Specification MOS/CV2388	SECURITY	
Issue 1 Dated June 1956. To be read in conjunction with K1001	Specification Unclassified	Valve Unclassified

✓ Indicates a change

		ACCOMPANIES OF THE PARIES		the state of the s	
TYPE OF VALVE: -	Cathode Ra	y Tul	е		MARKING
TYPE OF DEFLECTION: -	Magnetic		s	ee K1001/4	
TYPE OF FOCUS: - SCREEN: -	Magnetic 009 (Aluminium backed)			B1 2A.	PASE with metal shell
BULB: -	Metal cone	•		C	ONNECTIONS
PROTOTYPE: -	VORX397A			Pin	Electrode
RATING Heater Voltage Heater Current Max. 1st Anode Voltage Max. Final Anode Voltage Max. Heater-Cathode Voltage Max. Beam Current	age (kV)	6.3 0.5 600 15.5 150 50	A	123456789	h g No pin No pin No pin No connection No connection No pin No pin
CAPACITANCES () Max. Cg to all other of Max. Ck to all other of	electrodes	1 5 8		10 11 12 Cone	ay k h a2 DIMENSIONS ings on Pages 6, 7 and 8

A. Absolute maximum value.

B. Heater negative to cathode.

C. To prevent damage to the screen material the tube should not be operated with a stationary spot. The tube should be operated at its minimum useful brightness.

D. The fluoride screen shall not contain beryllium.

CV2388

To be performed in addition to those applicable in K1001

drse	Test Conditions	Test	Lim	its	No.
8			Min.	Max.	Tested
a		Capacitances (pf) Carid to all other			
		electrodes 2. Cathode to all other		15	5%(20)
		electrodes		8	5%(20)

FOR ALL TESTS BELOW V_h = 6.3 Volts

	Heater Current	(A)	0.44	0.56	100%
FOR ALL TESTS BELOW	EXCEPT CLAUSES n &	$V_{a1} = 4$.	V _a 2 =	15 kV
Adjust for optimum focus. Adjust Vg for cut- off. See K1001/5A.10.	Grid Base - Vg	(₹)	¥О	100	100%
a light intensity		(uA)		5	100%
Defocussed beam, scanned or deflected off usable screen area Adjust Vg to give Ib = 50 uA.	Change in Vg from	(c).(V)	10	30	100%
optimum with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/uS. See note 1. (1) Grid, +ve drive from cut-off	centre of the trace.			0.6	100%
All property and the state of t	Adjust for optimum focus. Adjust Vg for cut- off. See K1001/5A-10. Vg adjusted to give a light intensity of 0.15 candela, using a focussed raster of convenient size. Defocussed beam, scanned or deflected off usable screen area Adjust Vg to give Ib = 50 uA. Focus adjusted for optimum with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/uS. See note 1. (i) Grid, +ve	Adjust for optimum focus. Adjust Vg for cut- off. See K1001/5A.10. Vg adjusted to give a light intensity of 0.45 candela, using a focussed raster of convenient size. Defocussed beam, scanned or deflected off usable screen area Adjust Vg to give Ib = 50 uA. Focus adjusted for optimum with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/us. See note 1. (i) Grid, +ve drive from cut-off	Adjust for optimum focus. Adjust Vg for cut- off. See K1001/5A.10. Vg adjusted to give a light intensity of 0.45 candela, using a focussed raster of convenient size. Defocussed beam, scanned or deflected off usable screen area Adjust Vg to give Ib = 50 uA. Focus adjusted for optimum with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/uS. See note 1. (i) Grid, +ve drive from out-off Adjust for optimum focus Grid Base - Vg (V) Screen Efficiency Beam Current (uA) Crid Drive Change in Vg from value found in test (c).(V) Line Width measured at the centre of the trace. (Microscope method) (i) Grid, +ve (i) (mm)	Adjust for optimum focus. Adjust Vg for cut- off. See K1001/5A.10. Vg adjusted to give a light intensity of 0.45 candela, using a focussed raster of convenient size. Defocussed beam, scanned or deflected off usable screen area Adjust Vg to give Ib = 50 uA. Focus adjusted for optimum with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/uS. See note 1. (1) Grid, +ve drive from cut-off Adjust Vg to optimum with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/uS. See note 1. (1) Grid, +ve drive from cut-off	Adjust for optimm focus. Adjust Vg for cut- off. See K1001/5A.10. Vg adjusted to give a light intensity of 0.45 candela, using a focussed raster of convenient size. Defocussed beam, scanned or deflected off usable screen area Adjust Vg to give Ib = 50 uA. Focus adjusted for optimm with focus coil centred as in drawing page 6. Linear line scan of velocity 4.9 mm/uS. See note 1. (1) Grid, +ve drive from cut-off Adjust for optimum focus of velocity 4.9 mm/uS. See note 1. (1) Grid, +ve drive from cut-off Adjust for optimum focus of velocity 4.9 mm/uS. Except Clauses n & o Val = 400V. Val =

