Page 1. (No. of pages: 4). VALVE ELECTRONIC ADMIRALTY SIGNAL AND RADAR ESTABLISHMENT CV4083 Specification AD/CV4083. SECURITY Issue 1 dated 29th April, 1958. Specification Valve Unclassified Unclassif ied To be read in conjunction with K1001. BS448 and BS1409.

	-Reliable Miniature HF Pentode with Flexible leads.								
CATHODE -Indirectly heated.	-Indirectly heated.								
ENVELOPE -Glass		В S I448/В7G/F							
PROTOTYPE -CV2209 (but without	CONNECTIONS	2							
R.E.T.M.A. Designation	<u>Pin</u>	Electrode							
RATINGS			1	19	é g	A			
(All limiting values are absolute			2	k	:				
		Note	3	ı					
			Note	4	h				
Heater Voltage	6.3	С	5	8					
Heater Current	0.3		6		3	1			
Max. Heater-Cathode Voltage	±150		7	8	2	1			
Max. Operating Anode Voltage	(V)	300					1		
Max. Anode Voltage (Ia= 0)	5 5 0		DIMENSIONS						
Max. Operating Screen Voltage	(V)	300		See BS4	1.0				
Max. Screen Voltage (Ig2 = 0)	(V)	400		5 ee 554	40				
Max. Anode Dissipation	(W)	3.0				1	1		
Max. Screen Dissipation	(W)	1.5		Dimensions(mm)	Min.	Max.	1		
Max. Bulb Temperature	(°C)	200	C			12.5	1		
Max. Shock (short duration)	(g)	500		A. seated height		47.5	1		
Max. Acceleration (continuous operation)	(g)	2.5		C. diameter	16.0	19.0			
Inner Amplification Factor (,ug1,g2)		42		D. length of leads	38.0	۱_	1		
Mutual Conductance	(mA/V)		A	16802	30.0	-	1		
Anode Impedance	(megohm)	0.1	A						
CAPACITANCES (PF)			NOUNTING PO	SITION					
C. in (nom)	7.2	В							
C. out (nom)		4.3	В	Any					
C al g1	0.01	В							

NOTES

- A. Measured at $V_a = V_{g2} = 200V$; $V_{g1} = -3.45V$, $V_{g3} = 0$; $(I_a = 7.5 \text{ mÅ}; I_{g2} = 4.5 \text{ mÅ})$.
- B. Measured with close fitting metal screen.
- C. Caution to Electronic Equipment Design Engineers: Special attention should be given to the temperature of valves to be operated in aircraft. Reliability will be seriously impaired if the maximum bulb temperature is exceeded. The life expectancy may be reduced if conditions other than those specified for life tests are imposed on the valve and will be reduced appreciably if absolute maximum ratings are exceeded. Both reliability and performance will be jeopardised if heater voltage ratings are exceeded: life and reliability performance are directly related to the extent that the heater voltage is maintained at its rated value.

Amel 2

TESTS

CV4083

To be performed in addition to those applicable in K1001. Tests shall be performed in the specified order unless otherwise agreed with the Inspecting Authority.

Test Conditions - unless otherwise specified.

