VALVE ELECTRONIC

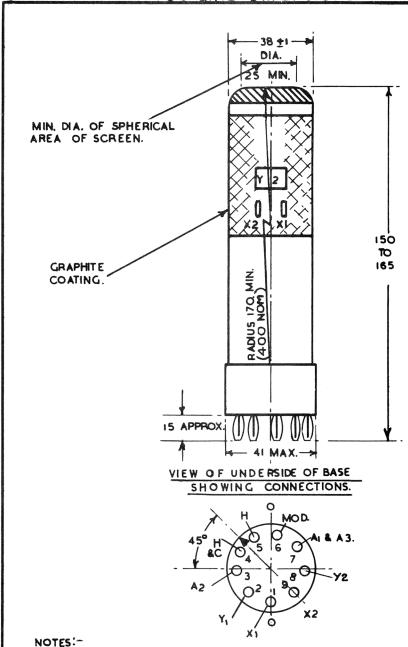
CV967

ADMIRALTY SIGNAL & RADAR ESTABLISHMENT

(NC19)

Specification AD/CV967/Issue 5.	SECURITY		
Dated 10.4.52.	Specn.	Valve	
To be read in conjunction with K1001 (1952)	Unclassified	Unclassified	

→ indicates a change							
TYPE OF VALVE: - Cathode Ray Tube. TYPE OF DEFLECTION AND				MARKING See K1001/4.1.			
FOCUS:- Electrostatic. BULB:- Internally coated with conductive coating.				BASE			
SCREEN:-	CREEN:- GC5			B9			
PROTOTYPE:-	4053A (Sec. Note A)	•		Pin	Electrode		
Heater Voltage Heater Current Max. Vaj X-plate sensitiv		4.0 1.1 800 100 Va3 90 Va3	Note B	1 2 3 4 5 6 7 8 9	X1 Y1 A2 H and C H Modulator A1 and A3 Y2 X2		
Desirable spot size (mm) Max. line width (mm)			С	DIMENSIONS			
TYPICAL OPERA	800		See Drawing, page 3.				
Va2 Va1	$\begin{pmatrix} \Lambda \\ \Lambda \end{pmatrix}$	135 800		See K100	PACKAGING		
Ιb	(ALA)	3.0	1	Deg WIO	· · · · · · · · · · · · · · · · · · ·		


NOTES

- A. The CV967 specification is similar to but less stringent than that for CV1522 (VCR522). CV967 has better focus quality than CV950 which it supersedes.
- B. The tube shall be of the three anode construction.
- C. Focus quality measured as follows:- With Va3 = 800 V and Va2 and Vg adjusted to give an optimum-focus raster of convenient size and of light output 0.002 candela, the positive grid drive from Vg (blackout) is noted (= x). Then, with the beam just "blacked-out", a nominally square wave positive pulse of peak value x volts and of width 100 µsecs and repetition frequency 100 c.p.s. applied between cathode and grid, and with the high frequency time base set to produce a line 2.5 cms long in the X and Y axes successively (with no adjustment of focus between measurements in the two axes), the line width as measured at the centre of the trace must not exceed 1.0 mm.

CV967

To be performed in addition to those applicable in K1001 (1952)

		Test Conditions						Limits			
		Vh (Tr)	Va3	Va2	Va1	∀g (¥)	Test	Min.	Max.	No. Tested	
-	\dashv	Teffection voltages shall be					be applied symmetrically in all cases				
	a					os suali	Capacitances (pF) i. Each X- or each Y- plate to all other	-	15	m	
							electrodes. ii. Modulator-electrode to all other electrodes. iii. One X- to one Y-	-	20 5	Type Ap- proval	
-	_						plate.	0.05	4 05	50(40)	
-	р	4.0	000		000		Ih (A)	0.95	1.25	5%(10)	
>		Adjust Vg and Va2 to give a light output of 0.002 candela from an optimum focus raster			002	ve a candela	i. Vg	To be least	2▼-	100%	
		of	CONVC	nient siz	e.		ii. Va2 (V)	50	175	5%(10)	
and the second s							iii. Vg (V) Line width to be measured as described in Note C.	Not to exceed 1mm at the centre		100%	
	đ	4.0	800	As test	800	Ad- justed	Vg fer cut-off (V)	- 7	-20	100%	
	•	4.0	800	As test	800	Any con- venient value	i. X-plate sensi- tivity (mm/V) ii. Y-plate sensi- tivity (mm/V)	80 Va3 72 Va3	120 Va3 108 Va3	5%(10)	
-	f	4.0	800	As test	800	Any con-	Deviation of spot from centre of screen		5	100%	
AND DESCRIPTION OF THE PERSON		See K1001/5A.11.1. venient			1	(mm)			100,4		
	g	4.0	800	As test	800	Any con- venient	Minimum useful screen diameter (mm)	30	_	100%	
AND COMPANY OF STREET		Deflection to cover the stated circle concentric with the screen			cen-	value	,				
	h	4.0	800	As test	800	Any con- venient value	Angle between X- and Y- axes of deflection	85°	95 °	100%	
	j	Angl	e of	As test		Any con-	Orientation of Y-axis of deflection		10°	100%	
-		rel	ative Fig.			Value	Grid insulation				
		See 67/5/		/5A.3.2.			resistance (M.C.)	15		100%	

L. VIEWING THE SCREEN OF THE TUBE WITH THE BASE ORIENTATED AS SHOWN ABOVE, A POSITIVE POTENTIAL APPLIED TO PIN No. (XI) SHALL DEFLECT THE SPOT TO THE LEFT AND A POSITIVE POTENTIAL APPLIED TO PIN No. 2 (YI.) SHALL DEFLECT THE

SPOT DOWNWARDS.

2. ALL DIMENSIONS ARE IN MILLIMETRES,