INSTRUMENT CATHODE-RAY TUBE 14 cm diagonal, rectangular flat-faced direct-view charge transfer storage tube with internal graticule. The tube has vertical scan-magnification with 3 quadrupole lenses and is for wide-band (100 MHz) oscilloscopy with fast store mode and variable persistence. ## QUICK REFERENCE DATA | Final accelerator voltage | ٧ _{a13} (٤) | 10 kV | |--|----------------------------------|-------------------------| | Minimum useful scan area | , and the second second | 90 mm x 72 mm | | Deflection coefficient
horizontal
vertical | M _X
M _Y | 18,5 V/div
4,8 V/div | | Writing speed | | 1 div/ns | #### OPTICAL DATA | OPTICAL DATA | | | | | |---|---|-------------------|----------|--| | Screen | metal backed phosphor
GH, colour green | | | | | type
persistence, non-store mode | medium-shor | | | | | persistence, store mode | variable | | | | | Useful screen area | | min.90 mm x 72 mm | | | | Useful scan area | | min.90 mm x 72 mm | | | | Spot eccentricity | | _ | | | | in horizontal direction | | | mm
mm | | | in vertical direction | | | mm | | | Internal graticule | type 95; see | Fig. 6 | | | | HEATING | | | | | | Writing section | | | | | | Indirect by a.c. or d.c.* | | | | | | Heater voltage | v_{f} | 6,3 | | | | Heater current | If | 240 | mΑ | | | Heating time to attain 10% of the cathode current at equilibrium conditions | | approx. 5 | s | | | current at squiisnam comment | | | | | | Viewing section | | | | | | Indirect by d.c.* | | | | | | Heater voltage | v_{FGf} | 12,6 | V | | | Heater current | l _{FGf} | 240 | mA | | | Heating time to attain 10% of the cathode current at equilibrium conditions | | approx. 5 | s | | ^{*} Not to be connected in series with other tubes. #### **MECHANICAL DATA** #### Mounting position The tube can be mounted in any position. It should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress. Avoid any force on the side contacts. Net mass approx. 1,3 kg Base 14 pin, all glass Dimensions and connections (see also outline drawing) Overall length (socket included) max. 454 mm Faceplate dimensions 118 ± 0,5 mm x 98 ± 0.5 mm **Accessories** Socket (supplied with tube) type 55572 Side contact connector (8 required) type 55561 Small ball contact connected (6 required) type 4022 102 21590 **FOCUSING** electrostatic note 1 DEFLECTION x-plates y-plates symmetrical symmetrical double electrostatic Angle between x and y-traces 90 ± 1º Angle between y-trace and y-axis of the internal graticule ≤ 5° note 2 #### **NOTES** - Because of the use of a quadrupole lens for the magnification of the vertical deflection, two more quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided. - 2. The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650 Ω . Under typical operating conditions, a maximum of 30 ampere-turns is required for the maximum rotation of 5°. This means the required supply is 15 mA maximum at 12 V maximum. ## **CAPACITANCES** | x ₁ to all other elements except x ₂ | $C_{x1(x2)}$ | 5,5 pF | |--|---------------------|--------| | x2 to all other elements except x1 | $C_{x2(x1)}$ | 5,5 pF | | y ₁ to all other elements except y ₂ | $C_{y1(y2)}$ | 2,7 pF | | y ₂ to all other elements except y ₁ | $C_{y2(y1)}$ | 2,7 pF | | x ₁ to x ₂ | C_{x1x2} | 3 pF | | y ₁ to y ₂ | C _{y1y2} | 1,7 pF | | g ₁ to all other elements | C _{g1} | 7 pF | | k to all other elements | c _k | 5 pF | | g ₁₁ to all other elements | C _{g11} | 80 pF | | g ₁₂ to all other elements | C _{g12} | 70 pF | | g ₁₃ to all other elements | C _{g13} | 85 pF | | g3 to all other elements | С _g З | 17 pF | | g5 to all other elements | C _{g5} | 17 pF | | gg_1 to all other elements | C _g 9-1 | 30 pF | | gg.2 to all other elements | C _g 9-2 | 70 pF | | gg_3 to all other elements | С _д 9-3 | 60 pF | | FGA to all other elements | CFGA | 20 pF | | k', k" to all other elements | c _{k', k"} | 12 pF | ## **DIMENSIONS AND CONNECTIONS** Dimensions in mm Fig. 1 Outlines - (1) Dimensions of faceplate only. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm. - (2) Minimum length of cable: 350 mm. Fig. 2 Bottom view and side-contact arrangement. Fig. 3 Top view. For note (1) see opposite page. Fig. 4 Electrode configuration. Fig. 6 Internal graticule colour of graticule: brown-black; line width : 0,2 mm; dot diameter : 0,4 mm. ## TYPICAL OPERATION (for notes see next pages) ## **Conditions** Writing section (voltages with respect to writing gun cathode k, unless otherwise stated for optimum scan magnification \approx 1,8). | Final accelerator voltage | ۷ _{g13(I)} | 10 000 V | note 1 | |--|---------------------|------------------|--------| | Geometry control voltage | V _{g8} | 3000 ± 100 V | | | Scan magnifier electrode voltage (with respect to g ₂) | V _{g7} | -600 V | | | Horizontal alignment electrode voltage (with respect to g ₂) | V _{g6} | ± 100 V | note 2 | | Vertical focusing electrode voltage (with respect to g ₂) | V _{g5} | -860 to -1100 V | | | Correction electrode voltage (with respect to g ₂) | V _{g4} | 200 V | note 3 | | Horizontal focusing electrode voltage (with respect to g ₂) | V _{q3} | -1300 to -1650 V | | | First accelerator voltage | V _{g2} | 3000 V | | | Cut-off voltage for visual extinction of focused spot | -V _{a1} | 75 to 130 V | | Viewing section (voltages with respect to viewing gun cathode FGK, Fig. 4) | Final accelerator voltage (with respect to | | non-
store
mode | variable
persist-
ance
mode | fast-
store
mode | | |---|---|--------------------------------|--------------------------------------|------------------------------|--------| | first accelerator FGA) | V _{g13(I)} | 7000 V | 7000 V | 7000 V | note 1 | | Backing electrode voltages (d.c.)
