VALVE ELECTRONIC

CV2167

Marich Specification MOS(A)/CV2167	SECURITY			
Issue 2 Dated 15.1.53 To be read in conjunction with Klool, excluding clauses 5.2.	Specification	<u>Valve</u>		
5.3 and 5.8.	UNCLASSIFIED	UNCLASSIFIED		

Indi	cates	a	change
------	-------	---	--------

TYPE OF VALVE	- 1	MARKING See Kl001/4.				
CATHODE	-	Indirectly-heated				Dee nacci, 4.
ENVELOPE	- (Copper				BASE
PROTOTYPE	- '	VX4080				None
	RATING				CONNECTIONS & DIMENSIONS	
					Note	
Heater Voltage Heater Current Operating Free	(V) (A) (MC/s)	6.3 0.8 9080	В			
Max. Mean Input Power			(W)	120		See Drawing on Page 4.
TYPICAL OPERAT	ING (CONDITIONS				
Peak Anade Vol	(kV)	12	AC			
Peak Anede Cui			(A)	9	AC	
Field Strongth Peak Power Out			(Gauss) (kW)	5000 3 0	AC AC	

NOTES

- A. When operating under these conditions the magnetron must be air-cooled so that the temperature of the block does not exceed 140°C.
- B. A mechanical tuning adjustment is provided so that the valve can be set to operate precisely at this frequency.
- C. These operating conditions apply for

 T_p = 0.2 μ sec. prf = 3500 pps. VSWR = 1.5 : 1 max. in No. 16 waveguide.

Under these conditions the heater voltage should be reduced to 4V when the HT is applied.

CV2167

To be performed in addition to those applicable in KlOOl

Test Conditions						Test		Li	mits	No.	
				Min. Max.				Tested	Note		
Field Strength (Gauss)	V _f	Langth	iroa	Freq.	Peak Ia (A)						
0			0	0	0	Heater Current	(A)	0.7	0,9	100%	3
5000 ± 505%	4.0	0.5	1400	Sce Note 1	9	Peak Anode Voltage	(kV)	10	14	100%	1,3,
5000 ± 55° 5%	4.0	0.5	1400	Adjust	9	Frequency HF Limit LF Limit	(Mc/s)	91 <i>2</i> 0	- 9040	100%	5,10
5000 ± 505%	4.0	0.5	1400	9080	9	Efficiency	(%)	25	-	100%	1,5
5000 <u>+</u> 20 5%	4.0	0.5	1400	9080	9	Frequency Pulling	(Mc/s)	-	15 20	100%	6,10
5000 ± 50 5%	4.0	0.5	1400	9080	9	Bandwid th	(Mc/s)	-	5	TA	4,5, 7,9
5000 ± 50 5 %,	4.0	0.5	1400	90 80	Peak current varied from 6 to 12	There shall be no mo		TA	4,5, 8,10		
5000 ± 50%	4.0	0.2	3500	9080	9	Efficiency	(%)	25	-	TA	5,10
5000 ± 55 12,	4.0	0.2	3500	9080	9	Bendw i dth	(%)	-	12.5	TA	4,5, 7,9.
5000 ± 8% 5%		0.2	3500	9080	Peak current varied from 6 to 12	There shall be no mod	TA	4,5,			
	5000 ± 505% 5000 ± 505% 5000 ± 505% 5000 ± 505% 5000 ± 505% 5000 ± 505% 5000 ± 505%	Field Vf Strength (V) 0 6.3 5000 4.0 ± 505% 4.0 ± 505% 4.0 ± 5000 4.0 ± 505% 4.0 ± 505% 4.0 ± 505% 4.0 ± 505% 4.0 ± 505% 4.0 ± 505% 4.0 ± 505% 4.0	Field V _f Pulse Strength (V) (µsec) 0 6.3 0 5000 4.0 0.5 ± 505% 4.0 0.5 ± 505% 4.0 0.5 ± 5000 4.0 0.5 ± 505% 4.0 0.5 ± 505% 4.0 0.5 ± 5000 4.0 0.5 ± 505% 4.0 0.5 5000 4.0 0.2 ± 505% 4.0 0.2 ± 505% 4.0 0.2	Field Strength (V) Length Freq. (pps) 0 6.3 0 0 5000 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.5 1400 ± 505% 4.0 0.2 3500 ± 505% 4.0 0.2 3500	Strength (V) Length Freq. (Mc/s) 0 6.3 0 0 0 5000 4.0 0.5 1400 See Note 1 5000 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.5 1400 9080 ± 505% 4.0 0.2 3500 9080 ± 505% 5000 4.0 0.2 3500 9080	Field Strength (V) Length Freq. (Mc/s) (A) 0 6.3 0 0 0 0 0 5000 4.0 0.5 1400 See 9 Note 1 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 1400 9080 9 5000 4.0 0.5 3500 9080 9 5000 4.0 0.2 3500 9080 9 5000 4.0 0.2 3500 9080 9 5000 4.0 0.2 3500 9080 9 5000 4.0 0.2 3500 9080 Peak current varied from 6 to 12 5000 4.0 0.2 3500 9080 Peak current varied from 6	Field Strength (V) Length Freq. (Mc/s) (A) 0 6.3 0 0 0 0 Heater Current 5000 1.0 0.5 1400 See 9 Peak Anode Voltage 5000 4.0 0.5 1400 Adjust 9 Frequency HF Limit LF Limit 5000 4.0 0.5 1400 9080 9 Efficiency 5000 4.0 0.5 1400 9080 9 Frequency Pulling 5000 4.0 0.5 1400 9080 9 Bandwidth 5000 4.0 0.5 1400 9080 9 Bandwidth 5000 4.0 0.5 1400 9080 9 Efficiency 5000 5000 4.0 0.5 1400 9080 9 Bandwidth 5000 5000 4.0 0.2 3500 9080 Peak Current Varied from 6 Current Varied from 6 Current Varied from 6	Field Strength (V) Pulse Rep. Freq. Peak Ia (Mc/s) (A) (A) (A) (Busc) (V) (pps) (Mc/s) (A) (A) (A) (A) (Busc) (Dps) (Dps) (Mc/s) (A) (A) (A) (A) (Busc) (Dps)	Test Conditions Test Min.	Field Vf Pulse Rep. Freq. (Mc/s) (A) 0 6.3 0 0 0 0 Heater Current (A) 0.7 0.9 5000	Test Conditions Test

