Andt.1

SECURITY
Specification Valve
Unclassified Unclassified

Specification HOA/CV4031
Issue 1A Dated 7th April, 1965
To be read in conjunction with B.S.448, B.S.1409 and K1001

Indicates change

TYPE OF VALVE - Reliable Double Tric	de			MARKING	•		
CATHODE - Indirectly heated		K1 001/4					
ENVELOPE - Glass PROTOTYPE - CV.850 858				Additional 6101/6J		ıg:-	
R.E.T.M.A. DESIGNATION - 6101/6J6WA				BASE			
				B.S.448/B7G			
RATINGS AND CHARACTERISTICS				CONNECTIO	<u>ns</u>		
(Absolute, non-simultaneous and not for Inspec	otion pu	rposes) Note	Pin	Electr	ode		
Heater Voltage (V) Heater Current (A) Max. Operating Anode Voltage (V) Max. Anode Voltage (Ia = 0) (V) Max. Anode Dissipation (per section) (W) Max. Heater - Cathode Voltage (V) Max. Cathode Current (mA) Max. Bulb Temperature (°C) Max. Shock (short duration) (g) Max. Acceleration (continuous operation) (g) Max. Operating Frequency (Mc/s)	6.3 0.45 330 550 1.6 ±100 25 165 500	D B D	1 2 3 4 5 6 7	Anode (2) Anode (1) Heater Heater Grid (1) Grid (2) Cathode DIMENSION B.S.448/B7G/ Size Ref. N			
Mutual Conductance (mA/V) Anode Impedance (kn)	5.6 6.3	A A	Dime	nsions (mm)	Min.	Max	
Amplification Factor CAPACITANCES (pF) C in (nom.) per section	2.45	A C	C di	ated height ameter erall length	- 16.0 -	47.5 19.0 54.5	
C' out (nom.) C" out (nom.) ca,g (nom.) per section Ch,k (nom.)	0.45 0.40 1.5 5.4	C C C		MOUNTING POST	ITION		

NOTES

- A. At Va = 100V; Vg = 0; Rk = 50 ohms (Ia = 9.0 mA approx.)
- B. Difficulty may be encountered if this valve is operated for long periods of time with very small values of cathode current.
- C. Without screen.
- D. Caution to Electronic Equipment Design Engineers: Special attention should be given to the temperature of valves to be operated in aircraft. Reliability will be seriously impaired if the maximum bulb temperature is exceeded. The life expectancy may be reduced if conditions other than those specified for life tests are imposed on the valve and will be reduced appreciably if absolute maximum ratings are exceeded. Both reliability and performance will be jeopardised if heater voltage ratings are exceeded: life and reliability performance are directly related to the degree that regulation of the heater voltage is maintained at its centre-rated value.

E. NATO Stock No. 5960-99-000-4031.

CV4031/1A/1

CV4031

TESTS

To be performed in addition to those testsapplicable in K1001

Test to be performed in the specified order unless otherwise agreed with the Inspecting Authority

				Audioi								
Test	Conditions:-	unless otherwise	specif	'ied								
	Vh(V) 6.3	Va(V) 100	V	7g(V) 0		Rk(ohm 50	s)	1	Note	6		
K1001	Test	Test Conditions	AQL	Insp.	Sym-			Limi	ts			V7
Ref.			%	Level	bol	Min	LAL	Bogey	UAL	Max	ALD	Unit
7.1	Glass Strain	No Voltages	6.5	I								
	GROUP A Electrode Insulation Reverse Grid Current	Vh = 6.3 Note 1 Vg to all = -100V Va to all = -300V Va = 250V; Rk = 500Q Rg = 1 M 2 max. Note 10		100% 100% 100%	R R Ig	100	1 1 1			- - 0•5	-	M2 M2
	GROUP B Heater Current	Combined AQL	1.0 0.65	II	Ih	420	-	450	-	480	-	mA.
5•3	hk Leakage Current	Vhk = ± 100V Notes 2 and 10 Vhk = -100V, Cathode Positive.Note10	0.65	II V2	Ihk Ihk	- - То b	- c ro	- eorded lat	and	10 agr		Au Au
	Anode Current (1)		0.65	II V2	Ia Ia	6.5 To b	e re	corded		11.		mA mA
	Anode Current (2)	Va = 250V; Vg = -30V	0.65	II	Ia	-	-	lat -	er -	7 5	-	μА
	Mutual Conductance	•	0.65	II V2	gm gm	4.0 To b		corded lat	and	7.5 agr		mA/V mA/V
11.1	GROUP C Change of Mutual Conductance Vibration	Vh = 5.7V Notes 3 and 7 Va(b) = 250V;	2.5	I	∆gm VaAC	-	-	-	-	15 15		% mV/
CV4031	Noise	RL = 2k2 Notes 9, 10 and 11										rms