front mesh
fast mesh | V _{g12}
V _{g11} | –50 V
140 V | 140 V | 140 V | | | Collector mesh voltage (d.c.) | V _{g10} | 130 V | 130 V | 130 V | | | Collimator voltage (d.c.) C3 C2 C1 First accelerator voltage (d.c.) | V _{g9-3}
V _{g9-2}
V _{g9-1} | 65 V
≈ 65 V
30 V
20 V | 65 V
65 V
30 V
20 V | 65 V
65 V
30 V
20 V | note 4 | | | VFGA | | | _ | ĺ | | Flood gun cathode voltage (d.c.) | v_{FGK} | 0 V | 0 V | 0 V | J | The first accelerator voltage should be equal to the mean x-plate potential. ## Performance | Useful scan area | | min. 90 mm x 72 mi | | |-----------------------------------|----------------|--------------------|--------------------------| | Deflection coefficient horizontal | M_X | typ.
max. | 18,5 V/div
20,5 V/div | | vertical | M _V | typ.
max. | 4,8 V/div | Deviation of deflection linearity max. 2 % note 5 Geometry distortion see note 6 Grid drive for 10 μ A beam current V_d approx. 20 V Grid drive for specified writing speed V_d max, 80 V Line width at the centre of the screen I.w. 0,4 mm note 7 ## Writing speed (note 8) Variable persistence mode just black: ≥ 250 div/ms max. write: ≥ 2,5 div/µs Fast-store mode max. write: ≥ 1 div/ns ## Storage viewing time (note 9) Variable persistence mode just black: ≥ 60 s max, write: ≥ 15 s Fast-store mode max. write: ≥ 15 s #### **NOTES** 1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying 0,5 mA. To protect the tube against excessive surge current during erasure, an RC-network as shown in Fig. 7 must be connected in series with the screen terminal lead; the resistance of 15 to 20 $M\Omega$ includes the internal resistance of the H.T. supply. Fig. 7. - 2. This voltage should be adjusted for equal brightness in the x-direction with respect to the electrical centre of the tube. - 3. For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be the value indicated. - The indicated values concern the d.c. levels; during the erasing, preparing and transfering operation these electrodes are pulsed. - 5. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value. - A graticule, consisting of concentric rectangles of 90 mm x 72 mm and 87,8 mm x 70,5 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles. - Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I_b = 10 μA (measured against x-plates). #### NOTES (continued) - 8. The writing speed is defined as the maximum speed at which a written trace is just visible starting from a background which is just black. The indicated value is guaranteed for the central 80% of the minimum screen area, except the outmost 3 mm of the screen. However, in any corner not more than 4 square divisions fall outside the guaranteed area. The writing speed can be increased, if some background is tolerated. Within the same area, a trace, written with the indicated value of max. write, remains just visible within the indicated storage time of max. write. - The writing speed in max. write, with background, is defined as the maximum speed at which the written trace remains just visible within the indicated storage time. - 9. The storage time in just black mode is defined as the time required for the brightness of the unwritten background to rise from zero brightness (viewing beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased. The storage time in max. write and fast is related to the writing speed. ## LIMITING VALUES (absolute maximum rating system) Writing section (Voltages with respect to writing gun cathode k, unless otherwise stated) | Final accelerator voltage | V _{g13(I)} | max.
min. | 10500
8500 | | |---|--|--------------|----------------|--------| | Geometry control voltage (with respect to g ₂) | V _{g8} | max.
