VALVE ELECTRONIC

ADMIRALTY SURFACE WEAPONS ESTABLISHMENT

Specification AD/CV4108 incorporating	SEC	URITY
MIL/1301B/NAVY Issue 1 dated 1.10.1962	Specification	Valve
To be read in conjunction with K1006 and BSAA8	Unclassified	Unclassified

	TYPE OF VALVE: Medium Mu Double Triod CATHODE: Indirectly he ENVELOPE: Glass PROTOTYPE: 7308 E.I.A. DESIGNATION:		See K1001/4 Additional mar BASE BS.448/B9A	king 7308	-
Ande:	RATING (All limiting values are about the ster Voltage Heater Current (A) Max. Anode Voltage Max. "No foad" Anode Voltage Max. Negative Grid Voltage Amplification Factor Mutual Conductance Mutual Conductance Max. Bulb Temperature (°C) Max. Reak Anode Vollege (Tare) (V)	8.3 .335 100 A 250 A 1.65 A (+70 A -135 A 110 A 33 B	CONNECTION	TRODE a" g" k" h h k k'' k'' k''	Amdt 3
	C ag (pF) C in (pF) C out' (pF) C out' (pF) C out' (pF) C g' to g'' (max.) (pF) C a' to a'' (max.) (pF) A. Per section. B. At Va(b) = 100V; Vg(b) C. Without external shiel	-	-	<u>ITION</u>	7

D. The Joint Services Catalogue Number is: - 5960-99-037-2502

3

MILITARY SPECIFICATION SHEET

ELECTRON TUBE, TYPE 7308.

The requirements and tests of the latest issue of Specification MIL-E-1 shall apply, except as otherwise required herein.

Twin	Triode,	Medium	Mu				
	Ef	Ebb	Eb	Ecc	Ec	Ehk	Rk/k
	V	Vdc	Vdc	Vdc	Vdc	v	ohms
	6.6		250			70	
	6.0				-110	-135	
	6.3	100	Approx.90	+ 9			680
	Rg/g	Ik/k	Ic/g	Pp/p	T envelor	e Alt	
	Meg	mAdc	mAdo	W	°C	ft.	
	0.5	22		1.65	165	60,000	
	Note 1						
ed uni	potentia	1			Diameter:	7/8 inc	h max.
					Height:		
	ed uni	Rf V 6.6 6.0 6.3 Rg/g Meg 0.5 Note 1 ed unipotentia ature Button,	Eff Ebb V Vdc 6.6 6.0 6.3 100 Rg/g Ik/k Meg mAdo 0.5 22	Ef Ebb Eb V Vdc Vdc 6.6 250 6.0 6.3 100 Approx.90 Rg/g Ik/k Ic/g Meg mAdc mAdc 0.5 22 Note 1 ed unipotential ature Button, 9 pin,	Ef Ebb Eb Ecc V Vdc Vdc Vdc Vdc 6.6 250 6.0 6.3 100 Approx.90 + 9 Rg/g Ik/k Ic/g Pp/p Meg mAdc mAdc W 0.5 22 1.65 Note 1 ed unipotential ature Button, 9 pin,	### Bbb	Ef Ebb Eb Ecc Ec Ehk V Vdc Vdc Vdc Vdc V 6.6 250 70 6.0 -110 -135 6.3 100 Approx.90 + 9 Rg/g Ik/k Ic/g Pp/p Tenvelope Alt Meg mAdc mAdc W °C ft. 0.5 22 1.65 165 60,000 Note 1 ed unipotential ature Button, 9 pin, Diameter: 7/8 inc. Height: 2-3/16

3 2k 4 5 h h Pin No: 1 2 9 Envelope: T-6-1/2

Element: 2p 2g lp lg lk

For the purposes of acceptance inspection, use applicable reliable paragraphs of Specification MIL-E-1.

			AQL %	Insp. Level	Sym.		I	imits	(See	Note	3)	
Ref.	Test	Conditions	Defec- tive	code	, J.	Min.	LAL	Bogie	UAL	Max.	ALD	Units
3.1	General Qualifi- cation	Required Note 22							And the state of t			
3.6	Perform- ance											
3.7	Marking	Note 21										
	Qualifi- cation Tests (see Note 17)											
	Cathode	Coated unipot- ential										'
3.4.3	Base connec- tions	Outline E9-1										
4.9.19. 9	Vibration:	Rp=2,000 Ck=1,000 uf Note 16			Ep					100		mVac

MIL-E-1/1301B/(NAVY)

