Having received his degree in physical engineering from the Delft Technical University, Mr. Neete son wrote his thesis for a doctorate in technical sciences on the analysis of the bi-stable multivibrator op eration (1956).

He is at present actively engaged in research work in the Philips Central Applications Laboratories in Eindhoven (Holland) on the application of semiconductors. Previous work done by him included radio and television development the is the author of a book on tele vision receiver design, Flywhee Synchronization of Sawtooth Gen erators) and investigations into ultra-high frequency receivers.

His forthcoming book in the field of semiconductors (Junction transistors in Pulse Circuits), offers the reader a thorough insight in his experiences with this nearly ideal switch, which is now applied on a larger scale.

Second enlarged edition
This extended analysis of the tranThis extended analysis of the tran-
sient behaviour of the bistable multivibrator circuit evoked such
interest that within three years second edition was necessary. This edition has been enlarged by an extra chapter, which contains some actual bistable multivibrator cir cuits and binary or decimal coun ters composed thereof. This bistable multivibrator, al-
though conceived by Eccles and Jordan as early as 1919, has only started within the last ten years to play an important role in electronic pulse apparatus; in this field the counting machines occupy an important position.

In designing such a circuit, it is usual to consider only the stability of the static condition, when the circuit is at rest; this is easy in view
of the fact that one then only has to deal with d.c. valves. It is, however far more difficult to derive formulae for the phenomena occurring
when the multivibrator is switching when the multivibrator is switching the influence of tube-characteristics and circuit components.

ANALYSIS OF BISTABLE MULTVIBRATOR OPERATION

ELECTRONIC VALVES

ANALYSIS OF BISTABLE

 MULTIVIBRATOR OPERATIONCENTREX PUBLISHING COMPANY - EINDHOVEN

ANALYSIS OF BISTABLE

 MULTIVIBRATOR OPERATIONTHE ECCLES-JORDAN
FLIP -FLOP CIRCUIT

P. A. NEETESON

PUBLISHERS NOTE:
Part of this book was written as a thesis for a doctor's degree in applied physics at the Technical University, Delft

The book contains 100 pages and 40 Figures
U.D.C. 621. 374: 373. 444
(c) N.V. PHILIPS' GLOEILAMPENFABRIEKEN EINDHOVEN (HOLLAND) 1956

First edition 1956
Second enlarged edition 1960
Second impression 1961
The information given in this book does not imply freedom from patent rights

PREFACE TO THE FIRST EDITION

The bistable multivibrator, although conceived by Eccles and Jordan as early as 1919, has only started recently to piay an important role in electronic pulse apparatus; in this field, the electronic counters and computers occupy an important position.
Perhaps the initial lack of practical interest shown in this useful circuit, and the subsequent excessive attention which it evoked, account for the fact that no really thorough analysis of the circuit has until now been published.
In designing such a circuit, it is usual to consider only the stability of the static condition, when the circuit is at rest ; this is easy in view of the fact that one then only has to deal with d.c. conditions. It is, however, far more difficult to derive formulae for the phenomena occurring when the multivibrator is switching over, taking into account of course the influence of tube-characteristics and circuit components. In the present book a thorough analysis of the dynamic behaviour of the bistable multivibrator is given. This investigation was prompted by a practical problem and the results proved to be useful as a guide in the development of special tubes for this application and for other circuits in this sphere of pulse techniques. A general consideration of the vacuum tube as a switch was published in the book: Vacuum Valves in Pulse Technique.
This book may be appreciated by those who feel that in the long run it is not satisfactory to apply certain circuits on the basis of technical "feeling" or practical experience, but that a thorough insight into the nature of the phenomena are necessary to realize the full potentialities of these circuits. The author is greatly indebted to Prof. Ir. B. D. H. Tellegen who supervised the thesis on which this work is based and whose critical discussions have contributed much to the value of its contents. Thanks are also due to Mr. D. J. Mitchell, M. A. for reading the English text.

PREFACE TO THE SECOND EDITION

Taking into account that this book is based on a thesis for getting the doctor's degree in Electrical Science at the Technical University of Delft, it will be clear that no attempt for popularizing the treatment of the subject could be introduced. Therefore it is a pleasant surprise to the author that this extended analysis of the transient behaviour of the bistable multivibrator circuit evoked such interest that within a few years a second edition was necessary. It reinforces his idea that a thorough analysis of electronical circuits is necessary to help understand their operation and to stimulate the further development and design of similar or new circuits. This second edition has been enlarged by an extra chapter which contains some actual bistable multivibrator circuits and binary or decimal counters composed thereof. It is hoped that this makes the book useful to a still larger number of readers.

CONTENTS

Chapter 1. General introduction 1
Chapter 2. Survey of literature 7
Chapter 3. Introduction to the problem 11
Chapter 4. Opening or closing of switches in a network 14
Chapter 5. The static condition of the bistable multivibrator 18
Chapter 6. The dynamic condition 22
6.1. Introduction 22
6.2. First phase 22
6.3. Second phase 25
6.4. Third phase 27
Chapter 7. The complete trigger cycle 30
7.1. Discussion of the waveforms 30
Chapter 8. The trigger sensitivity 41
8.1. Influence of tube characteristics and capacitive anode load 44
Chapter 9. The triggering speed 49
Chapter 10. Design considerations 54
Chapter 11. Variations of the fundamental circuit and way of triggering 60
11.1. Automatic grid bias 60
11.2. Trigger pulses applied to one grid only 60
Chapter 12. Some actual bistable multivibrator circuits 62
12.1. Bistable multivibrator for maximum trigger pulse fre- quency of $200 \mathrm{kc} / \mathrm{s}$ 62
12.2. Bistable multivibrator for input pulse frequency up to $1 \mathrm{Mc} / \mathrm{s}$ 64
12.3. Bistable multivibrator for $7 \mathrm{Mc} / \mathrm{s}$ maximum input pulse frequency 67
12.4. Multivibrator with high DC stability and high speed 69
12.5. $18 \mathrm{Mc} / \mathrm{s}$ bistable multivibrator 71
Chapter 13. Conclusion 74
Appendix I. Calculation of the anode- and grid voltages in the first phase 77
Appendix II. Calculation of $V_{a I I}$ in the second phase 82
Appendix III. Calculation of $V_{g I}$ in the second phase 86
Appendix IV. Calculation of the transients at $A_{I I}, G_{I}$ and A_{I} in the third phase 88
Appendix V. Discussion of the method of calculating the influence of $C_{a g}$ on the trigger sensitivity 90
List of symbols 91

1. GENERAL INTRODUCTION

In modern pulse technique a certain electronic switching circuit, known as the bistable multivibrator or Eccles-Jordan fip-flop circuit, has found widespread application. The field of pulse technique covers a great variety of apparatus, which generate a certain pulse pattern, often called the "logic", or which are caused, by the input of a given pulse pattern, to perform a certain logical operation. With this kind of electronic apparatus may be classed electronic counting and computing devices, time-measuring apparatus, pulse-modulation systems, radar, television, telemetering and automatic-telephony circuits.
The basic circuit and operation principle of a bistable electronic trigger device was first indicated by Eccles and Jordan and described in the Radio Review of December 1919, pp. 143-146, under the title: "A Trigger Relay Utilising Three-Electrode Thermionic Vacuum Tubes".
It is worth while to cite the argumentation that led to their invention:
"In a well-known method of using a triode for the amplification of wireless signals an inductive coil is placed in the filament-to-anode circuit, and another coil magnetically coupled with this is introduced into the filament-to-grid circuit. This 'back-coupling', as it is sometimes conveniently called, if it is arranged in the right sense, greatly exalts the magnification produced by the tube in any alternating E.M.F. applied to the grid; for the induced E.M.F. passed back to the grid is in correct phase relation to add directly to the original alternating E.M.F. applied there. If, instead of using inductive retroaction of this kind, weattempt to use resistance backcoupling, then the retroactive E.M.F. applied to the grid is exactly opposite in phase to the original alternating E.M.F., and the amplifying action of the triode is reduced. Since, however, one triode can produce opposition in phase in the manner indicated, it is clear that two or any even number of similar triode-circuits arranged in cascade can produce agreement in phase. Hence we conclude that retroactive amplification can be obtained by effecting a back-coupling to the first grid from the second, fourth, and so on, anode circuit of a set of triodes arranged in an ohmically-coupled cascade. It is possible to take advantage of the fact above stated for obtaining various types of continuously-acting relay, but the purpose of the present communication is to describe what may be called a one-stroke relay which, when operated by a small triggering electrical impulse, undergoes great changes in regard to its electrical equilibrium, and then remains in the new condition until re-set".
The authors then describe two possible circuits, in which the principle
mentioned is incorporated. These circuits are represented in figs. 1-1 and $1-2$, where E_{1} and E_{2} represent anode-voltage batteries, e_{1} and e_{2} gridvoltage batteries, no polarity being indicated in the latter. An external voltage pulse V_{i} is applied to

Fig. 1-1 the transformer T. No tube types are given. In the initial condition the hatched triode draws a large current, the other one a very small current. A positive voltage pulse on the grid of the lefthand triode starts a chain of events in the circuit which results finally in the lefthand tube drawing a large, and the right-hand tube a small current. This change is indicated by an "ammeter or a moving tongue relay", I in figs. $1-1$ and $1-2$.
Further, it is mentioned that "in order to restore the initial conditions it is easy to interrupt for an instant the linkage between the tubes, or to stop the operation of one or both of the tubes, as, for instance, by dimming its filament".
The change in current through the ammeter is from $0-2.5$ micro-amperes, using the following values in the circuit of fig. 1-1:
$E_{1}=78 \mathrm{~V}, \quad E_{2}=74 \mathrm{~V}$, $r_{1}=22000$ ohms, $\gamma_{2}=12000$ ohms, $e_{1}=31 \mathrm{~V}, e_{2}=17.5 \mathrm{~V}$.

The sensitivity using a given telephonic transformer, with a telephone connected to the primary, is such that "the

Fig. 1-2 relay is operated with certainty by snapping the thumb and the finger at a distance of five feet from the telephone".
The sensitivity of the circuit of fig. 1-2 could be made even greater when using the following values:

$$
E=80 \mathrm{~V}, r_{1}=r_{2}=100000 \mathrm{ohms}, e_{1}=e_{2}=40 \mathrm{~V}
$$

No grid leak values are given.
It is clear that the main purpose of these circuits must have been to realize a very sensitive trigger relay and that the speed of operation, more precisely the repetition frequency of the trigger action, cannot have been high if the relay circuit was brought back to its initial condition by "interrupting the linkage between the tubes or dimming their filaments". It must be admitted that the authors explicitly mention the circuits as examples of a "one-stroke relay". Now, it is the possibility of successive trigger action that renders the Eccles-Jordan circuit specially suited for application in modern high-speed electronic switching devices.
In the same way as a positive voltage pulse, applied to the grid of the non-conducting tube, switches the trigger circuit into its reverse state, a subsequent negative pulse at the same grid will return it to its initial state. Or, alternatively, a second positive pulse at the grid of the other tube will again restore the initial condition. The accompanying voltage changes at the anodes of the tubes can be used advantageously for opening or closing electronic gate-circuits. This mode of operation, characterized by the application of trigger pulses to only one grid at a time, has found wide use in a variety of pulse "logic" apparatus. A second possible way of trigger operation, however, has also found important application. In this case, pulses of the same polarity are applied to both grids simultaneously. If these trigger pulses are negative, the conducting tube will always be cut off, the other tube will become conducting. At the application of every pulse the circuit will reverse its state. After two pulses the initial condition will be restored, in other words the flip-flop changes its state with a frequency that is the half frequency of the applied trigger pulses and the circuit acts as a frequency divider. Using the anode-voltage changes of one of the tubes as trigger pulses for a next flip-flop circuit results again in a frequency reduction by a factor two. Thus, the frequency of the voltage changes in the second trigger circuit is one quarter of the frequency of the input trigger pulses. This frequency division in a binary scale is one of the basic elements that has enabled the development of modern electronic computers and counting apparatus. Counting speeds up to a pulse repetition frequency of $20 \mathrm{Mc} / \mathrm{s}$ have been obtained in four cascaded flip-flop circuits with modern double-triode tubes, especially developed for computing and counting purposes. By application of suitable feedback in a four-cascade arrangement, the division by 16 may be reduced to a division by 10 . This is commonly accomplished by applying the output pulses of one or
more stages of the cascade of four bistable multivibrators to the grids of one or more other stages in such a way that in total six of the sixteen possible positions of the counter array are skipped ${ }^{1}$). The same may be accomplished by the application of a gate circuit ${ }^{2}$). Another possibility of arranging a decimal counter with the aid of bistable multivibrators is to combine a ring-counter of five multivibrators with a single multivibrator in cascade. In this way a division by five and a division by two result in a decimal system ${ }^{3}$) (bi-quinary system).
These methods offer the possibility of making decimal system counters and computers. Trigger pulses ("clock-pulses") having repetition frequencies up to a few megacycles per second are used in electronic computers. The fundamental trigger circuit most generally used nowadays is represented in fig. 1-3. With a proper choice of the supply voltages $+V^{\prime}$ and $-V^{\prime \prime}$ and of the resistance values, it is possible to attain such gridvoltage values that one of the tubes

Fig. 1-3 is cut off and the other conducting. Recent publications, showing the increasing interest in this trigger circuit, amply deal with this static condition and its stability. Analysis of the transient state or dynamic condition during switching of the circuit from one static condition into the other is much more complicated; nevertheless, it becomes more and more important, especially as the need to increase the repetition frequency of the trigger pulses becomes evident. Moreover, it is important to know something about the trigger sensitivity, by which is meant the minimum trigger-pulse amplitude that is necessary to obtain complete switching from one stable state into
${ }^{1}$) J. T. Potter, "A Four-Tube Counter Stage", Electronics 17, June 1944, p. 110.
J. E. Grosdorf, "Electronic Counters", R.C.A. Review, Sept. 1946, p. 438.
R. J. Blume, "Predetermined Counter", Electronics 21, Feb. 1948, p. 88.
G. J. Fergusson, G. H. Fraser, "The Design of Four-Tube Decade-Scalers", Review of Scientific Instruments 22, Dec. 1951, p. 937.
R. B. Mobsby, "A Decade Frequency Divider", Electronic Engineering 27, July 1955, p. 295.
${ }^{2}$) E. L. Kemp, "Gated Decade Counter requires no feedback", Electronics 26, Feb. 1953, p. 145.
${ }^{3}$) R. Weissmann, "Stable Ten-Light Decade Scaler", Electronics 22, May 1949, p. 84.
the other. Using, with a certain safety margin, the smallest possible trigger pulse amplitude may result in less exacting demands on the pulse-generating device. Knowledge of the mechanism of the dynamic operation of the trigger circuit offers the possibility to investigate the influence of tube characteristics on the switching speed and trigger sensitivity. In general, high repetition frequencies will be advantageous for several reasons: in counting apparatus the resolution time will be small and consequently the efficiency of counting random pulses will be high; in electronic computers very complicated computing operations can be executed in a short time. Time measurements can be done more accurately the higher the clock pulse repetition frequency, as the accuracy depends chiefly on the counting or just missing of one pulse at the close of a time measurement operation.
Different names are used to designate the special circuit under consideration. We propose to adhere to the name bistable multivibrator, as it indicates the relation with two other circuits, viz. the monostable and the astable multivibrator. The latter is also called a free-running multivibrator, and is the only one that really is a "vibrator" or oscillator, as it spontaneously generates relaxation signals. It was first described by Abraham and Bloch (Comptes Rendus, Vol. 168, p. 1105, June 1919). The essential feature of the circuit is a strong capacitive feedback from the anode of the second tube of a two-tube amplifier to the grid of the first tube.
If the feedback capacitor is shunted by a suitable resistor, the astable multivibrator is changed into a monostable multivibrator, having one stable position from which it can temporarily be brought into another position by means of a trigger pulse. However, it will always return to its stable position within a time dependent on its inherent time constants. If, moreover, the coupling capacitor between the anode of the first tube and the grid of the second tube is also shunted by a resistor of suitable value, and suitable grid bias voltages are applied, the monostable multivibrator is converted into a bistable multivibrator.
It will be clear that the main factors limiting the switching speed are to be found in the inherent time constants of the circuit, which are determined by coupling capacitances, tube capacitances, wiring and other stray capacitances and resistive components. As there is a practical limit to reducing the capacitances, the decrease in time constants will mainly have to be achieved by diminishing the resistances of the circuit. This implies an increase in power to be supplied by the D.C. voltage sources. The voltage drop across a small anode resistance, when a tube is switched
from cut-off to full conduction or vice versa, may become too small to be of any use for further application in a logic system. This could, of course, be prevented by using more powerful tubes that could supply high anode currents, but the expense and the inevitably higher inter-electrode capacitances of these tubes limit their application.
Apart from the above-mentioned limits to the switching speed, which originate from considerations of economy or construction, there is in some applications no sense in further efforts to increase the speed. If in a radiation counter, a resolution time is attained that gives an efficiency of counting random pulses of, say, 99%, then in most practical cases it will not be worth the trouble to increase the counting speed to 99.9% efficiency. In high-frequency measuring apparatus it may be more economical to bring down the frequency by superheterodyne methods - until it falls within the measuring range of the counter - than to try to extend the maximum frequency range that can be measured directly by the counter. It will also be clear that there is no use in increasing the speed of an electronic computing device if these computations take only a fraction of the time required for programming.
A high trigger sensitivity (small trigger voltage) will often be desirable, but a limit will be imposed by stability demands and possible influence of interfering signals.
Before proceeding to an exhaustive analysis of the operation of the bistable multivibrator, a survey will be given of the efforts made by others in this field so far as they have been published in recent literature.
Though most publications, as already mentioned, deal with the static condition, a few attempts have been made to get an insight into the dynamic operation of the bistable multivibrator.

2. SURVEY OF LITERATURE

A summary of the contents of articles dealing with the analysis of the bistable multivibrator is presented in chronological order.

B. E. Phelps: "Dual-Triode Trigger Circuits",
Electronics, July 1945, p. 110

In this paper an approximate explanation is given of the important and necessary function of the coupling capacitors between the anodes and grids of the tubes.
If these capacitors were not present, the grid voltages of both tubes, immediately the trigger pulse had cut off the conducting tube, would tend to the same final value, determined by the static condition of the circuit with both tubes cut off. Since the time constants in the two grid circuits are the same for a symmetrical multivibrator and the change in grid voltage of the originally non-conducting tube starts at a lower value than that of the other tube, the latter tube reaches its cut-off point sooner than the former and no triggering will occur. If, however, coupling capacitors are present between anode and grid of different tubes and the time constants of these coupling networks are much larger than those of the grid circuits, then it can be assumed that the voltages across the coupling capacitors are practically constant during the setting of the grid voltages to their final states (assuming both tubes to be kept non-conducting in some way). The voltage across the capacitor coupling the anode of the originally non-conducting tube to the grid of the other tube is much greater than the voltage across the other coupling capacitor. This causes the grid voltage of the originally non-conducting tube to tend to a much higher final value than that of the other tube and consequently it is able to reach its cut-off point sooner than the other grid voltage.
Moreover, the advantage of triggering with negative pulses at the anodes or grids as compared with positive pulses is pointed out. Positive trigger pulses at the grid of the tube which is cut off must make this tube conducting, but they are counteracted by negative pulses appearing at the anode of the conducting tube. This phenomenon is dealt with in section 7.1 of this book and illustrated by a practical case.

