Specification AD/CV956/	SECURITY						
Dated 12.6.47.	Specn.		Valve				
To be read in conjuncti	Restricted		Unclassified				
TYPE OF VALVE:- Ca	MARKING						
TYPE OF DEFLECTION: - KI		See K1003/7.					
See Note A.			BASE				
				Standard 12-contact			
	See Note B.			Electrode			
BULB:- In	Internally coated			Mod:			
with conducting			2	No c	connection		
ma	3	H, 0).				
SCREEN: See Note C.			4	H.			
PROTOTYPE:- 46		5		See Note F			
RATING				1	below)		
			6	A2			
Heater Voltage (V)	4.0		7 8	Coat	ing		
Heater Current (A)	1.0		8	X5			
Max. Va1 (kV)	2.0		9	X2			
Approx. Va2 (focus)(kV)	1.2		10	A3			
Max. Va3 (kV)	6.0	В	11	X1			
Modulator Voltage (V)	-1 to -50		12	Y1			
Sensitivity, back	1490		DIMENSIONS				
or X-plates (mm/V)	Va.3	A	See Drawing, Page 4. Note I				
Sensitivity, front	1270			PACKA	GING		
or Y-plates (mm/V)	Va3	A	See K1005.				

NOTES

- A. The front or Y-plates, defined as those nearer the screen, shall be suitable for operation with asymmetrical deflecting voltages, and the back or X-plates with symmetrical deflecting voltages.
- B. The tube shall be of three anode construction.

- C. The fluorescence shall be green, with an afterglow which is negligible after an interval not exceeding 0.2 sec. from the cessation of excitation.
- D. The tube shall be supplied fitted with a magnetic shield (length 74", int.dia. 34"), secured by rubber spacers and a rubber ring, and fitted with a connecting terminal.
- E. Screen blemishes which impair the performance of the tube must not appear within a rectangle of length 230 mm symmetrical with the X-axis, and width 100 mm. symmetrical with the Y-axis.
- F. Contact No.5 may be left blank, A1 being connected to A2 on Tubes with this type of connection are to be contact No.6. marked with a yellow splash, but may be included in normal deliveries.

CV956

TESTS

To be performed in addition to those applicable in K1003.

		Test	Condit	ions		Test		Limits		No.
	Vh (V)	Vmod. (V)	Va1 (kV)	Va2 (V)	Va3 (kV)			Min.	Max.	Tested
8.							back to all elec- s in- ng ite	8	20	6 per week
						ii. Each	front to all elec- s in- ng ite	12	20	
ъ	4.0 AC or DC	and provide and an analysis of the same of				Ih	(A)	0.9	1.2	100%
C	4.0	4.0 Ad- 1.7 Read 6.0 justed		6.0	i. Focu	3		e K1003/ 5•7• 100≰		
	Deflecting voltages, asymmetrical for front plates and symmetrical for back plates, applied to produce a raster 100 mm square. Vmod adjusted to give a brightness equal to that of standard tube. See K1003/5.7.					ii. Va2	(V)	960	1440	
						X-plates (back) Y-plates (front)	ities (mm/V)	1280 Va3 1145 Va3	1700 Va3 1400 Va3	10 % (2)
						iv. Usef	en			
						Along X- axis Along Y-	(mm)	230	-	100%
	56/3/3	Tak .				axis	(mm)	100	-	

		Test	Condi	ions			Limits		No
	∀h (∀)	Vmod (V)	Va1 (kV)	Va2 (V)	Va3 (kV)	Test	Min.	Max.	Tested
đ	4.0	Ad- justed	1.7	As test 'c'	6.0	Vmod for cut-off (V)	-22	-50	100%
		See	K1003/	/5.8					
е	4.0		1.7	As test 'c'	6.0	i. Cathode current (uA)	63	600	
	Vmod to a	er as i made m value respec ode.	ore +	re by:	≯25V.	measured in graphite lead (uA)	40	-	100%
£	4.0		1.7	As test 'c'	6.0	Departure of Y-axis from axis	60	15°	100%
	Def1.	ecting	voltag	ges ap	plied	ZZ on Drawing, Page 4.			
g	4.0		1.7	As test	6.0	Deviation of spot from			
	See K1003/5.10				centre of screen (mm)		25	100%	

VIEW OF UNDERSIDE OF BASE.

NOTES: VIEWING THE SCREEN OF THE TUBE WITH THE BASE SPIGOT UPPERMOST AS SHOWN IN THE VIEW OF THE UNDERSIDE OF BASE, A POSITIVE POTENTIAL APPLIED TO CONTACT No II (XI) SHALL DEFLECT THE SPOT TO THE LEFT, AND A POSITIVE POTENTIAL APPLIED TO CONTACT No.12 (YI) SHALL DEFLECT THE SPOT UPWARDS.

2.ALL DIMENSIONS ARE IN MILLIMETRES.