Anull 2

Page 3			TESTS	(Cont'	a)					•		•	
K1001	Test	Test Conditions	AQL	Insp.	Sym-			Lim	its			Unit	
Ref.	2000	2000 0011120110	%	Level	bol	Min	LAL	Bogey	UAL	Max.	ALI		
	GROUP D												
7•2	Base Strain	No Voltages	6.5	IA									
5•9	Capacitances	Measured on 1 Mc/s bridge with valve mounted in a fully shielded holder. Valve not screened.	6.5	IC	Cin C'out C"out Ca,g Chk			- - - -		2.8 0.65 0.55 1.8 7.5	-	pF pF pF pF	_
	Amplification												
	Reverse Grid Gyrent	VACTOUR RECIMENTAL NOTESTISTIC	6,5	IA IA	τļ	28	<i>-</i> <u>-</u>	-	=	48	_	uA.	•
	GROUP E	The state of the s											
11.2	Resonance Search	Va(b) = 250V; RL = 2k 2	2.5	IC									
		Frequency:- (1) 25 - 200 c/s (2) 200 - 500 c/s (3) 500 - 2500 c/	s		VaAC VaAC VaAC	To be and a late:	agree	corded ed	-			mVrms mVrms mVrms	۴
	Fatigue	Vh = 6.9V Note 4		IA									
	Post Fa	tigue Tests											
		Combined AQL	4.0										
5•3	hk Leakage Current	Vhk = + 100V Note 2	2.5		Ihk	-	-	-	-	20	-	μA	
	Reverse Grid Current	Va = 250V; Rk = 5002; Rg1 = 1M2 max. Note 10	2.5		Ig1	-	-	-	-	1.0	-	μA	
	Mutual Conductance		2.5		gm	3•5	-	-	-	7•5	-	mA/V	
	Vibration Noise	As in Group C	2.5		VaAC	-	-	-	-	35	-	nWrns	
11.4	\$hock	Hammer Angle =		IA									
	D+ 6	No Voltages											
	Post S	hock Tests											
,	his Tankara	Combined AQL	4.0		T1.3								
5•3	hk Leakage Current	Vhk = + 100V Note 2	2.5		Ihk		-	-	-	20	-	μA	
	Reverse Grid Current	Va = 250V; Rk = 5002; Rg = 1M2 Note 10	2•5		Ig		-	-	-	1.0	-	μА	
	Mutual Conductance		2.5		gm	3•5	-	-	-	7•5	-	mA/V	
11.1	Vibration Noise	As Group C	2.5		VaAC	-	-	-	-	35	-	mVrms	

			10010	(Cont	<u> </u>						rae	ge 4
K1001	Test	Test Conditions	anditions AQL	L Insp. Sym-	Limits							
Ref.	% Level bo	bol	Min.	LAL	Bogey	UAL	Max.	ALI	∤Unit D			
	GROUP F											
AV I/5	Life	Note 5										
	<u>Stabili</u>	ty Life (1 hour)										
	Change in Mutual		1.0	I	gm	-	-	-	-	15	-	%
	Conductance											
	Inter	mittent Life										
	Test Point 50	0 hours										
		Combined AQL	6.5	IA								
AVI/5.	6											
	Inoperatives		2.5									
	Heater Current		2.5		Ih	420	-	-	-	480	-	mA.
5•3	hk Leakage Current	Vhk = + 100V. Note 2	2.5		Ihk	-	-	-	-	20	-	μA
	Reverse Grid Current	Va = 250V; Rk = 500Ω: Rg = 1MΩ max. Note 10	2.5		Ig	-	-	-	-	0.75	-	μА
	Mutual Conductance		2.5		gm	3•5	-	-	-	7•5	-	mA/V
	Average Change of Mutual Conductance				gm	-	-	-	-	15	-	%
	Electrode Insulation	Vh = 6.3 Note 1 Vg to all = -100V Va to all = -500V	4.0		R R	50 50	-	- -	- -	-	-	Иv Иv
	Test point 10	000 Hrs										
		Combined AQL	10									
AVI/5.			4.0									
5•3	hk Leakage Current	Vhk = + 100V Note 2	4.0		Ihk	-	-	-	-	20	-	μΑ
	Reverse Grid Current	Va = 250V, Rk = 500 \(\text{Rg} = 1 \text{M } \text{S} \) max. Note 10	4.0		Ig	-	-	-	-	1.0	-	μΑ
	Mutual Conductance		4.0		gm	3.25	-	-	-	7•5	-	mA/V
	Electrode	Vh = 6.3 Note 1										4
	Insulation	Vg to all = -100 V Va to all = -300 V			R R	30 30	-	-	-	- -	<u>-</u>	Ma
CV4.03/	1.//	va to all = −500 V			К	50	-	-	-	-	-	1