V_{g2} (Supply) V_{g3} (Supply) V_{g1} (Supply) V_h (Supply) 200V OV OV 6⋅3V

Amel 4

200	y 200V	with respect to each	οΫ΄ •		6.	.3V		287	,				
K1001 Ref.	Test	Test Conditions	AQL	Insp.	Symbol	Min		imits	UAL	Max	ALD	Units	
7.1	Class Strain		6.5	1]
	GROUP A Electrode Insulation Reverse Grid Current	V _h = 6.3V Note 1 V _g 1 to all = -100V V _{g2} to all = -300V V _{g3} to all = -300V Va to all = -300V R _{g1} = 500K Ωmax.		100% 100% 100% 100%	R R R R	100 100 100 100			- - -	- - - 0,5	- - - -	н <u>Q</u> н <u>Q</u> н <u>Q</u> н <u>Q</u>	
	GROUP B Heater Current hk Leakage Current Anode Current g! Cut-off volts g3 Cut-off volts Mutual Conductance Screen Current	Combined AQL V _{hk} = ± 100V Note 3 V _{hk} = -100V Cathode Positive I _a = 0.1 mA Note 7.	0.65 0.65 0.65 0.65 0.65 0.65	11 V2 11 V2 11 11 11	Ihh Ihk Ia I a I a I a I a I a I a I a I a I a	5 3.15 To 1	e rec	7.1 orded a - - 4.05 orded a 4.35	- - nd ag	11 11.5 5.4 reed 6.0	later	V V mA/V mA/V mA	
11.1	CROUP C Change of Mutual Conductance Reverse Grid Current Vibration Noise	Combined AQL $V_h = 5.7V \text{ Note } 2$ $V_h = 6.9V$ $V_a(b) = V_{g2}(b) = 300V;$ $R_k = 560 \Omega$ $R_{g1} = 500K \Omega$ Note 6. $V_a(b) = V_{g2}(b) = 0;$ $V_{g1}(b) = V_{g2}(b) = 0;$	2.5 2.5	1	Δεπ ¹ g1 V _a AC	-	-	-	-	15 1.0	-	% pea mV RYS	
5•12 5•9	GROUP D Lead fragility Capacitances	No voltages Heasured on 1 Mc/s bridge with valve mounted in a fully shielded socket. Valve screened. Va Valve 20 V/ V31-0 Aljuk V31 To 3 wc I _K = 12 ma.	6.5 6.5	10	Cin Cout Cag1	6.2 3.7 -		7.2		8.3 5.0 0.0		pF pF pF	Amdi

