VALVE ELECTRONIC # **CV320** #### ADMIRALTY SIGNAL & RADAR ESTABLISHMENT. | Specification AD/CV320/Issue 4. | SECURI TY | | | |--|------------------------|-----------------------|--| | Dated 10.4.52. To be read in conjunction with K1001 (1952) | Speca.
Unclassified | Valve
Unclassified | | ### -> indicates a change | TYPE OF DEFLECTION AND FOCUS:-
BULB:- | Electrostatic. Internally coated with conductive coating. | | MARKING | | | | |---|---|---------------------------------|---------|----------------------------|--|--| | SCREEN:- PROTOTYPE:- | YY5
CV967. | | | See K1 | 001/4•1• | | | RATING Heater Voltage (V) | | | Note | BASE
B9 | | | | Heater Current Max. Va3 X-plate sensitivity | (A)
(V)
(V/mm) | 4.0
1.1
800
100
Va3 | A | Pin
1
2
3 | Klectrode
X1
Y1
A2 | | | Y-plate sensitivity Desirable spot size | (mm/V) | 90
Va3
1.0 | В | 2
3
4
5
6
7 | H and C
H
Modulator
A1 and A3 | | | Typical Operating Condition Va3 Va2 Va1 Ib | (V)
(V)
(V)
(µÅ) | 800
135
800
3.0 | | 8
9
See Dr | Y2 X2 DIMENSIONS rawing page 3. | | ## NOTES - A. The tube shall be of the three anode construction. - B. Focus quality measured as follows:- With Va3 = 800 V and Va2 and Vg adjusted to give an optimum-focus raster of convenient size and of light output 0.002 candela, the positive grid drive from Vg (blackout) is noted (=x). Then, with the beam just "blacked-out", a nominally square wave positive pulse of peak Value x volts and of width 100 µsecs and repetition frequency 100 c.p.s. applied between cathode and grid, and with the high frequency time base set to produce a line 2.5 cms long in the x and y axes successively (with no adjustment of focus between measurements in the two axes), the line width as measured at the centre of the trace must not exceed 1.0 mm. ## TESTS To be performed in addition to those applicable in K1001 (1952) | | | Test Conditions | | | | Limits | | No. | | | |--|----|---|--------|---------------|--|---------------------------------|--|---------------------------------|--|-----------------| | -> | | ∀h
(∀) | (V) | (V) | Va.1 | Vg
(V) | Test | Min. | Max. | Tested | | | | | | | | | applied symmetrically in all cases | | | | | | a. | | | | | | Direct Capacitances (pF) (i) Each X- or each Y- plate to all other | | 15 | Type Ap- proval | | | | | | | | | electrodes. (ii) Modulator elec- trode to all other electrodes. | - | 20 | | | | | | | | | | (iii) One X- to one Y- | - | 5 | | | | ď | 4.0 | | | A CONTRACTOR OF THE PARTY TH | | If (A) | 0.95 | 1.25 | 5%(10) | | → | C | Adjust Vg and Va2 to give a ligh
output of 0.002 candels from an | | | | rom an | (i) V g | To be | 2 V − | | | 1 | | optimu | m foc | us raster | of c | on- | | Catho | The self-resident beautiful to | 100% | | | | venier | nt siz | 0. | | | (ii) Va2 (V) | 50 | The same of sa | 5%(10) | | | | | | | | | (iii) Vg (V) Line width to be measured as described in Note C | Not to exceed 1mm at the centre | | 100% | | → | ď | 4.0 | 800 | As test | 800 | Ad-
justed | Vg for cut-off (V) | -7 | -20 | 100% | | | 9 | 4.0 | 800 | As test | 800 | Any convenient value | (i) X-plate sensitivity (mma/V) (ii) Y-plate sensitivity (mm/V) | 80
Va3
72
Va3 | 120
Va3
108
Va3 | 5%(10) | | and the second | f | 4.0 | 800 | As test | 800 | Any
conven- | | | 1.20 | | | nogradiomach. | | See K1001/5.A.11.1. | | ient
Value | centre of screen (mm) | _ | 5 | 100% | | | | | g | 4.0 | 800 | As test | 800 | Any
conven- | Minimum useful screen diameter (mm) | 30 | - | 100% | | | | stated
with t | circ] | | tric | ient
Value | | | | | | A STATE OF THE STA | h | 4.0 | 800 | As test | 800 | any
conven-
ient
walue | Angle between X- and
Y-axes of deflection | 85° | 950 | 100% | | | j | 4.0 | 800 | As test | 800 | Any
conven- | Orientation of Y-
axis of deflection | - | 10° | 100% | | THE REPORT OF THE PERSON TH | | flecti
relati
Fig. 1 | on mea | Axis oo | | ient
value | | | | | | →[| k | See K10 | 01/5A。 | 3.2. | | | Grid insulation resistance (MC) | 5 | _ | 100% | ## NOTES: - I. VIEWING THE SCREEN OF THE TUBE WITH THE BASE ORIENTATED, AS SHOWN ABOVE, A POSITIVE POTENTIAL APPLIED TO PIN No. 1 (XI) SHALL DEFLECT THE SPOT TO THE LEFT AND A POSITIVE POTENTIAL APPLIED TO PIN No. 2 (YI) SHALL DEFLECT THE SPOT DOWNWARDS. - 2 DIMENSIONS ARE IN MILLIMETRES.