K1001	Test	Test Conditions	AQL	Insp.	Sym-			Lim	its			UNIT
Ref.	1050	1050 Conditions	%	Le v el	bol	Min.	LAL	Bogey	UAL	Max.	ALD	
AIX/2	GROUP G											
	Electrical Re-test after 26 days holding period			100%								
AVI/5	.6											
	Inoperatives		0.5									
	Reverse Grid Current	Va = 250V; Rk = 500 \(\text{Rg} \) Rg = 1M \(\text{Rg} \) max. Note 10	0.5				ı	-	-	0•75	-	μA

NOTES

- 1. Heater and Cathode strapped and considered as a single electrode.
- 2. Heater positive and negative successively.
- 3. The Change of Mutual Conductance is expressed:-

$$(gm \text{ at } 6.3V) - (gm \text{ at } 5.7V)$$
 x 100%

- 4. Valves shall be vibrated in each of the three required planes for not less than 30 hours, and not less than 100 hours total. Heater switched 1 minute on 3 minutes off. No other voltages applied.
- 5. Life Test Conditions. Vhk = 180V heater positive. Va not less than 125 volts. Rk = $50 \ \Omega$
- 6. Test each section separately. Both sections to be operating normally, i.e. current from both halves flowing through the common cathode bias resistor.
- Pre-heat the valves for 5 minutes with both sections operating under the test conditions.
- 8. Ig shall not be rising or out of limit after a total of 10 minutes.
- 9. The valve shall be mounted so that the direction of Vibration is parallel to the minor axis of the mounting structure. Vibration frequency = any fixed frequency in the range 25 100 c/s. Max. peak acceleration = 2g. The test shall be of sufficient duration to obtain a steady reading of noise output.
- 10. Test with the sections connected in parallel.
- 11. Parasitic suppressors of 50 ohms are permissible. Connect cathodes to earth through 1500 ohms. Ck = 1000µ F. Grids connected to earth.

ELECTRONIC VALVE SPECIFICATIONS SPECIFICATION M.O.A./CV.4031, ISSUE 1A, DATED 7th APRIL, 1965.

AMENDMENT NO. 1

Page 1 Prototype

Page 3 Group D. At the end of these tests insert the following additional test:-Delete "CV.850" and substitute "CV.858"

	UNITS	μ
	ALD	
	МАХ	1.0
S	UAL	
LIMITS	LAL BOGEY UAL MAX ALD	
	LAL	
	MIN	
	SYM	Ig
	INSP	1A
	AQL %	6.5 1A
	TEST CONDITIONS	Vh = 7.0V; Rg = 1M max. Notes 7, 8 and 10.
	TEST	GROUP D CONTD • Reverse Grid Current
	K1001 Ref.	

(230080) narch, 1966.

T.V.C. for R.R.E.

MARS 65/61

ELECTRONIC VALVE SPECIFICATIONS.

SPECIFICATION MOA/CV4031; ISSUE 1A; DATED 7TH APRIL, 1965.

AMENDMENT NO 2

- 1. Page 1
- (a) Amend Specification Authority . "MINISTRY OF AVIATION DIRD/RRE " to read "MINISTRY OF TECHNOLOGY - DLRD/RRE"
- (b) Amend "Specification MOA/CV4031" to read "Specification Min. Tech/CV4031".
- 2. Page 2 Group B hk Leakage Current test.

In the "Limits" columns against Insp. Level "V2" delete "To be recorded and agreed later" and insert "2" in the sub-column headed UAL.

Page 3 Group D Reverse Grid Current Test (Inserted by Amendment No.1) 3

In the column headed "Test Conditions" insert "Va = 250V, $Rk = 500\Omega$ ".

T. V. C. for R. R. E.