CV4083

K1001	_		AQL	Insp.		L		Lin				
Ref.	Test	Test Conditions	%	Level	Symbol	Min.	LAL	Bogey	UAL	Max.	ALD	Units
											\Box	
	GROUP E				l		1					
11.2	Resonance Search	$V_{a(b)} = V_{g2(b)} =$					l					
		250V; RL = 2K &	2.5	1C								
		Frequency:	-•									
		(1) 25 to 200c/s	l		V _a AC	-	-	-	-	Record	-	(mV
												(RMS
		(2) 200 to 500c/s			VaAC	-	-	-	-	Record	-	Van)
		(7) 500 5- 0500-/-			77 40		l_		_			(RMS
		(3) 500 to 2500c/s Note 8.			V _a AC	-	-	-	-	Record	-	(mV (RMS
11.3	Fatigue	$v_h = 6.9v$		1A								,
		Note 4.										
	POST	FATIGUE TESTS							1			
		Combined AQL	4									
	hk Leakage Current	V_, = + 100V	2.5		I hk	-	-	-	-	40	-	Αυγ
		$V_{hk} = \pm 100V$ Note 3.										'
	Reverse Grid Current	R _{g1} = 500KQ max.	2.5		I _{g1}	-	-	-	-	1.0	-	۸۵۸
	Mutual Conductance		2.5		g _m	2.8	-	-	-	5•4	-	mA/V
11.1	Vibration noise	As in Group C	2,5		V _a ac	-	-	_	-	25	-	(mV
					a							(RMS
11.4	Shock	Hammer angle= 300	-	1A								
		No Voltages										1
	POST	SHOCK TESTS										
		Combined AQL	4.0		.							
.3	hk Leakage Current	V _{hk} = ± 100V Note 3	2.5		I _{hk}	-	-	-	-	40	-	/UA
	Reverse Grid Current	R _{g1} = 500k Qmax.	2.5		I _{g1}	-	-	-	-	1.0	-	AUL
	Mutual Conductance	6'	2.5		g _n	2.8	_	_	_	5.4	_	mA/V
11.1	Vibration noise	As in Group C	2.5		V _R AC	-	_	_	-	25	-	(mV
												(RMS
	GROUP F					$\neg \neg$						
V1/5	Life	v _h = 6.3V; v _{a(b)} =										
		250V										
		R _k = 150 Ω										
		R _{g1} = 500K Ω			- 1							
		LITY LIFE (1 HOUR)		1	- 1							
	Change in		1.0			_	_	_	_	10		%
V1/	Mutual conductance	(Imperior Inc	'•"	١,, ١	Δgm		-	-	_	'`		^
A V1/		IITTENT LIFE	٠.	1A	- 1	ı						l
5•3	Test point (500 hrs) inoperatives	COMDINED AQL	6.5 2.5									
									l		-	mA
	Heater Current		2.5		I _b	275	-	-	-	325		
5.3	Heater Current	V _{hk} = ± 100V			I _h	275 -	-	-	-	325 40	-	/UA
5•3	Heater Current hk Leakage Current	Note 3	2•5 2•5		I _h I _{hk}	275	-	-	-	40		
5.3	Heater Current hk Leakage Current Reverse Grid Current	Note 3	2.5 2.5 2.5		I _{g1}	-	-		-	40 1.0	-	/UA
5.3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance	Note 3	2•5 2•5		. 1	275 - - 2.7	-	-	-	40		
i•3	Heater Current hk Leakage Current Reverse Grid Current	Note 3	2.5 2.5 2.5		I _{g1}	-	-		-	40 1.0	-	/UA
i•3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current	Note 3 R _{g1} = 500K Ωmax.	2.5 2.5 2.5		I _{g1} gm Δgm	-	-		-	40 1.0 5.4	-	/UA mA/V
5.3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance	Note 3 Rg1 = 500K Qmax. Vh=6.3V Note 1	2.5 2.5 2.5 2.5 2.5		Ig1 gm Δgm Ia	- 2,7 - 5.05	-	-	-	1.0 5.4 15	-	/UA mA/V % mA
5.3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current	Note 3 $R_{g1} = 500K \Omega max$. $V_h=6.3V Note 1$ V_{g1} to all =-100V	2.5 2.5 2.5 2.5 4.0		Ig1 gm Δgm Ia R	- 2,7 - 5.05	-			1.0 5.4 15	-	/UA ma/V % ma M &
5.3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current	Note 3 Rg1 = 500K Ωmax. Vh=6.3V Note 1 Vg1 to all =-100V Vg2 to all =-300V	2.5 2.5 2.5 2.5 2.5		Ig1 gm Δgm Ia	- 2,7 - 5.05				1.0 5.4 15 8.6	-	/UA ma/V % ma M & M & M & M &
5.3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current	Note 3 Rg1 = 500K Ωmax. Vh=6.3V Note 1 Vg1 to all =-100V Vg2 to all =-300V	2.5 2.5 2.5 2.5 4.0 4.0		Ig1 gm Δgm Ia R R	- 2,7 - 5.05 50 50	- 1			1.0 5.4 15 8.6	-	/UA ma/v % ma M & M &
5.3	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current Electrode Insulation	Note 3 Rg1 = 500K Ωmax. Vh=6.3V Note 1 Vg1 to all =-100V Vg2 to all =-300V Vg3 to all =-300V Va to all =-300V POINT (1000 HOURS	2.5 2.5 2.5 2.5 4.0 4.0 4.0 4.0		Ig1 gm ∆gm Ia. R R R	- 2,7 - 5.05 50 50	-		-	1.0 5.4 15 8.6		/UA ma/V % ma M & M & M & M &
	Heater Current hk Leakage Current Reverse Grid Current Hitual Conductance Average change of Mutual Conductance Anode Current Electrode Insulation	Note 3 $R_{g1} = 500K \Omega max$. $V_h=6.3V Note 1$ V_{g1} to all =-100V V_{g2} to all =-300V V_{g3} to all =-300V V_{g4} to all =-300V	2.5 2.5 2.5 2.5 4.0 4.0 4.0 4.0		Ig1 gm ∆gm Ia. R R R	- 2,7 - 5.05 50 50 50	-		-	1.0 5.4 15 8.6		/UA ma/V % ma h Q h Q h Q
	Heater Current hk Leakage Current Reverse Grid Current Hitual Conductance Average change of Mutual Conductance Anode Current Electrode Insulation	Note 3 Rg1 = 500K Ωmax. Vh=6.3V Note 1 Vg1 to all =-100V Vg2 to all =-300V Vg3 to all =-300V Va to all =-300V POINT (1000 HOURS	2.5 2.5 2.5 2.5 4.0 4.0 4.0 4.0 4.0		Ign gm ∆gm Ia R R R R R	- 2,7 - 5.05 50 50 50	-		-	1.0 5.4 15 8.6 -		/UA ma/V % ma M & M & M & M &
	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current Electrode Insulation TEST Inoperatives Heater Current hk Leakage Current	Note 3 Rg1 = 500K Ωmax. Vh=6.3V Note 1 Vg1 to all =-100V Vg2 to all =-300V Vg3 to all =-300V Vg to all =-300V	2.5 2.5 2.5 2.5 4.0 4.0 4.0 4.0 4.0 4.0		Ig1 gm Δεm Ia R R R R R	- 2,7 - 5.05 50 50	-		:	1.0 5.4 15 8.6 - - - 325 380 40		/uA ma/V % mA H Ω H Ω H Ω
5•3 av1/5•6	Heater Current hk Leakage Current Reverse Grid Current Mitual Conductance Average change of Mutual Conductance Anode Current Electrode Insulation TEST Inoperatives Heater Current	Note 3 Rg1 = 500K Ωmax. Vh=6.3V Note 1 Vg1 to all =-100V Vg2 to all =-300V Vg3 to all =-300V Vg to all =-300V	2.5 2.5 2.5 2.5 4.0 4.0 4.0 4.0 4.0 4.0		Ig1 gm Δgm Ia R R R R R	- 2,7 - 5.05 50 50 50	-		-	1.0 5.4 15 8.6 - -		/UA mA/V % mA H Ω H Ω H Ω H Ω

