VALVE ELECTRONIC

CVI536

Specification NOS/CV1536	SECURITY		
Issue 2 dated:- December 1957.	Specification	<u> Valve</u>	
To be read in conjunction with K1001 and B8.448	Unclassified	Unclassified	

- Indicates a change

TYPE OF VALVE:- TYPE OF DEFLECTION:-				MARKING See K1001/4	
TYPE OF FOCUS:-	Electrostatic Glass, internally with conductive co			<u>Base</u> B 12 D See B8.448 .	
SCREEN;- PROTOTYPE:-	BB.3. G.E.C. 1608ABA	name and respect of the state of	PIN	CONNECTIONS ELECTRODE	
RATING Heater Voltage Heater Current Max. Final Anode Voltage Mex. First Anode Voltage I plate sensitivity Typical Operating com Final Anode Voltage Second Anode Voltage First Anode Voltage	(127) (mm/V) (mm/V)	4 1 6 2,2 620/va3 1200/va3 3,5 600 2	1 2 3 4 5 6 7 8 9 10 11	s k h h a ₁ a ₂ Internal coating y ₂ y ₂ y ₃ x ₁ y ₁	
First Anode Voltage	(KV)	2	DIMENSIONS See Brawing Page 4		

MOTES

- A. The internal conductive coating may be connected with as to pin 10 of the base and pin 7 left blank.
- B. Locking at the screen with the tube positioned such that the base spigot is uppermost, a positive voltage applied to pin 11 shall deflect the spot to the left and a positive voltage applied to pin 12 shall deflect the spot upwards.

CVI536

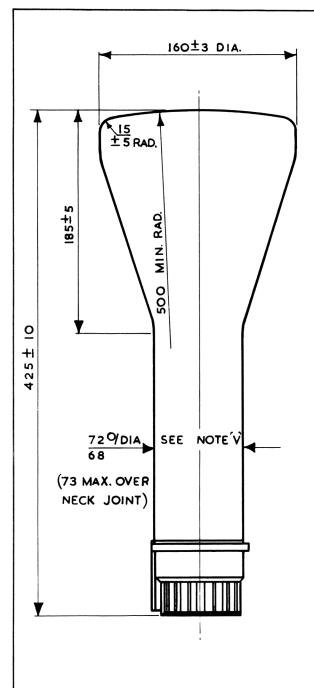
To be performed in addition to those applicable in K1001

88	Test Conditions	Test	Limits		No.
Clau	148C Conditions	1496	Min.	Hax.	Tested
8.	See K1001/5A-13	Capacitances (pf) 1. Each x plate to all other electrodes. 2. Each y plate to all other electrodes. 3. Grid to all other electrodes. 4. Each x plate to each y plate.		25 25 25 25	25(5) 25(5) 25(5) 25(5)

FOR ALL TESTS GIVEN BELOW Vh = 4.0V

ALTERNATION AND PARTY.	provide the same of the same o	paragraph from the place of the control of the cont		_	_	
b		Heater Current	(A)	0.66	1.2	100%

FOR ALL TESTS GIVEN BELOW Val = 2.0kV and Va3 = 3.5kV


	-			-		_	
	C	Adjust Va2 for optimum focus and Vg for cut-off. See K1001/5A.10.	Grid Base -Vg	(V)	30	85	100%
	d	With a raster scan of convenient size adjust Va2 for optimum focus and Vg for a light intensity of 0.05 "erthechromatic candela".	light Intensity and Grid Drive Change in Vg from that in test "c".	(A)		13	100%
	•	Vg as in test "d". Obtain one setting of Va2 for optimum spot size with the spot undeflected and with it deflected to the four corners of a square of 80 mm. side.	1. Spot size at the worst of the five positions. 2. Ys2	(333.)	i,50	0.6 750	100%
	£	(i) Vg -85V. <u>or</u> (ii) See K1001/5A. 3.2. Resister 10 megohms.	Grid Insulation (i) Leakage Current Gr (ii) Increase in Voltmeter reading.	(uA)		8•5 100%	100%
->	g			(mm)	±60 ±52+5		100% 100%

TESTS (Centd)

lans	Test Conditions	Test	Limits		No.
ပ	1000 CONT. 11000	1446	Hin.	Hax.	Tested
h		Deflection Sensitivities 1. X plate (mm/V)	<u>520</u> Va3	7 <u>20</u> Va3	10%(10)
		2. Y plate (mm/V)	1050 Va3	1350 Ya3	10%(10)
j	See K1001/5A-11-1	Deviation of spet from centre of screen (mm)		10	100%
k		Orientation of deflection Axes 1. Orientation of I axis of deflection relative to 0-00 on drawing	80°	100 [©]	190%
		2. Angle between I and Y axes of deflection	88 ⁰	92 ⁰	100%
1	See K1001/11.5.	<u> Vibration</u>			T.A.
B	Tube to be subjected to the conditions of K1001/10.1. for 28 days.	There shall be no signs of blistering or fleking of the coating.			T.A.

DRAWING NOTES

- Y. The glass pinch cavity to be filled with Silicone Insulating Compound made by Midland Silicones Ltd., to Ministry of Supply Specification DTD 900/4298.
- 2. From the base to the point of maximum dismeter the bulb is to be coated externally to prevent light falling on the back of the fluorescent screen.

NOTES

- V. THE NECK DIA. MAY BE REDUCED TO 58MM. MIN. PROVIDED THAT RINGS OF AN APPROVED MATERIAL ARE SUPPLIED WITH THE TUBE TO BRING THE OVERALL DIA. WITHIN 68 TO 72 MM.
- W. INTERNAL CONDUCTIVE
 COATING SHALL BE OF
 SUCH DIMENSIONS
 THAT IT FUNCTIONS
 EFFECTIVELY BUT
 DOES NOT OBSCURE THE
 USEFUL SCREEN AREA.
 - X. THE O-O' AXIS IS THE DIAMETER OF BASE PASSING THROUGH CENTRE OF BASE KEY.

ALL DIMENSIONS IN MILLIMETRES