No explicit mathematical formulae for voltage changes at the anodes and grids are derived.
W. L. Buys: "Analysis of Scale Units",
Nucleonics, Vol. 3, November 1948, p. 49

Besides the static condition, the dynamic condition is discussed. The switching is assumed to be instantaneous, by way of sudden suppression and commencement of the anode current in the tubes. The sudden cessation of grid current flow in one tube is not taken into account in the calculation of the transient response of the circuit. In considering the positive-going grid voltage of the non-conducting tube, on the other hand, the influence of grid current is taken into account by assuming an internal grid resistance to be present between grid and cathode, as soon as the grid voltage reaches a value at which grid current starts to flow. This is assumed to coincide with the start of anode current flow, so no subdivision in three phases is made (see chapter 6 of this book). Only symmetrical circuits are considered.

M. Rubinoff: "Notes on the Design of Eccles-Jordan Flip-Flops", Communication and Electronics, Nr. 1, July 1952, p. 215

This paper is mainly devoted to stability considerations in the static condition; in particular the influence of tolerances in circuit components, tube characteristics and supply voltages is considered. A minor part of the paper is concerned with the dynamic condition of the circuit. The way of triggering is supposed to be such that the conducting tube is instantaneously cut off, giving rise to a sudden current step in the anode circuit. No grid current is taken into account. Only the grid-voltage change of the originally non-conducting tube is derived.

R. F. Johnston and A. G. Ratz: "A Graphical Method for Flip-Flop Design'"

Communication and Electronics, Nr. 5, March 1953, p. 52
This paper only considers the stability in the static condition, more particularly the influence of tolerances in components, tube characteristics and supply voltages. Nothing is said about the dynamic condition.

R. Pressmann: "How to design Bistable Multivibrators" Electronics, Vol. 26, April 1953, p. 164

Treats mainly D.C. stability, viz. the influence of component, supply -voltage and tube tolerances. The influence of the coupling capacitor on switching is considered in general.
D. K. Ritchie: "The Optimum D.C. Design of Flip-Flops"

Proc. I.R.E., Vol. 41, November 1953, p. 1614
Only D.C. design considerations are given, taking into account tolerances of components, supply voltages and tube characteristics. No treatment of the dynamic condition.

R. Piloty: "Die Dimensionierung der Eccles-Jordan-Schaltung" Archiv der Elektrischen Übertragung, Bd. 7, November 1953, p. 537

This is the most extensive analysis of the dynamic behaviour we have been able to find in the literature. Still, there are some assumptions that limit the general scope of this analysis. They are the following. Only symmetrical circuits are considered. The triggering is assumed to be initiated by a negative voltage step function at the grid of the conducting tube. This grid is assumed to be at zero potential with respect to the cathode in the static condition, no grid current being present. There is thus no automatic grid-current biasing, which implies that the voltage divider between the positive and negative HT supply sources has to contain such resistance values as to deliver exactly this zero potential at the grid mentioned. This is one of the most critical situations with respect to the sensitivity of the circuit to tolerances in components, tube characteristics and voltage supplies. In practice this kind of operation will generally be avoided. In this way, omitting grid current and neglecting finite rise time of the trigger pulse front, the only transient to be considered is the response of the circuit to the sudden ceasing of the anode-current flow in the conducting tube, when suddenly cut off. The influence of the commencement of anodecurrent flow in the initially non-conducting tube is not considered.
S. Higashi, I. Higashino, S. Kaneko and T. Oshio: "Flip-Flop Circuits",

> Part I. Analysis.
> Journal of the Institute of Polytechnics, Osaka City University, Vol. 4, series B, 1953, p. 7 Part II. Methods of Design. Id. Vol. 5, series B, 1954, p. 37

The larger part of these articles is devoted to the monostable and the astable multivibrator.
The analysis of the bistable multivibrator is based on the assumption of a linear anode current/grid voltage characteristic of the tubes and a
graphical representation of the dependence of the grid voltages on one another, giving an insight into the possible stable and unstable conditions of the circuit. The differences between the grid voltages and the anode voltages of the conducting and the non-conducting tube are defined and illustrated graphically. In the same way the upper and lower limits of the trigger-pulse amplitude are determined. The influence of the coupling capacitances is not included.
W. Renwick and M. Phister: "A Design Method for Direct-Coupled Flip-Flops"

Electronic Engineering, Vol. 27, June 1955, p. 246
If, as limits of the grid voltages in the static condition, we take the values zero and cut-off voltage, it is possible to derive nominal values for the resistances of the circuit for which those limits will never be exceeded; for this we assume certain tolerances in resistances, voltage supplies and valve characteristics, and given nominal values of the supply voltages. Furthermore, on the assumption that the coupling network timeconstant $R C$ is equal to the grid-circuit time-constant $R_{r} C_{i}$ (see fig 6-1), an expression can be derived for the time-constant of the most important transient, which occurs during switching as Rubinoff showed (loc. cit.). By combining this expression with those derived for the resistances, it is possible to find a minimum value of this time-constant when varying the supply-voltages. No explicit analysis of the transients in general is given.
In conclusion, it can be stated that only a few accounts of the triggering mechanism of the bistable multivibrator have been published, and these have been based on rough approximations. In the following chapters it will be pointed out how it is possible to analyse the complete trigger cycle with fairly close approximation to practice, making use of two fundamental tools, viz. the operational calculus and a few theorems about sudden closing or opening of switches in networks.

3. INTRODUCTION TO THE PROBLEM

Before proceeding to a detailed analysis of the bistable multivibrator circuit it is necessary to define the starting conditions, the assumptions and the limitations which form the basis on which the analysis rests. The circuit to be analyzed will be that represented in fig. 1-3. The triggering is assumed to be performed by applying a negative-going voltage change via coupling capacitors C_{c} to both grids at the same time (see also fig. 3-1).

Fig. 3-1
The internal resistances of the trigger voltage supply as well as of the DC-supplies V^{\prime} and $V^{\prime \prime}$ are assumed to be negligibly small. Inter-electrode and stray capacitances are taken into consideration as far as concerns parallel capacitances between the anodes and cathodes C_{a} and between the grids and cathodes C_{g} of the tubes. The influence of the anode-to-grid capacitance of each tube is difficult to determine exactly and will only be calculated approximatively. When an asymmetrical circuit is considered, the asymmetry will only consist of a

Fig. 3-2 different capacitive loading of the anodes, which is often met in practice, as the voltage changes in one of the anode circuits are generally used to operate further circuitry of which the multivibrator forms a part.
The form of the trigger voltage V_{i} is represented in fig. 3-2. For $t \leq 0, V_{i}=0$. For $0 \leq t \leq t_{o}, V_{i}=-\alpha t$, where α is a positive constant. For $t \geq t_{o}, V_{i}$ is supposed to be constant, at
a value $V_{i}=-V_{o}$. Thus the rise time is t_{o} and the slope of the trigger voltage

$$
\begin{equation*}
\alpha=\frac{V_{o}}{t_{o}} . \tag{3-1}
\end{equation*}
$$

In practice the trigger voltage will, after a certain time, fall back to zero. If the rear flank of this pulse-shaped trigger voltage is linear as well, the pulse will be trapezium shaped, which is a good approximation to many pulse forms in practice. The negative going front flank causes the multivibrator to trigger, which phenomenon will be analysed, whereas the posi-tive-going rear flank has only a minor effect, mostly not able to disturb the triggering as will be pointed out later. This effect can also be calculated but this will not be done here.
At the instant $t=0$, when the trigger pulse starts, the circuit is assumed to be quiescent, all preceding transients having died out. In other words, for times $t<0$ the multivibrator is in a state that we referred to before as the static condition. At the instant $t=0$ a chain of transients starts and for $t>0$ the multivibrator is in a state which will be called the dynamic condition. This condition is to be regarded as consisting of three phases. The first phase starts at the instant $t=0$ when the trigger signal is applied, the amplitude and slope of which are supposed to be so high that within a time small with respect to the time t_{o} the conducting tube is cut off and the other tube is not yet conducting, which will generally be the case in practice. Both tubes are non-conducting and the circuit may thus be considered as a passive network during the first phase, which ends as soon as one of the tubes starts conducting again. For the multivibrator to operate in the desired way the originally non-conducting tube must reach its cut-off point first. The instant this occurs will be denoted $t=t_{I I}$. Care must be taken that the resistance values of the voltage divider R_{a}, R, R_{g} are such that the final value to which the grid-to-cathode voltage of the tubes tends will be above the cut-off value.
At the instant $t=t_{I I}$ the second phase of the dynamic condition starts, during which one of the tubes is drawing more and more anode current, its anode voltage consequently decreasing and, because of the coupling network R and C in parallel (see fig. 3-1), keeping the grid voltage of the other tube below the cut-off value. Should the final value of the grid voltage of the conducting tube, determined by the choice of the values of R_{a}, R and R_{g}, be below the voltage at which grid current starts to flow, then no other transients would occur and there would be no third phase of the dynamic condition, assuming as well that the final value of the grid
voltage of the other tube is below the cut-off point. However, the first mentioned condition is seldom chosen in practice as in that case the stabilizing influence of grid current is absent and tolerances in circuit components and supply voltages greatly influence the operation point of the conducting tube. This will be explained later, when dealing with the static condition.
Supposing that the final value of the grid voltage of the conducting tube is above the value at which grid current starts to flow, then at the instant the grid voltage reaches this special value new transients appear because of the commencement of grid current. At this instant $t=t_{s}$ the third phase of the dynamic condition starts and lasts until all transients have died out.
Recapitulating, tube I of fig. $3-1$ is assumed to be conducting at $t<0$ and drawing grid current; it is then supposed that both the anode current and the grid current fall to zero in such a short time that it may be regarded as instantaneous. Both tubes are then non-conducting and the voltage changes at the anodes and the grids of the tubes can be calculated as the response of the as yet passive network to the trigger voltage, and to the suddenly disappearing anode and grid currents of tube I. The first phase ends at the instant $t=t_{I I}$ when tube II becomes conductive. Then the response of the network to the increasing anode current of tube II must be calculated and superimposed on the transients resulting from the first phase. The second phase ends and the third commences at the instant $t=t_{s}$ when grid current starts to flow in tube II. This causes new transients to be superimposed on those resulting from preceding phases. Before proceeding to the calculation of all the transients mentioned, it will be necessary to consider more closely the effect of the sudden opening or closing of switches in a network, as the transition of a tube from the conducting to the non-conducting state or vice versa can be reduced to an analogy with such switching phenomena.

4. OPENING OR CLOSING OF SWITCHES IN A NETWORK

In fig. 4-1 the block N represents a linear, passive network, which may contain one or more voltage or current sources. Because of these sources a voltage $V(t)$ is present between points A and B. The effect of closing the switch at the instant $t=o$ can be derived in

Fig. 4-1 the following way. $V(t)$ is the voltage between points A and B if the switch remains open. If $V_{1}(t)$ represents the voltage between A and B when the switch is closed at the instant $t=0$, then $V_{1}(t)=V(t)$ for $t<0$ and $V_{1}(t)=0$ for $t>0$. This can be written $V_{1}(t)=\{1-U(t)\} V(t)$, where $U(t)$ represents a unit step function. The application of a voltage source $V_{1}(t)$ thus has the same effect as the closing of the switch. This voltage source can be considered as the sum of two voltage sources $V(t)$ and $V_{c}(t)$, where $V_{c}(t)=-V(t) U(t)$. The currents and voltages in the network, therefore, are determined by the voltage or current sources contained in N , the voltage source $V(t)$ and the voltage source $V_{c}(t)$. The effect of the sources in N together with $V(t)$ is the same as that of the N-sources alone if the switch remains open. If this has been calculated, the effect of closing the switch can be found by calculating the effect of the voltage source $V_{c}(t)=-V(t) U(t)$ and superimposing it on the results calculated before. If, on the other hand, the switch is originally not open but closed,

Fig. 4-2 and it is opened at the instant $t=0$, the foregoing considerations remain valid, if the output voltage between points A and B is replaced by the output current flowing through the switch and in general voltages are replaced by currents, open-circuit by short-circuit, etc. This will be analysed with the aid of fig. 4-2.
If the switch is not opened at all, a current $I(t)$ is supposed to flow at the output of the network N because of the voltage or current sources contained in N. In the case of opening the switch at the instant $t=0$, the current flowing through it will be called $I_{1}(t)$ and can be represented by $I_{1}(t)=\{1-U(t)\} I(t)$. Thus, the application of a current source $I_{1}(t)$ has the same effect as the opening of the switch. This current source can be considered as the sum of two current sources $I(t)$ and $I_{o}(t)$, where $I_{o}(t)=-I(t) U(t)$. The currents and voltages in the network are now determined by the voltage or current sources contained in N, the current
source $I(t)$ and the current source $I_{o}(t)$. The effect of the sources in N together with $I(t)$ is the same as that of the internal N-sources only, if the switch remains closed.
The effect of opening the switch at $t=o$ then can be calculated by superimposing on the former result the response of the network to the current source $I_{o}(t)=-I(t) U(t)$.
The foregoing procedure results in the replacement of switches by current or voltage sources containing discontinuities. Their effect on the network can be determined by application of the operational calculus. It can also be said that a variable network is transformed into a constant, linear network, containing discontinuous voltage or current sources. To a linear network the superposition theorem is applicable.
In the following analysis of the operation of the multivibrator, the first switching action, initiated by the trigger pulse, is assumed to be instantaneous for the sake of simplicity and this will mostly be a good approximation to practice, as care will be taken to make the slope of the trigger pulse as steep as possible. In that case the effect of suddenly cutting off the conducting tube can be taken into account by introducing between the anode and the cathode of this tube a current source of a strength $I_{o}(t)=-I_{a}(t) U(t)$, where $I_{a}(t)$ is the anode current flowing it no trigger pulse were applied. The response of the network to this current source must be superimposed on the undisturbed state of the multivibrator. If the tube is drawing grid current $I_{g}(t)$, a current source $-I_{g}(t) U(t)$ between the grid and the cathode must be applied as well.
At the end of the first phase the originally non-conducting tube starts conducting, because its grid-to-cathode voltage rises above the cut-off point. This tube now acts as a switch that is being closed. The time it takes the grid voltage to rise from the cut-off value to a value near zero is determined by the inherent time constants of the circuit and will usually not be negligibly small compared with the complete trigger cycle. Therefore, it will be necessary to consider in more detail the switching of a tube from cut-off to full conduction in a finite

Fig. 4-3 time. To this purpose the anode-current against anode-voltage characteristics of a triode will be approximated by straight lines as represented
in fig. 4-3. The reciprocal slope of these lines is a measure for the internal resistance r_{a} of the tube ($\left.r_{a}=\cot \alpha\right)$. The amplification factor μ is equal to the horizontal distance between the lines. The transconductance is given by the vertical distance between the lines. An arbitrary operating point P of the tube is defined by the anode voltage V_{a} and the grid voltage V_{g} in such a way that

$$
I_{a}=\left(V_{a}-V_{a_{1}}\right) \tan \alpha \quad \text { or } \quad I_{a}=\frac{V_{a}-V_{a_{1}}}{r_{a}}
$$

Where, $V_{a_{1}}=-\mu V_{g}$, thus

$$
\begin{equation*}
I_{a}=\frac{V_{a}+\mu V_{g}}{r_{a}} \tag{4-1}
\end{equation*}
$$

Generally, the anode of a tube is fed from a voltage source $V(t)$ via an impedance Z_{a} (see fig. 4-4). $V(t)$

Fig. 4-4
From equations (4-1) and (4-2) it
follows that:

$$
\begin{equation*}
V_{a}(t)=\frac{r_{a}}{r_{a}+Z_{a}} V(t)-\frac{Z_{a}}{r_{a}+Z_{a}} \mu V_{g}(t) \tag{4-3}
\end{equation*}
$$

This expression is valid only as long as $V_{a}(t)+\mu V_{g}(t) \geq 0$, as eq. (4-1) shows that $I_{a}=o$ for $V_{a}(t)+\mu V_{g}(t)=o$ or

$$
\begin{equation*}
V_{g}(t)=-\frac{V_{a}(t)}{\mu} \tag{4-4}
\end{equation*}
$$

This value of V_{g} is the cut-off grid voltage corresponding to the particular value of the anode voltage.
If $V_{g}(t)<-\frac{V_{a}(t)}{\mu}$ the tube draws no anode current.
It will be assumed now that at times $t<t_{a}$ the tube is cut off, or in formula $V_{g}(t)<-\frac{V(t)}{\mu}$. At the instant $t=t_{a}$, the grid voltage reaches the cut-off value, in other words eq. (4-4) is valid

$$
\begin{equation*}
V_{g}\left(t_{a}\right)=-\frac{V\left(t_{a}\right)}{\mu} \tag{4-5}
\end{equation*}
$$

If the time functions $V_{g}(t)$ and $V(t)$ are known, the value of t_{a} can be calculated from condition (4-5).
The effect of the tube becoming conductive at the instant $t=t_{a}$ can be interpreted with the aid of fig. 4-5.
If the voltage source $V_{\mathbf{1}}(t)$ is given the following value: $V_{1}(t)=V(t)$ $\left\{V(t)+\mu V_{g}(t)\right\} U\left(t-t_{a}\right)$, then for $t<t_{a}, V_{a}(t)=V(t)$ the tube is non-conducting, and for $t \geq t_{a}$

$$
V_{a}(t)=\frac{r_{a}}{r_{a}+Z_{a}} V(t)+\frac{Z_{a}}{r_{a}+Z_{a}} V_{1}(t)=\frac{r_{a}}{r_{a}+Z_{a}} V(t)-\frac{Z_{a}}{r_{a}+Z_{a}} \mu V_{g}(t)
$$

which corresponds to equation (4-3).
The expression for $V_{a}(t)$, valid in the non-conducting condition for $t<t_{a}$ as well as in the conducting condition for $t \geq t_{a}$ is the following:

$$
\begin{equation*}
V_{a}(t)=V(t)-\frac{Z_{a}}{r_{a}+Z_{a}}\left[V(t)+\mu V_{g}(t)\right] U\left(t-t_{a}\right) \tag{4-6}
\end{equation*}
$$

In most bistable multivibrator circuits the grid voltage of the tube will rise beyond the point where grid current starts to flow. It will be assumed that this point is reached at a value zero of the grid voltage and that the internal grid resistance is so small that the grid and cathode can be considered to become short-circuited as soon as $V_{g}=o$. At the instant $t=t_{s}$, when V_{g} becomes zero, the second phase of the dynamic condition ends and the third commences. On the voltages and currents caused by transients during the

Fig. 4-5 preceding phases must be superimposed the response of the network to the sudden short-circuiting of the grid and cathode of the conducting tube. This response can be calculated by assuming a voltage source $V_{c}(t)$ to be present between grid and cathode, where $V_{c}(t)=-V_{g}(t) U\left(t-t_{s}\right)$.
After the preliminary observations made in this chapter about switching in networks, it is possible to deal with a systematical analysis of the operation of the multivibrator. First the static condition will be examined, which in the time scale used above exists during the time $t \leq 0$. Any possible transients of preceding trigger cycles are supposed to have completely faded out. This static condition is the initial state, to which the transients have to be added when the dynamic condition starts at the instant $t=0$, with the application of the trigger pulse.

5. THE STATIC CONDITION OF THE BISTABLE MULTIVIBRATOR

In the static condition only constant voltage sources are present in the circuit, hence all capacitances can be left out of consideration, and in this case the circuit of fig. 3-1 can be simplified to that of fig. 5-1.

