VALVE ELECTRONIC CV8O

MINISTRY OF SUPPLY (S.R.D.E.)

Specification: MOS/CV80/Issue 3

Dated: 21.4.48

To be read in conjunction with K1001

ignoring clauses 5.8 to 7.2.

Specification Valve
Restricted Unclassified

Undas.

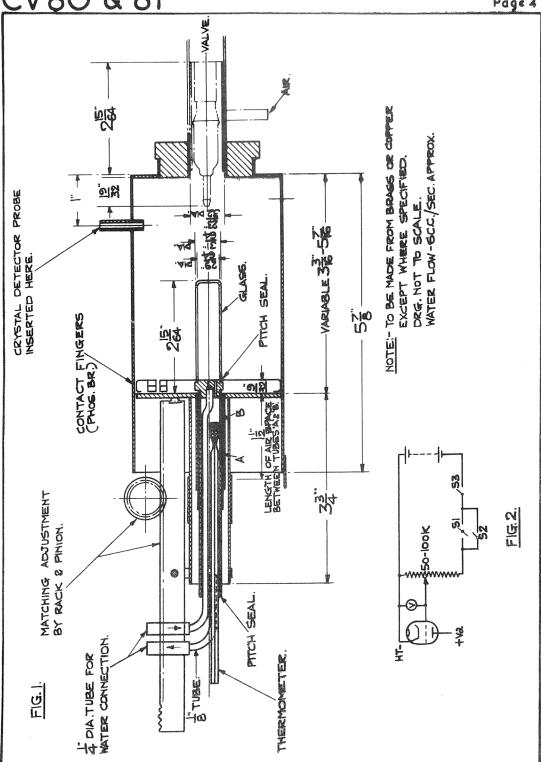
- indicates a change

TYPE OF VALVE: - Klystron CATHODE: - Indirectly F ENVELOPE: - Glass metal FROTOTYFE: - VFO1	MARKING See K1001/4						
RATING		Note	BASE 5 amp.3-pin				
Heater voltage (V)	4.0		Pin	Electrode			
	5•0 6•0 250		1 2 3 Metal Body	Heater/cathode Heater Grid Anode			
cut-off Wavelength (cms)	-200 6•95	A		DIMENSIONS See Fig. 3, page 5.			
Anode voltage range for oscillation (KV)	5.7 to 6.3	В					
Cooling flow (min. litres per minute)	1.5						

NOTES

- A. Matching adjusted for maximum output at zero grid volts.
- B. These figures are normal operational range and do not relate to voltage limits for oscillation cut-off.

TESTS


To be performed in addition to those applicable in K1001

	Test Conditions				Limits		No.					
	Te	St Co	naition	ns	Test	Min	Max	No. Tested	Notes			
	Vh	Va	Ve	3	G-C insulation	1.0	-	100%				
a	Test	volta	ge 20 ((min)	- C Libertion	1.0						
ъ	4.0	-	-	and the state of t	Ih	(A)	4.0	6.0	100% or S			
С	4.0	6000	0		Ia	(mA)	180	300	100%	1		
d	4.0	6000	0		λ	(cm)	6.8	7.1	100%	1		
е	4.0	60 00	0		Power output	(W)	80	300	10% (5)	1,2,3.		
f	4•0	6000	Vg=0.50% of time Vg=-Vgx 50% of time.		Vg for oscilla cut-off PRF50-500 c.]				10 % (5)	1,3,4.		
	With Vgx > 400 adjust matching until oscillation is just maintained in the positive cycle. Reduce Vgx to such a value that oscillation is just maintained in the negative cycle. Hysteresis loop length (V) 300											
æ	Vh 4.0	Va -50	Vg Va ry +ve	Ig 5.0 (ma)	Backlash (Va applied throug 100,000 ohms) Read Ia when stable	gh (μA)	Rec	ord	100%	1,5.		
g (a)	4.0	- 50 c	p e n ci	rcuit	Read leakage 1	Rec	ord					
g (b)	t	ract v and p		found	Ion current	(AA)		1 5				

NOTES

C V 8 O

- 1. Apply heater voltage for 1 minute before application of anode voltage or grid voltage in test 'g'.
- 2. Power output measured by means of probe calorimeter in conjunction with Eo waveguide (see Fig. 1, page 4).
- Ripple on Va not to exceed + 100 volts peak.
- 4. This variation may be obtained by use of the circuit shown in Fig. 2, page 4, S1 being a contact breaker driven by an electric motor or other suitable means. The D.C. volt meter (V) may be used to set the contact breaker so that it is open (or closed) for 50% of the time, by making the mean reading with the breaker running, 50% that with the breaker closed.
- 5. The tubes shall be re-tested for gas after a period of at least 7 days. The tubes shall not be operated between the completion of Test 'g' and this re-test. The tubes shall not show a marked increase in ion current on re-test. Any tubes showing a marked increase in ion current shall be held for a further period of 7 days and shall be the subject of consultation before acceptance or rejection.

