VALVE ELECTRONIC CV1952

MARKING

ADMIRALTY SIGNAL & RADAR ESTABLISHMENT

TYPE OF VALVE : Cathode Ray Tube

Specification AD/CV1952/Issue 5.	SECURITY		
Dated : 5. 11. 53.	Specification	Valve	
To be read in conjunction with K1001.	Unclassified	Unclassified	

- indicates a change

TYPE OF DEFLECTION : Magnetic	See K1001/4.				
TYPE OF FOCUS: Magnetic SCHEEN: OOS (with alu See Note "B" PROTOTYPE: VCRX267	BASE B7B				
RATING		Note	Pin	CONNECTIONS Electrode	
Heater Voltage Heater Current Max. First Anode Voltage Max. Final Anode Voltage Persistence (average) Max. Heater-Cathode Voltage	(V) (A) (V) (kV) (secs) (V)	6.3 0.6 600 15 40 150			Int. Comm. A1 G Int. Comm. H2 G H1 A2 (See Note C). SIDE CONTACT C1001/AI/D5.1. DIMENSIONS Drawing, Page 4.

NOTES

- A. To prevent damage to the screen material and to ensure that maximum life is obtained from cathode and screen, the tube should not be operated with a stationary, or slowly moving, spot. The tube should be run at the minimum useful brightness.
- B. The fluoride screen shall not contain berylium.
- C. In the central 180 mm. dia. of the tube face there shall not be more than 15 screen blemishes or bubbles up to 1 mm. dia. (Neglect all blemishes and bubbles below 1 mm. dia.). There shall be no bubble more than 2 mm. dia. in the central 235 mm. dia. of the tube face. There shall not be heavy veim in the glass and the outer surface shall be free from hipple over the central 235 mm. dia.
- d. The front surface shall be of regular form and within the central 235 mm. dia. the deviations from flat over any 6° shall be \pm 20 thousand max.

TESTS

To be performed in addition to those applicable in K1001.

П	Test Conditions					Limits		No.	T
		Test C	ondition	ons	Test	Min.	The same of the sa		Note
84.	See K1001/5A.13.				Capacitances (pF) Grid to all other electrodes. Cathode to all othe electrodes.	_		5%(20) 5%(20)	
	(V)	Va2 (kV)	(v)	(V)					
b	6.3	0	0	0	Ih (A)	0.40	0.66	100%	
c	6-3	15	300	Adjust to Cut-off.	-∀g (∀)	25	60	100%	
đ	output	-	andles,	a light using a mient size	Light Output and Beam Current Ib Ib (nA)	-	10	100%	
•	6.3 15 300 - Spot to be deflected off the usable screen area.			1Vg (V) 2. Change in Vg from value	1	1	100%		
	Adjust	Vg to g	ive Ib	= 50 /uA.	found in Test 'c' (V) 5. The beam current shall increase smoothly from Th = 0 to Th = 50/NA.	10	25	100%	
f	Focus adjusted for optimum. Deflection With a sine wave scan of 10 kc/s, or a linear trace of 10,000 p.r.f. and a line of length 250 mm, the line width will be measured at the centre of the trace. Grid The grid will be pulsed sositively from cut-off with amplitude equal to the value ebtained in test 'e' 2., the nominal value of pulse duration and recurrence rate being 100 /usec, and 100 c/s respectively.			1. Line Width (mm) 2. Focus Ceil Current	(Limit be spe fied 1	ci-	100%		

TESTS (Contd.)

	Test Conditions					Limits		No.	DYLLA
	(V)	Va2 (kV)	(v)	(v)	Test	Min.	Max.	Tested	NOTE
g	See K	15 mended me 1001/5A.; ter = 10	3.2.	60	Grid Insulation 1. Leakage Current (ALA) 2. Increase in voltmeter reading.	-	6	100%	
h	Addingt for ontimer force				Useful Screen Area Diameter (mm)	250	-	100%	
j	6.3 No fo	15 cus coil	1 1	Near cut-off ation	Deviation of spet from centre of screen. (mm)	_	15	100%	
k	6.3 15 300 Adjust Test to be performed with Test Set Type 331, using a			Persistence Filter N3 (secs) Filter N4	25 84 Result be rec	a to	10%(20)	3	
1	A vol	1001/5A. tage of ed betwee	150 V sh		Heater Cathode Insulation Leakage Current (ALA)	•	150	100%	

NOTES

- The Deflection and Focussing coils used in the tests are to be of an approved type.
- 2. The position of the focus coil to be such that the centre of the gap is 81 mm. from AA1 and the scan coil assembly shall be advanced as far as possible to the neck of the tube and then be retracted 1/10.
- These are alternatives, the test may be carried out with only one filter if desired.

ALL DIMENSIONS ARE IN MILLIMETRES.