Page 1. (No. of pages: - 4).

VALVE ELECTRONIC CV2278

ADMIRALITY SIGNAL & RADAR ESTABLISHMENT

Specification AD/CV2278/Issue 2.	SECURITY		
Dated: 22.7.53.	Specification	Section Section 25	
To be read in conjunction with K1001.	Unclassified	Unclassified	

TYPE OF DEFLECTION: Magnetic. TYPE OF FOCUS: Magnetic. BUIB: Internally coated with			MARKING See K1001/4.			
conductive coating.			BASE			
SCREEN: 008 (With Aluminium Backing).			Pin	IO Electrode		
PROTOTYPE: VCRX353.	1 2	No connection Heater				
RATING			3 4	Pin omitted Pin omitted		
Heater Voltage (V)	4.0	Note	5	Grid		
Heater Current (A)		1	6 7	Pin omitted Heater		
Maximum Anode Voltage (kV)	5.0		8 Side Contact	Cathode Anode		
			Side Contact-Plug cap to conform to K1001/AI/D5.1.			

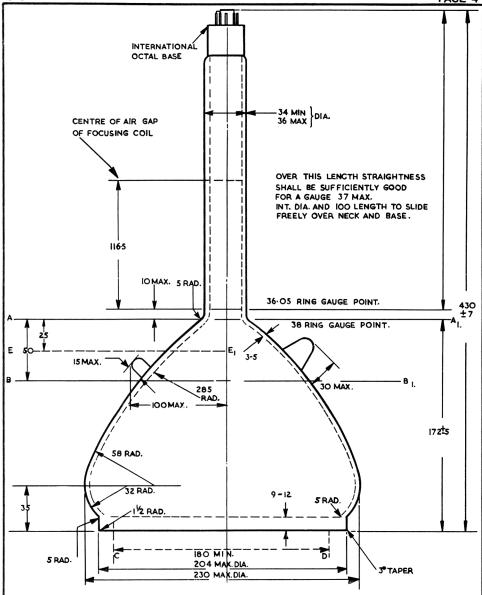
NOTE

The gun assembly shall be sufficiently robust to withstand considerable mechanical shocks without suffering displacement.

TESTS

To be performed in addition to those applicable in K1001.

	Test Conditions					Limi ts			
	Vh	Va(kV)		Test		Min.	Max.	No. Tested	
a				Capacitance (pF)			5%	
				Grid to all oth electrodes.	er		25	(5)	
Ъ	4.0	0	0	Ih	(A)	-	1.2	100%	
C	4.0	4.0	Adjusted	Line Width	(mm)	-	0.5	100%	
	Focus adjusted for optimum.			Deflection - With a linear scan, with a repetition frequency of 10 Kc/s. and a line length 180 mm, the line width will be measured at the centre of the trace. Grid - The grid will be pulsed positively from cut off with amplitude equal to the					
				value obtained in test 'd' the nominal value of pulse duration and recurrence rate being 100 usecs. and 100 c/secs. respectively.					
đ	4.0 Vg 9	4.0	Adjusted to give	i. Vg Andt.!. ii. Focus coil		To be at least 1V negative to cathode		100%	
	a light output of 0.13 candles.			cuprent	(mA)	80	120	T.A.	
•	4.0	4.0	Adjusted to cut off	i. Vg ii. Increase i negative v		-3 0	-6 5	100%	
				of Vg from value in '	.	-	30	100%	


Page 3.

TESTS (Contd.)

	Test Conditions				Limits		1
		or head head well as the second		Test	MATERIAL RESIDENCE AND PROPERTY OF THE PROPERT		No.
	Vh	Va(kV)	Vg		Min.	Maxe	Tested
£	4.0	4.0	- 65	Grid Insulation			
	Resistor = 10 Meg-		10 Meg-	Leakage current (µA)	600	6.5	100%
	ohms. See K1001/5A.3.2.			Increase in volt- meter reading.	400	100%	100%
g	4.0	4.0	Within working range	Useful Screen Area Dia. (mm)	180	-	100%
	Focus adjusted to optimum.		ted to				
h	4.0	4.0	Within working range.	Deviation of spot from centre of screen. (mm)	50	10	100%
	No focussing coil energisation.		war -				
j	4.0	4.0	619	Afterglow (secs).	8	(SEP	10%
	Test to be done with Test Set 331 using a close raster of con- venient size, and an N3 filter.		using a r of con-				

NOTE

For the purpose of tests 'c', 'd', 'e', 'g' and 'j' the focussing fields required are to be obtained by means of an approved focus coil in the position shown on the drawing.

ALL DIMENSIONS ARE IN MILLIMETRES

NOTES

WITHIN I I/2M M.

THE ANGLE BETWEEN PLANE THROUGH ANODE CAP OR PUMP STEM AND AXIS OF TUBE AND PLANE THROUGH BASE SPIGOT AND AXIS OF TUBE SHALL NOT EXCEED ISO ANY PROTUBERANCE DUE TO SEALING OFF SHALL LIE BETWEEN A A' AND BB' AND TO ANODE CONNECTION SHALL LIE BETWEEN BB' AND E E'

BETWEEN C&D THE FRONT FACE SHALL NOT DEPART FROM FLATNESS BY MORE THAN 11/2 MM.
THE FRONT FACE SHALL BE OF UNIFORM THICKNESS TO

THE FRONT FACE SHALL BE POLISHED TO OPTICAL QUALITY,

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV 2278 ISSUE NO.2 DATED 22.7.53

AMENDMENT NO. 1.

Page 2 Test Clause d(ii).

Focus Coil Current. Delete this test.

T.V.C. for A.S.W.E.

November, 1963 NP.204710

VARS 1476