Specification MOS(A)/CV 2434	SECURITY			
Issue 1 Dated 2.9.57 To be read in conjunction with KlOOl (except	Specification Unclassified	<u>Valve</u> Unclassified		
clause 52) BS448 and BS1409				

Indicates a change

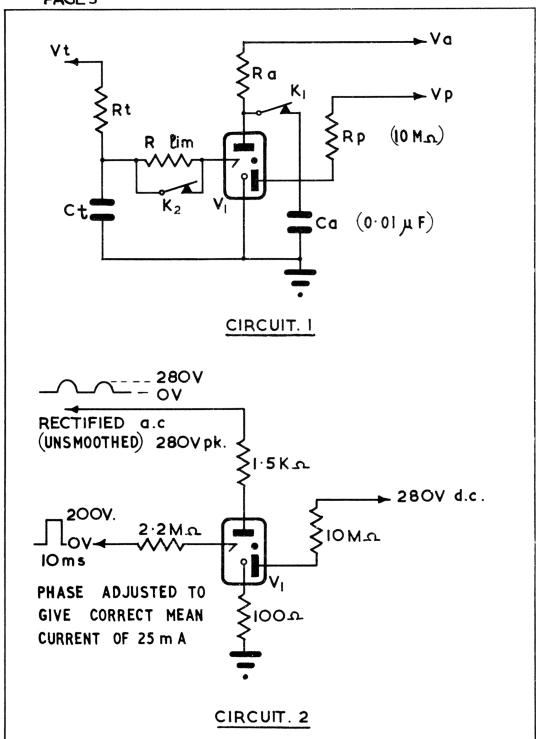
RATINGS (Notes G and H) Note Remainal Trigger Ignition Voltage (V) Max. Working Anode Voltage (V) Nominal Anode/Cathode Maintaining Voltage Typical Trigger/Cathode Maintaining ing Voltage (V) Max. Priming Current Min. Priming Current Min. Priming Current Max. Peak Cathode Current Max. Average Cathode current Max. Positive Peak Trigger Current Max. Priming Anode Ignition Voltage Max. Transfer Current (Va = 240V) (VA) Min. Trigger Capacitance to ensure ignition with (a) +Va 170V (b) +Va 200V (c) +Va 240V Max. increase in Trigger Ignition Note BS448/B9A BS448/B9A CONNECTIONS (Note G) Pin Electrode Pin Anode 1 Anode 1 Anode 1 Anode 1 Anode 2 Internal Connection 4 Cathode 5 Cathode 6 Priming Anode 7 Cathode 8 Trigger 9 Trigger 9 Trigger DIMENSIONS See BS. 448/B9A/2.1 Size Ref. No. 1 Dimension Min. Max. Tenger Ignition Vely Dimension Min. Max.	Type of valve - High stability long litrigger tube Cathode - Cold Envelope - Glass Prototype - Z803U	MARKING See Klool/4					
Voltage when anode voltage is changed from 290V to 170V. (%) Typical stability of trigger Ignition Voltage 2000 hours life. (%) +1 F C mm 19.0 22.2 D mm 45.0 MOUNTING POSITION Any NOTES	Nominal Trigger Ignition Voltage (V) Max. Working Anode Voltage (V) Min. Working Anode Voltage (V) Nominal Anode/Cathode Maintaining Voltage (V) Typical Trigger/Cathode Maintaining Yoltage (V) Max. Priming Current (MA) Min. Priming Current (MA) Max. Peak Cathode Current (MA) Max. Average Cathode current (MA) Max. Positive Peak Trigger Current (MA) Max. Priming Anode Ignition Voltage Max. Transfer Current (Va = 240V) Min. Trigger Capacitance to ensure ignition with (a) +Va 170V (pf) (b) +Va 200V (pf) (c) +Va 240V (pf) Max. increase in Trigger Ignition Voltage when anode voltage is changed from 290V to 170V. Typical stability of trigger Ignition Voltage 2000 hours	132 290 170 105 95 25 2 100 25 8 1500 1500 1000 500	A A A A A A A A A A A A A A A A A A A	1 2 3 4 5 6 7 8 9 See BS Size R Dimens	Anon International Internation	ELECTIONS (N ELECT	ctrode ection ection Max. 38.0 22.2 45.0

