MONITOR TUBES

$0,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curves, measured according to TEPAC103A.

Product safety

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 14 kV .

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

- 17 cm diagonal rectangular flat face
- 70° deflection angle
- high resolution
- quick heating cathode
- bonded face plate
- metal band for mounting
- M17-143WE: for use in precision monitors and as a viewfinder in television cameras M17-145WE: for use in photographic equipment (see Optical Data)

QUICK REFERENCE DATA

Deflection angle, diagonal 70°
Face diagonal 17 cm

Neck diameter
Overall length
Screen dimensions
17 cm
28 mm
max. 240 mm
$\min .124 \mathrm{~mm} \times 93 \mathrm{~mm}$
min. 1050 lines

ELECTRICAL DATA

Capacitances
final accelerator to metal band
final accelerator to external conductive coating
cathode to all other elements
grid 1 to all other elements
Focusing method
Deflection method
Deflection angle, diagona
Heating
heater voltage
heater current
Heating time to attain 10% of the cathode current at equilibrium conditions

OPTICAL DATA
Screen
Phosphor type fluorescent colour persistence
Useful screen dimensions diagonal horizontal axis vertical axis
Light transmission of screen
$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 5(\mathrm{l}) / \mathrm{m}^{\prime} \quad 135 \mathrm{pF}}$ $\mathrm{G}_{\mathrm{g} 3, \mathrm{~g}}(\mathrm{l}) / \mathrm{m} \quad 240 \mathrm{pF}$ $\begin{array}{ll}\mathrm{C}_{\mathrm{k}} & 3,6 \mathrm{pF} \\ \mathrm{C}_{\mathrm{g}} & 7 \mathrm{pF}\end{array}$ electrostatic magnetic* 70°
indirect by a.c. or d.c.**

I_{f}	240 mA

metal-backed phospho
WE ${ }^{\wedge}$
white
medium short
min. 155 min .
min .124 min .
min. 93 min .
approx. 88\%

Note: The M17-145WE has an improved screen blemish specification, to meet the extreme require ments of photographic recording equipment.

X-radiation limit curves, at a constant anode current of $250 \mu \mathrm{~A}$, measured according to TEPAC103A

* To obtain the best tube performance, deflection unit AT1071/07 should be used.
** Not to be connected in series with other tubes.
- Other phosphors available to special order

RECOMMENDED OPERATING CONDITIONS

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 3, \mathrm{~g} 5(\ell)}$	14	16 kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	0 to 400^{*}	0 to 400 V *
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	400	600 V
Cut-off voltage for visual extinction of focused spot	$-\mathrm{V}_{\mathrm{g} 1}$	30 to 62	40 to 90 V

RESOLUTION

Resolution at screen centre, measured with shrinking raster method (non-interlaced raster), and with beam centring magnet**

$$
\begin{aligned}
& \text { at } \mathrm{V}_{\mathrm{g} 3, \mathrm{~g} 5(\ell)}=14 \mathrm{kV}, \mathrm{~V}_{\mathrm{g} 2}=400 \mathrm{~V}, \\
& I_{\ell}=20 \mu \mathrm{~A}, \text { luminance }=400 \mathrm{~cd} / / \mathrm{m}^{2} \\
& \text { at } \mathrm{V}_{\mathrm{g} 3, \mathrm{~g}} \mathrm{~g}(\ell)=16 \mathrm{kV}, \mathrm{~V}_{\mathrm{g} 2}=600 \mathrm{~V}, \\
& I_{\ell}=20 \mu \mathrm{~A}, \text { luminance }=500 \mathrm{~cd} / \mathrm{m}^{2}
\end{aligned}
$$

Final accelerator voltage

Focusing electrode voltage
First accelerator voltage
Control grid voltage
negative
positive
positive peak
Cathode to heater voltage positive
negative
min. 1250 lines

	\min.	1050 lines
	min.	1250 lines
$V_{g 3, g 5}(\ell)$	max. min.	$\begin{aligned} & 18 \mathrm{kV} \\ & 12 \mathrm{kV} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 4}$	max.	1 kV
$-V_{g 4}$	max.	$0,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 800 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$
$-V_{g 1}$	max.	150 V
$V_{\mathrm{g} 1}$	max.	0 V
$\mathrm{V}_{\mathrm{g} 1 \mathrm{p}}$	max.	2 V
V_{kf}	max.	125 V
$-\mathrm{V}_{\mathrm{kf}}$	max.	125 V

MECHANICAL DATA (see also the figures on the next page)
Overall length $232 \pm 8 \mathrm{~mm}$

Neck diameter

Base
Final accelerator contact
Implosion protection
Net mass

$232+8 \mathrm{~mm}$

$\mathrm{min} .27,8 \mathrm{~mm}$
neo eightar, B 8 H ; IEC 67-1-31a cavity contact, CT8; IEC 67-III-2 bonded face plate
approx. 1 kg

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone.

Accessories

Final accelerator contact connector
55563 A

* For optimum focus at a beam current of $50 \mu \mathrm{~A}$
* Catalogue number 3322142 11401; supplied with directions for use with each tube.

A Luminance is measured with a photocell, of which the spectral response curve is identical to that of the human eye, on a 312 -lines raster with dimensions $70 \mathrm{~mm} \times 70 \mathrm{~mm}$.

MECHANICAL DATA

Dimensions in mm

Reference line gauge

(1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
(2) The maximum dimension is determined by the reference line gauge.