Fig. 5-1

In this figure all indices I refer to tube I and all indices $I I$ to tube II. A_{I} and $A_{I I}$ are the anodes of the tubes, G_{I} and $G_{I I}$ the grids, K is cathode. It is supposed that tube I is conducting and tube II is cut off. Thus, switches $S_{a I}$ and $S_{g I}$ are closed and $S_{a I I}$ and $S_{g I I}$ are open. The circuit can be separated into two independent parts, which are represented in figs $5-2$ and $5-3$. In fig. 5-3 the more general case of a finite internal grid resistance r_{g} is represented. In the circuit of fig. 5-2 an anode current $I_{a o}$ flows through tube I and if two other currents I_{1} and I_{2} are introduced, the following rela-

Fig. 5-2 tions exist:

$$
\begin{align*}
& I_{1}=I_{a o}+I_{2} \tag{5-1}\\
& V^{\prime}+V^{\prime \prime}=I_{1} R_{a}+I_{2}\left(R+R_{g}\right) \tag{5-2}
\end{align*}
$$

Fig. 5-3

Introducing $\varepsilon_{a}=\frac{R_{a}}{R_{g}+R+R_{a}}$
it follows from expressions (5-1) and (5-2) that

$$
\begin{equation*}
I_{2}=-\varepsilon_{a} I_{a o}+\frac{V^{\prime}+V^{\prime \prime}}{R_{g}+R+R_{a}} \tag{5-4}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}=\left(1-\varepsilon_{a}\right) I_{a o}+\frac{V^{\prime}+V^{\prime \prime}}{R_{g}+R+R_{a}} \tag{5-5}
\end{equation*}
$$

From fig. 5-2 it can easily be seen that the voltage between $G_{I I}$ and cathode is

$$
V_{g I I o}=-V^{\prime \prime}+I_{2} R_{g}=-V^{\prime \prime}+\frac{R_{g}}{R_{g}+R+R_{a}}\left(V^{\prime}+V^{\prime \prime}\right)-R_{g} \varepsilon_{a} I_{a o}
$$

Introducing

$$
\begin{equation*}
\varepsilon_{g}=\frac{R_{g}}{R_{g}+R+R_{a}} \tag{5-6}
\end{equation*}
$$

it can be written

$$
\begin{gather*}
V_{g I I o}=\varepsilon_{g}\left(V^{\prime}-R_{a} I_{a o}\right)-\left(1-\varepsilon_{g}\right) V^{\prime \prime} \tag{5-7}\\
\varepsilon_{a} R_{g}=\varepsilon_{g} R_{a}
\end{gather*}
$$

since
This value of $V g_{I I o}$ has to be below the cut-off voltage, as tube II must be non-conducting.

The voltage between A_{I} and cathode is

$$
V_{a I o}=V^{\prime}-I_{1} R_{a}=V^{\prime}-\varepsilon_{a}\left(V^{\prime}+V^{\prime \prime}\right)-\left(1-\varepsilon_{a}\right) R_{a} I_{a o}
$$

or

$$
\begin{equation*}
V_{a I o}=\left(1-\varepsilon_{a}\right)\left(V^{\prime}-R_{a} I_{a o}\right)-\varepsilon_{a} V^{\prime \prime} \tag{5-8}
\end{equation*}
$$

Since $V_{a I_{o}}=r_{a} I_{a o}$ as well, a relation between $I_{a o}$ and r_{a} can be derived

$$
\begin{equation*}
I_{a o}=\frac{\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}} \tag{5-9}
\end{equation*}
$$

The internal anode resistance r_{a} can be evaluated from the tube characteristics (see fig. $4-3$, where $r_{a}=\cot \alpha$).
From fig. 5-3 it can be seen that

$$
\begin{gather*}
I_{3}+I_{g o}=I_{4} \tag{5-10}\\
V^{\prime}+V^{\prime \prime}=I_{3} R_{g}+I_{4}\left(R_{a}+R\right) \tag{5-11}
\end{gather*}
$$

From (5-10) and (5-11) it follows that

$$
I_{3}=\frac{V^{\prime}+V^{\prime \prime}}{R_{g}+R+\overline{R_{a}}}-\left(1-\varepsilon_{g}\right) I_{g o} ; I_{4}=\frac{V^{\prime}+V^{\prime \prime}}{R_{g}+R+R_{a}}+\varepsilon_{g} I_{g o}
$$

Thus

$$
\begin{equation*}
V_{g I o}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right)\left(V^{\prime \prime}+R_{g} I_{g o}\right) \tag{5-12}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{a I I o}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a}\left(V^{\prime \prime}+R_{g} I_{g o}\right) \tag{5-13}
\end{equation*}
$$

The grid current $I_{g o}$ can be evaluated for the case that the internal grid resistance r_{g} is assumed to be zero. Then $V_{\text {gIo }}=o$ or

$$
\begin{equation*}
I_{g o}=\frac{\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}}{\left(1-\varepsilon_{g}\right) R_{g}} \tag{5-14}
\end{equation*}
$$

Introducing this value of $I_{g o}$ into eq $(5-13)$ gives

$$
\begin{equation*}
V_{a I I o}=\frac{R}{R+R_{a}} V^{\prime} \tag{5-15}
\end{equation*}
$$

This result could have been read directly from fig. $5-3$ for $r_{g}=0$, as it shows that in that case the voltage at $A_{I I}$ is determined by the voltage divider R, R_{a} across the supply source V^{\prime}. However, the expression (5-13) will be of advantage in later calculations, and has therefore been derived first.
It will now be pointed out why it is advantageous to operate the conducting tube in the grid-current region. If the internal grid resistance is not zero, but has a finite value, determined by a grid current/grid voltage characteristic as represented in fig. 5-4, then the grid voltage $V_{g I o}$ and the grid current $I_{g o}$ are defined on the one hand by this characteristic, on the other hand by the relation $(5-12)$. This relation is represented by the straight line 1_{2} in fig. $5-4$. The voltage $V_{o}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}$ and the reciprocal slope of 1_{2} is equal to $\left(1-\varepsilon_{g}\right) R_{g}$. The point of intersection of l_{2} and the characteristic determines $I_{g o}$ and $V_{g I o}\left(=V_{g 2}\right.$ in fig. 5-4). If

Fig. 5-4 it is assumed that the supply voltages V^{\prime} and $V^{\prime \prime}$ vary to such a value that $V_{0}=0$, then the line 1_{2} changes to l_{1} and the resulting gridvoltage change would be only from $V_{g 2}$ to $V_{g 1}$. If V_{o}, however, had been situated to the left of the grid-current cut-off point, then the grid voltage change would have been equal to the change of V_{o}. The steeper the characteristic rises, the more the grid voltage will be stabilized. In the ideal case that has been considered previously, the characteristic was assumed to coincide with the vertical axis.
The influence of tolerances in the resistances will also be minimized, though it is more difficult to calculate, as both V_{o} and the slope of l_{2} depend or the values of these resistances.

Changes in $V_{o I o}$ greatly influence the value of $I_{a o}$ and therefore at the same time the total voltage change at the anodes of the tubes when the multivibrator is triggered. This voltage change ΔV_{a} is given by the difference between $V_{a I I o}$ and $V_{a I o}$. From eqs (5-13) and (5-8) it follows

$$
\begin{equation*}
\Delta V_{a}=\left(1-\varepsilon_{a}\right) R_{a} I_{a o}-\varepsilon_{a} R_{g} I_{g o} \tag{5-16}
\end{equation*}
$$

It must be noted that the presence of grid current reduces the value of this voltage change, but $I_{g o}$ is mostly so small compared with $I_{a o}$ that the second term of the right-hand part of eq. (5-16) is only a small fraction of the other term. This disadvantage is more than counterbalanced by the advantage of the stabilizing effect of the grid current.
The anode and grid voltages of both tubes in the static condition have now been derived. They are the initial conditions for the transient phenomena which occur when a trigger pulse is applied to both grids. These transients must be superimposed on the static voltages and currents. There is no need to take into account the DC-supply voltages for calculating the transients, the influence of these voltages being included in the static conditions. The voltages V^{\prime} and $\mathrm{V}^{\prime \prime}$ are therefore omitted in the circuits which are used for determining the dynamic condition.

6. THE DYNAMIC CONDITION

6.1 Introduction

The dynamic condition starts at the instant $t=o$ when the input voltage V_{i} remains no longer zero but falls linearly with a slope α to a value $-V_{0}$ (see fig. 3-2), which is reached at the instant $t=t_{0}$. From this instant onwards V_{i} remains constant at the value $-V_{0}$.
For $0 \leq t \leq t_{o}$

$$
\begin{equation*}
V_{i}=-a t, \tag{6-1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{V_{o}}{t_{o}} \tag{6-2}
\end{equation*}
$$

The voltage source V_{i} in series with the coupling capacitors C_{c} will be replaced by a current source I_{i} in parallel with C_{c}, where

$$
\begin{equation*}
I_{i}=C_{c} \frac{d V_{i}}{d t} \tag{6-3}
\end{equation*}
$$

For

$$
\begin{equation*}
t \leq 0: I_{i}=0 \tag{6-4}
\end{equation*}
$$

For

$$
\begin{equation*}
0 \leqq t \leqq \mathrm{t}_{o}: I_{i}=-\alpha C_{c} \tag{6-5}
\end{equation*}
$$

For

$$
\begin{equation*}
t \geq t_{0}: I_{i}=o \tag{6-6}
\end{equation*}
$$

Thus, I_{i} is a rectangular, negative-going pulse with a duration of t_{o} and an amplitude αC_{c}, or the superposition of a negative-going current step $-\alpha C_{c}$ at the instant $t=0$, and a positive-going current step $+\alpha C_{c}$ at the instant $t=t_{0}$. This can be denoted by

$$
\begin{equation*}
I_{i}=-\alpha C_{c}\left\{U(t)-U\left(t-t_{0}\right)\right\} \tag{6-7}
\end{equation*}
$$

The coupling capacitance C_{c} in parallel with the capacitance C_{g} (see fig. $3-1$) gives a total grid-to-cathode capacitance

$$
\begin{equation*}
C_{i}=C_{c}+C_{g} \tag{6-8}
\end{equation*}
$$

As assumed previously the input voltage instantaneously cuts off tube I and therefore current sources $I_{a o}$ and $I_{g o}$ have to be introduced between the anode and cathode, and between the grid and cathode respectively of tube I.

6.2 First phase

The resulting circuits of the bistable multivibrator during the first phase of the dynamic condition can be represented by the diagram of fig. 6-1. By neglecting the influence of the anode-to-grid capacitances $\mathrm{C}_{a g}$, the
circuit can be considered to consist of two separate parts as represented in figs. $6-2$ and $6-3$.
The response of the network to three current sources has to be determined. All current sources are step functions:
I_{i} is given by expression (6-7)

$$
\begin{align*}
& I_{a}=I_{a o} U(t) \tag{6-9}\\
& I_{g}=I_{g o} U(t) \tag{6-10}
\end{align*}
$$

The calculation of the voltages between the grids and earth (or cathode)

Fig. 6-1
and between the anodes and earth will be possible if the following impedances are known.
(a) The impedances between the grids and earth.
(b) The transfer impedances giving the ratio of the voltages between the anodes and earth to the currents applied between the grids and earth.
(c) The transfer impedances giving the ratio of the voltages between the grids and earth to the currents applied between the anodes and earth.
(d) The impedances between the anodes and earth.
The derivation of these impedances and subsequent calculation of the voltages is fully given in appendix I. In order not to get lost in details,

Fig. 6-3 only the results will be presented here. The voltage between $G_{I I}$ and earth is:

$$
\begin{equation*}
V_{g I I}\left(t_{o} \leq t \leq t_{I I}\right)=V_{1}+V_{2} e^{p_{1} t}+V_{3} e^{p_{2} t} \tag{6-11}
\end{equation*}
$$

See appendix I, expression (I-36)
The voltage between A_{I} and earth is:

$$
\begin{equation*}
V_{a I}\left(t_{0} \leqq t \leqq t_{I I}\right)=V_{7}+V_{8} e^{p_{1} t}+V_{9} e^{p_{2} t} \tag{6-12}
\end{equation*}
$$

See appendix I, expression (1-40)
The voltage between G_{I} and earth is:

$$
\begin{equation*}
V_{g I}\left(t_{o} \leqq t \leqq t_{I I}\right)=V_{10}+V_{11} e^{p_{1}^{\prime} t}+V_{12} e^{p_{2}^{\prime} t} \tag{6-13}
\end{equation*}
$$

See appendix I, expression (I-42)
The voltage between $A_{I I}$ and earth is:

$$
\begin{equation*}
V_{a I I}\left(t_{o} \leqq t \leqq t_{I I}\right)=V_{4}+V_{5} e^{p_{1}^{\prime} t}+V_{6} e^{p_{2}^{\prime} t} \tag{6-14}
\end{equation*}
$$

See appendix I, expression (1-44)
Where

$$
\begin{array}{lr}
V_{1}=V_{g I I o}+I_{a o} \varepsilon_{a} R_{g}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime} & (6-15) \\
V_{2}=\frac{1}{2} \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1-K)\left(1-e^{-p_{1} t_{o}}\right)-\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1-P) & (6-16) \\
V_{3}=\frac{1}{2} \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1+K)\left(1-e^{-p_{2} t_{o}}\right)-\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1+P) & (6-17) \\
V_{4}=V_{a I I o}+I_{g o} \varepsilon_{a} R_{g}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime} & (6-18) \\
V_{5}=\frac{1}{2} \alpha C_{e} \varepsilon_{a} R_{g}\left(1-P^{\prime}\right)\left(1-e^{-p_{1}^{\prime} t_{o}}\right)-\frac{1}{2} I_{g o} \varepsilon_{a} R_{g}\left(1-P^{\prime}\right) & (6-19) \\
V_{6}=\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}\left(1+P^{\prime}\right)\left(1-e^{-p_{2}^{\prime} t_{o}}\right)-\frac{1}{2} I_{g o} \varepsilon_{a} R_{g}\left(1+P^{\prime}\right) & (6-20) \\
V_{7}=V_{a I o}+I_{a o}\left(1-\varepsilon_{a}\right) R_{a}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime} & (6-21) \\
V_{8}=\frac{1}{2} \alpha C_{o} \varepsilon_{a} R_{g}(1-P)\left(1-e^{-p_{1} t_{o}}\right)-\frac{1}{2} I_{a o}\left(1-\varepsilon_{a}\right) R_{a}(1-L) & (6-22) \\
V_{9}=\frac{1}{2} \alpha C_{e} \varepsilon_{a} R_{g}(1+P)\left(1-e^{-p_{2} t_{o}}-\frac{1}{2} I_{a o}\left(1-\varepsilon_{a}\right) R_{a}(1+L)\right. & (6-23) \\
V_{10}=I_{g o}\left(1-\varepsilon_{g}\right) R_{g}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime} \\
V_{11}=\frac{1}{2} \alpha C_{o}\left(1-\varepsilon_{g}\right) R_{g}\left(1-K^{\prime}\right)\left(1-e^{-p_{1}^{\prime} t_{o}}\right)-\frac{1}{2} I_{g o}\left(1-\varepsilon_{g}\right) R_{g}\left(1-K^{\prime}\right) \\
& (6-25) \tag{6-26}\\
V_{12}=\frac{1}{2} \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}\left(1+K^{\prime}\right)\left(1-e^{-p_{2}^{\prime} t_{o}}\right)-\frac{1}{2} I_{g o}\left(1-\varepsilon_{g}\right) R_{g}\left(1+K^{\prime}\right)
\end{array}
$$

$$
\begin{aligned}
K & =\frac{2 A-B}{B \sqrt{1-4 E / B^{2}}} \\
P & =\frac{2 T-B}{B \sqrt{1-4 E / B^{2}}} \\
L & =\frac{2 D-B}{B \sqrt{1-4 E / B^{2}}}
\end{aligned}
$$

See appendix I expr. (I-31), (I-34) and (I-39)
$K^{\prime}, P^{\prime}, L^{\prime}$ follow from K, P, L respectively by interchanging the indices I and II in A, B, E and D.
If the bistable multivibrator is symmetrical, i.e. if in fig. 6-1

$$
C_{i I}=C_{i I I} \text { and } C_{a I}=C_{a I I}, \text { then } K=K^{\prime}, P=P^{\prime}, p_{1}=p_{1}^{\prime} \text { and } p_{2}=p_{2}^{\prime}
$$

6.3 SECOND PHASE

During the first phase of the dynamic condition both tubes are cut off. Their grid voltages tend to the following final values (at $t=\infty$):
$V_{g I}(\infty)=I_{g o}\left(1-\varepsilon_{g}\right) R_{g}$, as can easily be seen from expression (6-13) and $V_{g I I}(\infty)=V_{g I I o}+I_{a o} \varepsilon_{a} R_{g}$. (see expression (6-11)). Introducing expressions $(5-14)$ and $(5-7)$ results in

$$
\begin{equation*}
V_{g I}(\infty)=V_{g I I}(\infty)=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime} \tag{6-27}
\end{equation*}
$$

This is simply the voltage at the mid-point of the voltage divider R_{g}, $\left(R+R_{a}\right)$ between the supply sources $-V^{\prime \prime}$ and $+V^{\prime}$. It must be assumed that this voltage is above the cut-off voltage of the tubes, otherwise the bistable multivibrator would not function at all. Furthermore it will be assumed that the originally non-conducting tube II reaches its cut-off point earlier than tube I, as this is the condition for correct functioning of the multivibrator circuit. The limit of this correct operation is reached when the tubesattain their cut-off points simultaneously. When determining the sensitivity of the multivibrator, this condition will be investigated more thoroughly.
Tube II reaches its cut-off point at the instant $t=t_{I I}$, this instant marks the end of the first phase and the start of the second phase of the dynamic condition. According to chapter 4 this instant $t_{I I}$ can be determined from the condition

$$
\begin{equation*}
V_{g I I}\left(t_{I I}\right)=-\frac{V_{a I I}\left(t_{I I}\right)}{\mu} \tag{6-28}
\end{equation*}
$$

New transients occur from this instant onwards, but only in the anode voltage $V_{a I I}$ and consequently in the grid voltage $V_{g I}$ as well. The voltages $V_{a I}$ and $V_{g I I}$ are represented by the same expressions that hold for the first phase ($(6-12)$ and ($6-11$), respectively).
According to expression (4-6) the anode voltage of the second tube during the second phase is given by

$$
\begin{equation*}
V_{a I I}(t)=V_{a I I}(t)_{1}-\frac{Z_{i a I I}}{Z_{i a I I}+r_{a}}\left\{V_{a I I}(t)_{1}+\mu V_{g I I}(t)\right\} U\left(t-t_{I I}\right) \tag{6-29}
\end{equation*}
$$

where $V_{a I I}(t)_{1}$ and $V_{g I I}(t)$ are given by the expressions for the first phase, (6-14) and (6-11), respectively. $Z_{i a I I}$ corresponds to Z_{a} of expression (4-6) and can be derived from expression (I-19) by interchanging indices I and II. As $V_{g I I}(t)$ is valid for the first as well as for the second phase, no index 1 is used here.
The evaluation of this voltage $V_{a I I}$ is presented in appendix II.

$$
\begin{gather*}
V_{a I I}(t)=V_{a I I}(t)_{1}-\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}}{ }^{p_{j}=p_{1}, p_{j} p_{j}^{\prime}, p_{2}^{\prime}} V_{j} p_{j} e^{p_{j} t_{I I}} \\
{\left[\frac{X_{1^{j}}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{0}\right)}\right\}+\frac{X_{2 j}}{-p_{4}}\left\{1-e^{\left.p_{4}\left(t-t_{I I}\right)\right\}}+\frac{X_{3 j}}{-p_{j}}\left\{1-e^{\left.p_{j}\left(t-t_{I I}\right)\right\}}\right] \times\right.\right.} \\
\times U\left(t-t_{I I}\right) \tag{6-30}
\end{gather*}
$$

This is expression (II-21) of appendix II. $V a_{I I}(t)_{1}$ is given by expression (6-14), p_{j} is $p_{1}, p_{2}, p_{1}{ }^{\prime}, p_{2}{ }^{\prime}$, respectively. For a symmetrical multivibrator $p_{1}=p_{1}^{\prime}{ }^{\prime}$ and $p_{2}=p_{2}{ }^{\prime} . V_{j}$ is given by expressions (II-22) to (II-25) inclusive. p_{3} and p_{4} are represented by expressions (II-14) and (II-15). For G^{\prime} and F^{\prime} see expressions (II-3) and (II-2). The X -quantities are given by expressions (II-16), (II-17) and (II-18).
For a symmetrical multivibrator the still rather cumbersome expression is represented in full by (II-28) of appendix II.
The voltage at the grid of tube I during the second phase is derived in appendix III. This voltage is given by expressions (III-8) and (III-12) of this appendix, viz.

$$
\begin{gather*}
V_{g I}(t)=V_{g I}(t)_{1}-\frac{R_{g}\left(1-\varepsilon_{a}\right) R_{a}}{\left(R+R_{g}\right)\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}}{ }^{p_{j}=p_{1}-p_{2}} \sum_{j} V_{j} p_{j} e^{p_{j} t_{I I}} \\
{\left[\frac{Y_{1 j}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{I I}\right)}\right\}+\frac{Y_{2 j}}{-p_{4}}\left\{1-e^{\left.p_{4}\left(t-t_{I I}\right)\right\}+\frac{Y_{3 j}}{-p_{j}}}\left\{1-e^{p_{j}\left(t-t_{I I}\right)}\right\}\right] \times\right.} \\
\times U\left(t-t_{I I}\right) \tag{6-31}
\end{gather*}
$$

Recapitulating, the grid and anode voltages of tubes I and II have been determined as functions of time during the first and second phases of the dynamic condition of the multivibrator circuit, where
$V g_{I}$ is given by expressions (6-13) and (6-31),
$V a_{I}$ by expression (6-12),
$V g_{I I}$ by expression ($6-11$) and
$V a_{I I}$ by expressions (6-14) and (6-30).