min. | 500
500 | | | Scan magnifier electrode voltage (with respect to g ₂) | V _{g7} | max.
min. | 550
-700 | | | Horizontal alignment electrode voltage (with respect to 92) | V_{g6} | max.
min. | 500
-500 | | | Vertical focusing electrode voltage (with respect to g ₂) | V_{g5} | max.
min. | −750
−1200 | | | Correction electrode voltage (with respect to g ₂) | V _g 4 | max.
min. | 500
0 | V
V | | Horizontal focusing electrode voltage (with respect to g ₂) | V _g 3 | max.
min. | -1200
-1800 | | | First accelerator voltage | V_{g2} | max.
min. | 3500
2500 | | | Control grid voltage
positive
negative | ∨ _{g1}
−∨ _{g1} | max.
max. | 0
200 | V
V | | Cathode to heater voltage positive negative | V _{kf}
-V _{kf} | max.
max. | 125
125 | - | | Voltage between correction electrode and any deflection plate | V _{g4/x}
V _{g4/y} | max.
max. | 500
500 | - | | Grid drive, averaged over 1 ms | v _d | max. | 30 | ٧ | | Viewing section (voltages with respect to viewing gun cath | node FGK) | | | | | Screen voltage | V _{g13(I)} | max.
min. | 7500
5500 | | | Backing electrode voltage (d.c.) front mesh | V _{g12} | max.
min. | 600
50 | V | | fast mesh | V_{g11} | max.
min. | 200
50 | | | Collector mesh voltage (d.c./a.c.) | V_{g10} | max.
min. | 200
100 | | | Collimator voltages (d.c./a.c.) | V _{g9-1;} 9-2; 9-3 | max.
min. | 150
0 | V
V | | First accelerator voltage | V _{FGA} | max.
min. | 100
C | V
V | | Cathode to heater voltage | V _k 'FGf, V _k "FGf
–V _k 'FGf, –V _k "FGf | max.
max. | 125
125 | - | #### **OPERATING NOTES** #### Scan magnifier A scan magnification $M_{SC} \approx 1.8$ is the best compromise between line width and sensitivity. This is obtained with $V_{g7} = -600$ V and $V_{g4} = 200$ V. Performance is tested and specified under this condition and no adjustment will be necessary for individual tubes. Focusing is separate for horizontal and vertical directions with V_{g3} and V_{g5} respectively. Both focus settings may depend on beam current with different steepness. Although both electrodes are positive with respect to cathode, reverse current may result from secondary electrons leaving grid 3 (max. 5 μ A) and grid 5 (max. 50 μ A). Normal current direction from beam interception is to be expected on the horizontal correction electrode g_6 (up to $500 \mu A$) and, as usual, on g_2 and deflection plates. #### Modes of operations #### Non-store mode For non-store operation the front mesh V_{q12} is set to -50~V with respect to FGK. The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged. #### Variable persistence mode The fast mesh is switched off for this operation and used as collector by setting $V_{a11} = 140 \text{ V}$. #### a. Static erasure If no dynamic erasing pulses are applied the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, V_{g12} is increased to 500 V for 100 ms and than returned to its original potential for about 500 ms; after that, an erasing pulse of positive polarity (max. 20 V) and a duration of 600 ms should be applied. While the erasing pulse amplitude is to be adjusted with zero d.c. level for "just black", the background illumination can be changed — even with a stored signal — by varying the d.c. level for optimum contrast or maximum writing speed. Background egality can be optimized by balancing the viewing gun cathodes by means of a potentiometer of 2,2 k Ω , proper collimator adjustment, and by increasing V_{FGA}. V_{g9-1} and V_{g9-3} in positive direction during erasure. Before first installation, depending on transport conditions, demagnetization of the tube face region may be necessary. ## b. Dynamic erasure Dynamic erasure can be achieved by applying extra erasing pulses of positive polarity to the backing electrode of the front mesh (g_{12}) . The amplitude of these extra pulses is equal to that of the original erasing pulse, the frequency is 120 Hz and the persistence of the display can be controlled by varying the duty factor. #### Fast-store mode For erasure in the fast mode the front mesh has to be erased first in the same way as in the variable persistence mode but separate adjustments should be foreseen. The fast mesh is to be prepared by reducing V_{g11} from 140 V to the stabilizing level (0 to max. 20 V) during the erasing pulse on the front mesh. After writing, at the end of the unblanking pulse, a transfer pulse (500 V, 100 ms) is to be applied on the front mesh. During the transfer pulse, V_{g11} is further reduced about 1 V for enhanced transmission during transfer. This reduction has to be carefully adjusted for optimum contrast and writing speed. During the whole cycle, FGA, V_g9-1 and V_g9-3 may be increased for more viewing gun current. Details on the adjustment procedure and the voltage range to be provided for can be made available.