MINISTRY OF AVIATION - R.R.E.

VALVE ELECTRONIC

Specification MOA/CV6026 Issue 1 dated 9.8.60. To be read in conjunction with K1001.		pecificati classified		Valve Unclassified	
TYPE OF VALVE - Pulse hydrogen thyratro: CATHODE - Unipotential, connected point of heater. ENVELOPE - Glass. PROTOTYPE - VX3250.	otes	MARKING K1001/5 Serial No. TOP CAP See Fig 1 on page 6.			
Cathode heater current, Vh = 12V Reservoir heater current, Vr = 5V. Max. peak anode voltage, (Va) Max. peak anode current, (Ia)	25 H 2000 P 10,000 G 3 B 7,500 C 1000 F, 110 R 5 P	R H H H H H H H H H H H H H H H H H H H	Black Fellow) Fellow	Con He Cooling to A cooling to	of 1/32 ge 6 5½ nge) 6 1/32 ge 6 SITION rmost, the ve shall be the vertical G ATALOGUE NO

NOTES

A. The temperature of the anode cooler one inch from the free end, as shown by the temperature indicating point shall not exceed

C to ensure that the glass-to-glass-metal seal does not exceed 140 C.

As an indication, when the valve is operating under the conditions specified for the tests on page 4, and when the inlet air temperature is 40° C the air flow required is about 120 cu. ft. per minute. Under these conditions the pressure is about $1\frac{1}{2}$ inches head of water.

- B. During the cathode warm up, the cathode heater voltage should be $12V + 7\frac{1}{2}\%$. After application of anode voltage the cathode heater voltage should be a justed to a value inside the dashed lines in fig.2 on page 7, corresponding 5 minutes and not more than 15 minutes after reaching the required mean enode current.
- C. Defined as the maximum instantaneous rate of rise of current, i.e. di/dt max. and measured with a mutual inductor in the anode lead.
- D. No part of theattached anode lead shall be within for the glass envelope.
- E. For ambient temperatures in the range + 5°C to + 70°C. For ambient temperatures in the range of 0°C to + 5°C the time should be increased to 15 minutes and for ambient temperatures in the range 5°C to 0°C the time should be increased to 20 minutes.
- F. Refers to the unloaded trigger pulse weasured with respect to cathode potential.
- G. This rating applies, providing the inverse veltage during the first microsecond following the pulse accept exceed K x Ka, where K is a constant and has the walue 0.18.
- H. The anede voltage must be raised gradually. The time taken to reach 182V must be not less than 30 seconds and to reach 252V not less than 120 seconds.
- M. It is recommended that the cathode heater and reservoir heater be supplied from separate transformers.
- W. At the expense of increasing the anode delay time, the unloaded trigger pulse may be reduced to a value within the range 500 1000W, as shown in fig. 4 on page 8 The anode delay time drift, and jitter are both unaltered.
- P. The Pulse length may exceed 5 us provided the peak current is reduced sufficiently.
- Q. Higher FRFs may be used at suitably reduced anode voltages.
- R. The pulse generator must have the following characteristics:-

Unloaded trigger pulse:- 1000 volts, minimum
Rate of rise of unloaded trigger pulse:- 2 - 4 kV/us.
Unloaded trigger pulse duration:- 2 - 4 us.
Source impedance of trigger:- 200 ohms, maximum
DC resistance:- 500 ohms, maximum.

With the tube operating under equipment condition, the DC bias, measured across the decoupling capacitor C2 shall be 100 ± 100 negative.

The pulse generator must be connected to the valve through the resistance condenser network shown in fig. 3 on page 7.

NOTES continued

The valve will operate at full voltage with zero bias in circuits where the recovery time requirements are not stringent.

S. In the event of an arc-over in the thyratron for any reason, the grid remains at cathode potential whilst any circuit should therefore be designed to withstand the consequent current drain without damage.

Suranahu

TESTS

To be performed in addition to those applicable in K1001, and to be carried out after a holding period of 96 hours, see Note 9.