6.4 Third phase

As already assumed in chapter 4, the grid voltage of the second tube will rise until the point where grid current starts to flow, i.e. at $V_{g I I}=o$ where grid $G_{I I}$ and cathode are suddenly short-circuited. This can be taken into account by introducing between grid $G_{I I}$ and cathode a voltage source

$$
\begin{equation*}
V_{c}(t)=V g_{I I}(t) U\left(t-t_{s}\right) \tag{6-32}
\end{equation*}
$$

where $V g_{I I}(t)$ is given by expression (6-11), valid during the first and second phases and t_{s} is the instant at which $V g_{I I}$ becomes zero. This value t_{s} is to be determined from expression (6-11) by putting $V_{g I I}\left(t_{s}\right)=0$. This new voltage source $V_{c}(t)$ causes new terms in the voltages at $A_{I I}$, at A_{I} and at G_{I}.
The new transient at $A_{I I}$ is:

$$
\begin{equation*}
V_{a I I}^{* *}(t)=\frac{Z_{i a I I}}{Z_{i a I I}+r_{a}} \mu V_{g I I}(t) U\left(t-t_{s}\right) \tag{6-33}
\end{equation*}
$$

The new transient at G_{I} is:

$$
\begin{equation*}
V_{g_{I}^{* *}}^{* *}(t)=\frac{Z_{g I} Z_{a I I}}{\left(Z+Z_{g I}\right) Z_{a I I}+r_{a}\left(Z+Z_{g I}+Z_{a I I}\right)} \mu V_{g I I}(t) U\left(t-t_{s}\right) \tag{6-34}
\end{equation*}
$$

[compare expression (III-5)].
The new transient at A_{I} is:

$$
\begin{equation*}
V_{a I}^{* *}(t)=-\frac{Z_{a I}}{Z+Z_{a I}} V_{a I}(t) U\left(t-t_{s}\right) \tag{6-35}
\end{equation*}
$$

These transients are evaluated in Appendix IV and are given by expressions (IV-4), (IV-5) and (IV-13).
The total voltage at $A_{I I}$ during the three phases of the dynamic condition is the sum of expressions ($6-30$) and (IV-4).

$$
\begin{gather*}
V_{a I I}(t)=V_{a I I}(t)_{1}-\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}}\left[\begin{array}{c}
p_{j}=p_{1}-p_{p^{\prime}} \\
\Sigma j \\
V_{j} p_{j} e^{p_{j} t_{I I}} \\
\left\{\frac{X_{1^{j}}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{I I}\right)}\right\}+\frac{X_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{I I}\right)}\right\}+\frac{X_{3^{j}}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{I I}\right)}\right\}\right\} \\
U\left(t-t_{I I}\right)-p_{j}=p_{1}, p_{2} \\
j^{j} \\
V_{j} p_{j} e^{p_{j} t_{s}}\left\{\frac{X_{1^{j}}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{s}\right)}\right\}+\frac{X_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{s}\right)}\right\}+\right. \\
\left.\left.+\frac{X_{3^{j}}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{s}\right)}\right\}\right\} U\left(t-t_{s}\right)\right]
\end{array}\right.
\end{gather*}
$$

where $V a_{I I}(t)_{1}$ is given by expression (6-14).
The total voltage at G_{I} during the three phases is the sum of expressions (6-31) and (IV-5):

$$
\begin{align*}
& V_{g I}(t)=V_{o I}(t)_{1}-\frac{R_{g}\left(1-\varepsilon_{a}\right) R_{a}}{\left(R+R_{g}\right)\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}}\left[^{p_{j}=p_{1}-p_{2}^{1}} \Sigma V_{j} p_{j} e^{p_{j} t_{I I}}\right. \\
& \left\{\frac { Y _ { 1 ^ { j } } } { - p _ { 3 } } \left\{1-e^{\left.\left.p_{3}\left(t-t_{I I}\right)\right\}+\frac{Y_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{I I}\right)}\right\}+\frac{Y_{3^{j}}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{I I}\right)}\right\}\right\}}\right.\right. \\
& \quad U\left(t-t_{I I}\right)-^{p_{j}=p_{1}, p_{2}} \Sigma_{j} p_{j} e^{p_{j} t_{s}}\left\{\frac{Y_{1^{j}}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{s}\right)}\right\}+\right. \\
& \left.\left.\quad+\frac{Y_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{s}\right)}\right\}+\frac{Y_{3^{j}}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{s}\right)}\right\}\right\} U\left(t-t_{s}\right)\right] \tag{6-37}
\end{align*}
$$

where $V_{g_{I}}(t)_{1}$ is given by expression (6-13).
The total voltage at A_{I} during the three phases is the sum of expressions (6-12) and (IV-13):

$$
\begin{gather*}
V_{a I}(t)=V_{a I}(t)_{1,2}+\frac{R_{a}}{\left(R+R_{a}\right)} p_{n}\left[p _ { 1 } V _ { 2 } e ^ { p _ { 1 } t _ { s } } \left\{\frac{1+T p_{n}}{-p_{n}\left(p_{n}-p_{1}\right)}\right.\right. \\
\left.\left\{1-e^{p_{n}\left(t-t_{s}\right)}\right\}+\frac{1+T p_{1}}{p_{1}\left(p_{n}-p_{1}\right)}\left\{1-e^{p_{1}\left(t-t_{s}\right)}\right\}\right\}+p_{2} V_{3} e^{p_{2} t_{s}}\left\{\frac{1+T p_{n}}{-p_{n}\left(p_{n}-p_{2}\right)}\right. \\
\left.\left.\left\{1-e^{p_{n}\left(t-t_{s}\right)}\right\}+\frac{1+T p_{2}}{p_{2}\left(p_{n}-p_{2}\right)}\left\{1-e^{p_{2}\left(t-t_{s}\right)}\right\}\right]\right] U\left(t-t_{s}\right) \tag{6-38}
\end{gather*}
$$

where $V_{a I}(t)_{1,2}$ is given by expression 6-12.
The anode and grid voltages of tubes I and II have now been calculated as functions of time during the whole trigger-cycle. $V_{a_{I I}}$ is represented by expression $(6-36), V_{g I}$ by expression $(6-37)$ and $V_{a I}$ by expression (6-38), whilst $V_{g I I}$ can be represented by the following expression:

$$
\begin{equation*}
V_{g I I}(t)=V_{g I I}(t)_{1,2}\left\{1-U\left(t-t_{s}\right)\right\} \tag{6-39}
\end{equation*}
$$

Where $V_{g I I}(t)_{12}$ is given by expression (6-11), valid during the second phase as well.
Note: A check on the calculation of the expressions for the voltage changes at the anodes and grids is to compare the final values (at $t=\infty$) with the initial values (at $t \leq 0$) of the other tube. The following relations hold:
The grid voltage $V_{\text {gIo }}$ must be equal to $V_{o I I}$ at $t=\infty$, and $V_{g I I o}$ must be the same as $V_{g I}$ at $t=\infty$. The same applies to the anode voltages, which also change rôles when the multivibrator is triggered. These relations have been verified and confirmed.

7. THE COMPLETE TRIGGER CYCLE

The time functions for the anode and grid voltages during the complete trigger cycle have been calculated for a numerical example and are graphically represented in figs. $7-1,2,3,4$. The calculations were simplified as it turned out that the transient components of $V_{a I I}$ from the first phase have practically disappeared at the instant $t=t_{I I}$, which means that $V_{a I I}=V_{4}=$ constant (expr. (6-14)). The circuit and other data are the following (see fig. 3-1 and 3-2): $V^{\prime}=150 V, V^{\prime \prime}=100 \mathrm{~V}, R_{a}=20 \mathrm{k} \Omega$, $R=R_{g}=200 \mathrm{k} \Omega, C=100 \mathrm{pF}, C_{\mathrm{c}}=40 \mathrm{pF}, C_{g}=10 \mathrm{pF}, t_{o}=0.2 \mu \mathrm{sec}$, $V_{o}=25 V, \mu=35, r_{a}=8 k \Omega$.
The curves marked a apply to a symmetrical multivibrator of which $C_{a I}=C_{a I I}=5 p F$, whilst the curves marked b and c apply to an asymmetrical multivibrator with $C_{a I}=110 p F$ and $C_{a I I}=5 p F$. The calculated curves are represented by the fully-drawn lines. No account has been taken of the influence of $C_{a g}$ or of the rear flank of the trigger pulse. It is possible to account for the influence of $C_{a g}$, but this involves such complicated calculations (fourth-order equations to be solved for determining the normal modes of the circuit) that they become very impracticable to handle. The influence of $C_{a g}$ on the wavefornts may be considered to be such that their slopes and amplitudes are reduced to some extent, but calculations in which $C_{a g}$ is ignored will nevertheless give a good idea of the general aspect of the waveforms. Differences of a few volts in amplitude may, however, considerably influence the values of the times t_{I} and $t_{I I}$ at which the tubes should reach their cut-off points. Therefore, in calculating the trigger sensitivity the influence of $C_{a g}$ has not been neglected and fortunately this does not lead to excessively complicated formulae.
For the sake of comparison with practice, the curves displayed by an oscilloscope have also been plotted in the figures (broken lines). It should be recognized that the time scale on the screen of the oscilloscope was only about one tenth of that used for the graphs, so that some inaccuracy was introduced in drawing the steep fronts.

7.1. Discussion of the waveforms

From fig. $7-1$, which represents the waveform of $V_{g I I}$, it can be clearly seen that $V_{g I I}$ reaches the cut-off value (approximately $-4 V$) in a much shorter time $\left(t=t_{I I}\right)$ in case $a\left(C_{a I}=5 p F\right)$ than in case b (capacitive load, $\left.\mathrm{C}_{a I}=110 p F\right)$, in other words the capacitive load considerably increases the duration of the first phase.

Fig. 7-4

At the instant $t=t_{I I}$ the grid voltage of tube I, represented in fig. 7-2, has reached a value -10 V and -4 V in case a and case b respectively. This shows that the triggering is much more certain in the unloaded than in the loaded condition. It is only because the anode voltage of tube I (see fig. $7-4 b$, about 85 V) is much smaller than the anode voltage of tube II (see fig. $7-3 \mathrm{~b}$, about 138 V) at the instant $t_{I I}$, that the cut-off voltage of tube I is not yet reached at $V_{g I}=-4 V$.
At the instant $t=t_{I I}$ the second phase of the trigger cycle commences. Curves a and b of fig. 7-3 reveal that the anode voltage $V_{a I I}$ greatly decreases from this instant onwards, and consequently the grid voltage $V_{g I}$ (see fig. 7-2) also decreases. The multivibrator is finally triggered. Fig. 7-1 shows that $V_{J I I}$ reaches the value zero shortly after the instant $t=t_{I I}$; owing to the flow of grid current, $V_{g I I}$ is then kept constant at this value. In practice there is some overshoot, which should be attributed to the fact that the grid resistance is not zero as was assumed in the calculations. The influence of the discontinuity will therefore be smaller than calculated.
The fully-drawn curves plotted in fig. $7-4$ show the calculated effects of this discontinuity (at approximately $0.7 \mu \mathrm{sec}$ for curve a and at approximately $2 \mu \mathrm{sec}$ for curve b) on the anode voltage $V_{a I}$. This effect could not be clearly discerned on the oscillograms. The oscillograms shown in figs. 7-6 and 7-9, which apply to other trigger circuits, do show these discontinuities.
The oscillograms of figs. $7-5$ and $7-6$ refer to a symmetrical unloaded multivibrator having the same data as the previously mentioned circuit. Triggering was, however, achieved by means of square-wave pulses with a period of $15 \mu \mathrm{sec}$. Fig. $7-5$ shows the grid voltage variation of one of the tubes; that of the other tube is obviously identical. Fig. 7-6 displays the anode-voltage variation of both tubes. The discontinuity which can be clearly seen in the ascending part of the oscillogram is due to the start of grid current flow in the other tube.
Figs. 7-7, 8, 9, 10 show the oscillograms of the grid and anode voltages of an asymmetrical multivibrator, triggered by negative-going pulses having a width of $40 \mu \mathrm{sec}$, a period of $60 \mu \mathrm{sec}$ and an amplitude of 35 V . The circuit data are once again identical to those of the previous circuits; $C_{a I}$ and $C_{a I I}$ were $110 p F$ and $5 p F$, respectively.
The variation of $V_{g I I}$ is displayed by the oscillogram shown in fig. 7-7; the negative-going front should be compared with curve c of fig. $7-1$ and the positive-going front with curve b of this figure.
Fig. 7-8 shows the variation of $V_{g I}$; this should be compared with curves b and c of fig. 7-2.

Fig. 7-5

Fig. 7-6

Fig. 7-7

Fig. 7-8

Fig. 7-9

Fig. 7-10

Fig. 7-9 gives the oscillogram of $V_{a I I}$ and should be compared with curves b and c of fig. $7-3$.
Finally, the oscillogram of fig. 7-10 shows the variation of $V_{a I}$ and should be compared with curves b and c of fig. 7-4.
In the curves representing the calculated time functions the influence of the positive-going rear flanks of the trigger pulses has been disregarded. In practice care should be taken that these positive-going flanks do not disturb the normal triggering. These pulses should not, for example, drive the grid voltage of the non-conducting tube (i.e. the initially conducting tube I) above its cut-off point. Curves a and b of fig. $7-2$ reveal the considerable overshoot of $V_{g I}$ in the negative direction, its final value being -30 V . It would therefore be advantageous to choose the width of the trigger pulse in such a way that the positive-going rear flank coincides with this overshoot region. This will not be possible, however, when a multivibrator is triggered by a preceding one, because the pulses produced thereby are always roughly square-wave shaped and the posi-tive-going flank will always occur just between two negative-going flanks. However, the negative anode-voltage pulse, caused by the positive-going flank at the grid of the conducting tube, has a compensating effect on the positive-going flank at the grid of the non-conducting tube. This effect is clearly shown by the oscillogram of fig. $7-5$ half way along the gradually increasing part of the voltage curve. Initially, the voltage tends to rise, but the slightly delayed negative pulse at the anode of the conducting tube is passed to the grid of the non-conducting tube via the coupling capacitor C and even overcompensates the positive-going input pulse, so that a negative pulse results.
The final static conditions for the curves a and b of figs. $7-1,2,3,4$ are: $V_{g I}=-30 \mathrm{~V}, V_{a I}=136 \mathrm{~V}, V_{g I I}=0 \mathrm{~V}$ and $V_{a I I}=40 \mathrm{~V}$. The functions are now reversed, tube I being cut off and tube II being conducting. The next negative-going flank of V_{i} will trigger the multivibrator once again. In the case of a symmetrical circuit ($\left.C_{a I}=C_{a I I}=5 p F\right)$ the waveforms during this new trigger action follow from the theoretical results, by changing the indices I and II in all formulae, the waveform of $V_{g I I}$ thus being identical to that of $V_{g I}$ during the preceding trigger action. The new waveforms corresponding to figs. 7-1a, 2a, 3a, 4a have therefore not been given separately, as the new fig. 7-2a corresponds to $7-1 \mathrm{a}$ and the new fig. $7-4 \mathrm{a}$ to $7-3 \mathrm{a}$, and vice versa.
In the case of an asymmetricaly loaded multivibrator the situation is less simple, but the waveforms can nevertheless also be calculated; the results are shown by curves c.

Notwithstanding the presence of the load capacitance $C_{a I}=110 p F$ the switching time, or the duration of the first trigger phase, is now much shorter than in the first case b. This is due to the fact that the switching time is now defined by the waveform of $V_{g I}$, which is independent of $C_{a I}$. The switching time is about $0.6 \mu \mathrm{sec}$, whereas it was about $2 \mu \mathrm{sec}$ in the first case.
It can, moreover, be seen that the trigger sensitivity will be better in the second case. In the first case the grid voltage of the initially conducting tube, $V_{g I}$, has almost reached its cut-off value at the instant in which tube II starts to draw anode current (at $t \approx 2 \mu \mathrm{sec}$; see curve b fig. $7-2$). In the second case, however, the grid voltage of the initially conducting tube, $V_{g I I}$ (curve c, fig. $7-1$), rises at a much slower rate owing to the influence of $C_{a I}=110 p F$. At the instant at which tube I starts to draw current the (negative) value of $V_{g I I}$ will still be almost three times that of $V_{g I}$ in the first case. In other words, $V_{g I}$ rises much faster than $V_{g I I}$ during the same periods of time.
The sensitivity of an asymmetrical multivibrator is thus not the same for the two stable conditions, and is smallest for the initial condition in which the capacitively loaded tube is conducting. In practice this smallest sensitivity defines the usefulness of the circuit.
It can also be seen that the sensitivity of an asymmetrically loaded multivibrator is improved by loading the multivibrator symmetrically (for example $\left.C_{a I}=C_{a I I}=110 p F\right)$. In that case the grid voltage $V_{g I}$ (curve b, fig. 7-2) will rise more slowly and reach the cut-off point later, so that it will be easier for the grid voltage of the other tube to reach its cut-off value first.
This fact has been confirmed experimentally. By way of example the average value of $V_{c r}$, the minimum input voltage amplitude wanted to trigger the multivibrator, measured on a series of some 40 experimental samples of double triodes, will be given. For symmetrical, unloaded multivibrator circuits the critical trigger amplitude had an average value of 17 V . For an asymmetrical circuit (150 pF load in one of the anode circuits) this average value was 38 V . By connecting the load of 150 pF to both anode circuits the sensitivity of the multivibrator was increased, the average value of $V_{c r}$ then being 31.5 V .

