Page 1 (No. of pages: - 5) MINISTRY OF SUPPLY R.R.E.

VALVE ELECTRONIC

CV2352

Specification MOS/CV2352 Issue 3	SECURITY			
Dated: - February 1956.	Specification	Valve		
	Unclassified	Unclassified		

Indicates a change

THE COLUMN THE TARREST	MARKING				
TYPE OF VALVE: -	Cathode Ray Tube				
TYPE OF DEFLECTION: -			See K1001/4		
	Symmetrical Asymmetrica		BASE		
TYPE OF FOCUS: -	Electrostat	ic	B14 A.		
BULB: -	Glass. Int	er-	See B.S.448: 1953		
	nally coated		CONNECTIONS		
	with conduc	tive			
	coating.		Pin Electrode		
SCREEN: -	GG4		1 h		
PROTOTYPE:-	VCRX 390		2 k 3 g		
			3 g 4 a2		
RATING Heater voltage (V) Heater current (A)			5 No connection		
		6.3	6 Internal coating		
Heater current (A)			7 y1 8 y2		
Max. Va1 (kV)			$\begin{vmatrix} 8 \\ y^2 \end{vmatrix}$		
Max. Va2	(kV)	1.1	9 a3 10 x 2		
Max. Va3	(kV)	6.0	10 x ₂ 11 x ₁		
Sensitivity, x plate	s (mm/V)	925 Va3	12 No connection		
Sensitivity, y plate	s (mm/V)	1000	13 a ₁		
, sometimes, y plant	(,	Va3	14 h		
			77.77.70		
TYPICAL OPERATING CONDITIONS			DIMENSIONS		
Va1 (kV) 1.8		See drawing, page 5			
Va2	(kV)	0.65			
Va3	(k V)	5.0			

NOTES

A. For optimum focus quality the potential between the internal conductive coating and a3 must not exceed 10 volts.

CV2352

TESTS

To be performed in addition to those applicable in K1001

Clause	Test Conditions	Test	Limits Min. Max.		No. Tested
a	See K1001/5A.13	Capacitances (pF) 1. Each x plate to all other electrodes	-	20	25 (5)
rdereffreibred virbretter of references		2. Each y plate to all other electrodes3. Grid to all other electrodes	-	16	
		4. Each x plate to each y plate	-	1.5	
		5. Cathode to all other electrodes	-	10	

FOR ALL TESTS GIVEN BELOW Vh = 6.3V

Ъ		Ih	(A)	0.28	0.66	100%
C	Cathode 100 volts positive	Heater-cathode	current			
	to heater		(uA)	-	100	100%

FOR ALL TESTS GIVEN BELOW Va1 = 1.8kV, Va3 = Vm = 5.0kV WITH ASYMMETRICAL X AND Y DEFLECTION VOLTAGES

	đ	convenient size adjust Va2 for optimum overall focus	2.	X direction Y direction	(V) area. (mm) (mm) (uA)	1 125 35	200	100% 100% 100%
*		With an elliptical scan nominally 100 mm x 30 mm adjust Va2 for optimum focus and Vg as in (d).		Line width	(A) (ww)	600	0.7 700	100% 100%
		Va2 as in (e) Adjust Vg for cut-off See K1001/5A.10.	2.	-Vg Increase in nevalue of Vg cowith value not test (d1) Within the ran Vg found in test to that in test the beam curreshall increase continuously	ompared (V) age of est f.1 st d.1 ent	25 -	3 0	100% 100% 100%

Pe	age 3 TESTS	CV2352				
Clause	Test Conditions	Test	Limits Min. Max.		No. Tested	
distante la constitución de la c	See K1001/5A.3.2. (a) Vg -80V (b) Alternative method. Resistor 5M2	Grid Insulation (a) Leakage current (uA) (b) Increase in volt- meter reading	-	16 100%	100%	
h		Deflection Sensitivities 1. x plates (mm/V) 2. y plates (mm/V)	850 Va3	1000 Va3 1100 Va3	10% (10)	
j	See K1001/5A-11-1-	Deviation of spot from centre of screen (mm)	_	7•5	100%	
k		Orientation of Deflection Axes 1. Orientation of x axis of deflection relative to 00'	-2°	+2°	100%	
		on drawing 2. Angle between x and y axes of deflection	88°	92°	100%	-
1	A screen area of at least 100 mm x 30 mm to be scanned.	Trapezoidal Distortions 1. Angle between adjacent sides. 2. Angle between opposite sides	8 7° 177°		10% (10)	
m	With a defocussed raster scan to cover the useful screen (see test d.2), adjust Vg for any convenient light intensity. See Note 1.	Blemishes Bubbles and Dead Spots 0.25 to 0.6 mm. 0.6 to 1.0 mm. greater than 1.0 mm.		1 0 5 0	100%	
n	Air Ministry Test Set 42 See K1001/11.5.	<u>Vibration</u>			T.A.	
0	All conditions as in clause "e" but with the internal conductive coating + and - 10 volts with respect to a3	Line width (mm)		0.7	T.A.	←

CV2352

NOTE

1. If two or more blemishes are separated by a distance not greater than the maximum dimension of the largest blemish in a group, then the group of blemishes shall be considered as one blemish of dimension equal to the maximum overall dimension of the group.

Amendment No. 1 to Specification CV2352 - Issue 3 - dated July, 1956

Page 5.

Amend radius of screen curvature on the "Y" axis (short axis) to read 450 ± 100 mm instead of 600 + 50mm radius.

Amend overall bulb height to read 66 + 2mm instead of 66 + 1.5mm.

July, 1957.

T.V.C. for R.R.E.

N.88393R.