Page 1. (No. of pages: - 2)

ADMIRALTY SIGNAL ESTABLISHMENT

VALVE ELECTRONIC CV1219 (NT36)

Specification AD/CV1219/Issue 3.	SECURITY			
Dated 11.6.47.	Specn.	Valve		
To be read in conjunction with K1001.	Restricted	Unclassified		

TYPE OF VALVE:- Power Amplifier Triode CATHODE:- Directly heated, oxide-coated ENVELOPE:- Glass			MARKING See K1001/4. BASE L4 See K1001/AIV/D6.			
PROTOTYPES:- DA100, MZ1-100 RATING Filament Voltage (V) 6.0 Filament Current (A) 2.65 Max. Anode Voltage (V) 1250 Max. Continuous Anode Dissipation (W) 100 pu Anode Resistance (\(\Omega\) 1400 Mutual Conductance (mA/V) 4.0			Pin 1 2 3 4		ctrode A F G IMENSIONS AI/D1.	
NOTE A. At Va = 1000 V, Vg = -150 V, Ia = 100 mA.				nsion	Min.	Max. 255 93

CV1219

TESTS

To be performed in addition to those applicable in K1001.

		Test Co	ndition	3	and and an experience and another decision of the second s			Limits		No.	
	Vf (V)	V a (V)	∇g (∇)	Ia (mA)		Test		Min.	Max.	Tested	
а	6.0				If		(A)	2 -3 1.8	3.0 2.2	100% or 3	P
ъ	6.0	Ad- justed	0	200	₹a.		(A)	-	350	100%	
С	6.0	1000	Ad- justed	100	(i)	V g	(V)	-130	-180	100%	
	For 10 minutes, Vg must be steady during last 3 mins. Vg and reverse Ig measured at end of test.			(ii)	Reverse	(µuA)	-	20	100%		
đ	6.0	1000	In- creas- ed by -10 V. from value in test 'c'	Read	Ia		(mA)	-	65	100%	
е	6.0	800	Ad- justed	100		erence in From value	(V)	-30	-4 5	100% or S	

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV.1219 ISSUE 3 DATED 11.6.47

AMENDMENT No.1.

- (i) Page 1. RATING.
 - Filament Current Delete "2.65" and substitute "2.0"
- (ii) Test Clause (a)

In the column headed Limits, "Min. and Max." delete "2.3" and "3.0" and substitute "1.8" and "2.2" respectively.

T.V.C. for A.S.W.E.

November, 1964. NP.222412