8. THE TRIGGER SENSITIVITY

In chapter 6 explicit expressions have been derived for the anode and grid voltages as functions of time during the complete trigger cycle. With the aid of these expressions various properties of the circuit can be investigated, including in particular the trigger sensitivity; in fact, the need to know the influence of tube characteristics on the sensitivity was the reason for starting the investigation and analysis given here.In section $6-2$ it has already been mentioned that the limit of correct triggering operation is reached if both tubes attain their cut-off grid voltages simultaneously. The times t_{I} and $t_{I I}$ that elapse before tube I and tube II reach their respective cut-off points after the application of the trigger voltage V_{i}, when the feedback was temporarily inactive, can be calculated from the relations

$$
\begin{equation*}
V_{g I}\left(t_{I}\right)=\frac{-V_{a I}\left(t_{I}\right)}{\mu} \tag{8-1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{g I I}\left(t_{I I}\right)=\overline{-} \frac{V_{a I I}\left(t_{I I}\right)}{\mu} \tag{8-2}
\end{equation*}
$$

The time functions representing the anode and grid voltages are given by expressions $(6-11,12,13,14)$. One of the variables defining these functions is the amplitude V_{o} of the trigger voltage V_{i} (see fig. 3-2). Varying V_{o} will result in varying the values of t_{I} and $t_{I I}$. Practical experience shows that at too low a value of V_{o} no switch-over of the multivibrator occurs. It is evident that in this case $t_{I}<t_{I I}$. At a certain value, $V_{o}=V_{c r}$, the values of t_{I} and $t_{I I}$ will be equal and this will be a limit for correct triggering. Therefore $V_{c r}$ will be called the critical trigger voltage amplitude, and is a measure for the trigger sensitivity. The lower $V_{c r}$, the higher the sensitivity of the multivibrator circuit.
Up till now, the influence of the capacitance $C_{a g}$ between the anode and grid of each tube has not been allowed for in the calculations, as it considerably complicates the problem. However, practical experience showed evidence that the anode-to-grid capacitance of the tubes had a considerable influence on the trigger sensitivity. Therefore it is desirable to take into account this influence of $C_{a g}$.
For a non-conducting tube the effect of $C_{a g}$ will nearly be equivalent to the presence of a capacitive voltage divider between anode and grid, and will influence signals with a steep slope. A fraction of the anode voltage variation is transmitted to the grid of the same tube due to the anode-to-
grid capacitance of the tube. For tube I this can be taken into account by the factor

$$
\begin{equation*}
b_{I}=\frac{C_{a g I}}{C_{a g I}+C_{c}+C_{g I}+\frac{C C_{a I I}}{C+C_{a I I}}} \tag{8-3}
\end{equation*}
$$

and for tube II by the factor

$$
\begin{equation*}
b_{I I}=\frac{C_{a g I I}}{C_{a g I I}+C_{c}+C_{g I I}+\frac{C C_{a I}}{C+C_{a I}}} \tag{8-4}
\end{equation*}
$$

For a more elaborate discussion of the influence of $C_{a g}$ see Appendix V. The anode-voltage variation is the difference between the total anode voltage during the first phase of the dynamic condition and the staticcondition voltage. With this correction the expressions (8-1) and (8-2) become:

$$
\begin{gather*}
V_{g I}\left(t_{I}\right)+b_{I}\left\{V_{a I}\left(t_{I}\right)-V_{a I_{o}}\right\}=-\frac{1}{\mu} V_{a_{I}}\left(t_{I}\right) \tag{8-5}\\
V_{g I I}\left(t_{I I}\right)+b_{I I}\left\{V_{a I I}\left(t_{I I}\right)-V_{a I I o}\right\}=-\frac{1}{\mu} V_{a I I}\left(t_{I I}\right) \tag{8-6}
\end{gather*}
$$

Introducing expressions $(6-11,12,13,14)$ into these equations gives

$$
\begin{gather*}
\left(b_{I}+\frac{1}{\mu}\right) V_{8} e^{p_{1} t_{I}}+\left(b_{I}+\frac{1}{\mu}\right) V_{9} e^{p_{2} t_{I}}+V_{11} e^{p_{1}{ }^{\prime} t_{I}}+V_{12} e^{p_{2} t_{I}}+V_{10}+ \\
+\left(b_{I}+\frac{1}{\mu}\right) V_{7}-b_{I} V_{a I o}=0 \tag{8-7}\\
V_{2} e^{p_{1} t_{I I}}+V_{3} e^{p_{2} t_{I I}}+\left(b_{I I}+\frac{1}{\mu}\right) V_{5} e^{p_{1}{ }^{\prime} t_{I I}}+\left(b_{I I}+\frac{1}{\mu}\right) V_{6} e^{p_{2} t^{\prime} t_{I I}}+V_{1}+ \\
+\left(b_{I I}+\frac{1}{\mu}\right) V_{4}-b_{I I} V_{a I I o}=0 \tag{8-8}
\end{gather*}
$$

To solve these equations for t_{I} and $t_{I I}$, one can only try, by substituting several values of V_{o}, to find a value $V_{c r}$ for which $t_{I}=t_{I I}$. For the symmetrical multivibrator, however, a more elegant method can be derived. In that case $p_{1}=p_{1}{ }^{\prime}, p_{2}=p_{2}^{\prime}$ and $b_{I}=b_{I I}=b$. The equations take the following form:

$$
\begin{gather*}
\left\{\left(b+\frac{1}{\mu}\right) V_{8}+V_{11}\right\} e^{p_{1} t_{I}}+\left\{\left(b+\frac{1}{\mu}\right) V_{9}+V_{12}\right\} e^{p_{2} t_{I}}+V_{10}+ \\
+\left(b+\frac{1}{\mu}\right) V_{7}-b V_{a I o}=0 \tag{8-9}
\end{gather*}
$$

$$
\begin{gather*}
\left\{\left(b+\frac{1}{\mu}\right) V_{5}+V_{2}\right\} e^{p_{1} t_{I I}}+\left\{\left(b+\frac{1}{\mu}\right) V_{6}+V_{3}\right\} e^{p_{2} t_{I I}}+V_{1}+ \\
\left(b+\frac{1}{\mu}\right) V_{4}-b V_{a I I o}=0 \tag{8-10}
\end{gather*}
$$

The following notations will be used :

$$
\begin{gather*}
e^{p_{1} t_{I}}=x_{I} \tag{8-11}\\
e^{p_{1} t_{I I}}=x_{I I} \tag{8-12}\\
\frac{p_{2}}{p_{1}}=\gamma \tag{8-13}
\end{gather*}
$$

Then equations (8-9) and (8-10) become:

$$
\begin{gather*}
\left\{\left(b+\frac{1}{\mu}\right) V_{8}+V_{11}\right\} x_{I}+\left\{\left(b+\frac{1}{\mu}\right) V_{9}+V_{12}\right\} x_{I}^{\gamma}+V_{10}+ \\
+\left(b+\frac{1}{\mu}\right) V_{7}-b V_{a I o}=0 \tag{8-14}\\
\left\{\left(b+\frac{1}{\mu}\right) V_{5}+\right. \\
\left.+V_{2}\right\} x_{I I}+\left\{\left(b+\frac{1}{\mu}\right) V_{6}+V_{3}\right\} x_{I I}^{\gamma}+V_{1}+ \tag{8-15}\\
+\left(b+\frac{1}{\mu}\right) V_{4}-b V_{a I I o}=0
\end{gather*}
$$

When $V_{o}=V_{c r}$ then $t_{I}=t_{I I}$, or $x_{I}=x_{I I}=x$. Substituting these values in eqs $(8-14)$ and $(8-15)$ and subtracting these equations gives:

$$
\begin{equation*}
A_{2} x^{\gamma}+A_{1} x+A_{0}=0 \tag{8-16}
\end{equation*}
$$

Where

$$
\begin{align*}
\mathrm{A}_{2}= & -\frac{1}{2}\left(b+\frac{1}{\mu}\right)\left\{I_{a o}\left(1-\varepsilon_{a}\right) R_{a}(1+L)-I_{g o} \varepsilon_{a} R_{g}(1+P)\right\} \\
& -\frac{1}{2} I_{g o}\left(1-\varepsilon_{g}\right) R_{g}(1+K)+\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1+P) \tag{8-17}\\
A_{1}= & -\frac{1}{2}\left(b+\frac{1}{\mu}\right)\left\{I_{a o}\left(1-\varepsilon_{a}\right) R_{a}(1-L)-I_{g o} \varepsilon_{a} R_{g}(1-P)\right\} \\
& -\frac{1}{2} I_{g o}\left(1-\varepsilon_{g}\right) R_{g}(1-K)+\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1-P) \tag{8-18}\\
A_{o}= & b\left(V_{a I I_{o}}-V_{a I_{o}}\right)=b\left\{\left(1-\varepsilon_{a}\right) R_{a} I_{a o}-\varepsilon_{a} R_{g} I_{g o}\right\} \tag{8-19}
\end{align*}
$$

Equation (8-16) is independent of $V_{c r}$ and therefore, if x is determined by solving the equation, then $V_{c r}$ can be calculated from either eq. (8-14) or $(8-15)$. However, in general, eq. (8-16) will not be easily solved by conventional methods, as γ is normally a rather high power and not even a whole number. Therefore, a graphical method is to be applied.
If in one graph the functions $F_{1}(x)=x^{y}$ and $F_{2}(x)=-\frac{A_{1}}{A_{2}} x-\frac{A_{0}}{A_{2}}$ are plotted, then the point of intersection of the graphical representations gives the value of x to be determined.
8.1. Influence of tube characteristics and capacitive anode load An example of calculating the influence of tube characteristics and of a capacitive load in both anode circuits on the sensitivity will be given. The circuit to be investigated is assumed to have the following characteristic data (compare figs. (3-1) and (3-2)). $V^{\prime}=150 \mathrm{~V}, V^{\prime \prime}=100 \mathrm{~V}$, $R_{a}=20 \mathrm{k} \Omega, R=R_{g}=200 \mathrm{k} \Omega, C=100 \mathrm{pF}, C_{c}=40 \mathrm{pF}, t_{o}=0.2 \mu \mathrm{sec}$. The grid-to-cathode capacitance of each tube is assumed to be $C_{g}=10 p F$. This gives $C_{i}=C_{c}+C_{g}=50 \mathrm{pF}$ (see expr. (6-8)). The anode-to-cathode capacitance C_{a} will be chosen as a parameter, taking values of $5 p F$, $50 p F$ and $150 p F$.
If the amplification factor of the tubes is $\mu=50$, and the internal anode resistance $r_{a}=7 k \Omega$, then the critical trigger-voltage amplitude $V_{c r}$ depends, according to the calculations, on the value of the anode-to-grid capacitance $C_{a g}$ in the way indicated in table I.

Table I

$\begin{gathered} C_{a g} \\ (p F) \end{gathered}$	A_{2}	A_{1}	A_{0}	x	$\begin{aligned} & V_{c r} \\ & (V) \end{aligned}$	
2.5	60.63	-34.84	1.92	0.970	9.2	
4.5	57.68	-34.90	5.32	0.967	13.4	$C_{a}=5$ р
6.8	54.19	-35.01	8.78	0.964	18.0	$\gamma=21.2$
2.5	62.80	-35.66	0.79	0.935	13.0	
4.5	60.75	-35.72	2.90	0.931	17.2	$\begin{aligned} & C_{a}=50 p F \\ & \gamma=9.7 \end{aligned}$
6.8	58.36		5.31	0.927	21.6	$\gamma=9.7$
2.5	62.82	-35.23	0	0.852	20.8	
4.5	60.96	-35.25	2.12	0.850	26.0	$\begin{aligned} C_{a} & =150 p F \\ \gamma & =4.75 \end{aligned}$
6.8	59.46	-35.28	3.69	0.848	29.5	$\gamma=4.75$

These results are graphically represented in figs $8-1$ and $8-2$. It can be seen from these figures that the critical trigger-voltage amplitude is an approximately linear function of the capacitive load in the anode circuits, with a mean slope $\frac{d V_{c r}}{d C_{a}}=0.082 \frac{V}{p F}$, and that it is also an approximately

Fig. 8-1
linear function of the anode-to-grid capacitance of the tubes, having a mean slope $\frac{d V_{c r}}{d C_{a g}}=2 \frac{V}{p F}$.
The influence of the amplification factor μ is calculated, assuming that $C_{a}=50 p F, C_{a g}=4.5 p F$ and $r_{a}=7 \mathrm{k} \Omega$.
The result is presented in table II and graphically in fig. 8-3 (curve I).
Table II

μ	A_{2}	A_{1}	A_{0}	x	$V_{c r}$ (V)	
25	58.79	-35.69	2.90	0.933	20.6	
35	59.51	-35.69	2.90	0.933	18.8	
50	60.75	-35.70	2.90	0.931	17.2	$\gamma=9.7$

The influence of the internal anode resistance r_{a} at values $C_{a}=50 p F$, $C_{a g}=4.5 p F, \mu=50$ is also calculated, and the result is given in table III and fig. 8-4 (curve I).

The critical trigger-voltage amplitude decreases with increasing amplification factor and constant internal anode resistance and increases with increasing internal anode resistance and constant amplification factor.

Table III

r_{a} $k \Omega$	A_{2}	A_{1}	A_{0}	x	$V_{c r}$ (V)	
5.4	64.9	-36.91	0	0.936	16.3	$\}$
7.0	60.75	-35.70	2.90	0.931	17.2	$\gamma=9.7$
9.0	56.62	-34.22	6.21	0.923	18.6	$\}$

As the amplification factor μ and the internal anode resistance r_{a} are related to the transconductance g_{m} by the following expression

$$
\begin{equation*}
\frac{\mu}{r_{a}}=g_{m} \tag{8-20}
\end{equation*}
$$

it must be expected that, for constant transconductance, their influence on the critical trigger-voltage amplitude will be small, at least in the cal-

Fig. 8-2

Fig. 8-3
culated region. This has been investigated by varying μ and r_{a} in such a way that their ratio remains constant, starting from the values $\mu=50$ and $r_{a}=7 \mathrm{k} \Omega$, corresponding to $g_{m}=7.14 \frac{m A}{V}$. For these values the critical trigger voltage $V_{c r}$ has already been calculated and amounts to 17.2
volts. The results of these additional calculations are represented in table IV and in the graphs of figs. 8-3 and 8-4 (curves II).

Table IV

μ	r_{a} $(k \Omega)$	A_{2}	A_{1}	A_{0}	x	$V_{c r}$ (V)	
64.3	9.0	56.92	-34.44	5.92	0.922	17.8	$C_{a g}=4.5 p F$
50	7.0	60.75	-35.70	2.90	0.931	17.2	$C_{a}=50 p F$
40	5.6	63.64	-37.11	-0.504	0.938	17.1	$\gamma=9.7$
32	4.5	66.18	-37.57	1.72	0.942	18.2	$g_{m}=7.14$
25	3.5	68.20	-38.57	3.60	0.938	19.5	

As can be seen, there is a certain minimum value of $V_{c r}$, in other words for a given value of the transconductance there are optimum values of r_{a} and μ.
It must be borne in mind that all conclusions drawn from the foregoing calculations are not of a general character, but apply to the specific data treated.
The results of calculations can be compared with experimental investigations.
The trigger sensitivity of a double triode type E92CC has been measured under similar conditions as were assumed to exist in the foregoing calculations. The amplification factor of this tube is $\mu=50$, its internal anode resistance being

Fig. 8-4 $7 \mathrm{k} \Omega$. This internal resistance is taken as the reciprocal value of the slope of the $I_{a}-V_{a}$ characteristic at $V_{g}=0$. The capacitances in the anode circuit have been put equal to 5 pF , which is based on experimental experience. The trigger sensitivity is measured to be 16.5 V , when no extra capacitive load is applied to the anodes, whereas it is 18.7 V with 47 pF applied between the anode and cathode of each tube, and 29.6 V with 150 pF anode load applied. These measuring data are represented by the small circles in fig. 8-1. A mean straight line, drawn through these measuring points is represented by the
broken line in fig. 8-1. The conclusion to be drawn from these measuring data is that an effective anode-to-grid capacitance of about $6 p F$ should be assumed to exist. The $C_{a g}$ of an E92CC is $2.5 p F$. The wiring capacitance of the circuit between anode and grid was measured and found to be $4.6 p F$. Thus, the total capacitance between anode and grid of the tubes was 7.1 pF . The conclusion is that these experimental data are in quite good agreement with those derived from the calculations.
One more check on the theory was carried out.
Assuming $C_{a g}$ to be $6 p F$, the trigger sensitivity with asymmetrical capacitive anode load was calculated. If one anode is loaded with $47 p F$ and the other tube has no externally applied capacitive load, then $\mathrm{C}_{a I}=52 p F$ and $\mathrm{C}_{a I I}=5 p F$. With these capacitance values the trigger sensitivity is calculated to be 23 V , whereas it is actually measured to be 21 V , which is also quite a good agreement.
In chapter 10 some considerations on the influence of the coupling capacitors C and C_{c} have been included.