NOTES (ratings)

- A. Absolute value.
- B. Maximum averaging time 15 seconds.
- C. Negative trigger current should not be drawn by the valve. Such a current occurs if the trigger potential is reduced below 90V during anode conduction.
- D. To limit the positive peak trigger current a resistor of 2.2KQ is required for trigger capacities between 4700 and 15000 pF, and a resistor of 5.6 KQ is required for trigger capacities of over 15000 pF.
- E. This applies in darkness or in daylight.
- F. To ensure high stability of characteristics in light and darkness a priming discharge of some 10 MA flowing between priming anode and cathode is essential. If the valve is used without priming discharge, delays in trigger ignition up to 10 seconds may occur and thus seem to impair the stability of the characteristics. However under these conditions the pre-strike current of the valve is considerably reduced.
- G. The cathode connection should be made to pins 4, 5 and 7 connected together.
- H. It is recommended that the priming discharge resistor is 10 Meg ohm +20%. This resistor must be soldered directly to pin 6. Stray capacitance between priming anode and cathode must be kept to a minimum.

CV2434

To be performed in addition to those applicable in Kl001


Tests shall be performed in the specified order, unless otherwise agreed with the Inspecting Authority

		DITIONS - UNLESS OTHERW IP = 25/UA		Ct	= 2000	pF			
K1001		TEST	TEST CONDITIONS		INSP.	SYNDOL	LIMITS		UNITS
							MIN.	MAX.	
	a.	Primer Ignition Voltage	Va = Vt = 0 Rt = 100 K ohm Note 1		100%	Vp	-	150	v
	b.	Trigger Ignition Voltage (1)	Va = 280 v, Rt = 100 K chm Note 2		100%	Vt(1)	128	137	ν
	c.	Trigger Ignition Voltage (2)	Vn = 160V, Rt = 100 K ohm Ct = 3,900 pF,k lim. = 2.2 K ohm		100%	Vt(2)	-	-	
		Change in Trigger Ignition Voltage (1) Vt(1) - Vt(2)			100%	\(\Delta \psi \tau(\ta)	-	4	γ
	d.	Trigger Ignition Voltage (3)	Va = 200V, R at = 100 N ohm Ct = 1000 pF, Note 2.		San		-	-	
		Change in Trigger Ignition Voltage (2) Vt(1) - Vt(3)	V	∆ v t (2)	-	4	v		
	в.	Anode Ignition Voltage	Vt = 120V, Ra = 100 K ohm Rt = 100 M ohm, Note 3		100%	Va	290	-	v
	f.	Ande Maintaining Voltage	Adjust Va, Vt = 0 Ra = 10 K chm, Rt = 100 H chm Note 4.	2.5	I	Va	100	110	v
	g.	Trigger Preconduction Current (Ip = 0)	Va = 280V Adj Vt.	6.5	IA	It	•	5 x 10 ⁻¹⁰	A
	h.	Life	Note 5		IC				
		Life Test End Point 500 hours	As in test b	6.5		ΔVt	-	1.5	я
		Life Test End Point 2000 hours	As in test b Netes 6 & 7			ΔVt	-	2.0	75

NOTES (tests)

General: A lot shall consist of one month's production. Tests
"a" to "f" are to be performed using Circuit 1 on page 5

- Increase priming anode voltage (vp) slowly until the valve ignites primer to cathode.
- Increase trigger voltage (Vt) slowly until the valve ignites trigger to cathode.
- J. Increase anode voltage (Va) slowly until the valve ignites anode to cathode.
- 4. Measure anode voltage drop with a high impedance voltmeter connected between anode and cathode when the anode maintaining current is adjusted to 10 mA. For this test only, Ca should be disconnected.
- 5. Apply an unsmoothed half wave rectified A.C. voltage of 280 volts peak to the anode so that Ia mean = 25 mA and Ia peak = 100 mA. See circuit 2 on page 5
- 6. This is not a batch acceptance test but shall be made on valves undergoing normal factory life tests. Examination of the records of such tests will normally be considered as fulfilment of the requirements of the test clause.
- 7. Change of Vt (1) from original Value.

