Specification MAP/CV1090/Issue 5
Dated 1.12.49.
To be read in conjunction with K1001.

Specification Valve
RESTRICTED UNCLASSIFIED

--- Indicates a change

TYPE OF VALVE: - Triods CATHODE - Directly heated - thoriated tungston ENVELOPE - Netal - glass cons	MARKING See K1001/4 PACKING See K1005			
RATING		Note s	BASE None	
Filament Voltage (V) Filament Current (A) Max. Anode Veltage (kV) Max. Anode Dissipation (W) Amplification Factor Max. Operating Frequency (Mc/s)	8.25 7.0 9.0 100 16 300	B	Dimensions and Connections See Drawing on Page 4.	
CAPACITANCES (pf) Cag Cgf Caf	3.75 2.20 0.90			

notes

- A:- At Va = 1.0kV., Ia = 100mA.
- B:- Forced air cooling must be provided so that the temperature of the ancde radiator does not exceed 140°C., measured at the junction of the ancde and the cooling fins. A suitable air flow is approx. 8 cu.ft. per minute with a pressure drop across the valve of the order of 1½ inches of water. Forced air cooling must be applied before the filament is switched on.
- C:- The valve must be mounted vertically.
- D:- The attention of equipment designers is drawn to the fragility of the valve scals, and consequently special care should be exercised in the mechanical design of associated circuits.

CVIO90 TESTS
To be performed in addition to these applicable in K1001.

Test Conditions				Test		Limits		No.				
						Min.	Max.	Tes-	Note			
For the following tests forced air cooling shall be provided so that the temperature of the anode radiator shall not exceed 140°C. measured at the junction of the anode and cooling fins. A suitable air flow is 8 cu. ft. per minute with a pressure drop across the valve of the order of 11/2 inches of water.												
	Vr	Va	Vg	Ia(mA)	HOT FLASH PROCESS				3000	,		
8.	8, 25	Raised slowly to 10 kV. and main- tained until flash- ing ceases	Prefer ably auto- matic bias	- Any value between 0.5 and 3.0	Anode voltage tained at 100 a period of during which the valve she give any indi- of breakdown	kV.for 2 mins. time all not ication			100%	1		
ъ	8.25 (A.C)	0	0	-	If	(A)	6.4	7.6	100%			
C	8.25 (A.C)	1000	-	100	Reverse Igl	(µA)	09	10	100%			
đ	8.25 (A.C)	1000	-	100	Vgl	(v)	-19.0	-29.0	100%			
0	8.25 (A.C)	790	-	100	Change in Vg. value obtaine test (d)	l from ed in	16	22	1% (1)			
f		1000	-	10	vr	(₹)	en)	3.5	100%			
g	8. 25	applied		•	Paak Space Current	(A)	5		100%	2		
h	8.25 (A.C)	0	-3000		Reverse Igl.	(µA)	-	20	100%			
1	8.25 (A.C)	-	-104	4.	Va	(v)	1325	1700	100%	2		
k	using Adaptor type 100. Ref. 10A/17529		CAPACITANCES	(pF)		OPPORTUNITION OF THE PROPERTY						
	Links H. P.	to Li	aks to	Links to E								
	2			1,4,5,6,7 8,9,10 TC 1, TC2	l. Cag		3.0	4-5	1% (1)			
	3			2,4,6,7,8 9,10 TC1, TC2	2. Cgf		1.5	2.9				

NOTES

- Once the conditions specified in test clause (a) have been met, the test conditions need not be repeated for acceptance testing. For this hot flash process there shall be a 500 ohms resistor in series with the applied voltage and a capacitance of 0.15 μF. in parallel with the supply voltage on the supply side of the resistor.
- 2. The valve shall be subjected to either test (3) or test (g)

VALVES TYPES VT90 & CV46.

NOTE 1: THIS DIMENSION SHALL INCLUDE
ANY RIGIDITY OF THE FILAMENT LEADS DUE
TO THE SPREAD OF SOLDER FROM THE
CONNECTIONS WITH THE TUNGSTEN LEAD
OUT WIRES

ALL DIMENSIONS IN mm. UNLESS OTHERWISE STATED.