9. THE TRIGGERING SPEED

In the calculations of the transient behaviour of the bistable multivibrator the assumption was made that before the instant of application of an input trigger voltage the circuit was in its static condition, i.e. all the previous triggering effects had died out by this instant. Theoretically there would be an infinitely long time before all transients of the dynamic condition have completely died away. In practice, however, a subsequent triggering will occur at a definite time after the first trigger pulse has been applied. An important question is, what will be the lower limit in the time interval between two trigger pulses at which the multivibrator is still operating satisfactorily. It is difficult to define this limit explicitly, at any rate not as plainly as could be done with respect to the trigger sensitivity.
What are the operations to be performed by the multivibrator circuit? When triggering at both grids simultaneously the aim is, as has been formulated previously, to get one output pulse at every two input pulses, i.e. essentially a frequency division. As soon as this ratio $2: 1$ is lost because of too high a repetition frequency of the input pulses, one can say that the maximum triggering speed is attained. In another way of operation, negative trigger pulses are fed to the grid of the tube that is momentarily conducting or alternatively positive pulses to the grid of the non-conducting tube. In this application the aim is to change the potential of the anodes or grids as rapidly as is necessary in the given circumstances. A certain minimum change of potential level will be wanted, and as soon as the next trigger pulse occurs so rapidly after the previous pulse that this change is not obtained, the maximum trigger speed is reached. It is not possible from the foregoing analysis to derive the speed limits mentioned for the two cases, as this analysis assumes that the system is at rest before it is triggered, and this would by no means be satisfied at the speed limit. A new way of approach would have to be introduced, a quasi-stationary condition being assumed to exist. Nevertheless, the results of calculations presented in the foregoing chapters may give an idea of the triggering speed to be attained by a given circuit, and of means to improve it.
There is one absolute upper limit of triggering speed to be defined, viz. the time $t_{I I}$, during the first phase of the dynamic condition, when both tubes are cut off. Within this time no new input pulse will be able to produce further triggering. The time $t_{I I}$ depends on the time constants of the circuit, given by the negative reciprocal values of p_{1} and p_{2} (expressions ($\mathrm{I}-25$) and ($\mathrm{I}-26$). From section 8 it can be seen that $t_{I I}$ also
depends on the amplitude of the trigger pulse. At the critical amplitude $V_{\text {or }}$ it can be calculated from the value of x as given in tables I, II, III, IV. According to expression (8-12) :

$$
\begin{equation*}
x=e^{p_{1} t_{I I}} \tag{9-1}
\end{equation*}
$$

or

$$
\begin{equation*}
t_{I I}=\frac{\ln x}{p_{1}} \tag{9-2}
\end{equation*}
$$

To give an idea of the value of $t_{1 I}$ at the critical trigger voltage amplitude for the circuit, for which table I is calculated, expression (9-2) will be evaluated with the aid of the values of x from table I and of p_{1} from the following table V

Table V

$C a(p F)$	$p_{1}\left(\mu \mathrm{sec}^{-1}\right)$
5	-0.0661
50	-0.0663
150	-0.0665

The results are given in table VI
Table VI

$C a(p F)$	$t_{I I}(\mu \mathrm{sec})$	
5	0.45	
50	1.01	2.42
150	0.56	$C_{a g}=2.5 p F$
5	1.14	
50	2.49	$C_{a g}=6.8 p F$
150		

The influence of the anode-to-grid capacitance is not very great but that of the anode capacitance is.
As can be concluded from the values of x in tables II, III and IV, the influence of μ and r_{a} is not marked (p_{1} does not depend on μ and r_{a}).
Next it can be stated that the sooner the circuit approaches its finalstatic state, after having been triggered, the smaller the time interval between
two subsequent triggerpulses may be. This implies that the time constants of the circuit should be small. These time constants are:

$$
\begin{gathered}
T_{1}=-\frac{1}{p_{1}}, T_{2}=-\frac{1}{p_{2}}, T_{1}^{\prime}=-\frac{1}{p_{1}^{\prime}}, T_{2}^{\prime}=-\frac{1}{p_{2}^{\prime}}, T_{3}=-\frac{1}{p_{3}}, \\
T_{4}=-\frac{1}{p_{4}} \text { and } T_{n}=-\frac{1}{p_{n}} .
\end{gathered}
$$

(see chapter 6).
It can be shown that a decrease in any resistance or capacitance of a circuit composed of resistances and capacitances only results in a decrease in all the time constants. This will be derived for the multivibrator circuit considering first the circuit arrangement during the first phase of the dynamic condition. It then holds that the driving-point impedances of the circuit are of the following general form, apart from a constant multiplication factor:

$$
\begin{equation*}
Z(p)=\frac{p+b_{1}}{p^{2}+a_{1} p+a_{2}} \tag{9-3}
\end{equation*}
$$

as can be seen from expressions (I-7), and (I-19). The zeros and poles of this impedance function are defined by the roots of equations

$$
\begin{equation*}
p+b_{1}=0 \tag{9-4}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{2}+a_{1} p+a_{2}=0 \tag{9-5}
\end{equation*}
$$

respectively.
There will be one zero, viz, at $p=-b_{1}$ and two poles, viz. at $p=p_{1}$ and $p=p_{2}$ (see expressions (I-25) and (I-26)). These values of p determine the normal modes of the circuit.
From general network theory it is known that for a network, consisting of R's and C's only, the quantities a_{1}, a_{2} end b_{1} are positive, real; further that the normal modes are always negative, real; finally that

$$
\begin{equation*}
p_{2}<-b_{1}<p_{1}<0 \tag{9-6}
\end{equation*}
$$

(Reference is made to p. 211 of vol. II of "Communication Networks", by E. A. Guillemin, Wiley \& Sons, 1935).

With this knowledge it is possible to sketch the impedance function $Z(p)$ as it depends on p. In fig. $9-1$ the curves I, II and III represent the general form of $Z(p)$ as a function of p given by expression (9-3).
It will now be assumed that a resistance R is shunted across the imped-
ance $Z(p)$. In that case the normal modes are tobe determined from the condition

$$
\begin{equation*}
Z(p)=-R \tag{9-7}
\end{equation*}
$$

In fig. 9-1 these normal modes are determined by the intersection points of curves II, III and the dotted curve VI. It can be seen that the values of p corresponding to these points of intersection will always be more negative than p_{1} and p_{2} respectively.
Thus, inserting a resistance across one of the resistances of the circuit, or decreasing one of the circuit resistances, which amounts to the same-

Fig. 9-1 thing, will always result in a decrease of the characteristic time constants of the circuit. From this general statement it can be concluded that the time constants during the second phase of the dynamic condition, T_{3} and T_{4}, are always smaller than the corresponding values, $T_{1}{ }^{\prime}$ and $T_{2}{ }^{\prime}$ respectively, from the first phase. For during the second phase one of the anode resistances of the multivibrator circuit is shunted by the internal anode resistance of the conducting tube. In the third phase one of the grid resistances is shunted by the internal grid resistance of the conducting tube, which will result in a still smaller time constant in this phase. The influence of a change in one of the capacitances of the circuit on the characteristic time constants can be derived in a similar way to the method used for a change in resistances. Assuming a capacitance C to be shunted across $Z(p)$, the new characteristic frequencies have to be determined from the condition

$$
\begin{equation*}
-\frac{1}{C p}=Z(p) \tag{9-8}
\end{equation*}
$$

The function $-\frac{1}{C p}$ is represented in fig. $9-1$ by the curves IV and V, and the roots of equation (9-8) are given by the points of intersection of curve V and curves I and II. To these points correspond values of p that are always less negative than p_{1} and p_{2}, respectively. In other words,
the new time constants will be larger than T_{1} and T_{2} as a result of the increase of one of the capacitances of the circuit.
When aiming at a high triggering speed it is thus advantageous to reduce the value of all resistances and capacitances as much as possible. There are limits, of course, to this reduction. The resistances, for instance, greatly determine the values of the voltages and currents of the circuit in the static condition. Considerations of supply power available and tolerable, and the anode voltage change wanted when triggering the multivibrator, will fix the minimum values of resistances to be applied. Tubes with a low internal anode resistance (low μ high g_{m}) will be advantageous for obtaining small time constants during the second phase of the complete cycle. How far can the capacitances be reduced? The anode-to-cathode capacitances C_{a} are determined by the tube capacitances and the wiring capacitances. Both have to be reduced to the utmost. The same holds for the input capacitances between grid and cathode of the tubes and the wiring capacitances, which together form C_{g}. However, the sum $C_{i}=C_{g}+C_{c}$ determines the grid circuit constant T_{g}, where C_{0} is the coupling capacitance between the trigger-voltage source and the grids. Therefore, C_{c} should be reduced as much as possible. Here of course, there is also a limit. Too small a value of C_{c} reduces the current pulse I_{i} $=-\alpha C_{c}$ (see expression (6-7)) to such an extent that the tube will no longer be safely triggered at a given input voltage amplitude V_{0}.
Finally, the coupling capacitors C between the anodes and grids of the tubes must be reduced. A limit is presented here by the fact that the steep voltage rise at the anode of the tube that is suddenly cut off must be passed by this capacitance C to such a degree that the grid voltage of the non-conducting tube increases rapidly enough to reach its cut-off point earlier than the other tube. In other words, too small a value of C will prevent the proper triggering of the circuit.
Some practical experience will be dealt with in chapter 10 , together with some details about the influence of C_{c} and C both on the trigger sensitivity and the triggering speed.

10. DESIGN CONSIDERATIONS

When designing a bistable multivibrator several aspects will have to be kept in mind. The bistable circuit should if possible have a high triggering speed, a high trigger sensitivity, a low power consumption, a good stability and a low sensitivity to interferences. All these demands, however, cannot be satisfied at the same time, as an improvement of one or more of the properties mentioned mostly results in a deterioration of others. This has been mentioned already at the end of Chapter 1.
Therefore, general rules for designing a bistable multivibrator are difficult to formulate. Each case will have to be considered separately. For example, if a scaler or any other device containing only a few multivibrator circuits has to be built, then the power consumption will not be restricted to such an extent as it would be when a large number of those circuits have to be incorporated in a high-capacity electronic computer, say. One of the reasons to aim at as low a power consumption as possible in that case would be that the heat dissipation has to be kept within certain bounds.
The choice of component values will generally be greater than the choice of available tube types. Therefore, the first thing to do will be to choose a type of tube that is the best to fulfil the demands in the special case considered. A low internal anode resistance and low capacitances will be advantageous for attaining a high speed; a high amplifica:ion factor and particularly a low anode-to-grid capacitance may increase the trigger sensitivity. Furthermore maximum allowed values of anode and grid currents of the tube are published by the manufacturer and it is advisable to choose values within as small a safety margin below these maxima as is possible. A large anode current allows for a small anode load resistance, which is advantageous with respect to the speed to be attained. A large grid current has a large stabilizing effect (see Chapters 3 and 5).
Once the value of the anode current $I_{a o}$ of the conducting tube is chosen, the value of its anode voltage is defined from the $I_{a}-V_{a}$ characteristic at zero grid voltage ($V_{a I o}=r_{a} I_{a o}$).
Usually, the required anode-voltage change, when triggering the multivibrator will be known. It may, for example, be defined by the further use to be made of this voltage change, or occasionally by the kind of indication of the position of the multivribrator. Gas discharge tubes are usually used for this purpose and then a certain minimum voltage change is wanted to ignite these tubes. If the anode-voltage change is
fixed the anode voltage of the non-conducting tube $V_{a I I o}$ is known from $V_{a I o}$ and the anode-voltage change.
Next, the voltage at the grid of the non-conducting tube, $V_{g I I o}$, can be fixed to a value safely below the cut-off point to prevent the influence of interfering signals.
According to the foregoing remarks it can be considered a rather general case to take as known quantities $I_{a o}, I_{g o}, V_{a I_{o}}, \Delta V_{a}\left(=V_{a I I o}-V_{a I_{o}}\right)$, $V_{g I I o}$.
From the expressions derived for the static condition in chapter 5 four independent equations can be extracted, which are conveniently chosen as follows:

$$
\begin{align*}
& V_{g I I o}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime}-\varepsilon_{g} R_{a} I_{a o} \tag{5-7}\\
& V_{a I I o}-V_{a I o}=\left(1-\varepsilon_{a}\right) R_{a} I_{a o}-\varepsilon_{a} R_{g} I_{g o} \tag{5-16}\\
& \left(1-\varepsilon_{a}\right) R_{a} I_{a o}=\left(1-\varepsilon_{a}\right) V^{\prime}-\varepsilon_{a} V^{\prime \prime}-V_{a I o} \tag{5-9}\\
& \left(1-\varepsilon_{g}\right) R_{g} I_{g o}=\varepsilon_{g} V^{\prime}-\left(1-\varepsilon_{g}\right) V^{\prime \prime} \tag{5-14}
\end{align*}
$$

The unknown quantities in these equations are $\varepsilon_{a}, \varepsilon_{g}, V^{\prime}, V^{\prime \prime}, R_{a}$ and R_{g}. However, a relation exists between some of them:

$$
\begin{array}{ll}
& R_{a}=\varepsilon_{a}\left(R_{g}+R+R_{a}\right) \\
& R_{g}=\varepsilon_{g}\left(R_{g}+R+R_{a}\right) \\
\text { or: } & \varepsilon_{g} R_{a}=\varepsilon_{a} R_{g} \tag{10-3}
\end{array}
$$

This reduces the number of unknown quantities to five. Thus, one of them still has to be chosen before the others can be determined.
One of them may conveniently be the value of the positive $H T$ supply voltage V^{\prime}, as this must be at any rate higher than the anode voltage of the non-conducting tube $V_{a I I_{o}}$, say by an amount of some ten volts. As the output voltages of conventional $H T$ supply apparatus generally have more or less standardized values, one of these values that best fits the foregoing demand may be chosen.
It is then possible to find from equations $(5-7),(5-16),(5-9)$ and $(5-14)$ explicit expressions for $\varepsilon_{a}, \varepsilon_{g}, R_{a}, R_{g}$ and $V^{\prime \prime}$ as functions of the known quantities.
Elimination of R_{a}, R_{g} and $I_{g o}$ from the four equations is possible in the following way. From equations (5-9) and (5-14) $R_{a} I_{a o}$ and $R_{g} I_{g o}$ can be expressed in terms of ε_{g} and ε_{a} and then substituted in equations
(5-7) and (5-16). These equations are then reduced to the following simple forms:

$$
\begin{align*}
& \varepsilon_{g}=\left(1-\varepsilon_{a}\right)\left(V_{g I I o}+V^{\prime \prime}\right) /\left(V_{a I o}+V^{\prime \prime}\right) \tag{10-4}\\
& \varepsilon_{a}=\left(1-\varepsilon_{g}\right)\left(V^{\prime}-V_{a I I o}\right) / V^{\prime} \tag{10-5}
\end{align*}
$$

From these equations it follows that:

$$
\begin{align*}
\varepsilon_{g}= & V_{a I I o}\left(V_{g I I o}+V^{\prime \prime}\right) /\left\{V^{\prime}\left(V_{a I_{o}}-V_{g I I_{o}}\right)+V_{a I I_{o}}\left(V_{g I I o}+V^{\prime \prime}\right)\right\}(10-6) \\
\varepsilon_{a}= & \left(V^{\prime}-V_{a I I_{o} o}\right)\left(V_{a I o_{o}}-V_{g I I_{o} o}\right) /\left\{V^{\prime}\left(V_{a I o}-V_{g I I_{o}}\right)+\right. \\
& \left.+V_{a I I o}\left(V_{g I I o}+V^{\prime \prime}\right)\right\} \tag{10-7}
\end{align*}
$$

As both ε_{g} and ε_{a} are ratios of resistances, their values must be positive. This condition leads to another condition with respect to the value of $V^{\prime \prime}$. The denominator of both expressions is positive, which can be seen by re-arranging it in the following form: $V^{\prime} V_{a I o}+V^{\prime \prime} V_{a I I o}-V_{g I I o}\left(V^{\prime}-\right.$ $\left.V_{a I I o}\right)$.
The first two terms are positive; the last one also, because $-V_{g I I}$ is positive as well as $V^{\prime}-V_{a I I o}$. The denominator being always positive, it can directly be seen that ε_{a} is positive, as its numerator is also positive. For ε_{g} to be positive it is necessary that $V_{g I I o}+V^{\prime \prime}>0$ or $V^{\prime \prime}>-V_{g I I o}$. The third ratio of resistances, viz. ε must also be positive. This gives the condition $1-\varepsilon_{a}-\varepsilon_{g}>0$. Substitution of (10-6) and (10-7) leads to $V_{a I I o}\left(V_{a I_{o}}-V_{g I I o}\right)>0$, which condition is indeed always fulfilled. From the fact that $\varepsilon_{g}, \varepsilon_{a}$ and ε are all positive it can be concluded that all resistances must have the same sign.
Next R_{a} can be solved from equation (5-7):
$R_{a}=\left\{V^{\prime}\left(V_{a I I o}-V_{a I o}\right)-V_{g I I o}\left(V_{a I I o}-V^{\prime}\right)\right\} / I_{a o} V_{a I I o}$
From equation (10-3):

$$
\begin{align*}
R_{g}= & R_{a} \varepsilon_{g} \varepsilon_{a}=\left(V_{g I I_{o}}+V^{\prime \prime}\right)\left\{V^{\prime}\left(V_{a I I_{o}}-V_{a I o}\right)-V_{g I I o}\left(V_{a I I o}-V^{\prime}\right)\right\} \mid \\
& \mid I_{a o}\left(V^{\prime}-V_{a I I_{o} o}\right)\left(V_{a I o}-V_{g I I o}\right) \tag{10-9}
\end{align*}
$$

As in practice $V^{\prime}>-V_{g I I o}$ and $V_{a I I o}-V_{a I_{o}}>V^{\prime}-V_{a I I o}$, the expressions for R_{a} and R_{g} are positive. The value of R can be determined from expr. ($10-1$) or ($10-2$), and will be positive, because R_{a} and R_{g} are. Finally $I_{g o}$ is found from equation (5-14):

$$
\begin{aligned}
I_{g o} & =\left(V^{\prime}-V_{a I I o}\right)\left\{V_{a I I o} V_{g I I o}+V^{\prime \prime}\left(V_{a I I o}-V_{a I o}+V_{a I I o}\right)\right\} I_{a o} l \\
& \mid\left(V_{g I I o}+V^{\prime \prime}\right)\left\{V_{a I I o}\left(V^{\prime}-V_{g I I o}\right)-V^{\prime}\left(V_{a I o}-V_{g I I o}\right)\right\} .
\end{aligned}
$$

From this equation $V^{\prime \prime}$ can be expressed in known quantities:

$$
\begin{align*}
& V^{\prime \prime}=\left[V_{g I I o} V_{a I I o}\left(V^{\prime}-V_{a I I o}\right) I_{a o}-V_{g I I o}\left\{V^{\prime}\left(V_{a I I o}-V_{a I o}\right)-\right.\right. \\
& \left.\left.V_{g I I o}\left(V_{a I I o}-V^{\prime}\right)\right\} I_{g o}\right] /\left(-\left(V^{\prime}-V_{a I I o}\right)\left(V_{a I I o}-V_{a I o}+V_{g I I o}\right) I_{a o}+\right. \\
& \left.\quad+\left\{V^{\prime}\left(V_{a I I o}-V_{a I o}\right)-V_{g I I o}\left(V_{a I I o}-V^{\prime}\right)\right\} I_{g o}\right] \tag{10-10}
\end{align*}
$$

