Page 1. (No. of pages: - 3)

VALVE ELECTRONIC CV340

ADMIRALTY SIGNAL & RADAR ESTABLISHMENT

(was CV151 Red)

Specification AD/CV340/Issue 2.	SECURITY	
Dated 10.4.50. To be read in conjunction with K1001	Spean.	<u>Valve</u>
ignoring clauses: - 5.2, 5.8.	Restricted	Unclassified

TYPE OF VALVE:- CATHODE:- ENVELOPE:- PROTOTYPE:-	Hot cathode, gas filled grid con- trolled triode. Directly heated. Glass. XCR3.			MARKING See K1001/4. Colour mark as in Fig.1.		
Vf Min. If	RATING (V) (mA)	1•4 65	Note	DIMENSIONS AND CONNECTIONS See Fig.1.		
Va Vg striking	(A)	135 -4.0 to -5.0	A B	BASE None Flexible Wires		

NOTES

- A. Applied through 0.1 megohm resistance.
- B. Applied through 5 megohm resistance.
- C. Tests (b), (c) and (d) have alternative tests marked (i) and (ii). Rither one may be used. In Test (i) pure D.C. must be used. There must be no A.C. ripple. In Test (ii) the A.C. voltage must be sinusoidal.

TESTS

All tests, except 'e' to take place not less than six weeks after manufacture.

	T	est Conditions		Limits		No.
	Vr (V)	The second control of	Test	Min.	Max.	Tested
a	1.4	V a = V g = 0	If (mA)	65		100%
Ъ	1.4	Test in circuit shewn in Fig. 2.	"Vg" for striking (i) (V DC) (ii) (V RMS)	-4.0 2.7	-5.0 3.5	100%
C	c Test 'b' repeated within 5 mins., change (*) in Vg for striking, from value in test 'b' observed.		Variation in "Vg" for striking (i) (V DC) (ii) (V RMS)	eni eni	0.2 0.14	100%
đ	Ch st va	N.B. t 'b' repeated. ange in Vg for riking, from lue in test 'b' served.	Change of "Vg" with Vf (i) (V DC) (ii) (V RMS)	94G	1.0 0.7	100%
	Va 0.1 on off suc app Vg str	re operated with = 135 V through Megohm Vf = 1.1V for 60 secs. and for 3 mins. ecessively. Valied throughout. set for non-riking. On/off ele repeated at est 1000 times.	Infe test	Valve must pass test; a, b, c, d above at end of life run.		

CV340/2/ii.

0000000000

240 V.

50 c/5.