

Specification MOSA/CV .2810	SECURITY			
Issue 3. Dated 25.1.55	Specification	Valve		
To be read in conjunction with B.S.448,B.S.1409 & K1001	UNCLASSIFIED	UNCLASSIFIED		

Indicates a change

TYPE OF VALVE - Cathode Ray Tube					MARKING			
TYPE OF DEFLECTION	 Electrostatic suitab symmetrical or assym operation. 	See K.1001/4 with the addition of a serial number						
TYPE OF FOCUS	- Electrostatic			BASE				
BULB	 Internally coated wi conductive coating. 	BS .448/B12D						
SCREEN	- B.Y.8		CONNECTIONS					
PROTOTYPE	- VCRX.263. CV.2137.			Pin	Electrode			
RAT	ING		Note	1 2	gl k			
Heater Voltage Heater Current Max. Final Anode Vo Max. First Anode Vo x Plate Sensitivi y Plate Sensitivi	ltage (kV) ty (mm/V)	4.0 1.0 6.0 2.0 720 Va3 880 Va3	A	3 4 5 6 7 8 9 10 11 12	h h a1 a2 m y2 x2 a3 x1 y1			
Final Anode Voltage (kV) Second Anode Voltage (V) First Anode Voltage (kV) Spot Size (mm)				DIMENSIONS See Drawing on pages 4 & 5.				

NOTES

- A. This rating applies at normal atmospheric pressure.
- B. The tube shall be adequately free from microphony.
- C. The neck diameter may be reduced provided that rubber rings or other approved packing is supplied with the tube to bring the overall diameter within the stated tolerance.
- D. When viewing the screen with the tube positioned such that the base spigot is uppermost, a positive voltage applied to the terminal x1 shall deflect the spot to the left, and a positive voltage applied to y1 shall deflect the spot upwards.
- E. The internal conductive coating shall be of such dimensions that it functions effectively but does not obscure the useful screen area.

To be performed in addition to those applicable in $\textbf{K}_{\bullet}\textbf{1001}$

_										
Test Conditions			Tests	Limits		No.	Note			
L		_				10000	Min.	Max.	Tested	note
a	Vh(V) Va3 (kV) Va2 (v) Va1 (kV) Vg (kV) a See K.1001/5A.13.				Inter-electrode Capacitances (pF) 1. Each x Plate to all others 2. Grid to all others.	-	25 25	5%		
						3. One x Plate to one y Plate	-	5	(20)	
ъ	4.0	0	0	0	0	Ih (A)	0.7	1.3	100% or S	
0	4.0	3.0	Adjust for optimum focus	2.0	Adjust to cut-off	Vg (V)	-	-80	100%	
đ	4.0	3.0	Adjust for optimum focus	2.0	-	1. Vg (V) 2. Change in Vg from value found in Test e	-	-1 49	100% 100%	
	Vg adjusted to give Light Output = 0.035 candela, measured through a C2 filter.			3. Within the range of Grid Voltage from cut-off to standard light the beam current shall increase continuously			100%			
е	4.0	3.0	Adjust for optimum focus	2.0	As in Test (d)	1. Line Width (mm) 2. Va2 (V)	- 450	1.2 530	100%	
	With focus adjusted for optimum and with symmetrically deflected sine wave line trace of 50 c/s nom. recurrence, and a line length of 150 mm in x and y directions successively, the line width will be measured at the centre of the trace.									
f	4.0	3.0	Any conven- ient value	2,0	-80	Grid insulations Leakage (µA)	-	16	100%	
	Recommended method - K.1001/5A. Resistor = 5 megohms 3.2				Voltmeter Reading	-	100%			

Test Con		Condi	++ cm =		Tests	Limits		No.	Note	
		10	est Conai	CIONS		1ests	Min.	Max.	Tested	More
g	Vh(V)	Va3 (kV)	Va2 (V) Any Conven-	Va1 (kV)	Vg (V)	Deflection Sensitivities				
			ient value		ient value	1. x Plate (mm/V) 2. y Plate (mm/V)	650 Va3 790 Va3	790 Va3 970 Va3	5% (20)	
h	4.0	3.0	Ditto	2.0	Ditto	Deviation of Spot from centre of screen (mm)	-	10	100%	
j	4.0	3.0	Ditto	2.0	Ditto	Useful Screen Area Diameter (mm)	130	-	1 00%	
k	4.0	3.0	Ditto	2.0	Ditto	Orientation of Axis of Deflection 1. Orientation of x axis of deflection relative to 0.0' on drg.	800	1000	100%	
		ï				on page 4. 2. Angle between x and y axes of deflection	85 °	95°	100%	
1	coveri The sp such t	ing the oot shall hat sep	eld to guseful substitution de la constitution de l	ive a creen ocusse nes sh	area. d	The screen shall not be worse for graininess than a standard pattern			100%	
m	4.0	3.0	Any conven- ient value	2.0	Ditto	Afterglow (Secs)	8	-	100%	
Test to be performed in Test Set 331.										
n	4.0	See K	.1001/5A I	.3.3. I	l	Heater-Cathode Insulation				
						Leakage Current (µA)	-	200	100%	

CV.2810/3/3.

NOTES

- 1 The internal conductive coating shall be of such dimensions that it functions effectively but does not obscure the required useful screen area.
- 2 When viewing the screen with the tube positioned such that the base spigot is uppermost, a positive voltage applied to the terminal X₁ shall deflect the spot to the left and a positive voltage applied to the terminal Y₁ shall deflect the spot upwards
 - 3 The neck diameter may be reduced provided that rubber rings or other approved packing is supplied with the tube to bring the overall diameter within the stated tolerances.

All dimensions in millimetres

View of underside of base

Face - cone radius (mm)	Overall diameter (mm)	Face radius(mm)
23 - 26	155-156	300 -400
24 - 26	155-158	300 ~ 400
26 - 27	155-158	350-400
24 - 27	156-158	400 -450

An alternative method of checking these dimensions may be made by using the gauge as shewn on page 5.

METHOD OF OPERATION OF GAUGE: - Insert C.R.T. into body of gauge. By means of a suitable dial gauge, the design of which must be approved by the T.A. Authority, measure the distance of the screen from the five reference planes. The dimensions at the centre and the average of the four other dimensions must be within the limits of 8.7 mm (min) to 10.7 mm (max). The size of the holes will depend upon the design of the dial gauge.