Page 1 (No. of pages: - 4)

VALVE ELECTRONIC CV122

MINISTRY OF SUPPLY (S.R.D.E.)

Specification: MCS/CV122/Issue 6 Dated: - 24.5.50 To be read in conjunction with K1001, ignoring clauses 4.1.1(a), 5.2, 5.8, 6.0.7.1	from grift commence and an approximate process of a commence of the commence o	proves
--	--	--------

--- indicates a change

	idloat	es a change			
TYPE OF VALVE:- High - mu trice CATHODE:- Directly heated ENVELOPE:- Glass-unmetalli PROTOTYPE:- E.1336	MARKING See K1001/4. Additional Marking:- Colour Code (Note B)				
RAT ING	Note	BASE None			
Filament voltage (V) 1.5 Max.filament current (A) 0.15 Max.ancde voltage (V) 100 Mutual conductance (mA/V) 0.8 Amplification factor 32	A A	DIMENSIONS AND CONNECTIONS See Fig. 1 and K1001/AI/D1 Dimension Min Max			
Anode impedance (ohms) 40,000	A	Dimension A mm B mm		33 10	
A. Measured at Va = 100		Pip Length mm		6	
B. A GREEN mark shall appear adjacent to the anode lead a the numbering shall be in G	PACKAGIN See K100				

CV122

TESTS

To be performed in addition to those applicable in K1001

П	m d	03-4	£	Test		Limits Min. Max.		No.	Note
	Test	Condit	ions					Tested	NOCE
	Vſ	Va	٧g						
a	1.5	a-	-	I .f	(A)	-	0.15	0.1% (10)	
ъ	1.5	90	ea.	produced and grade distribution for the special section of the speci		20.0	25.5	100%	1,2,3
		0.5 Me		Gain test					
С	2.0	90	-			20.0	25.5	100%	1,2,3
		0.5 Me		Gain test					
đ	0	140	0	Leakage Anode to all	(AA)	_	0.75	100%	
	0	0	140	Grid to all		449	0.75	100%	
e	1.5	140	-2	Gas current	(A4)	-	1.0	100%	4

NOTES

- 1. This test shall be carried out in an approved circuit.
- 2. Filament voltage applied through a 5.5 ohm resistor, the grid to be returned to the negative end of the resistor.
- 3. 0.22 megohm resistor to be inserted in series with the applied signal and between the 1.0 megohm resistor and the grid.
- 4. Maximum time delay 0.75 secs.

SPECIAL REQUIREMENTS

- 1. The valves are required for embodiment into receivers and for short period operation. They are not required for replacement or normal life.
- 2. The valves are required to have a long life in storage and shall meet the requirements of these tests after a holding period of not less than one month from the date of initial test.
- owing to the mechanical requirements of the valves, the materials used and the methods of manufacture shall conform to the Material and Inspection Schedules. These Schedules shall form part of this specification, and may be obtained from C.I.E.M.E.
- A description of the Production Details, which may be obtained through the type approving authority or their representative, is issued as an appendix to this specification. This shall not be regarded as a rigid specification, but the representative of the type-approving authority shall be informed within twenty-four hours of any deviations from the methods described therein and the "lot" numbers concerned. The type-approving authority may call for samples, for comparison with the original samples for which type-approval has been given.

