Page 1 (No. of Pages - 4) MINISTRY OF SUPPLY (D.C.D.)

VALVE ELECTRONIC

CV1516

Specification MAP/CV1516
Issue 5. Dated 10.8.50.
To be read in conjunction with K1003

SECURITY
Specification Valve
UNCIASSIFIED UNCIASSIFIED

→ Indicates a change

		Inc	licates a	a change		
TYPE OF VALVE TYPE OF DEFLECTION TYPE OF FOCUS BUILB SCREEN	- Cathode Ray Tu - Magnetic - Magnetic - Internally coa conductive coa - BYL 46	ted wit	MARKING See K1001/4 BASE I.O.			
	RATING		Note	Pin	CONNECTIONS Electrode	
Heater Voltage Heater Current Max. Anode Voltage	(V) (A) (kV)	4.0 1.0 5.0		Pin Electrode 1 No Connection 2 Heater 3 Pin Omitted 4 Pin Omitted 5 Grid 6 Pin Omitted 7 Heated 8 Cathode Side Centact Anode Side Contact - Flug cap shall conform to BS3448 DIMENIONS See Drawing on Page 4		

CV1516

To be performed in addition to those applicable in K1003

r	ndrog (page)	war all advantage		the death of the contract of the character stands and the contract of the cont	guenquanum amanaz qui ma commo control de monte e com de mo					
Test Conditions				Limits		No.				
	Test Conditions		Test		Min.	Max.	Tested	Note		
	8.	See K1003/5.12			CAPACITANCES (p. Grid to all oth electrode		25	5% (5)		
		٧h	Va(kV)	∀g						
	þ	4.0	0	0	Th .	(A)	-	1.2	100%	
	c	4.0	4.0	Adjust to cut	Vg	(V)	-30	-65	100%	1
-	Focus adjusted to optimum See Note (1)			ed to optimm	Value to be not	ed.				
	d		4.0	-	(1) Vg	(V)	-1	-	100%	
		Focus adjusted for eptimum. Vg adjusted to give a light output of 0.1 candles when viewed through a C2 filter, (Type 26, Ref. 10AB/474) on a close raster of cenvenient size.		(2) Change in v	alue test (V)	s	25	100%	2	
	•	DEFL scan	ection -	As for test "d" ded for optimum. Sine wave line s nom. and a of 94mm.	1	(mA)	80	120	T.A.	
•		Measure in "X" and "Y" directions successively at the centre of the track.		(2) Line Width		54	1.3	100%		
	f	4.0		65 003/5.4.2 or = 10MΩ	Grid Insulation (1) Leakage our	rent (μA)	-	6.5	100%	
				(2) Increase in meter reading		-	100%			
	g	Defl circ	s adjust ection t	Any conven- ient value ed for eptimum, o cover stated ed en centre	Useful Screen A Diameter	rea (mm)	190	-	100%	

Test Conditions		Post		<i>l</i> imits		No.	Wata		
	rest Conditions			Test		Min.	Max.	Tested	Note
h			Near out-off coil energisa-	1		-	10	100%	
Ne fecussing ceil energisa- tion. Deflecting fields			The screen sk be werse for iness and uni than a stands er pattern	grain- formity			100%		
k	Test	31, usi	lone in Test ing a close envenient	Afterglow	(secs)	30	60	10%	

NOTES

 For the purpose of tests (c), (d), (e), (g), (h), (j), (k), the focussing fields required are to be obtained by means of Retating Gear Unit, Magnetic, Ref.Ne.10QB/66 with the focussing coil in its mean position.

The tube will be mounted with the front edge of the coil assembly mounting set 1.5mm from axis AA (See Drawing on Page k_{\bullet})

 Within the range of grid voltage from cut-off to light output, the beam current shall increase continuously.

