VALVE RESOTRONIC CV 1529

MINISTRY OF SUPPLY - D.L.R.D(A)/R.A.B.

Specification MOSA/CV1529
Issue 3. Dated 12.3.53.

To be read in conjunction with K.1001

SECURITY
Specification
Valve
UNCLASSIFIED
UNCLASSIFIED

Indicates a change

TYPE OF VALUE - Cathode Ray Tube TYPE OF DEFLECTION - Electrostatic. Suitab for both symmetrical asymmetrical deflecti woltages BULB - Internally coated with conductive coating	MARKING See K1001/4- BASE B.12.D CONNECTIONS					
SCREEN - BBN_38	Pin	Electrode				
PROTOTIPE - VCR.529 RATING Heater Voltage (V) Heater Gurrent (A) Max. Final Anode Voltage (kV) I-plate Sensitivity (um/V) I-plate Sensitivity (mm/V) TIPICAL CPERATING CONDITIONS	Note 4.0 1.0 5.0 357 780 Va3	1 2 3 4 5 6 7 8 9 10 11 12	G C H H A1 A2 Internal Conductive Coating (See Note D) Y2 I2 I2 A3 X1 Y1			
Final Anode Voltage (kV) Second Anode Voltage (V) First Anode Voltage (kV)	5.0 500 2.0	Sec	DIMENSIONS See Drawing on Page 3.			

NOTES

- A. The tube shall be adequately free from microphony.
- B. When viewing the screen with the tube positioned such that the base spigot is uppermost, a positive voltage applied to terminal X1 shall deflect the spot to the left and a positive voltage applied to the terminal X1 shall deflect the spot upwards.
- C. The internal conductive coating shall be of such dimensions that it functions effectively but does not obscure the required useful screen area.
- D. The tube will normally be operated with A3 and the conductive coating tied, and if a manufacturer so desires, one or both of these electrodes may be strapped internally, with the connection omitted from contacts marked:- "Internal conductive coating".

CV.1529/3/1

	CV1529 To be performed in additional control of the performance of the per						TESTS tion to those applicable	in K.	Page 2				
1							T						
		Test Conditions					Test	_	its Max	No. Tested	No te		
		٧ħ	Va 3 (k∀)	Va2 (∀)	Va1 (kV)	∇g (∇)							
			De	flection	voltage	s shall b	be applied asymmetrically in all cases.						
	a						INTER-BLECTRODE CAPACITANCES (pF) 1. Bach X or Y plate to all other electrodes		25	5%(10)			
							2. Grid to all other electrodes. 3. One X to one Y plate	-	25 6	5%(10) 5%(10)			
	b	4.0	0	0	0	0	Ih (/	0.8	1.3	100%			
→	С	4.0	3.0	Adjust for optimum focus	2.0	Adjust to cut off	- v g (1	r) 40	80	100%			
→	đ	4.0 3.0 ditto 2.0 - Adjust Vg to give a light output of 0.252 orthochromatic candela on a closed raster					(1) Vg (1 (2) Change in value of Vg from test (c) (1		- 26	100%			
*	С	base line Y dir The I the GRID positi smpli obtain nominand i	of 10 lengt rection line we entre. The tively tude ined i hal va	ditto . With a: Kg/s (non h of 70 mm ns success idth to be of the t: grid will from cut- equal to n test d(lue of pu ence being s respect	sine wa minal) a in th sively. e measu race. be pul -off wi the val 2), the lse dur g 100 µ	and a e X and red at sed th ue	(1) Line width (mm) - 7) 400	1.0 600	100%			
•	Î	4.0	K.1	Any con- venient value nmended me 001/54.3.3 istor = 10	2	-80	(1) Leakage Current (µ) (2) Increase in voltmeter reading	-	ı	100%			
→	g	4.0	exce	0 K.1001/5A pt that thage shall	he test		HRATER_CATHODE INSULATION Leakage current (µ	.) -	200				
		1529/	1/2										

	-				-						_
	Test Gonditions						Test	Limits Min Max		No.	Note
		∀h (∀)	Va3 (kV)	Va2 (∀)	Vat					25 254	21000
→	h	4.0	3.0	Adjust for optimum focus	2.0	Any con- venient value	DEFLECTION SENSITIVITIES (1) X - plate (mm/V) (2) Y - plate (mm/V)	300 Va3 660 Va3		100%(10) 100%(10)	
→	1	4.0	3.0	ditto	2.0	ditto	Deviation of spot from centre of screen (mm)	-	6	100%	
*	k	k 4.0 3.0 ditto 2.0 ditto Deflections to cover stated circle centred on centre of screen				ated	USEFUL SCREEN AREA Diameter (mm)	70	-	100%	
→	1	1 4.0 3.0 ditto 2.0 ditto A screen area of at least 70 mm x 45 mm to be scanned.					TRAPSZOIDAL DISTORTIONS 1. Angles between adjacent sides. 2. Angles between opposite sides.	85° 175°		100%	
→	18.	4.0	3.0	ditto	2.0	ditto	 Orientation of X axis of deflection relative to 00' on drawing. Angle between X and Y aros of deflection. 	80°		100%	
		-		NI DIM	ENSIO	332±8	GAND WAY TO SEE THE SE	110 9-	VIEW	OF UNDER	-345