Page 1 (No. of Pages:- 3)
MINISTRY OF SUPPLY (R.R.D.E.)

VALVE ELECTRONIC

CV2221

Specification MOS/CV2221/Issue 2.	SECURITY		
Dated March 20, 1952.	Specification	Valve	
To be read in conjunction with K1001	Unclassified	Unclassified	

TYPE OF VALVE: - Velecity modulated magnetically focussed local oscillator. CATHODE: - Indirectly heated. ENVELOPE: - Cepper-glass PROTOTYPE: - VX7057			MARKING See K1001/4 PACKAGING See K1005		
Heater current Nominal tuning range (cm Max. dissipation anode and resonator Anode voltage Resonator voltage Max. screen voltage Max. resonator dissipation Max. cathode current (m Max. screen	A) Coss 7.55 N) 150 V) 140 V) 4	5.3 5-11.5 15 1-420 1-400 1-400 1-400 8 65		Pin 1 2 3 4 5 6 7	BASE B7G Electrode Grid 1 Cathode Heater Heater Anode Resonator Grid 2 DIMENSIONS See page 3

NOTES

- A. Anode should be approximately 20 volts positive to resonator when lew noise output is required.
- B. Screen volts should not exceed resonator volts by more than 50V.
- C. A permanent magnet is used to focus the electron beam and is erientated so that maximum current flows to the anode.

 Locating heles are provided so that the magnetic alignment position is the same for all valves. The magnet should have a uniform field strength of approximately 1000 aersteds. Jessop magnets type 9501 and 10512 are recommended.

TESTS

Page 2

To be performed in addition to those applicable in K1001

Test Cenditions				Test	Limits		No.			
					Min.	Max.	Tested			
	Vla (V)	Vg1 (V)	Va.	Vg2 (V)	Vres (V)	IC .nA)				
8.	6.3	-	-	-	~	-	Im (A)	0.27	0.33	100%
ъ	6.0	-40	Set at Vr1	Adjust (Nete2)	Adjust	47	(1) Pewer Output (mW) (2) Resonator voltage	500		100%
							(Vr1) (V)	295	335	
c	6.0	-40	Set at Vr2	Adjust (Nete3)	Adjust	6 5	(1) Power output (mW) (2) Resonator voltage	500		100%
			STATE OF THE PROPERTY OF THE P				(Vr2) (V)	170	210	
đ	6.0	-40	Set at Vr3	Adjust (Note4)	≰djust	41	Oscillation shall be detected. Resonator voltage(Vr3) (V)	345	385	100%
e	6.6	-200	235- 245	150	225	***	Reverse Ig (uA)	-	30	100%
f	6.6	-40	235 - . 245	Adjust	225	65	Ig2 (mA) Vg2 (V)	80	6.0 210	100%

NOTES

- 1. Tests b, c and d shall be carried out in an approved test set.
- 2. Vg2 is adjusted to give $I_c = 47$ mA with oscillation at 7.9 cms.
- 3. Vg2 is adjusted to give $I_{\rm C} = 65$ mA with oscillation at 11.0 cm.
- 4. Vg2 is adjusted to give $I_c = 41$ mA with oscillation at 7.5 cm.

SPECIFICATION NOS/CV 2221/ISSUE 2.

ALENDIENT NO. 1.

Fage 3.

Amend the dimension from the valve disc to the top of the valve

from 12.8 mm to 12.55 mm max. 11.1 mm min. 11.1

T.V.C. Office. (for RRDE) September 1952.

Z.4108.R.