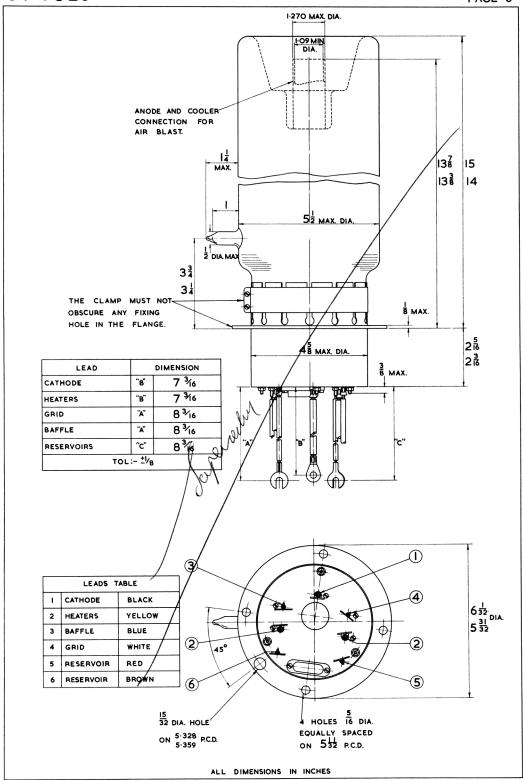
	1				+			
Tests, note 2.	Test conditions, notes 1,3.			Units Li		its	Notes	
	T	٧h	VR	Va		Min	Max.	
GROUP A, 100% inspection								
(a) HT run up time.	0 10 10+	12 12 12	5.0 5.0 5.0	Raise to 18	Secs/	=	- 30 120	4,7.
(b) Anode delay time (1)	15	12	5.0	25	us	-	0.70	4,5,7.
(e) Run (1),	17	7•5	5.0	25	-	-	-	4,7.
(d) Jitter.	25 - 30	7•5	5.0	25 25 25	mus	-	5	4,7.
(e) Run (2).	30	7•5	5.4	25	-	-	-	4,7
(f) Anode delay time(2)	35	7•5	5.4	25	us	Re	cord	4,5,7
(g) Run (3)	36	7•5	4.6	25	-	-	-	4,7
(h) Maximum di/dt.	41	7•5	4.6	25	A/us	6000	-	4,7,8
(j) Anode delay time (3)	42	7.5	4,6	25	us	Re	cord	4,5,7
(k)	43	12	/5.0	0	-	-	-	-
(1) Cathode heater curren	nt53	12/	5.0	0	A	28	34	-
(m) Reservoir heater current.	54	12	5.0	a	A	3•7	4.6	-
(n) Anode delay time drift	-	-	-	-	mus	-	100	10
GROUP B,C,D,E he tests	/							
GROUP F (p) Life, information.	-	7• 5	5	25	hours	2000	-	4,6

CV6026/1/4

NOTES

- 1. The units for the test conditions are, T in minutes, Vh and VR in RMS volts, and Va in peak kilvolts. The commencement of test (a) shall be at time T = o.
- The tests a n shall be performed continuously and in the sequence shown.
- 3. The cathode heater and reservoir heater voltages should be measured at the tag ends of the appropriate leads.
- 4. The valve must be tested in the circuit shown in fig.5,
 The pulse generator shall have the following characteristics:Unloaded trigger pulse:- 1000 volts maximum
 Rate of rise of unloaded trigger pulse:- 2 4 Kv/us.
 Unloaded trigger pulse duration:- 2us maximum.
 Source impedance: 200 ohms minimum.
 DC resistance: 500 ohms minimum.

With the tube operating, the DC bias measured across the bias decoupling capacitor C2 shall be 100 \pm 10V negative.


The anode circuit constants shall be chosen so that at Va peak = 25 kV, Peak Anode Current = 2,000 Amps Minimum, Mean Power Supply Current = 2.5 Amps Minimum, Pulse Length = 3.1 ± 0.2 usec, Pulse Recurrence Rate = 400 ± 10%. In addition L4 shall be adjusted to give 7,500 ± 5% amps. per microsecond rate of rise of peak anode current. The adjustment shall be made using a CV6026 valve in which the gas pressure can be varied. The rate of rise of current is measured as a function of gas pressure. Above a certain pressure the rate of rise is determined predominantly by the circuit inductance. L4 should be adjusted to give 7,500 ± 5% Ausec at this pressure.

