VALVE ELECTRONIC CV1965

Specification MOS(A)/CV1965	pecification MOS(A)/CV1965 SECURITY			
Issue 2 Dated 7.7.54	Specification	Valve		
To be read in conjunction with K1001,	UNCLASSIFIED	UNCLASSIFIED		

L						
	- Ind	licate	es a char	ge		
TYRE OF VALVE - Cathode Ray Tube	VALVE - Cathode Ray Tube					
TYPE OF DEFLECTION - Magnetic			See K1001/4			
TYPE OF FOCUS - Magnetic		Ī	BASE			
SCREEN - 009 (with aluminium backing - See also	Note	e E)				
RATING				CONNECTIONS		
	Note Pin Electrode			Electrode		
Heater Voltage (V) Heater Current (A) Max. First Ahode Voltage (V) Max. Final Anode Voltage (V) Max. Heater-Cathode Voltage (V) Max. Beam Current (uA) Average Persistence (secs)	A,B A A,C A	1 2 3 4 5 6 7 SC	Internally connected A1 G Internally connected H C H A2			
			SIDE CONMACT See K1001/AI/D5.1			
			DUALNSIONS See Drawing on Page 4			

NOTES

- A. Absolute maximum value.
- B. Under these conditions the maximum beam current must not be exceeded.
- C. Heater negative to cathode.
- D. In order to prevent damage to the screen material and to ensure that maximum life is obtained from the cathode and screen, the tube should not be operated with a stationary or slowly moving spot. The tube should be operated at the minimum useful brightness, i.e. at a maximum beam current of 50ul.
- E. The fluoride screen shall not contain beryllium (Screen Powder 00L65).

TESTS

To be performed in addition to those applicable in K1001

								Lim		No.	Note
	Test Conditions			Condi	tions	Test		Min.	Max.	Tested	
	а		K1001/!		II.	CAPACITANCES(pF) 1. Cg-all 2. Cc-all		1 1	15 15	5% (20)	
		Vh (V)	Va1 (V)	Va2 (kV)	Vg (V)						
	b	6.3	0	0	0	Ih	(A)	0.28	0. 66	100%	
	с	6.3	600	15	Adjust to cut-off. Value to be noted	Vg ((-V)	25	60	100%	
	đ	As for Test (c) cut Vg adjusted to give light out- out of 0.15 candela, using a close raster of conveni- ent size.				<u>Light Intensity</u> Beam Current ((uA)	•	5	100%	
	€ -	As for Test (c) but Vg adjusted to give Tb = 50uA. Spot to be deflected off the useable screen area, or scanned.				1. Vg 2. Change in Vg from valuation of the beam current shall increase continuously within the range of g voltage from cut-off that value which make Tb = 50uA	(V) l rid to		- 25	100%	
	r.,	Focu DEFL wave or a repe 10kc of 2 shal cent GRID puls cut-	scan linea tition /s and 50 mm, l be mare of the sed postoff with tage obtaining the tage of t	sted Us of 10 or sca freq la li the neasur the t grid sitive the va btaine = 100	for optimum ing a sine- kc/s nom or n having a uency of ne length line width ed at the race. shall be ly from uplitude lue of grid d in Test busec nom; oc/s nom.		(mn)	_	0.3	100%	2
-	g	See	mmende K1001	ed met	60 hod: .2 negohms	2. Increase in voltmeter	(uā) r (%)	-	6 1 00	100%	
•	CV19	65/2/3	2								

Test Conditions					Test		imits Max.	No. Test e d	Note
					1 est	14711.	Max.	168660	
	Vh (∀)	Va1 (V)	Va2 (kV)	Vg (V)					
h	60 1	olts s		e appl ied nd cathode	Heater-Cathode Leakage Leakage Current (uA)	-	60	100%	
j	Adji Defi	lection	optim shall circle	Adjust. um focus. cover the centred on e screen.	<u>Useful Screen Area</u> Diameter (mm)	250	-	100%	
k	6.3 No:	600	15 coil en	Pulsed as in Test (f) ergisation	1. Deviation of unfocussed spot from centre of screen (mm) 2. Dia. of unfocussed spot when Vg adjusted to give Ib = 50uA (mm)	-	12 12	100% 10 0%	
m	As for Test(k) but Vg adjusted to give Ib = 50uA. No focus coil energisation				Beam Width (mm)	-	20	100%	
n	usi and	test s	shall b roved t se rast	Adjust e performed est gear er of con-	Persistence (secs) 1. Using Filter N3 2. Using Filter N4	28 84	1.1	1 0% (20)	3
р	cen Mor cen For	tre of e than tre of	75mm. screen	rad. from	Stones, Bubbles & Blemishes 0.75 mm. dia. 1.0 mm. dia.	<u>-</u>	6		

NOTES

- 1. The tube shall be mounted having the front edge of the coil assembly set 1.5mm from the axis AA'. (See Drawing on Page 4).
- 2. Alternatively, the line width may be measured using a roster having a linear scan of 250mm at 10kc/s in the X-direction and a 50c/s scan in the Y-direction. The Y-scan shall be expanded so that individual lines are spaced apart by at least one line width. Measurements shall be made at the centre of the screen. The grid need not be pulsed for this test but the grid voltage should be set to the value obtained in Test (e.2).
- These are alternative tests; the test may be performed using one filter only
 if desired.
- 4. Spacing between any two bubbles shall be greater than 20mm. Bubbles of less than 0.25mm dia. shall be ignored.

