MINISTRY OF SUPPLY DLRD(A)/TRE

VALVE ELECTRONIC CV 2184

	Specification MOS(A)/CV2184 Issue 2 Dated 29,4,53 To be read in conjunction with K1001	SECUR Specification UNCLASSIFIED	Valve
--	--	--	-------

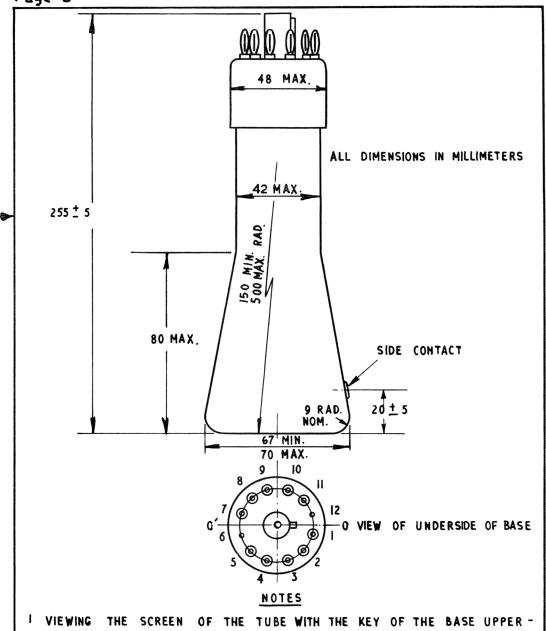
-	Ind	202001	•	Change

TYPE OF DEFLECTION - Electrostatio BULB - Internally coated with				MARKING See K1001/4		
donductive coating SCREEN - YYM.36			<u>BASE</u> 12-pin spigot			
PROTOTYPE - VCRX.298	المستحددة وهند	-		CONNECTIONS		
RATINO		Note	Pin	Electrode		
Heater Voltage (V) Heater Current (A) Max. Fourth Anode Voltage (KV) Max. Third Anode Voltage (KV) TYPICAL OPERATING CONDITIONS Fourth Anode Voltage (KV) Second Anode Voltage (V) (Peak) Working Beam Current (LA) Peak Cathede Current (LA) X-plate Sensitivity (LA) Y-plate Sensitivity (LA)	1.0 3.0 1.5	A	1 2 3 4 5 6 7 8 9 10 11 12 Side Contact	C G H H A2 Pin omitted Y2 X2 A1, A3, and conductive coating X1 Y1 Pin omitted A4		
			Sna	E CONTACT p Terminal		
				MENSIONS Drawing on Page 5		

NOTES

- A. The tube shall be capable of operating with first and third anode voltages of 1500v, and fourth anode voltage of 3.0 kV, at a pressure equivalent to 5.77*ins of mercury at 15°C.
- B. The tube shall be of the post deflector accelerated type and of a design such that a change of + 10% in the Va2 voltage shall not produce an appreciable change in the cut-off voltage.
- C. The tube shall be adequately free from microphony.

TESTE


To be performed in addition to those applicable in K1001

			Test Conditions Test				Lim	No.		
	Vh (V)	Va4 (kV)	Vai Vaj (kV)	Va2 (V)	V g (V)	Test		Min.	Max	Tested
			-	etrical de es to the	-	tages shall be applied to the Y-	plates	and a	symme	trical
a See K1001/5A.13						CAPACITANCES (pF) 1. Each X or Y-plate to all other electrodes.		-	21	5% (5)
						2. One X to one Y-plate		-	4	
						3. Grid to all other electrode	es	-	其	
b	4.0	0	0	0	0	Ih (A)	0.9	1.1	5% (10)
С	4.0	2.5	1.3	Adjust for optimum focus	Adjust to cut- off	Vg (Yalue to be noted	7)	-	105	100%
đ				As for Test (c)	-	2. Change in value of	V)	-1 -	45	100% 100%
				on a close	ght output e raster.	3. Within the range of grid voltage from cut-off to standard light output the beam current shall increase continuously				
е	4.0	2.5	1.3	As for Test (c)	-		mm)	-	1.2	100% 5%(10
	base leng dire widt	of 1 th of ction	0 kc/ 55 m s suc be me	th a sine- s nom. and m. in the : cessively, asured at	a line X and Y the line					
	posi litu in T of p bein	tivel dc eq est (ulse	y from the state of the state o	will be positive of the value the nomination and residual to 100 cm.	with amp- e obtained al values currence					

Tests (Contid)

						a galantinastapun painta antagalantin saine taman a dinastra cirilitare e manusir material yapan pengadagaga asagun		***************************************	
			Condi			Test	Li	mits	No
	(V)	(kV)	Va; Va; (kV)	Va2 (V)	Vg (V)	Test	Min	Max	No. Tested
Î	4.0)		Any conveni- ent value d:- See K100		GRID INSULATION 1. Leakage current (UA) 2. Increase in voltmeter reading	-	21 100%	100% 100%
g	100		shall b	As for Test (f) De applied and cathode	-	HEATER CATHODE LEAKAGE Leakage current (UA)	-	200	100%
h	4.0	2. 5	1.3	As for Test (f)	Any con- venient value	DEFLECTION SENSITIVITES 1. X-plate (mm/V) 2. Y-plate (mm/V)	0.17 0.17		5% (10)
3	4.0	2.5	1.3	As for Test (f)	As for Test (h)	Deviation of spot from centre of screen (mm)	~	7.0	100%
k	1			As for Test (f) Ver stated constraints	As for Test (h) ircle	USEFUL SCREEN AREA Diameter (mm)	55	-	100%
m	4.0	2.5	1.3	As for Test (f)	As for Test (h)	Angle between X and Y axes of deflection	85°	95°	100%
n	4.0	2.5	1.3	As for Test (f)	As for Test (h)	1. Orientation of Y axis of deflection relative to 00° cn drawing. 2. Orientation of diameter line through snap terminal relative to Y axis	-	±10°	100% 100%
					gagan da san san san san san san san san san sa				

			Test	Conditions			Lin	its	No, Tested
	Vh (V)	(kV)	Vai Vai (kV)	Va2 (V)	Vg (V)	Test	Min.	Max	rested
D	4.0	2.5	1.3	As for Test (f)	As for Test (h)	1. The screen shall be no worse for graininess than a standard pattern.			100%
	coveri The si that s	ing the ot sha separat	usef all be te lin	ul screen a defocussed es shall no e raster.	rea. such	2. The variation of brightness over any part of the area shall not exceed a 2:1 ratio.			100%
q	4.0	2,5	1,3	As for Test (f)	As for . Test (h)	Persistence (secs)	5	-	100%
	Test to be performed using approved test gear and a close raster of convenient size.								

- VIEWING THE SCREEN OF THE TUBE WITH THE KEY OF THE BASE UPPER MOST, A POSITIVE POTENTIAL APPLIED TO PIN X2 SHALL DEFLECT THE SPOT TO THE RIGHT, AND A POSITIVE POTENTIAL APPLIED TO PIN Y2 SHALL DEFLECT THE SPOT DOWNWARDS.
- 2 THE INTERNAL CONDUCTIVE COATINGS SHALL BE OF SUCH DIMENSIONS THAT THEY FUNCTION EFFECTIVELY BUT DO NOT OBSCURE THE USEFUL SCREEN AREA.

Amendment No.1 to Specification CV 2184 - Issue 2 - dated 29.4.53

Page 2.

Test Clause (a) "3" - Grid to all other electrodes (Capacitance)

Amend 13pf max. to read 21pf max.

T.V.C. for R.R.E.

January, 1958 N.24629R AAS.