The value of L5 shall be such as to give resonant charging.

The circuit constants shall be adjusted so that the inverse voltage is at least K x Va for a period of $\frac{1}{2}$ microsecond (min) in the first microsecond following the pulse, where K = 0.18.

- 5. Anode delay time is defined as the time interval between the rising portion of the grid pulse which is not more than 26% of the maximum unloaded pulse amplitude and the point where anode conduction takes place.
- 6. The valve shall be deemed to have reached the end of life when it fails to meet any of the requirements of tests a to n inclusive.

 Tests shall be made at intervals not exceeding 250 hours.
- 7. During Eff rum up time (test a), tripping is permissible. Subsequently the valve is not allowed to trip more than once. Should one trip occur, the HT must be repapplied at 25 kW within three seconds and the tests continued in sequence.
- 8. The rate of rise of anode current dia/dt shall be measured by means of a mutual inductor in the anode lead of the thyratron.
- 9. All valves shall be stored for at least 96 hours, during which no voltages shall be applied.
- 10. Anode delay time drift is the greatest difference between the anode delay times measured in tests (b),(f),(j).

PAGE 7 CV 6O2 6

FIG. 2

CATHODE HEATER VOLTS AGAINST

MEAN ANODE CURRENT (SEE NOTE B)

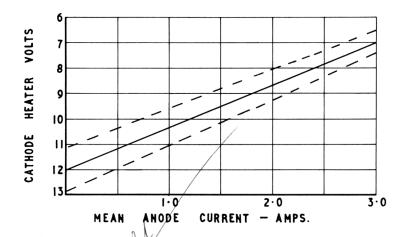
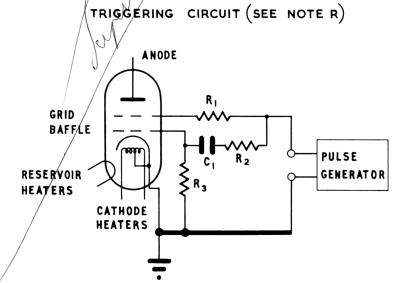
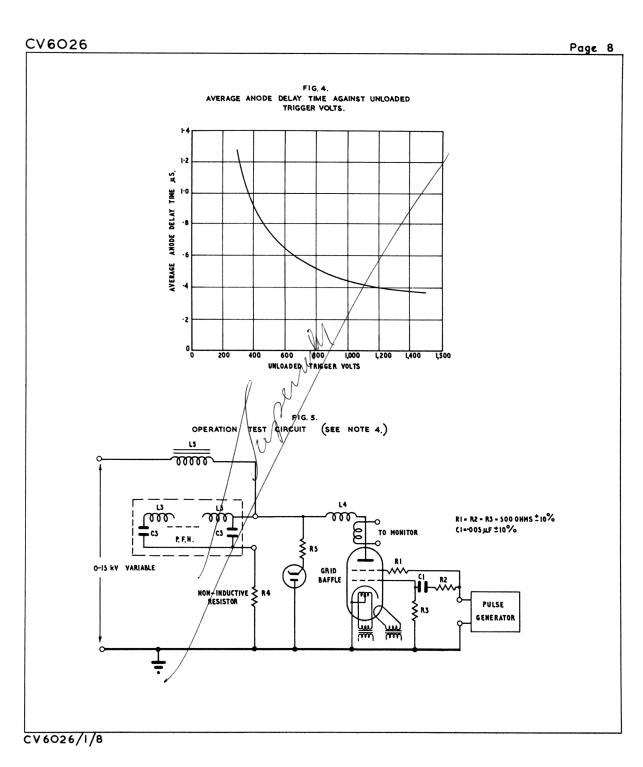




FIG. 3

 $C_1 = \cdot 005~\mu$ F $\pm 10~\%$, WORKING VOLTAGE 1000 V. $R_1 = R_2 = R_3 = 500~\Omega$ $\pm 10~\%$.

