### MINISTRY OF SUPPLY - D.L.R.D. (A)/R.A.E.

# VALVE ELECTRONIC CV2205

MADETEN

| Specification MOSA/CV2205                                         | SECURITY                   |                              |  |  |
|-------------------------------------------------------------------|----------------------------|------------------------------|--|--|
| Issue 2. Dated 13.3.553. To be read in conjunction with K-1001/5A | Specification UNCLASSIFIED | <u>Valve</u><br>UNCLASSIFIED |  |  |
| •                                                                 |                            |                              |  |  |

### Indicates a change

| TYPE OF VALVE - Cathode Ray Tube TYPE OF DEFLECTION - Electrostatic su symmetrical defl - Electrostatic - Internally coate conductive coati SCREEN - EB1 - VCEX.131                                                   | See K1001/4  BASE  British Standard 9-pin                   |             |                       |                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|-----------------------|----------------------------------------------------------------------------------------------------------------|--|
| <u>rating</u>                                                                                                                                                                                                         | Note                                                        | CONNECTIONS |                       |                                                                                                                |  |
| Heater Voltage (V) Heater Current (A) Max. Final Anode Voltage (kV)  Plate Sensitivity X-plate (mm/V)  Y-plate (mm/V)  TYPICAL OPERATING CONDITIONS Final Anode Voltage (V) First Anode Voltage (V) Beam Current (MA) | 4.0<br>1.0<br>1.0<br>1.0<br>Va3<br>100<br>Va3<br>800<br>2-4 | A           | Pin 1 2 3 4 5 6 7 8 9 | Electrode  X1 Y1 Second Anode Heater and Cathode Heater Grid First and final Anodes internally connected Y2 X2 |  |

#### NOTES

- A. The tube shall be capable of operating with first and final anode voltages of 900 V at a pressure equivalent to 7.36° mercury at 15°C.
- B. The tube shall be of three-enode construction, and shall be adequately free from microphony.
- C. The gun assembly shall be sufficiently robust to with stand considerable mechanical shocks without suffering displacement.
- D. Viewing the screen of the tube, with pin number 6 at the top as shown in plan view of the underside of base (see drawing on Page 4) a positive potential applied to pin number 9 shall deflect the spot to the right.

CV2205
To be performed in addition to those applicable in K.1001.

|     | Test Conditions                                        |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                              | Test                                                                                             |                                                   | Limits                                                 |               | No.             | Note |
|-----|--------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|---------------|-----------------|------|
|     | ٧h                                                     | Va3                                                                                | Va2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Val                                                      | ٧g                           |                                                                                                  |                                                   | Min.                                                   | Max.          | Tested          |      |
|     | I                                                      | Deflect                                                                            | tion voltag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ges sha                                                  | ll be app                    | plied symmetr                                                                                    | ically                                            | in all                                                 | Cases.        |                 |      |
| a   | See K.1001/5A.13                                       |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                              | CAPACITANC  1. Each X Y plate all oth electro 2. Grid to other electro 3. One X-p te one Y-plate | or ead<br>to<br>er<br>des.<br>all<br>des.<br>late | 1 1                                                    | 15<br>20<br>5 | T.A.            |      |
| > b | 4.0                                                    | 0                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                        | -                            | Ih                                                                                               | (A)                                               | 0.65                                                   | 1.1           | 5%(10)          |      |
| ٥   | 4.0                                                    | 800                                                                                | Adjusted<br>for<br>sptimum<br>focus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 800                                                      | Adjust<br>to give<br>cut-eff | ٧g                                                                                               | (₹)                                               | -7                                                     | -20           | 100%            |      |
| d   | intecand<br>both                                       | ensity<br>delas (                                                                  | ditte ed te give of 0.0022 or close re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orthod                                                   | hromatic<br>5 mm in          | 2. Within range o voltage cut-off standar light o put the current increas centim                 | f grid<br>from<br>to<br>d<br>it-<br>beam<br>shall | At<br>least<br>1 V<br>nega-<br>tive<br>to ca-<br>thede |               | 100%            |      |
|     | DEFI base leng dire line the  GRII post ampl obts nomi | e of 10<br>gth of sections<br>width<br>centre<br>The<br>tively<br>litude<br>and re | With a side of keys nome.  30 mm in the successive of the transport of the | and a rely. asured race. be pull-off with the talk being | line nd Y The at sed th      | 1. Line w                                                                                        | idth<br>(mm)<br>(V)                               | 50                                                     | 1.0<br>175    | 100%<br>5% (10) |      |

Page 3

| 1        |     |                                                                                             |                                 | Mark Carrie                         |                                           |                                 |                                                                                                      | Limits                 |                          | No.    |      |
|----------|-----|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|-------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------|------------------------|--------------------------|--------|------|
|          |     | Wh.                                                                                         | Test Conditions  Vh Va3 Va2 Va1 |                                     |                                           | Vg Test                         |                                                                                                      | Mine                   | Max                      | Tested | Note |
|          | f   | 4.0                                                                                         | 800                             |                                     | 800                                       | -20                             | CRID INSULATION Leakage current                                                                      | æ.iii                  | 4                        | 100%   |      |
|          |     | В                                                                                           | lesist                          | or - 5 me                           | gohma.                                    |                                 | Increase in<br>voltmeter<br>reading.                                                                 | -                      | 100%                     | 100%   |      |
|          | g   | 4-0                                                                                         | 800                             | Adjusted<br>for<br>optimum<br>focus | 800                                       | Any<br>con-<br>venient<br>value | DEFLECTION SENSITIVITIES  1. I-plate  2. I-plate                                                     | 80<br>Va3<br>80<br>Va3 | 120<br>Va3<br>120<br>Va3 | 100%   |      |
|          | h   | 4.0                                                                                         | 800                             | ditto                               | 800                                       | ditto                           | Deviation of spot from centre of the screen (nm)                                                     | Va3                    | Va3                      | 100%   |      |
| <b>→</b> | j   | 4.0 800 ditto 800 Deflection to cover the stated circle centred on the centre of the screen |                                 |                                     | USEFUL<br>SCREEN<br>AREA<br>Diameter (mm) | 30                              | •                                                                                                    | 100%                   |                          |        |      |
| ->       | k   | 4-0                                                                                         | 800                             | ditto                               | 800                                       | ditto                           | Angle between X and Y axes of deflection                                                             | 85°                    | 95 <b>°</b>              | 100%   |      |
| <b>→</b> | 12. | 4.0                                                                                         | 800                             | ditto                               | 800                                       | ditto                           | Orientation of Y axis of deflection. Angle measured relative to axis O-O' shown on drawing on Page 4 | •                      | ±10°                     | 100%   |      |



ALL DIMENSIONS IN MILLIMETRES

## ELECTRONIC VALVE STECIFICATIONS

# SPECIFICATION CV. 2205 ISSUE 2 DATED 13-3-1953

### AMENDMENT NO.1.

Page 2

Clause "b" Ih Limits:-

DELETE MIN. 0.9 INSERT MIN. 0.85

November, 1963. NP.152581. T.V.C.for R.A.E.

LAL