VALVE ELECTRONIC

CV395

MINISTRY OF SUPPLY (D.C.D.)

Specification MAP/CV. 395/Issue 4	SECURITY			
Dated 21.6.50 To be read in conjunction with K.1001	Specification	Valve		
excluding clauses 5.2, 5.8.	unclassified	Unclassified		

---> Indicates a change

	-					Contraction (Clared Street Street Street	Market Strangers (Strangers)
TYPE OF VALVE - Voltage Stabiliser.			MARKING				
CATHOLE - Cold			See K. 1001/4				
ENVELOPE - Glass, unmetallised.			BASE				
PROTOTYPE - VX.372.	ROTOTYPE - VX.372.			B8G.			ĺ
				See	K. 1001/AIV	D12.	
RATINGS					CONNECT	I CNS	
			Note	Pin	E	lectrode	
Max. Anode take-over	(v)	170	•	1) 2) 3	ىم	node	
Max. Anode current Win. Anode current Mean voltage drop	(mA) (mA)	45 5		3 Priming And 5) 6) Cathode 7) 8)		node	
across valve operating at 25ma. Max. priming anode	(v)	150	A				
current	(mA)	1.0	В	0)			
				DIMENSIONS			
				See K. 1001/A1/D7			
				Dimension Min. Max.			Max.
					ma)	70	29
				A (man)	70	80

notes

- A. These conditions apply with the priming electrode connected to 200V. + Ve through 100 k Ω .
- B. If not required for use, the priming electrode shall be joined to the main anode through a resistance of $80,000\,\Omega$

TESTS

To be performed in addition to those applicable in K. 1001.

	Test Conditions		Test		Limita		No.	
					Min.	Maz.	Tested	
	Priming Anode Voltage	Main Anode Voltage	Main Anode Current (mA)					and the second s
a.	200 V. through 0.1 MΩ	0	t t	The walve must conduct				100%
Ъ	200 V. through C.l M Ω	Increased until current flows.	479	Anode take-over	(v)	-	170	100%
¢	200 V. through 0.1 M Ω	A djust	25	Voltage drop between main anode and cathode	(v)	145	155	100%
đ	200 V. through 0.1 M Ω	Adjust	Changed from 5 to 45.	Regulation	(V)	-	5	100%
•	200 V. through 0.1 MΩ	Adjust	Changed from 5 to 25.	Regulation	(v)	-	2	100%
f	For this within + 50-5000. The cath and at n	purpose a 2db. of it c.p.s. is to de current	calibrate is respons to be conf is to be this rang	or freedom from noise amplifier detects at 400 c.p.s. over the extend between the exercise waried slowly from must the R.M.S.	or have er the anode a	ing a r range and cat	esponse of hode.	100%