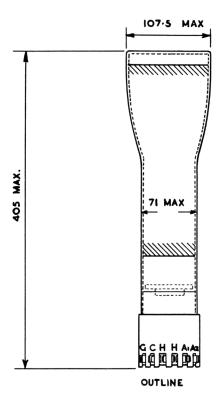
ADMIRALTY SIGNAL & RADAR ESTABLISHMENT

Specification AD/CV2185	SECURITY			
Issue No. 3 dated 20.12.55.	Specification	<u>Valve</u>		
To be read in conjunction with K1001 and B.S.1409	Unclassified	Unclassified		

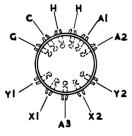
Indicates a change

TYPE OF VALVE: - Cathode Ray	MARKING					
TYPE OF DEFLECTION: - Electros						
	See K1001/4.					
TYPE OF FOCUS: - Electros	BASE					
BULB: - Internally coated wit	h cond	uc-	44 0	-		
SCREEN: - GGN			11 Contact Clip Type on Paxolin Cylinder.			
PROTOTYPE: - Type 88D	*		Clip	Electrode		
RATI NG			1	y 2		
		Note	- 3	x2 a3		
Heater Voltage (V)	6.3		4	x 1		
Heater Current (A)	0.55		6	y1 g		
Max. Third Anode Voltage (kV)	4		2345678	k h		
Max. Second Anode Voltage(kV)	1		9	h		
Max.First Anode Voltage (kV)	3		10 11	a1 a2		
Max. Negative Grid						
Voltage (V)	100			DIMENSIONS		
Sensitivity, x plates (mm/V)	630 Va3		See drawings on pages 4 and 5			
Sensitivity, y plates (mm/T)	_					
	950 Va3					
Max. Voltage between	750					
x plates (V) Max. Voltage between	750					
y plates (V)	500					
Typical Working Conditions						
Third Anode Voltage (kV)	2					
Second Anode Voltage (V)	350					
First Anode Voltage (kV)	2					
Negative Grid Voltage (V)	0-50					
Beam Current (NA)	0 –5 0					
				CV2185/3/1		

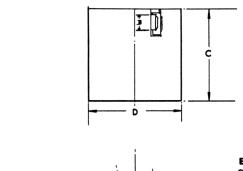
TESTS

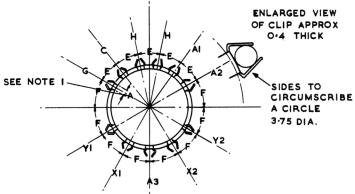

To be performed in addition to those applicable in K1001.

CV2185


I		Test C	onditio	n s	-		Limits		
	Vh (V)	Va3 (kV)	Va2 (V)	Va1 (kV)	∇g (∇)	Test	Min.	Max.	No. Tested
	See K	See K1001/5A.13.				Capacitances (pF)			
				i. Each x plate to all other electrodes. ii. Each y plate to all other electrodes. iii. Cathode to all other electrodes iv. Grid to all other electrodes.		17•5 15 7 9	T.A.		
Ъ	6.3	0	0	0	0	Ih (A)	0.5	0.6	10% (20)
0	6.3	2	Ad- just to opt. focus	2	Adjust to cut- off.	Vg Cut-off	-	- 50	100%
đ	6.3	6.3 2 -do- 2 Adjust				i. Vg (V)	To be at least 1 volt negative to cathode.		
	Vg shall be adjusted to give a light output of 0.006 candela from a closed optimum-focus raster of approximate area 60 mm x 60 mm.				ndela cus	ii. Va2 (V) iii. Line Width (mm) iv. Beam current must increase steadily from zero to value which gives the specified light output.	225	425 •7	100% 100%
0	6.3	2	As in (d) (ii)	2	50	Grid Insulation Leakage Current (MA)	-	5	100%
- Completion - Completion	or, with recommended method of K1001/5A.3.2. and with 10 megohms. resistor.			Increase in voltmeter reading. (%)	-	100	10%		
A CONTRACTOR OF THE PARTY OF TH	6.3	2	Ad- just for opti- mum focus	2	Adjust to give just visible spot.	Deflection Sensitivities x plate (mm/V) y plate (mm/V)	580 ∀a3 870 ∀a3	680 Va 3 1040 Va 3	5%

TESTS (cont'd)


		Test (Condition	ons	alim ili cai u miazzino dicado	Mo a h	Limits		No.
	Vh (V)	Va3 (kV)	Va.2 (V)	Va1 (kV)	Vg (V)	Test	Min.	Max.	Tested
æ	6.3	2	Ad- just for opti- mum focus	2	Adjust to give just visible spot	Deviation of spot from centre of screen. (mm)	-	7•5	100%
h	6.3	2	-do-	2	-do-	Useful Screen Area			
		Le cent	to cove			Diameter (mm)	85	-	100%
j	6.3	2	-do-	2	-do-	Angle between x and y axes of deflection.	88	92	100%
k	6,3	2	-do-	2	-do-	Orientation of x axis of deflection relative to plane through clip 5 and axis of tube.	1	<u>+</u> 10°	100%
1	6.3	2	-do-	2	-do-	Trapezoidal Dis- tortion			
	60 m	n x 60	rea of a mm to l trical	96 8C	anned	i. Angle between adjacent sides. (°) ii. Angle between opposite sides. (°)	87•5 175	92 . 5	20% 20%
m	6.3	2	-do-	2	-do-	Trapezoidal Dis- tortion			
	60 mm x 60 mm to be scanned with asymmetrical deflection and with x2 and w2 at a3				i. Angle between adjacent sides (°) ii. Angle between opposite sides. (°)	86	94 187	T.A.	
n	6.3	5	1000	3	Adjust to cut- off.	Maximum Voltage Test See K1001/SA.14.			100%



DIMENSIONS IN MM.

LOOKING AT BASE END OF TUBE

SLEEVE & END PLATE PAXOLIN "Q QUALITY 1-6 THICK,

DIMENSIONS IN	A	В	С	D	E	F
MMS. EXCEPT WHERE OTHERWISE STATED.	5·5	11·0	70·0	72·6	24°	30°
	± O·13	± 0·2	± 0·5	<u>+</u> 0·3	± 0·75	± 075

NOTE.

DIMENSION "A" REFERS TO THE SLOT IN THE PAXOLIN INTO WHICH THE CLIP IS FITTED.