Page 1. (No. of pages: - 5)

VALVE ELECTRONIC

CV959

ADMIRALTY SIGNAL ESTABLISHMENT

TYPE OF DEFLECTION: - Electrostatic.

Specification AD/CV959/Issue 2. SECURITY
Dated 1.2.46. Specification Valve
To be read in conjunction with K1003. Restricted Restricted

BULB:- Intermodate coate conduction coate conduction coate c	Internally coated with conductive coating. WWN23 or YYN2 (See Note A). 3220K.			MARKING See K1003/7.		
RATING			BASE AND CONNECTIONS 6-clip base.			
Heater Voltage (V)	4.0		Pin	Electrode		
Heater current (Approx) (A) Max. Va1 (kV) Max. Va2 (focus) (V) Max. Va3 (kV) Modulator voltage (Vg) (V) X-plate sensitivity (mm/V)	1.1 3.0 700 3.0 -30 600	В	1 2 3 4 5 6	Cathode Modulator Heater Heater Anode 2 Anode 1		
Y-plate sensitivity (mm/V)	Va3 675 Va3		TOP CAP AND DIMENSIONS See drawings; page 5.			

NOTES

- A. The construction of the screen shall be such that, when it bears two superimposed traces with any recurrence frequency up to 3,000 per second, the building up of electric charges on the screen shall not cause any appreciable distortion of one trace by another.
- B. The first accelerating anode may be omitted, if desired.

CV959

TESTS

To be performed in addition to those applicable in K1003.

	married and the second of the second		Condi	Procedure Street Constitution		Test		Lim	Limits	
	Vh (V)	Va3 (kV)	Va2	Va1 (kV)	Vg (V)			Min.	Max.	Tested
а	See	K1003	/5.12	•			Each X- plate to	-	16	
						(ii)	all others. Each Y- plate to	-	12	10%
	v					(iii)	all others. Either X- plate to either Y- plate.	-	4	(20)
b	4.0	enn .	Maria .	N/O	900	Ih	(A)	0.7	1.2	100%
C	4.0	3.0	Ad-	3.0	Ad-	(i)	Va2 (V)	400	700	
	Adjust Va2 for optimum focus and Vg to give a spot brilliance equal to that of a standard tube. Deflecting voltages applied to give an open raster traversing the working area of the screen. Values				Line width (to be within 2.5 cms of cen- tre of tube Uniformity of focus and bril- liance.	twice t standar The foc brillia be unif the are 2.5 cms	The focus and brilliance must be uniform over the area within 2.5 cms of centre of screen			
In	of Va2 and Vg to be noted. In all tests below, unless otherwise stated, conditions shall be as									
in test 'c'.										
d						(i)	CHARLES AND AN ARCHITICATION OF THE PARTY OF		-30	
	cath	ode c	or to give a current, ing leakage, of			(ii)	Change in Vg from value found in test 'c		15	100%

TESTS (Contd.)

	Test Conditions		Limits		No.
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Test	Min.	Max.	Tested
е	See K1003/5.4.2.	Modulator Insulation (M Ω)	5	**	100%
		Plate sensitivi- ties (mm/V) (i) X-plates. (ii) Y-plates.	550 Va3 550 Va3	650 Va3 800 Va3	5% (2)
g		Angle between X- and Y-plate axes.	85 ⁰	950	100%
h	See K1003/5.10.	Centring (mm deviation).	te3	7.5	100%
e pro-	(i) Brilliance varied from min. to max. (ii) Va3 altered between 2,700 and 3,300 V. (iii) VX1 = VX2 = +10 V. (iv) Waves of form shown on page 4 applied to one X- plate. (v) Tube tapped vigorously.	Deviation of spot position (mm)	During operation (i)-(v) the spot shall not move in the X axis direction more than 2.0 mm.		
	+ 4,000 V to be con- nected between any one deflecting plate and final anode; the re- maining three deflec- ting plates being connected to the final anode.	High deflecting plate voltage.	No inter breakdow deterior shall oc	m or ration	100%

CV959

TESTS (Contd.)

	Test Conditions Vh Va3 Va1 Vg	m - +	Lim	No.		
	$\begin{pmatrix} Vh & Va3 \\ (V) & (kV) \end{pmatrix} Va2 \begin{pmatrix} Va1 & Vg \\ (kV) & (V) \end{pmatrix}$	Test	Min.	Max.	Tested	
k	(i) X raised to -2000 V with respect to A3 & X2. (ii) X2 raised to -200 V with respect to X1. (iii) X1 raised to +5 V with respect to	Deflector plate conductivity (pA)	•	10.0	100%	
	X2 (iv) X2 raised to +5 V with respect to X1					
	100 (1) (1) sec.		(11	/50th→ sec.		