CV4083/1/3

CV4083

K1001 Ref.		Garage Garages and	ditions		Limits							
	Test	Test Conditions		Level	Symbol	Min	LAL	Bogey	UAL	Max		Units
A IX/2.5	GROUP G Electrical Re-test after 28 days holding period.			100%								
A VI/5.6	Inoperatives Reverse Grid Current	R _{g1} = 500K max.	0.5		I g1	-	-	-	-	0.75	-	/UA

NOTES

- 1. Heater and Cathode strapped and considered as a single electrode.
- 2. Change of Mutual Conductance is expressed as a percentage, so:-

- 3. Heater positive and negative successively.
- 4. Valves shall be vibrated in each of the three required planes for not less than 30 hours and not less than 100 hours total. Heater switched 1 minute on, 3 minutes off. No other voltages. Min. peak acceleration = 5g. Frequency = 170 ± 5 c/s.
- 5. The valves shall be mounted so that the direction of vibration is parallel to the minor axis of the valve electrode structure.

Vibration frequency = any fixed frequency in the range 25 - 100 c/s. Min. peak acceleration = 2g. The test shall be of sufficient duration to obtain a steady reading of noise output.

- 6. Prior to this test the valve shall be pre-heated for 5 minutes under the test conditions. The maximum time between pre-heating and testing shall be 2 seconds. Ig1 shall not be rising or out of limit after a total of 10 minutes.
- 7. V_a = 200V; V_{g2} = 100V; adjust V_{g1} so that I_k = 10 mA when V_{g3} = 0. Then adjust V_{g3} to give I_a = 0.1 mA.
- At present readings for this test are to be recorded. It is envisaged that a subsequent issue of the specification will include limit figures for this test.
- 9. An approved dynamic method of measuring luner Monthheaton Factor may be used

CV4083/1/4

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV4083

ISSUE NO. 1, DATED 29TH APRIL 1958 AMENDMENT NO. 1

Page 2 Group D Inner Amplification Factor

> Under "Test Conditions" add the following note: -

 $v_a = v_{g2} = 200v$; $v_{g3} = 0$. Adjust V_{g1} to give $I_{k} = 12 \text{ mA}$. Then apply signal = + 1 volt to g1.

Reduce V_{g2} to give $I_k = 12 \text{ mA}$.

Inner amplification factor = Change in Vg2.

March 1960 N.16672/D Admiralty Surface Weapons Establishment

SPECIFICATION AD/CV4083 ISSUE 1 DATED 29th APRIL 1958

AMENDMENT No.2

Page 1. CONNECTIONS

N.33994/D

Under Column Heading "Electrode", against "Pin 1", Amend: "g2" to "g1"

October 1960

Admiralty Surface Weapons Establishment

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV.4083 ISSUE 1 DATED 29th APRIL, 1958

AMENDMENT No. 3

- (i) Page 2 GROUP D. Inner Amplification Factor
 - In the column headed "Limits" amend "Min. 34", "Bogey, 42", and "Max. 50", to read "30", "38", and "46" respectively.
- (ii) Page 3 GROUP F. TEST POINT (1,000 HOURS)

Heater Current In the column headed "Limits", "Min." and "Max" amend "320" and "380" to read "275" and "325"

respectively.

June, 1964. T.V.C. for A.S.W.E.

222081)

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV4083, ISSUE NO. 1 DATED 29TH APRIL, 1968

AMENDMENT NO. 4

Page 2. Test conditions - unless otherwise specified

Under V (Supply), after OV add:-

"with respect to cathode."

Page 2. Group D. Inner Amplification Factor

Amend to read "See Note 9".

Page 4

Add Note 9 as follows:-

"9. An approved dynamic method of measuring Inner Amplification Factor may be used."

Admiralty Surface Weapons
Establishment

January, 1969.