CV. 1399 ## CATHODE RAY TUBE ### MINISTRY OF SUPPLY (ACR23A) | Specification MOS/CV1399/Issue 2 | SECURITY | | | |---------------------------------------|---------------|------------|--| | Dated 1.6.46. | Specification | C.R.T. | | | To be read in conjunction with K1003. | Restricted | Restricted | | #### - Indicates a change | BULB: - In wi | ectrostatic. itable for sym trical operati ternally coate th conductive ating. terglow. BYI46 | MARKING
See K1001/4 | | | | |---|--|------------------------|--|--|--| | RATING | | Note | BASE
12 contact key base | | | | Heater Voltage Heater Current Max. Final Anode Voltag Desirable Spot Size X plate sensitivity Y plate sensitivity | (V)
(A)
(kV)
(mm)
(mm/V)
(mm/V)
(mm/V)
(mm/V)
(1.00
(VA3)
(1000
(VA3) | | DIMENSIONS AND CONNECTIONS See drawing on Page 4. | | | | TYPICAL OPERATING CONDI | TIONS | | | | | | Final Anode Voltage
Second Anode Voltage
Beam Current | (kV) 2.0
(V) 400
(µA) 5 | | | | | ### NOTE - A:- A magnetic shield shall be supplied fitted to the tube and be such as to provide adequate screening from external magnetic fields. - B:- When viewing the screen with the tube positioned such that the base spigot is uppermost, a positive voltage applied to the terminal X₁ shall deflect the spot to the right, and a positive voltage applied to the terminal Y₁ shall deflect the spot downwards. - C:- CV1399 (ACR23A) and CV1398 (ACR23) differ only in that the former has the screen markings shown in drawing on page 4. TESTS To be performed in addition to those applicable in K1003. | l g | Test Conditions | | | tions | produce et access de virtue de la contraction de virtue de la contraction cont | Limits | | No. | |--------|--------------------------------|-----------------|--------------------|------------------|--|---------------------|------------------|-------------| | Clause | v_h | Va3
(kV) | V _{a2} | v _g | Tests | Min. | Max. | Test- | | | | (kV) | | | | | | ed | | (a) | | | | | Capacitances (pf) 1. Each X or Y plate to | - | 20 | Туре | | | | | | | all other electrodes | | | Ap- | | | | | | | 2. Grid to all other electrodes | - | 20 | prov- | | | | | | | 3. One X to one Y plate | _ | 5 | Test | | | | | | | 5. 5. 6 6 6 6 6 6 7 8 6 6 6 6 6 6 6 6 6 6 6 6 | | | only | | (b) | 4.0 | 0 | 0 | 0 | I_h (A) | .75 | 1.2 | 100% | | (c) | | 2.0 | | - | 1. The line width shall | | | | | | Adj | ust V | 2 for | optimum | not be greater than | | | | | | roct | us and
t bri | l Vg to
lliance | give a | that of standard tube | | | | | | | | of star | | $2. V_{2} \qquad (kV)$ | .3 | .6 | 100% | | | tube | e on a | a line | of | 3. V _g (V) | To b | 1 | | | | | | | in the | | leas | | | | | X and 200 mm. in the | | | | nega
to | tive | | | | | Y direction success-
ively. | | | CCBB- | | cath | ode | | | (a) | 4.0 | 2.0 | As in | Ad- | 1. V _g (V) | -13 | -31 | | | | | | (c) | justed | 2. Increase in negative | } | | 100% | | | | | | to give | value of Vg compared with value noted in | | | 100% | | | | | | 040-011 | (c) 3 | - | 10 | | | (e) | 4.0 | 2.0 | As in | -31 | Grid Insulation | | | | | | D | | (c) | | Leakage current (µA) | Ì | 6.2 | 100% | | | | | ded met
3. Cla | | Increase in voltmeter | | | 100/0 | | | 5.4 | | Insert | | reading | - | 100% | | | | res: | istor | = 5 me | gohms | _ | | | | | (f) | 4.0 | 2.0 | | | Deflection Sensitivities | 800 | 1250 | 100 | | | | | (c) | venient
value | 1. X plate (mm/V) 2. Y plate (mm/V) | Va3 | V _a 3 | 10%
(10) | | | | | | Value | 2. Y plate (mm/V) | $\overline{v_{a3}}$ | Va3 | (10) | | (g) | 4.0 | 2.0 | As in | Any con- | Deviation of spot from | - | 15 | 100% | | | | | (c) | venient | centre of screen. (mm) | | | | | | | | | value | | | | | | (h) | Def: | stat
tred | As in (c) ons to sed circ on cent | venient
value
cover | Useful Screen Area
Radius | (mm) | 105 | | 100% | |-----|--|--------------|-----------------------------------|--|--|-------|------|--------------|------| | (1) | Ang: | | As in (c) | | Orientation of Y axis of deflection | | | <u>+</u> 10° | 100% | | (k) | 4.0 | 2.0 | As in (c) | Any con-
venient
value | Angle between X and
Y axis | | 880 | 920 | 10% | | (1) | 4.0 2.0 As in As in (c) (c) Test to be done by an approved method | | | (c)
by an | The screen shall not
be worse for graini-
ness, non-uniformity
and afterglow than
the corresponding
standard tube | • | , | | 100% | | (m) | 4.0 | 4.0 | | lause
of K1003 | Over Voltage Test | | | | 100% | | (n) | Def: | er c | As in (c) on to coff area 0 mm. | to give
normal
bright-
ness
raster | Life Tests Life | (hrs) | 1000 | - | 1% | LINES NOT MORE THAN 50 WIDE, DRAWN IN BLACK ENAMEL (SUPERIOR BERLIN BLACK FROM CHARLES TURNER & SONS, BLOOMSBURY HOUSE, HICH HOLBORN) - WHOLE FACE OF TUBE SPRAYED AFTER MARKING WITH CLEAR VARNISH, MAKERS REF. K 371 158 I S.O. D4 2427 FROM JENSON & NICHOLSON LTD. STRATFORD, E.IS. - THE CROSS LINES CORRESPOND TO THE ELECTRICAL AXES OF THE TUBE, & ARE THEREFORE NOT NECESSARILY ACCURATELY AT 90° TO EACH OTHER), THE POINT OF INTERSECTION & THE CENTRE OF THE CIRCLE TO ITS ELECTRICAL CENTRE.