T	Test Conditions	Test Limits			Limi	Limits	Limits	No.
Claus	rest Conditions	1650	Min.	Max.	Tested			
) ((Continued) of amplitude as found in test "e" at 100 P.P.S. OR (ii) Using an interlaced 405 line T.V. raster with the frame scan expanded to facilitate line width measurement, D.C. + ve grid	<u>OR</u> (ii) (mm)		0•5	100%			
	drive from cut-off as found in test "e"							
g	(i) Vg - 90V <u>OR</u>	Grid Insulation (i) Leakage current (uA) OR		9	100%			
	(ii) See K1001/ 5A.3.2. Resistor 10 megohm	(ii) Increase in voltmeter reading		100%				
h	A voltage of 150V shall be applied between heater and cathode. See K1001/5A.3.3.	Heater-Cathode Leakage Leakage Current (uA)		150	100%			
j	Adjust for optimum focus and any convenient light intensity, deflection to cover the useful screen area.	Useful Screen Area Diameter on the geometric centre of the screen (mm)	480		100%			
k	No focus or deflecting fields. (1) Vg any convenient value.	(1) Deviation of the spot from the geometric centre of the screen (mm)		20	100%			

	, v 2500	IBSIS (COILC II)	1		rage 4
Tlause	Test Conditions	Test	Idn Cin.	Max.	No. Tested
k		(2) Diameter of unfocussed spot (mm)		25	100%
1	Vg any convenient value. The un- focussed beam shall be scanned by deflection coils near the cathode plane to produce a raster on the tube face whose area is limited by the tube neck.	Meck Alignment Deviation of the centre of "shadow" area from the centre of the unfocussed spot as found in test k(1). (mm)		10	100%
m	Screen to be scanned with an interlaced 405 line T.V. raster of con- venient size. No focussing field, Vg adjusted for a screen brightness of 2 foot lamberts. Excitation time \$\$120 \text{ secs} \cdot 15 \text{ secs}\$.	Afterglow. Decay time to 0.014 foot lamberts at 20°C (Secs) Assume temperature co- efficient of screen to be -6 secs. per °C within the limits 18 to 22°C	170		10% (10)
n		Flash Over and Stray Emission Any flashover or stray emission can be ignored during the first 5 seconds when any emission should be deflected off the screen During the remaining 5 seconds, when there shall be no deflecting field the tube shall be rejected if flashover or stray emission appears.			100%

18	Test Conditions	Test Limits		its	No.
Tlau re-	Test Conditions	1680	Min.	Max.	Tested
	Va1 Va2 Vg 200V -70V 0 Starting with cathode cold, measure Ia2 when I _k reaches 300 to 1000 uA.	Gas Ratio The ratio Ia2 uA Ik uA		-1+ 2ਵਾਂ	100%
		Stones Bubbles and Rlemishes 0.75 mm dia. max. 1.0 mm. dia. max. Spacing between bubbles(mm)	20	24 5	100%

NOTES

- 1. Focus coil dimensions 3^{1m}_{2} long with inside diameter of 2^{1m}_{2} with a full length gap.
- 2. If two or more blemishes are separated by a distance not greater than the maximum dimension of the largest blemish in the group, then the group of blemishes shall be considered as one blemish of dimension equal to the maximum overall dimension of the group.

CV 2388/1/6

CV2388/1/7

BULB OUTLINE NOTES

- V. The flared neck contour must be checked with the gauge shown on Page 7. The blade of this gauge must only make contact with the flared neck at the point "B" when the gauge is rotated through 360° fully home on the neck of the tube.
- W. A gauge 100 mm. long x 36.1 mm. dia. shall pass over base and neck and at the gauge point its centre axis shall lie within \frac{1}{2}" of the reference axis.
- I. Between the 36.1 mm. gauge point and the cathode position the neck axis shall not depart from the reference axis by more than 10.
- Y. 21.535" dia. does not include clamping point, this will be orientated to line up with the base spigot key + 15°.
- Z. At this point the cone shall not depart from a true circle of dia. 16 21" by more than 0.157" (4 mm) and the centre of this circle shall lie within 7/32" of the reference axis.

NECK GAUGE TOLERANCES

- i. Fractional dimensions + 1/64"
- ii. Constructional dimensions marked # have no tolerance.
- iii. Tolerance of +.003 -.000 on surface of and at right angles to profile.
- iv. All other dimensions as stated.

NECK GAUGE MATERIALS

ITEM NO.	MATERIAL	SIZE	NO. REQUIRED
1 2 3 4 5 6 7	Brass tube Brass Gauge plate Spring steel Gauge plate Brass	2" MA. x 15" long 2" MA. x 104" " 21" MA. x 104" " 21" MA. x 2" " 18" x 3" x 15" " 26G (.018")x 3" x 15" long 18" x 3" x 35" long 3" x 3" x 15" long	1 1 1 1

SPECIFICATION C.V.2388. ISSUE 1 dated 1.6.56

AMENDMENT NO. 1

PAGE 5. Note 1

AMEND to read "..... with inside diameter of 24" with"

PAGE 6

AMEND the dimension of $3^5/32$ " $\pm 5/32$ " to $3^1/32$ " $\pm 5/32$ " (This is from the Datum Plane to the dimensioning line above 'See Note Z'

June, 1957 for Director R.R.E. N.87977R