham, Mass. 02154 U.S.A. Phone: (617) 890-3440

HAMAMATSU TELEVISION EUROPA GMBH

Mühlbachstrasse 20, Postfach 23 D-8031 Seefeld/Hechendorf, F.R. Germany Phone: (08152) 7771 Telex: 527719 SEMUR D

EUROPIAN SALES REPRESENTATIVES

HAKUTO INTERNATIONAL (UK) LTD. Hakuto House 557-563 Rayleigh Road, Leigh-on-Sea, Essex SS9 5HP England Phone: (0702) 526622 Telex: 99353

INTER COMPOSANTS

9, Impasse des Petits Marais 92230 Port de Gennevilliers, France Phone: 773. 19.80+ Telex: 610584

MESS-U. REGELTECHNIK

Seefeld/Hechendorf Mühlbachstrasse 20 Postfach 23, F.R. Germany Phone: (08152) 7771 Telex: 527719

INSTRUMENT AB LAMBDA

Postbox 27023 S-102 51 Stockholm 27 Sweden Phone: 08-63 14 70 Telex: 10645

HESA S.P.A.

Viale Teodorico 25 Milano 20149 Italy Phone: (02) 34. 91. 693 Telex: 37219

Cat. No. SC-5-2 Printed in Japan C78. 2.20 C78. 4.50

1 1