CV237

Specification MAP/CV237/Issue 2	SECURITY			
Dated 3.9.47. To be read in conjunction with K1001 ignoring clauses: - 5.3, 5.2, 1.2, 7.2.	Specification Wingleson	Valve (Unada sa		

- Indicates a change

TYPE OF VALVE - Velocity Modul CATHODE - Indirectly hes ENVELOPE - Copper-glass v PROTOTYPE - KR6/2	ted		r		MARKING See K1001/4
RATING			No te		BASE I.O.
Heater Voltage Heater Current Tuning Range Max.Resonator Dissipation Mean Resonator Voltage Reflector Voltage Range Grid Voltage Min. A.F.C. Range Reflector Voltage change for	(V) (A) (Mo/s) (W) (V) (V) (V)	4.0 1.5 3390 3170 8.0 250 80 150 0	C	Pin 1 2 3 4 5 6 7 8 "T.C.	Electrode Grid Heater No connection Resonator No connection No connection Heater Cathode Reflector
20 Mc/s frequency change Max. permissible series resistance in target circuit Max. Resonator temperature during operation	(°C)	25 20000 140		matakatenstavatan-evapansuminasi	TOP CAP ee K1001/A1/5.2 DIMENSIONS e drawing on page 3.

NOTES

- A. The resonator shall be plated first with copper, then with silver, then with gold.
 - All other external metal parts, excluding pins and top cap, to be either plated or treated with any other approved corrosion resisting finish.
- B. By variation of reflector voltage from half power to half power at any mean frequency in the range.
- C. Superimposed on optimum setting, but not necessarily disposed symmetrically about this setting.
- D. This range applies to the 50% loaded condition. With the valve unloaded the reflector voltage is about 10V. higher, and with the valve fully loaded about 5V. lower.
- E. The valve has been designed for and should be used with zero grid voltage.
- F. the tuner should not be screwed out more than 5 turns from the fully screwed in position, otherwise the retaining clips may become detached and these are difficult to replace.
- G. Mounting position-any.

	VZ	V237 To be performed in addition to those applicable in K.1						Page 2		
		Test Conditions		Test	Limits		No.			
	Vh	Vg	Va	Vr	lest	Min.	Max.	Tested		
а	4.0	0	0	0	Ih (A)	1.0	1.6	100%		
)	4.0	0	Adjusted	Adjusted	1. Range over which oscilla- tion can be ob-		,			
	Va adjusted for Wa not greater than 8W. Vr adjusted for max. power output. The frequency of oscillation varied by means of preset tuners and the valve to		tained (Mc/s) 2. Vr over range (V)	3220 to	145	100%				
EDECEMBER OF DESCRIPTION			7. Va over range (V)	235	265	100%				
	outp		sistively fo	r max.	4. Power Output at 3220 Mc/s(mW) 5. Power Output	100	40	100%		
	Transport or State				at 3390 Mo/s(mW)	100		100%		
3	4. C	0	Adjusted	Initially as in test 'b'	1. Total fre- quency change (Mc/s)	20	40	100%		
	With the valve tuned to 3390 Mo/s reduce the resistive loading, e.g. by rotating the coupling loop, so that 50% of the power given with full loading is obtained. Vary the reflector voltage from a value less than to a value more than the optimum to reduce the power at the extreme to not less than one half of that for optimum Vr.				2. Total re- flector voltage change (V)	25	50	100%		
ð	4.0	0	Adjusted	Initially as in test 'b'	1. Total frequency change (Mc/s)	20	40	5% (10)		
		'c' to Mc/s.	be repeated	at	2. Total re- flector voltage change (V)	25	50	% (10)		

NOTE

1. Va = Resonator Voltage Vr = Reflector Voltage