CV2167/2/2

NOTES

- Applicable over whole tuning range. Tests shall be performed at HF, LF limits and at the nominal centre frequency as in Test (c).
- 2. For the above tests, the temperature of the anode block shall not exceed 140°C.
- The valve shall be operated with full heater voltage applied for not more than 2 mins. before the application of HT and then reduced to 4V.
- 4. The max. rate of rise of the voltage pulse shall not be less than 120 kV/usec at the operating voltage.
- 5. The valve shall be coupled by means of Coupling I-S Cat. No. 2830003 to Waveguide No. WC16, which shall be terminated in a resistive load giving a VSWR better than 1.1: 1.
- 6. Measured with a VSWR of 1.5: 1 varied through all phases.
- 7. The RF bandwidth shall be measured at one-quarter power by means of the Spectrum Analyser.
- 8. No pulse shall be missing when viewed on the Spectrum Analyser. No double traces of voltage and current shall appear during a 5 sec. interval while the peak current is varied over the specified range.
- 9. The time of fall of the current pulse shall be less than 0.2 jusec when measured between the points where the amplitude is 20% and 80% of the average amplitude over 80% of the flat portion of the pulse.
- 10. The "±5%" tolerance on the magnetic field strength allows for measurement uncertainties of ±2% and a setting tolerance of ±3%.

CV2167/2/4

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION MOS(A)/CV2167 ISSUE 2 DATED 15.1.53

AMENDMENT NO. 1

Page 2 Clause e Frequency Pulling

in column headed "Limits Max." Amend "15" to "20".

T.V.C. for R.A.E.

June 1960 N.17178/D.

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION MOS(A)/CV2167, ISSUE 2, DATED 15.1.53

AMENDMENT No. 2

- 1. Page 1.
 - (i) Specification Authority (top of page).

- Delete "MINISTRY OF SUPPLY DLRD(A)/TRE" and substitute "MINISTRY OF TECHNOLOGY - DLRD/RRE".
 - (ii) Specification Title (top left hand box).
 - Delete "Specification MOS(A)/CV2167" and substitute
 - "Specification Min. Tech./CV2167".
- Test clauses (b) to (k) inclusive. 2. Page 2.

August 1967

- (i)In the column headed "Field Strength (Gauss)" amend "5000 ± 50" to read "5000 ±5%".
- (ii) In the column headed "Note" insert "10".
- 3. Page 3. Insert new note 10 as follows:-The " 5%" tolerance on the magnetic field strength "10. allows for measurement uncertainties of - 2% and a setting tolerance of - 3%".
 - T.V.C. for R.R.E.

AM 63/68