In practice, when designing a multivibrator circuit, one will first have to calculate the value of $V^{\prime \prime}$ from expression $(10-10)$. Then check whether $V^{\prime \prime}$ is larger than $-V_{g I I o}$, which is necessary for a positive value of ε_{g}, as shown before. Once $V^{\prime \prime}$ is determined the other unknown quantities can be calculated.
A numerical example will be given. Starting from the following given quantities: $V^{\prime}=200 \mathrm{~V}, V_{a I_{o}}=50 \mathrm{~V}, V_{a I I o}=150 \mathrm{~V}, V_{g I I_{o}}=-20 \mathrm{~V}$, $I_{a o}=5 \mathrm{~mA}, I_{g o}=0,8 \mathrm{~mA}$ the calculations give the following results:
$V^{\prime \prime}=93 \mathrm{~V}, R_{a}=25 \mathrm{k} \Omega, R=73.5 \mathrm{k} \Omega, R_{g}=80 \mathrm{k} \Omega$.
With the above procedure the static condition is determined and here the capacitances do not come into play. For the dynamic condition, however, the values of the coupling capacitances between anodes and grids and between the trigger-pulse source and grids are of importance. Both trigger sensitivity and speed are influenced by them. At first it would seem to be rather difficult to find a method for straight-forward determination of the optimum values of the coupling capacitors which were termed C and C_{c} respectively in previous chapters. However, the following reasoning may show that it is possible to derive a certain relation between C and C_{c} that must be fulfilled to obtain optimum speed and sensitivity. This relation is the following:

$$
\begin{equation*}
R C=R_{g} C_{i} \tag{10-11}
\end{equation*}
$$

$$
\begin{equation*}
\text { or } \quad T=T_{g} \tag{10-12}
\end{equation*}
$$

(see expressions ($\mathrm{I}-1$) and ($\mathrm{I}-2)$) where $\mathrm{Ci}=C_{c}+C_{g}, C_{g}$ being the total capacitance between grid and cathode. Or in words, the time constant of the coupling circuit between anodes and grids must equal the time constant in the grid circuit. If this relation exists, then the quantities X derived in appendix II will be equal to the quantities Y derived in appendix III, because $D^{\prime}=T$ according to expression (I-20). In that
case the transient voltage $V_{g I}{ }^{*}$ at the grid of tube I (expr. (III-8)) will be a true copy of the transient anode voltage of tube II (expr. (II-21)), only decreased by a factor $R_{g} /\left(R+R_{g}\right)$, the transients at $A_{I I}$ and G_{I} from the first phase being of minor importance, because tube II is not yet conducting.
If $T>T_{g}$ then the shape of $V_{g I}$ will be such that it falls rapidly to a high negative value and then gradually rises to its final value ("overshoot"; see for example the oscillograms of figs. 7.5 and 7.7 , where T was twice the value of T_{g}). If the next trigger pulse appears at an instant when the grid voltage $V_{g I}$ has not risen sufficiently, then the corresponding tube I may not be brought into the conducting state before tube II has reached this state and then the triggering fails.
In the npposite case, $T<T_{g}$, (to be called "undershoot") the grid voltage $V_{g I}$ falls to a rather small negative value and then continues to fall with a much smaller slope to its final value. This may seem advantageous for high speed triggering, but the positive-going voltage at grid $G_{I I}$ may not reach the cut-off point rapidly enough to achieve proper triggering. Therefore it is to be expected that the case $T=T_{g}$ is the most favourable condition for attaining a high triggering speed at a reasonable sensitivity. With these considerations in mind the following procedure for determining the values of the coupling capacitances is recommended. Choose a value of C_{c}, next a value of C in accordance with condition (10-11) and then calculate the trigger sensitivity as indicated in chapter 8 . Should the required minimum trigger pulse amplitude be too high with respect to the available amplitude then C_{c} and C have to be chosen larger, their ratio remaining unchanged, until the sensitivity is in accordance with the available trigger pulse amplitude. Then one is sure to have the maximum speed obtainable with that sensitivity.
The above statements about the influence of the coupling capacitors on speed and sensitivity have been confirmed by measurements on the circuit mentioned and defined at the beginning of section $8-1$. The values of C and C_{c} in this circuit have been varied. For a large number of combinations of these values the trigger sensitivity and the maximum speed have been determined. The results are represented in table VII. The sensitivity is measured at an input pulse repetition frequency of $10 \mathrm{kc} / \mathrm{s}$, well below the lowest maximum speed that ever occurred. It is expressed by the minimum trigger pulse amplitude $V_{c r}$ at that frequency. The speed is expressed in kc / s, being the maximum frequency f_{m} at which the multivibrator still operated correctly as a binary frequency divider when triggered at both grids simultaneously by pulses of an amplitude of 30 V .

The maximum pulse frequency available was $200 \mathrm{kc} / \mathrm{s}$; the maximum pulse amplitude 37 V .

Table VII

$\begin{aligned} & C_{c} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{gathered} C \quad 30 \\ (\mathrm{pF}) \end{gathered}$	40	50	60		100		120	150
	$V_{c r} \quad f_{m}$	$V_{c r} \quad f_{m}$	$V_{c r} \quad f_{m}$	$V_{c r}$	f_{m}	$V_{c r}$	f_{m}	$V_{c r} f_{m}$	$V_{c r} f_{m}$
20	33.5 -	32.5	30.0	28.0	52	25.5	40		
30	$29.5>200$	$27.5>200$	$24.5 \quad 140$	23.0	110	20.5	72		
40	$29.5>200$	$24.5>200$	$21.3>200$	20.0	195	17.7	112		
50	>37 -	$25.5>200$	$20.5>200$	19.0	>200	16.5	150		
60		>37	$20.5>200$	18.5	>200	15.5	175		
70			$22.0>200$	18.5	>200				
80			$>37-$	18.5	>200				
90				20.0					
100				31.0		11.5	>200		
120						11.5		10,3 192	
150						12.1			9.2158

From table VII it can be seen that at a fixed value of C the trigger sensitivity shows a maximum at that value of C_{o} which equals C. Because the values of R and R_{g} are also the same ($200 \mathrm{k} \Omega$), this means that the time constants T and T_{g} are equal if $C=C_{c}$.
At a fixed value of C_{c} the sensitivity increases with increasing value of C, on the other hand the speed decreases.
At a fixed value of C the speed increases with increasing C_{c}.
At equal values of C and $C_{c}\left(T=T_{g}\right)$ the trigger sensitivity increases with increasing capacitances, whereas the speed decreases. However, the speed will be higher than at $C_{c}<C$.
Note: The equations governing the static condition allow for the determination of the influence of component and tube tolerances on the stability of this condition. This is not dealt with here, because it has been the subject of several articles, mentioned in chapter 2 .

11. VARIATIONS OF THE FUNDAMENTAL CIRCUIT AND WAY OF TRIGGERING

11.1 Automatic grid bias

Instead of incorporating the separate negative grid bias supply - $V^{\prime \prime}$ in the multivibrator circuit as shown in fig. 3-1, automatic negative grid bias may be applied by inserting a by-passed cathode resistor in the circuit (see fig. 11-1).
If the time constant of the cathode circuit is sufficiently large, the voltage

Fig. 11-1 drop thus produced may be considered as a constant voltage source, at least during the triggering action. This voltage drop depends, however, on the value of the anode current in the static condition. The foregoing considerations and formulae derived from them may be used in analysing the circuit of fig. 11-1 as long as it is kept in mind that

$$
\begin{equation*}
V^{\prime \prime}=R_{k} I_{a o} \tag{11-1}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{\prime}=V_{b}-R_{k} I_{a o} \tag{11-2}
\end{equation*}
$$

In these expressions the influence of the grid current $I_{g o}$, that also flows through R_{k}, has been neglected with respect to the anode current $I_{a 0}$.
In the static condition the voltages at the grids and anodes must be taken with respect to the cathode. Their values with respect to earth will be larger by an amount $R_{k} I_{a 0}$.
For the transient voltages it does not matter whether they refer to cathode or to earth as it is assumed that the value of the by-pass capacitor is such that it represents a short-circuit for these transients.

11.2 TRIGGER PULSES APPLIED TO ONE GRID ONLY

As already mentioned in the introduction, the triggering may be produced either by applying pulses to the grids of both tubes simultaneously, or by applying pulses to the grids of tube I and tube II alternately.
The first method is used for instance in frequency-division circuits: one multivibrator circuit will halve the input pulse frequency. The second method is used for instance in those circuits that are used to open or close
gates. When negative pulses are only applied to the grid of the conducting tube, the circuit operation can be analysed in an analogous way to the methods of the previous chapters.
If, for instance, in the circuit of fig. $3-1$ only a negative-going voltage is applied to the grid of tube I, that is assumed to be conducting, then it will be clear that in fig. 6-2 the current source I_{i} must be omitted. Consequently, during the first phase of the dynamic condition the voltage at grid $G_{I I}$ will be represented by the following expression instead of by expression (I-36) :

$$
\begin{equation*}
V_{g I I}(t)=V_{g I I o}+I_{a o} \varepsilon_{a} R_{g}\left\{1-\frac{1}{2}(1-P) e^{p_{1} t}-\frac{1}{2}(1+\mathrm{P}) e^{p_{2} t}\right\} U(t) \tag{11-3}
\end{equation*}
$$

and the voltage at A_{I} by
$V_{a I}(t)=V_{a I o}+I_{a o}\left(1-\varepsilon_{a}\right) R_{a}\left\{1-\frac{1}{2}(1-L) e^{p_{1} t}-\frac{1}{2}(1+L) e^{p_{2} t}\right\} U(t)$
instead of by expression (I-40).
The voltages at G_{I} and $A_{I I}$ remain the same as those represented by expressions (I-42) and (I-44), respectively.
Referring to expressions $(6-15)$ to $(6-26)$ inclusive, the changes can also be indicated in the following way:
$V_{1}, V_{4}, V_{5}, V_{6}, V_{7}, V_{10}, V_{11}, V_{12}$ remain unchanged
$V_{2}=-\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1-P)$
$V_{3}=-\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1+P)$

When introducing these values in the formulae given in chapter 6, the grid and anode voltages during the complete dynamic condition can be evaluated.
One of the results of this single-grid triggering will be that the trigger sensitivity is increased, since the positive-going voltage at grid II originating from the rising voltage at anode I is no longer counteracted by the negative input-voltage pulse at grid II, as in the case of double-grid triggering. Thus, the cut-off grid voltage of tube II will be attained sooner.

12. SOME ACTUAL BISTABLE MULTIVIBRATOR CIRCUITS

In this chapter a few actual bistable multivibrator circuits are presented, ranging from the simplest type to a complicated one which enables highspeed operation up to $20 \mathrm{Mc} / \mathrm{s}$.

12.1. Bistable multivibrator for maximum trigger pulse frequency of $200 \mathrm{Kc} / \mathrm{s}$

This multivibrator is equipped with the double-triode type E 90 CC and is basically equivalent to the circuit of fig. $3-1$, only the negative supply voltage source $V^{\prime \prime}$ is replaced by an automatic grid-bias source as represented in fig. 12-1. The circuit diagram in fig. 12-1 shows a cascade of four stages. The special method of coupling between the different stages results in a decimal counter, which is shown schematically in fig. 12-2. Decimal indication of the position of the counter is by means of ten neon lamps (0 to 9) and a resistance network R_{9}, R_{10}.

Fig. 12-2
The counter can be reset manually to the zero position by pressing pushbutton R (at bottom right in fig. 12-1).
Because the operation of neon lamps necessitates rather high voltage swings at the anodes of the tubes, high values of anode resistances had to be used so restricting the maximum operating speed to $200 \mathrm{kc} / \mathrm{s}$. Specification

Tubes: E90CC Neon lamps: Philips Z8
Voltages:
supply voltage 200 V D.C. at 46 mA
anodes of conducting tubes
grids of conducting tubes
67 V
anodes of non-conducting tubes
36 V
grids of non-conducting tubes
cathodes
heater supply
voltage across R_{8} with reset-button pressed

161 V
16 V
36 V
6.3 V A.C. at 1.6 A
approx. 25 V

Fig. 12-1

Output voltage approx. 50 V :
negative with rise time of approx. $1.5 \mu \mathrm{sec}$ at count of zero,
positive with rise time of approx. $4 \mu \mathrm{sec}$ at count of four.
Input signal requirements : the decade responds to negative-going voltage excursions of at least 35 V with a rise time of less than $1.5 \mu \mathrm{sec}$. In order to ensure that the decade does not respond to positive-going voltage excursions the amplitude of the input signal should be less than 70 V . Max. input repetition frequency: $200 \mathrm{kc} / \mathrm{s}$.

Component values:

R_{1}	$8.2 \mathrm{k} \Omega$	2%	1 W	R_{9}	$220 \mathrm{k} \Omega$	5%	$\frac{1}{2} \mathrm{~W}$
R_{2}	$6.8 \mathrm{k} \Omega$	2%	1 W	R_{10}	$470 \mathrm{k} \Omega$	5%	$\frac{1}{2} \mathrm{~W}$
R_{3}	47	$\mathrm{k} \Omega$	1%	$\frac{1}{2} \mathrm{~W}$	R_{11}	$1 \mathrm{k} \Omega$	10%
R_{4}	15	$\mathrm{k} \Omega$	1%	$\frac{1}{8} \mathrm{~W}$			
R_{5}	$1.2 \mathrm{~W} \Omega$	2%	2 W	C_{1}	82 pF	5%	
R_{6}	22	$\mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{2}	33 pF	5%
R_{7}	10	$\mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{3}	68 pF	5%
R_{8}	680	$\mathrm{k} \Omega$	10%	1 W		$0.01 \mu \mathrm{~F}$	10%

12.2. Bistable multivibrator for input pulse frequency up to $1 \mathrm{Mc} / \mathrm{s}$

Replacing the input coupling capacitances (C_{2} of fig. 12-1) by diodes increases the speed of a bistable multivibrator. This is because the timeconstant in the grid circuit is lowered so allowing a lower coupling network time constant ($C R$ in fig. 11-1). A reduction in any time constant in the circuit results in a higher trigger speed as is shown in chapter 9 . Moreover, the input coupling diodes result in better discrimination between possitive and negative input trigger pulses and have a steering effect in that they bring the negative-going pulse exactly to the grid of the conducting tube and keep it far from the grid of the cut off tube. This improves the trigger sensitivity of the multivibrator as suggested in section 2 of Chapter 11.
This circuit also uses E90CC tubes, but because of the changes mentioned it attains a maximum triggering speed of $1 \mathrm{Mc} / \mathrm{s}$. Its circuit diagram can be taken from fig. $12-3$, which represents a decade counter containing neon lamp position indicators.
One germanium diode is used in the first stage. Its purpose is to cut off the positive pulses that would result after differentiation of the incoming signal. Because of this diode the sensitivity remains practically constant up to $1 \mathrm{Mc} / \mathrm{s}$.
12.2] BISTABLE MULTIVIBRATOR FOR IMPUT PULSE FREQ. UP TO $1 \mathrm{MC} / \mathrm{S} 65$

Point R in the circuit of fig. 12.3 is normally connected to earth via an external push-button switch. The decade can be reset to the zero position by momentarily disconnecting point R from earth. In this way all the right-hand sections of the double triodes become conducting.

Specification

Tubes: E90CC and EB91.
Neon lamps: Philips Z8.
Germanium diode: OA73.

Voltages:

supply voltage	200	V D.C. at 68 mA
anodes of conducting tubes	84	V
grids of conducting tubes	30	V
anodes of non-conducting tubes	183	V
grids of non-conducting tubes	15	V
cathodes	30	V
heater supply	$6.3 \mathrm{~V} \mathrm{A.C} at 3.1 A$.	
voltage across R_{8} with reset-button pressed	approx. 25 V	

Output voltage approx. 45 V :
negative with rise time of approx. $1 \mu \mathrm{sec}$ at count of zero, positive with rise time of approx. $2 \mu \mathrm{sec}$ at count of four.

Input signal requirements: the decade responds to negative-going voltage excursions of at least 25 V with a rise time of less than $0.2 \mu \mathrm{sec}$. Max. input repetition frequency: $1 \mathrm{Mc} / \mathrm{s}$.

Component values:

R_{1}	$3.9 \mathrm{k} \Omega$	2%	2 W	R_{10}	$470 \mathrm{k} \Omega$	5%	$\frac{1}{2} \mathrm{~W}$
R_{2}	$68 \mathrm{k} \Omega$	1%	$\frac{1}{2} \mathrm{~W}$	R_{11}	$1 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$
R_{3}	$15 \mathrm{k} \Omega$	1%	$\frac{1}{8} \mathrm{~W}$	C_{1}	15 pF	5%	
R_{4}	270Ω	2%	2 W	C_{2}	18 pF	5%	
R_{5}	$3.3 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{3}	22 pF	5%	
R_{6}	$10 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{4}	33 pF	5%	
R_{7}	$33 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{5}	68 pF	5%	
R_{8}	470Ω	10%	$1 \frac{1}{2} \mathrm{~W}$	C_{6}	$0.01 \mu \mathrm{~F}$	10%	
R_{9}	$220 \mathrm{k} \Omega$	5%	$\frac{1}{2} \mathrm{~W}$				

It should be noted that the $200 \mathrm{kc} / \mathrm{s}$ decade described in the preceding section can be driven by this $1 \mathrm{Mc} / \mathrm{s}$ decade.
When several decades are combined in a counter their reset push buttons can be combined in one, the points R of each decade being connected to this switch.
In the above circuits, variations of $\pm 10 \%$ in the anode supply voltage and of $\pm 5 \%$ in the heater supply voltage are allowed.

12.3. Bistable multivibrator for $7 \mathrm{Mc} / \mathrm{S}$ Maximum input pulse FREQUENCY

By making use of the special high-speed switching double-triode type E88CC and dispensing with the neon-lamp indicators a multivibrator with a higher switching speed can be obtained. Its circuit diagram can be taken from fig. 12-4.
This figure again represents a decade counter composed of four binary stages with the same type of coupling and feedback between various stages as used in the two counters in sections $12-1$ and $12-2$. The reset is slighty different from that of the preceding counters (see position of push-button R in fig. 12-4).
In addition, peaking coils L_{1}, L_{2} and L_{3} are incorporated in the anode circuits of stages one and two to give steeper flanks to the voltage swings at these anodes. The indication system makes use of a specially developed small cathode-ray tube, type DM 160, that gives a brilliant green fluorescent light when fully conducting and is dark as soon as only a few volts at negative potential are applied between grid and cathode.
The indication is now in a binary coded decimal form, in such a way that the sum of the numbers (indicated beside each indicator tube in fig. 12-4), of the glowing tubes represents the decimal number indicating the position of the counter. For instance, when tubes 1 and 4 are indicating, the counter is in position 5 .
When four of these types of multivibrator are connected simply in cascade to give a counter of sixteen, the maximum input trigger-pulse repetition frequency at which the counter operates satisfactorily is $7 \mathrm{Mc} / \mathrm{s}$. When combined with a decimal counter in the way indicated by fig. $12-4$ this maximum frequency is reduced to $5 \mathrm{Mc} / \mathrm{s}$ because of the action of feedback.

Specification

Tubes: E88CC and DM160.
Germanium diodes: OA71.

Voltages:
supply voltage
anodes of conducting tubes
100 V D.C. at 68 mA
grids of conducting tubes 79 V
anodes of non-conducting tubes 38 V
grids of non-conducting tubes 96 V
cathodes 32 V
Heaters and filaments E88CC 38 V
6.3 V A.C. at 1.2 A
DM160 1 V A.C. or D.C. at 0.12 A

Output voltage approx. 17 V :
negative at count of zero with "rise-time" of approx. $0.3 \mu \mathrm{sec}$
positive at count of four with "rise-time" of approx. $0.5 \mu \mathrm{sec}$
The stage responds to negative-going input voltage excursions of about 12 V with a rise time of about $0.05 \mu \mathrm{sec}$.
The capacitive load at the output of the stages should not exceed 22 pF .
The supply voltage need not be stabilized.
Component values:

R_{1}	$1.5 \mathrm{k} \Omega$	2%	$\frac{1}{2} \mathrm{~W}$	L_{1}	$30 \mu \mathrm{H}$	
R_{2}	$22 \mathrm{k} \Omega$	1%	$\frac{1}{4} \mathrm{~W}$	L_{2}	$50 \mu \mathrm{H}$	
R_{3}	$15 \mathrm{k} \Omega$	1%	$\frac{1}{4} \mathrm{~W}$	L_{3}	$100 \mu \mathrm{H}$	
R_{4}	220Ω	10%	$\frac{1}{2} \mathrm{~W}$			
R_{5}	$1 \mathrm{M} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{1}	22 pF	5%
R_{6}	$100 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{2}	$0.01 \mu \mathrm{~F}$	10%
R_{7}	56Ω	5%	1 W			
R_{8}	120Ω	2%	$\frac{1}{2} \mathrm{~W}$	C_{3}	27 pF	5%
R_{9}	680Ω	2%	3 W	C_{4}	47 pF	5%
R_{10}	$1 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{5}	68 pF	5%
R_{11}	$2.2 \mathrm{k} \Omega$	10%	$\frac{1}{2} \mathrm{~W}$	C_{6}	100 pF	5%

12.4. Multivibrator with high DC stability and high speed

Another multivibrator circuit with the double-triode E88CC has been designed in which a high standard of DC stability has been imposed. At the same time a high trigger speed for a decimal counter composed of these multivibrators has been attained by using an extra amplifier stage between the first and the second multivibrators. The circuit diagram is represented in fig. 12-5.
The supply voltages amount to 85 V at 32.2 mA current drain for the anodes, and -65 V at 11.8 mA current drain for the grids; tolerances

Fig. 12-5. Stages III and IV are identical to stage II exept that L_{2} can be omitted.

