Page 1. (No. of pages: - 2).

AIMIRALTY SIGNAL ESTABLISHMENT

VALVE ELECTRONIC CVII63 (NR35)

Specification AD/CV1163/Issue 3.	SECURITY		
Dated 13.6.47. To be read in conjunction with K1001.	Specn. Restricted	<u>Valve</u> Unclassified	

TYPE OF VALVE: Double Triode. CATHODE: Directly Heated. ENVELOPE: Glass; Unmetallised. PROTOTYPE: PM2BA.				MARKING See K1001/4.			
RATING	Note	BASE AND CONNECTIONS B7 See K1001/AIV/D5.					
Filament Voltage (V)	2.0		Pin Electrode				
Filament Current (A)	0.21		1 G1				
Max. Anode Voltage (V)	100		2 G2 3 A2				
Mutual Conductance (mA/V)	A	3 4 5 6	Filament Filament				
Amplification Factor	A	6 No connection 7 A1			on.		
Anode Impedance ()	4000	A	DIMENSIONS				
Mean Anode Current (mA)	18	A	See K1001/AI/D1.				
			Dime	nsion	Min.	Max.	
NOTE		Amm Bmm		am am	113 47		
A. These ratings are for each triode with:- Va = 100 V, and Vg = 0 V.				PACKING See K1001/7.			

CVII63

TESTS

To be performed in addition to those applicable in K1001.

	Test Conditions				Limits		No.			
	Vf (V)	Va (V)	V g (V)	Ia (V)	Test		Min.	Max.	Tested	Note
a.	2.0	design and the second s		COD CODE	If	(A)	0.195	0.225	100% or S	
ъ	2.0	100	0	= X (say)	Ia	(mA)	14	21	100%	1
G	2.0	100	0 to	œ	Ia change	(mA)	5•0	8.0	100%	1
đ	2,0	Ad- justed	4	x	Va	(V)	120	130	100% or S	1
•	Ad- justed		Difference between Ia	ero	1.0	100%	2			
	so	86	-4	-	(Triode	1)	-	1.0	,	2
	that If = 0.21A.	86	- 8	800	and Ia (Triode	2) (mA)	••	1.0		2
f		86	-5	-	Variatio	n in				
	If varied by + 1% about the value of 0.21A.			different between (Triode and IA (Triode	Ia 1)	co	0.05	100%	2	
g	0.21	86	5		Ig	(ALA)	65	0.05	100%	2

NOTES

- 1. Tests 'b', 'c' and 'd' to be applied to each triode separately.
- 2. Tests 'e', 'f' and 'g' to be applied to both triodes simultaneously. The potentials given apply to the two corresponding electrodes.