Ref	Test	Conditions	AQL (%	Insp.			Limi	ts Not	te 4			Units
			Defec tive	or Code		Min	LAL	Bogie	UAL	Max	ALD	
	Measurement	s acceptanc	e test	s, par	t 1,	Note 3						
4.10.8	Heater Current			-	If	_	320	335	350	-	28	m A
4.10.8	Heater Current		0.65	II	Ιf	305	-	-	-	365	-	mA
4.10.15	Heater- Cathode	Ehk= +100 Vdc.	0.65	II	(Ihk	-	-	-	-	10	-	µAdc.
	Leakage	Ehk= -100 Vdc. Note 2			(Ihk	-	-	-	-	10	-	µAdc.
4.10.6.1	+Grid Current(1)		0,65	II	Ic	0	-	-	-	- 0.1	-	uAdc
4.10.4.1		Ebb= 90Vdc Ecc= 0 Rk =80 Note 2	-	-	Ιъ	-	13•3	15.0	16.7	_	5•4	mAdc
4.10.4.1		Ebb= 90Vdc Ecc= 0 Rk= 80 Note 2	0.65	II	Ιb	11.3	-	-	-	18.7	-	mAdc
4.10.4.1	Current(2)	Ec=-15Vdc Eb=150V· Note 2	0.65	II	Ιb	-	-	-	-	5	_	μAdo
4.10.9	Transcon- ductance(1) Transcon-	Note 2	-	-	Sm	-	11700	12500	13300	-	2500	umhos
40.000	ductance(1)	Note 2	0.65	II	Sm	10400	-	-	-	14600	-	umhos
4•7•5•	Continuity and Shorts (Inoper- tives)		0.4	II	-	-	-	-	-	-	-	-
4.9.1.	Mechanical	Envelope Outline No (6-7)	-	-	-	-	-	-	-	-	-	-
	Measurements	acceptance	tests	, par	2.							
		Note 2 g-all= 10	2.5	L6	(R.	100	-	-	-	-	-	Meg.
	Flectrodes	meg. p-all in series.			(R.	100	-	-	-	-	-	Meg.
	Transcon- ductance(2)	Ef=5.7Vac. Note 2	2.5	I	Sm: Ef.	-	-	-	-	15	-	%

Ref:	Test	Conditions	AQL (% Defec	Level	1	No. Auromotorio Victorio	Limit	ts, Not	te 4	-		-Unit s
			tive)		S ym,	Min.	LAL	Bogie	UAL	Max.	ALD	011103
4.10.11.2	Amplifica- tion Factor		6.5	1	Mu	26.5				39.5		
4.10.6.1	Grid Current(2)	Notes 2 and 15	2.5	1	Ig	0				-0.5		µAdc
4.10.3.1	R.F. Noise	Ecal=30 mV Notes 16 and 18	2.5	1								
	Noise and Micro- phonics. This test may be carried out on alternative approved test gear to that called up in Note 20.	-	2.5	1								
4.10.14	Capacitance No Shield	Note 2 Note 2 Sect.1 Sect.2	6.5	Code E	Cin	1.5				1.6 3.9 2.0 1.9 .008		pf pf pf pf pf pf
4-9.12.1	Low Pressure Voltage Breakdown:	Pressure = 55+ 5 mmHg: Voltage= 300 Vac	6.5	Note 19								
4.9.19.1	Vibration (2):	Rp=2,000 Ck=1,000 Note 16	6.5	Ccde 1	Ep:					50		mVac
		Degradation I	ate A	ccepte	ance !	rests	Note	6				
4.9.20.5	Shock	Hammer Angle = 50° Ehk = +100Vdc: Note 5:										
4.9.20.6	Fatigue	G=2.5 Fixed Fre- quency 50 c.p.s.	6.5	Note 19								
	Post Shock and Fatigue Test End Points	Vibration (2) Heater Cathode Leakage			Ep:					75		mVac
		Ehk=+100 Ehk=-100			Ihk: Ih k:					15 15		pAdc pAdc

Ref.	Test	Conditions		Insp. Level		L	imit	s Note	4			Units
			Defect- ive)	or Code	Sym.	Min.	LAL	Bogie	UAL	Max.	ALD	
		Trans- conductance (1)			Sm:	9,000				16,500		pmhos
		Grid Current (1)			Ic:	0				-0.2		pAdc
4.9.6.1	Miniature Tube Base Strain:											~~~
4.9.6.3	Glass Strain		2.5 Noke 26	I								

