VALVE ELECTRONIC CV 398

MINISTRY OF SUPPLY (D.C.D)

Specification MAP/CV.398/Issue 2 Dated 30.3.50.	Specification Valve	
To be read in conjunction with K1001	RESTRICTED UNCLASSIFIED	- Chapterson of the Contract o

→ Indicates a change

TYPE OF VALVE: Pulse Modulator Tetro CATHODE: Indirectly Heated ENVELOPE: Glass, unmetallised PROTOTYPE: VX7001; 715B	MARKING See K1001/4					
RATING Heater Voltage (V)	26	Note	£	BASE B4A See Drawing Page 4.		
Heater Current Max. Anode Voltage Max. Negative Grid Voltage Max. Peak Positive Grid Voltage Max. Screen Grid Voltage Max. Screen Grid Voltage Max. Anode Dissipation Max. Screen Grid Dissipation W Max. Screen Grid Dissipation W	26 2.0 12 1.0 300 1.25 1.35 60 8 15	A B	CONNECTIONS Pin Electrode			
Max. Peak Anode Current Capacitances Cag (max) Cgc Cac			TOP CAP See Drawing Page 4 DIMENSIONS See Drawing Page 4			

NOTES

- A. Screen grid potential should not exceed 1.25kV during operation.
 Minimum series resistance = 20,000 ohms.
- B. For duty cycle not greater than 0.001. With peak currents in excess of 5A. the product of peak current in amperes, and pulse duration in micro-seconds should not exceed 30. The valve should not operate for longer than 5u.secs. in any 100u.secs. period.

CV 398

TESTS

To be performed in addition to those applicable in K1001

and the same of th	-	Test Conditions						Limits		No.	Note	
		(A) Ap	Va (kV)	Vg2 (kV)	Ia (mA)	Vg ₁ (V)	Test					
	a	27	0	0	0	0	Ih	(A)	1.95	2.35	100% or S	
	ъ	27	1.2	1.0	50	Adjust	Ig ₁	(uA)	0	-4 0	100,6	1
	٥	27	1.2	1.0	50	Adjust	Ig2	(mA)	0	8.0	100% or S	
-	đ	27	1.2	1.0	-	-500	Ig ₁	(uA)	0	- 80	100%	
-	е	25	15	1.25	-	-800	Ia (A) 15 - 10 Ig2 Never Negative		100% ive	2		
-	f	25	15	1.25	1.0	Adjust	Vg	(V)	-320	-700	100%	
							Capacitances 1. Cag 2. Cgc 3. Cac	(pF)	30 5	2 45 10	6 per week	

NOTES

- Valve to be operated with constant, or decreasing, grid current for 2 minutes. Should the grid current rise it shall become constant, or decrease. in 5 minutes.
- 2. A pulse of duration 2 u.secs. and repetition rate of 300-500 per.sec. with a variation in amplitude over 80% of the top portion of the pulse not greater than 5%, shall be applied to drive the control grid positive by 225 \(\frac{1}{2}\) 25V at the top of the pulse. The variation in amplitude of the output pulse shall not be greater than 10%, and during the test there shall be no sustained sparking. Duration of test 2 minutes. The test circuit is shown on Page 3.

