VALVE ELECTRONIC

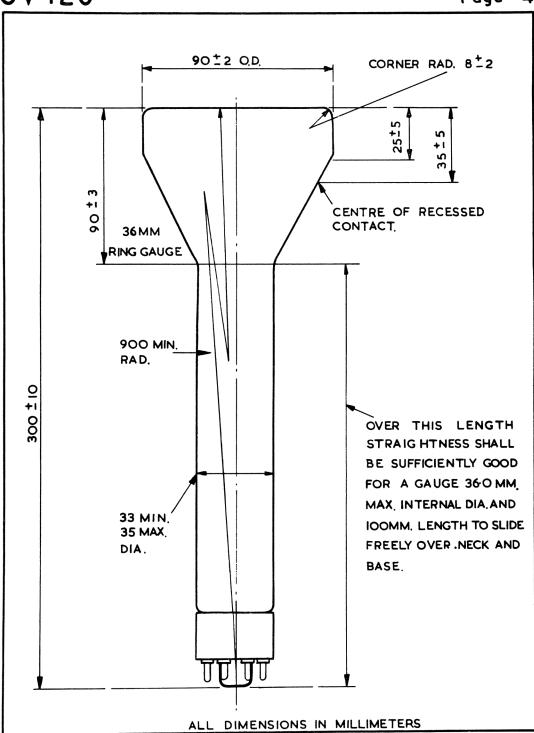
Specification MOS(A)/CV420	SECURITY			
Issue 4 Dated 17. 8. 54	Specification	Valve		
To be read in conjunction with K1001	UNCLASSIFIED	unclassified		

- Indicates a change

TYPE OF VALVE - Cathode Ray	MARKING								
TYPE OF FOCUS - Electro-state	SæK1001/4.								
TYPE OF DEFLECTION - Magnetic	FLECTION - Magnetic								
	- Internally coated with conductive coating								
SCREEN - 008				International Octal.					
PROTOTYPE - VCRX277									
RATING		CONNECTIONS							
			Note	Pin	Electrode				
Heater Voltage Heater Current Max. First Anode Voltage Max, Third Anode Voltage Max, Peak Beam Current	(V) (A) (VX) (VX)	4.0 1.0 1.45 8.0 100	A A A	1 No connection 2 Al 3 A2 4 No connection 5 G 6 C 7 H 8 H S.C. A3					
Typical Operating Conditions				SIDE CONTACT					
First Anode Voltage Second Anode Voltage	(kV) (V)	1.25 950		Snap Terminal Connector.					
Third Anode Voltage	(kV)	7.0		DIMENSIONS					
				Sec	Drawing on Page 4				

NOTES

- A. Absolute maximum value.
- B. The first anode must always be at least 50V positive to the second anode and the supply network must take account of variations in first anode current from zero to working value.


To be performed in addition to those applicable in Kl001.

Test Conditions						Limits		No.	Note		
						Test		Min.	Max.	Tested	Note
а	Vh Va3 Va2 Va1 Vg (V) (kV) (kV) (V) (V)					CAPACITANCES (pF) 1. Cg-c 2. Cc-h		- -	10 10	5% (20)	
ъ	4.0	0	0	0	0	Ih	(A)	0.95	1.15	100%	
С	4.0	7.0	Adjust for optimum focus	1.25	Adjust to cut-off. Value to be noted.	Vg	(v)	-40	-80	100%	
đ	4.0		As for Test (c)	1.25	- 	Light Intensity Beam Current	(AUA)	-	5.0	100%	
	sizo	, ad	raster of just to g r 0.028	give a	a light						
е	e 4.0 7.0 As for 1.25 - Test (c) Adjust Vg to give a beam current = 100/vA. Spot to be deflected off the usable screen area.					1. Vg 2. Change in Vg from value found in Test (c) 3. Beam current shall increase continuously over the range of Vg from cut-off to that	(v-) (v)		35	100%	
					_	value required for Test (d).		_	_		
f	time a li line	ECTION DESCRIPTION DE LA COMPANS DE LA COMPA		kc/s 1 80 m be m	easured	1. Line Width 2. Va2	(mm) (V)		0.5 1050	1	1
	in to success of the	he X essi tive tive itude incd	and Y dively.	hall lout-on to the (e2)	ions, be pulsed ff with e value						
g		Sec I	Any con- venient value (1001/5A			Grid Insulation 1. Leakage Current 2. Increase in voltmeter reading	(µA) (%)	1	8	100%	

Test Conditions					Test		its	No.	N	
		res	COMar	TOUS		1680		Max.	Tested	Note
h	Vh (V) 4.0	Va3 (kV) 7.0	(kV)	Val (kV) 1.25	Vg (V) Any con- venient value	Deviation of unfocussed spot from centre of screen (mm) -	5	100%	
j						Useful Screen Area Diameter (mm	80	-	100%	
k	4.0	7.0	Any conven- ient value	1.25	-	Persistence (secs	30	-	100%	
			all be p							
m	The tube shall be capable of use with an earth connection to any point on the HT potential divider without causing distortion of the trace or spot shift.								TA	

NOTE

1. Alternatively, the test may be performed using a raster having a 10 kc/s nom sine—wave time base 80 mm long in the X direction and a 50 c/s scan in the Y direction, widened so that the individual lines are separated by at least one line width. The line width shall be measured in both X and Y directions. The grid need not be pulsed for this alternative test, but should be set to give a beam current = 100 µA.