Ample

7.0		_	AQL (%	Insp. Level		wable ives per		Limit	s	Units
Ref.	Test	Conditions	Defec-		charact 1st	Combine d samples	Sym.	Min	Max	
	Acceptance Life	Tests. Note	6							
4.11.7	Heater-Cycling Life Test:	Ef=7.5V:Ehk= +100V dc Ec=Eb=0; 1 min on, 4 min. off Note 7								
4.11.4.	Heater Cycling Life Test End Points	Heater-Cath- ode Leakage Ehk=+100V dc Ehk=-100V dc					Ihk: Ihk:			uAdc uAdo
4.11.3.1 (a)	Stability Life Test:	Ehk=+135V dc Rg=47,000 TA=Room Notes 2 and 8	1.0	Code						
4.11.4	Stability Life Test End Points (2 and 20 hours)	Change in Transconduct- ance (1) of individual tubes					∆Sm: t		10	%
4.11.3.1 (b)	. Survival Rate Life Tests	Stability Life Test Conditions or Equivalent; Notes 2, 9 and 10		II					and the second control of the second control	
4.11.4	Survival Rate Life Test End Points	Continuity and Shorts (Inoper- atives)	0.65		American de la companya de la compan					-
	(100 hours)	Transconduct- ance (1)	1.0				Sm:	9000		u mhos

MIL-E-1/1301B/(NAVY)

Ref.	Test	Conditions	AQL (%	Insp.	Allowa derective charact	able ves per peristic	Sym.	1	mits	Units
			Defec- tive)	Code	1st sample	Comb- ined samples		Min.	Max.	
	Acc	eptance Life Tests	Note 6	(Cont	'a).					
4.11.3.1	Inter- mittent Life Test	Stability Life Test Conditions: T Bulb=165°C Min. Notes 2, 11 and 12								
4.11.4	Inter- mittent Life Test End Points:	Note 13 Inoperatives (Note 14) Grid Current			1	3	Ic:	0	-0.9	µАдс
	500 hours)	(1) Heater Current Change in Trans- conductance (1)			1	3	If:	305	365	m.A.
		of individual tubes			1	3	ΔSm:		15	%
4.11.4		Transconductance (2) Heater Cathode Leakage			2	5	∆Sm: Ef		15	%
		Ehk=+100Vdc Ehk=-100Vdc			1	3	(Ihk: (Ihk:		20 20	pAdc pAdc
		Insulation of Electrodes g-all					(R:	50		Meg
		p-all Transconductance			2	5	(R:	50		Meg
		(1) average change					Avg ASm		15	%
		Total Defectives			4	8	t			
4.11.4	Inter- mittent Life Test End Points:	Note 13 Inoperatives: Note 14 Grid Current			2	5				
	(1000 hrs.)				2 2	5 5		0 305	-0.9 365	µAdo mA
		(1) of individual tubes			2	5	ΔSm		25	%
4-11-4		Heater Cathode Leakage Ehk=+100V dd Ehk=-100V dc			2	5	(Ihk (Ihk		20 20	o DAu DAdo
		Insulation of Electrodes g-all p-all			3	6	(R: (R:	50 50		Meg Meg
	*	Total Defectives			5	10			 -	-3-6
4.9.18.1	.1 Container Drop:	Notes 23 and 24								
5.1	Preparation for	Note 25								
	delivery		Page 5						730	

Page 5 of 7

MIL-E-1/1301B(NAVY)

- Note 1: This value is for operation under fixed bias conditions. With cathode bias, Rg may be 1 megohm maximum.
- Note 2: Test each unit separately.
- Note 3: The AQL for the combined defectives for attributes in measurements acceptance tests, part 1, excluding inoperatives and mechanical shall be 1.0 per cent. A tube having one or more defects shall be counted as one defective. Standard MIL-STD-105, inspection level II shall apply.
- Note 4: Variable sampling procedures: (See 4.1.1.7).
- Note 5: A grid resistor of 0.1 megohm shall be added; however, this resistor will not be used when a thyratron type short indicator is employed.
- Note 6: Destructive tests: Tubes subjected to the following destructive tests are not to be accepted under this specification:

4.9.20.5	Shock
4.9.20.6	Fatigue
4.11.7	Heater-Cycling Life Tes
4.11.5	Intermittent Life Test

- Note 7: The no load to steady full load regulation of the heater voltage supply shall be not more than 3.0 per cent. This test shall be made on a lot by lot basis. A failure or defect shall consist of an open heater, open cathode circuit, heater cathode short, or heater cathode leakage current in excess of the heater cycling life test end point limit specified herein.
- Note 8: The sampling and testing procedure for the Stability life test shall be in accordance with paragraph 20.2.5.1 of Appendix C of Specification MIL-E-1.
- Note 9: The sampling and testing procedure for the Survival rate life test shall be in accordance with paragraphs 20.2.5.2 through 20.2.5.2.4 of Appendix C of Specification MIL-E-1.
- Note 10: The equivalent stability life test conditions for Survival rate life test shall be in accordance with paragraph 20.2.5.2.5 of Appendix C of Specification MIL-E-1.
- Note 11: Sampling and acceptance procedures for Intermittent life tests shall be in accordance with paragraph 20.2.5.3 of Appendix C of Specification MTL-E-1.
- Note 12: Envelope temperature is defined as the highest temperature indicated when using a thermocouple of +40BS or smaller diameter elements welded to a ring of 0.025 inch diameter phosphor bronze in contact with the envelope. Envelope temperature requirements will be satisfied if tube, having bogie lb (+5%) under normal test conditions, is determined to operate at minimum specified temperature at any point in the life test rack.
- Note 13: For order for evaluation of life test defects, see paragraph 4.11.3.1.2 of Specification MIL-E-1.
- Note 14: An inoperative as referenced in life test is defined as a tube having one or more of the following defects: discontinuity (ref. Specification MIL-E-1 par. 4.7.1), shorts (ref. Specification MIL-E-1, par. 4.7.2), air leaks (ref. Specification MIL-E-1, par. 4.7.6).
- Note 15: Prior to this test, tubes shall be preheated a minimum of 5 minutes with all sections operating at the conditions indicated below.

 A 3 minute test is not permitted. Test at preheat conditions within 3 seconds after preheating. Grid current (2) shall be the last test performed on the sample selected for the grid current (2) test.

Ef	Ecc	Ebb	Rk	Rg
V	Vdc	Vdc	ohms	Meg
(7.0)	(+9)	(100)	(680)	(0.047)

- Note 16: Tie 1k to 2k; 1g to 2g and 1p to 2p. Parasitic suppressors of 50 ohms permitted.
- Note 17: All tests listed hereon shall be performed during qualification: however, these three tests are normally performed for qualification inspection only.
- Note 18: In addition to the rejection criteria of paragraph 4.10.3.1 of Specification MIL-E-1, the output shall be read on a VU meter using a rejection limit of 5 VU. Five VU is the meter deflection obtained with a steady state output of 3 Mw from the amplifier.
- Note 19: This test shall be conducted on the initial lot and thereafter on a lot approximately every 30 days. Once a lot has passed, the 30-day rule shall apply. In the event of lot failure the lot shall be rejected and the succeeding lots shall be subjected to this test until a lot passes. Standard MIL-STD-105, sample size code letter F, shall apply.
- Note 20: The rejection level shall be set at the VU meter reading obtained during calibration. Test gear other than the VU meter may be used if approved by the Specification Authorities.
- Note 21: Omitted.
- Note 22: Omitted.
- Note 23: Not required during qualification of tube.
- Note 24: Rough handling (container drop) test (d) and container size B shall apply.
- Note 25: Preservation, packaging and packing unless otherwise specified in the contract or order, preservation, packaging and packing shall be as follows:-
 - (a) Preservation and packaging shall be sufficient to afford adequate protection against corrosion and deterioration during shipment from the supply source to the using activity and until installation.
 - (b) Packing shall be accomplished in a manner which will insure acceptance and protection against physical or mechanical damage during direct shipment from the supply source to the using activity.
- NOTE 26: In the case of values with gold plated pins the ARL (% Defective)

 And be 6.5.

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV 4108 ISSUE No.1. DATED 1.10.62

AMENDMENT No.1.

Page A. RATINGS.

Amend the Ratings columns as follows:-

- (i) Delete all reference to "Max Anode Voltage"
- (ii) Delete "No Load" in "Max. No Load Anode Voltage" and substitute "d.c." in lieu
- (iii) Insert new rating:-

"Max. Peak Anode Voltage (Ia = o), (V) 440."

Page 2 (of 7 pages)

Measurements acceptance tests, part 1. Plate Current (2)

In column headed "Conditions" add Rk/k = 680 ohms.

<u>December, 1962</u> (152447)

T.V.C. Office for A.S.W.E.

الهلام مهمار

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV 4108 ISSUE 1. DATED 1.10.1962

AMENDMENT No. 2.

(i) Page 4. 4.9.6.3. Glass Strain

Following '2.5' in the column headed 'AQL' (% Defective)' insert 'Note 26'.

(ii) Page 7. Insert new Note 26 as follows:-

"26. In the case of valves with gold plated pins the AQL (% Defective) shall be 6.5."

T.V.C. for A.S.W.E.

July 1964

(222388)

JAA3

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV4108 ISSUE NO. 1 DATED 1.10.1962

AMENDMENT NO. 3

Page A. DIMENSIONS

- (i) 'A' Seated height, Max. Amend '55.6' to read '49.2'
- (ii) 'C' Overall length, Max. Amend '62.7' to read '55.6'

T.V.C. for A.S.W.E.

October, 1964 (N.228881) JAAS