Specification
Tubes: E88CC
Germanium diodes: OA85
Component values
First multivibrator

R_{a}	$1.8 \mathrm{k} \Omega$	$\pm 2 \%$	1 W
R_{k}	$10 \mathrm{k} \Omega$	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{g}	$10 \mathrm{k} \Omega$	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{s}	220Ω	$\pm 20 \%$	$\frac{1}{4} \mathrm{~W}$
$R_{\text {in }}$	$39 \mathrm{k} \Omega$	$\pm 10 \%$	$\frac{1}{4} \mathrm{~W}$
C_{k}	15 pF	$\pm 10 \%$	
$C_{i n}$	47 pF	$\pm 10 \%$	
L_{1}	$25 \mu \mathrm{H}$	$\pm 10 \%$	

Amplifier

R_{a}	$1.5 \mathrm{k} \Omega$	$\pm 10 \%$	$\frac{1}{2} \mathrm{~W}$
R_{k}	680Ω	$\pm 10 \%$	$\frac{1}{2} \mathrm{~W}$
R_{g}	$100 \mathrm{k} \Omega$	$\pm 10 \%$	$\frac{1}{4} \mathrm{~W}$
C_{k}	330 pF	$\pm 10 \%$	
C_{g}	47 pF	$\pm 10 \%$	
L_{1}	$50 \mu \mathrm{H}$	$\pm 10 \%$	

Second multivibrator

$R_{a_{1}}$	$1 \mathrm{k} \Omega$	$\pm 2 \%$	1 W
$R_{a_{2}}$	820Ω	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{k}	$10 \mathrm{k} \Omega$	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{g}	$10 \mathrm{k} \Omega$	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{s}	220Ω	$\pm 20 \%$	$\frac{1}{4} \mathrm{~W}$
$R_{i n}$	$39 \mathrm{k} \Omega$	$\pm 10 \%$	$\frac{1}{4} \mathrm{~W}$
C_{k}	27 pF	$\pm 10 \%$	
$C_{i n}$	56 pF	$\pm 10 \%$	
L_{2}	$15 \mu \mathrm{H}$	$\pm 10 \%$	

Third and fourth multivibrator

$R_{a_{1}}$	$1 \mathrm{k} \Omega$	$\pm 2 \%$	1 W
$R_{a_{2}}$	820Ω	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{k}	$10 \mathrm{k} \Omega$	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{g}	$10 \mathrm{k} \Omega$	$\pm 2 \%$	$\frac{1}{2} \mathrm{~W}$
R_{s}	220Ω	$\pm 20 \%$	$\frac{1}{4} \mathrm{~W}$
$R_{i n}$	$39 \mathrm{k} \Omega$	$\pm 10 \%$	$\frac{1}{4} \mathrm{~W}$
C_{k}	27 pF	$\pm 10 \%$	
$C_{i n}$	68 pF	$\pm 10 \%$	
L_{2}	$15 \mu \mathrm{H}$	$\pm 10 \%$	

of $\pm 2 \mathrm{~V}$ are allowed in these voltages without upsetting the operation of the counter over the whole frequency range from zero up to $13 \mathrm{Mc} / \mathrm{s}$. At the maximum input frequency of $13 \mathrm{Mc} / \mathrm{s}$ the tolerance in the input pulse is very tight, but at $11.5 \mathrm{Mc} / \mathrm{s}$ it allows up to 13 V to 16 V variation in amplitude.
The shape of the inputpulse should preferably be an almost perfect square-wave with flank rise-times of about 10 millimicroseconds, and an amplitude of 14.5 V . Tolerances in the components are indicated in the parts list.
The final (fourth) stage of the multivibrator chain can be loaded at the maximum trigger frequency with a resistive load of $1.5 \mathrm{k} \Omega$ between anode and the positive HT line, with a resistive load of $13 \mathrm{k} \Omega$ between anode and cathode and a capacitive load of 82 pF between anode and cathode.

12.5. $18 \mathrm{Mc} / \mathrm{s}$ Bistable multivibrator

The design of the bistable multivibrator described in this section aimed at attaining the highest possible speed of triggering. For this an auxiliary circuit is introduced, thus making the multivibrator depart considerably from the basic principle upon which it is normally based and which has been the object of the analysis given in this book.

The high speed has been attained by making use of an extra feedback between the anode of one tube and the grid of the other. This feedback is obtained by using a transformer as the coupling element. Its windings are in a closed pot-core, type $14 / 8$, made of a ferrite material, called Ferroxplana, which has excellent high frequency properties (low losses). This greatly contributes to the speeding up of the switching processes. The circuit diagram of the multivibrator is in fig. 12-6. This also shows that a cathode-follower stage is necessary to couple one stage to the next. This is mainly for the purpose of reducing the load on the output of the first stage $\left(T_{1} \ldots T_{6}\right.$ represent the Ferroxplana pot-core transformers). Clamping the grid potential to a certain negative voltage level -V also helps in improving the speed. The resistors in series with the speed-up capacitors improve the positive-going flank of the anode voltages.
The maximum trigger speed of a single multivibrator stage is slightly over $20 \mathrm{Mc} / s$, whilst the maximum frequency of several stages coupled together is between 18 and $19 \mathrm{Mc} / \mathrm{s}$.
The trigger pulses at the input of the first stage are negative-going and

nearly triangular shaped, with a base width of about 20 millimicroseconds and an amplitude of preferably 4 to 5 V .
Further details of the circuit can be found in the following specification.

Specification

Tubes E88CC
Germanium diodes OA9.
Component values.

R_{1}	820	Ω	1 W	10%	R_{19}	820	Ω	1 W	10%
R_{2}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	R_{20}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%
R_{3}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	R_{21}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%
R_{4}	$4.7 \mathrm{k} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%	R_{22}	$4.7 \mathrm{k} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%		
R_{5}	470	Ω	$\frac{1}{2} \mathrm{~W}$	10%	R_{23}	470	Ω	$\frac{1}{2} \mathrm{~W}$	10%
R_{6}	820	Ω	1 W	10%	R_{24}	1	$\mathrm{M} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%
R_{7}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	R_{25}	$1.5 \mathrm{k} \Omega$	1 W	10%	
R_{8}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	R_{26}	$2.7 \mathrm{k} \Omega$	1 W	10%	
R_{9}	$4.7 \mathrm{k} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%	R_{27}	820	Ω	1 W	10%	
R_{10}	470	Ω	$\frac{1}{2} \mathrm{~W}$	10%	R_{28}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%
R_{11}	1	$\mathrm{M} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%	R_{29}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%
R_{12}	$1.5 \mathrm{k} \Omega$	1 W	10%	R_{30}	$4.7 \mathrm{k} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%		
R_{13}	$2.7 \mathrm{k} \Omega$	1 W	10%	R_{31}	470	Ω	$\frac{1}{2} \mathrm{~W}$	10%	
R_{14}	820	Ω	1 W	10%	R_{32}	820	Ω	1 W	10%
R_{15}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	R_{33}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%
R_{16}	$47 \mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	R_{34}	47	$\mathrm{k} \Omega$	$\frac{1}{4} \mathrm{~W}$	2%	
R_{17}	$4.7 \mathrm{k} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%	R_{35}	$4.7 \mathrm{k} \Omega$	$\frac{1}{2} \mathrm{~W}$	10%		
R_{18}	470	Ω	$\frac{1}{2} \mathrm{~W}$	10%	R_{36}	470	Ω	$\frac{1}{2} \mathrm{~W}$	10%
C_{1}	18 pF	10%	cer.	C_{6}	18 pF	10%	cer.		
C_{2}	18 pF	10%	cer.	C_{7}	100 pF	10%	cer.		
C_{3}	100 pF	10%	cer.	C_{8}	27 pF	10%	cer.		
C_{4}	27 pF	10%	cer.	C_{9}	18 pF	10%	cer.		
C_{5}	18 pF	10%	cer.	C_{10}	18 pF	10%	cer.		

$+E_{a} \quad=85 \mathrm{~V}$
$-E_{g} \quad=77 \mathrm{~V}$
$-V_{g}$ clamp $=6.2 \mathrm{~V}$
I_{a} per triode while conducting 20 mA

$I_{E a}$	$=110 \mathrm{~mA}$
$I_{E g}$	$=15 \mathrm{~mA}$

13. CONCLUSION

It has been shown in the previous chapters that it is possible to analyse the operation of a bistable multivibrator. An attempt has been made to approach as nearly as possible practical circumstances. However, some assumptions are unavoidable in order to keep the results practicable. It will be good to summarize here the restrictions under which the results obtained are valid.
The shape of the trigger voltages, applied to the grids is taken to be trapezoidal, only the influence of the negative going front flank being considered (see fig. 3-2). The choice of this special shape is thought to be a reasonable approximation to practical pulse shapes and offers the advantage that the input voltage source is readily converted into an input current source, giving a rectangular current pulse, for which the response of the network is relatively easy to calculate. It is, however, quite possible to calculate the response to another kind of voltage function, for instance an exponential time function, but it would complicate the calculation without necessarily being a better approximation to practice. The influence of the positive going rear flank of the input voltage is not calculated, though it could also be done. In chapter 7 it is argued that the influence of this rear flank is not very important and in general does not endanger the correct operation of the trigger.
The amplitude V_{o} of the trigger voltage and the slope α of the negative going front flank are taken to be so large, that the time taken to cut off the conducting tube is negligibly small compared with the inherent time constants of the circuit, in other words this tube is assumed to be instantaneously cut off. Again this is thought to be a good approximation to general practice, but it is also possible to take into consideration a finite time for cutting off the conducting tube. This would of course considerably complicate the calculation.
The voltage between the grid and cathode of the conducting tube is taken to be zero, which is very nearly attained when this tube draws grid current. It means that at grid-to-cathode voltages of zero or positive values the internal grid resistance is very small. A better approximation to practice would be to take into account a finite internal resistance between grid and cathode, involving again more complicated calculations. Next, a few assumptions are introduced that make it possible to separate the multivibrator into two parts which do not influence one another. The first assumption made is that the internal resistances of the supply voltage and trigger voltage sources can be neglected. This is thought
to be admissible in most practical cases, especially for the supply voltage sources when these are stabilized. For the trigger voltage source it will usually be a necessary condition to have a low internal resistance as it is loaded with the low internal grid-to-cathode resistance of the conducting tube.
In the second place the influence of the capacitance between the anode and grid of each tube is not taken into account when calculating the waveforms of the voltage changes at the anodes and grids of the tubes. It is theoretically possible to include these capacitances in the circuit to be analysed, but impracticably complicated calculations would result. In the first phase of the dynamic condition, when both tubes are nonconducting, an approximative method of taking into account these capacitances is used in the calculation of the trigger sensitivity.
All other tube, wiring and stray capacitances can be included in the analysis.
With the foregoing assumptions and restrictions it is possible to analyse completely the static and transient conditions of a triggered bistable multivibrator. The waveforms of the voltage changes at the anodes and grids of the tubes can be determined when a trigger pulse applied to both grids simultaneously or to only one grid at a time causes the circuit to switch over from one static condition to the other. The dynamic condition can be divided in three successive phases with transients occurring at the commencement of each phase.
The analysis also enables the calculation of the trigger sensitivity and determination of the influence of tube characteristics, circuit components and trigger pulse shape on the sensitivity.
As the time constants determining the shape of the transient time functions are known from the analysis, an idea of the maximum triggering speed can be obtained. An actual calculation of this speed is not possible from the analysis, as one of the assumptions has been that the circuit is completely at rest at the instant a trigger pulse appears. At high pulse repetition frequencies this condition is not fulfilled.
Moreover, experiments reveal that the speed increases with the amplitude of the trigger pulse, which would make it still more difficult to give an exact definition of the speed.
Calculated waveforms and trigger sensitivity agree very well with measurements on practical circuits.
A chapter has been added in which the results of some actual multivibrator circuits are dealt with. In general a chain of multivibrators in cascade is formed from the fundamental circuit and used as a decimal counter
stage with the aid of suitable feedback. If the latter is not applied, a binary counter results. It will be clear that each separate multivibrator can be used, for instance, as a voltage level switch able to operate gates in logic circuits. These find many applications in data-handling systems, computers, control systems and the like.

Appendix I. Calculation of the anode- and grid voltages in the first phase
(a) The impedance between $G_{I I}$ and earth (see fig. 6-2).

Indicating the impedance of R_{g} and $C_{i I I}$ in parallel by $Z_{g I I}$, the impedance of R and C in parallel by Z, the impedance of R_{a} and $C_{a I}$ in parallel by $Z_{a I}$, and denoting the time constants by

$$
\begin{align*}
R_{g} C_{i I I} & =T_{g I I} \tag{I-1}\\
R C & =T \tag{I-2}\\
R_{a} C_{a I} & =T_{a I} \tag{I-3}
\end{align*}
$$

the expressions for the impedances become:

$$
\begin{align*}
Z_{g I I} & =R_{g} \frac{1}{1+T_{g I I} p} \tag{I-4}\\
Z & =R \frac{1}{1+T p} \tag{I-5}\\
Z_{a I} & =R_{a} \frac{1}{1+T_{a I} p} \tag{I-6}
\end{align*}
$$

The impedance between $G_{I I}$ and earth will be:

$$
\begin{gathered}
Z_{i g I I}=\frac{Z_{g I I}\left(Z+Z_{a I}\right)}{Z_{g I I}+Z+Z_{a I}}= \\
\frac{R_{g}\left\{R\left(1+T_{a I} p\right)+R_{a}(1+T p)\right\}}{R_{g}(1+T p)\left(1+T_{a I} p\right)+R\left(1+T_{g I I} p\right)\left(1+T_{a I} p\right)+R_{a}(1+T p)\left(1+T_{g I I} p\right)}
\end{gathered}
$$

The expression for $Z_{i g I I}$ is of the form

$$
\begin{equation*}
Z_{i g I I}=\left(1-\varepsilon_{g}\right) R_{g} \frac{1+A p}{1+B p+E p^{2}} . \tag{I-7}
\end{equation*}
$$

where ε_{g} is given by expression (5-6).

$$
\begin{gather*}
A=\frac{R T_{a I}+R_{a} T}{R+R_{a}} \tag{I-8}\\
B=\varepsilon_{g}\left(T+T_{a I}\right)+\varepsilon\left(T_{g I I}+T_{a I}\right)+\varepsilon_{a}\left(T_{a I I}+T\right) \tag{I-9}
\end{gather*}
$$

where ε_{a} is given by expression ($5-3$)

$$
\begin{equation*}
\varepsilon=1-\varepsilon_{g}-\varepsilon_{a}=\frac{R}{R_{g}+R+R_{a}} \tag{I-10}
\end{equation*}
$$

and

$$
\begin{equation*}
E=\varepsilon_{g} T T_{a I}+\varepsilon T_{g I I} T_{a I}+\varepsilon_{a} T_{g I I} T \tag{I-11}
\end{equation*}
$$

It will be clear that the expression for the impedance $Z_{i g I}$ between G_{I} and earth (see fig. 6-3) has a form similar to that of expression (I-7), in which only the indices I and II have to be interchanged and where

$$
\begin{align*}
T_{g I} & =R_{g} C_{i I} \tag{I-12}\\
T_{a I I} & =R_{a} C_{a I I} \tag{I-13}
\end{align*}
$$

(b) The transfer impedance $Z_{a I g I I}$ will be:

$$
\begin{equation*}
Z_{a I g I I}=\frac{Z_{g I I} Z_{a I}}{Z_{g I I}+Z+Z_{a I}} \tag{I-14}
\end{equation*}
$$

or

$$
\begin{equation*}
Z_{a I g I I}=\varepsilon_{a} R_{g} \frac{1+T p}{1+B p+\overline{E p^{2}}} \tag{I-15}
\end{equation*}
$$

(c) The transfer impedance $Z_{g I I a I}$ is equal to $Z_{a I g I I}$:

$$
\begin{equation*}
Z_{g I I a I}=Z_{a I g I I} \tag{I-16}
\end{equation*}
$$

In the same way it holds, for the circuit of fig. 6-3, that

$$
\begin{equation*}
Z_{g I a I I}=Z_{a I I g I} \tag{I-17}
\end{equation*}
$$

(d) The impedance $Z_{i a I}$ between A_{I} and earth is:

$$
\begin{gather*}
Z_{i a I}=\frac{Z_{a I}\left(Z+Z_{g I I}\right)}{Z_{g I I}+Z+Z_{a I}} \tag{I-18}\\
Z_{i a I}=\left(1-\varepsilon_{a}\right) R_{a} \frac{1+D p}{1+B p+E p^{2}} \tag{I-19}
\end{gather*}
$$

where

$$
\begin{equation*}
D=\frac{R T_{g I I}+R_{g} T}{R+R_{g}} \tag{I-20}
\end{equation*}
$$

The voltages at the anodes and grids will now be calculated.
(1) The voltage between $G_{I I}$ and earth (fig. 6-2).

This voltage will be:

$$
\begin{equation*}
V_{g I I}(t)=V_{g I I o}+Z_{i g I I} I_{i}+Z_{g I I a I} I_{a} \tag{I-21}
\end{equation*}
$$

$V_{g I I o}$ is given by expression (5-7):

$$
\begin{gather*}
Z_{i g I I} I_{i}=Z_{i g I I}\left[-\alpha C_{o}\left\{U(t)-U\left(t-t_{o}\right)\right\}\right] \tag{I-22}\\
\quad \text { (see expression 6-7) } \\
Z_{g I I a I} I_{a}=Z_{g I I a I} I_{a o} U(t) \tag{I-23}
\end{gather*}
$$

The expression for $Z_{i g I I}$ and $Z_{g I I a I}$ can be split up into partial fractions.

$$
\begin{equation*}
Z_{i g I I}=\frac{\left(1-\varepsilon_{g}\right) R_{g}}{E\left(p_{1}-p_{2}\right)}\left[-\left(\frac{1}{p_{1}}+A\right) \frac{-p_{1}}{p-p_{1}}+\left(\frac{1}{p_{2}}+A\right) \frac{-p_{2}}{p-p_{2}}\right] \tag{I-24}
\end{equation*}
$$

Where

$$
\begin{align*}
& p_{1}=-\frac{B}{2 E}\left\{1-\sqrt{1-\frac{4 E}{B^{2}}}\right\} \tag{I-25}\\
& p_{2}=-\frac{B}{2 E}\left\{1+\sqrt{1-\frac{4 E}{B^{2}}}\right\} . \tag{I-26}
\end{align*}
$$

p_{1} and p_{2} will both be negative, real quantities, as the network of fig. (6-2) contains only capacitances and resistances.
A unit current step applied to an impedance

$$
\begin{equation*}
Z(p)=\frac{a}{p+a} \tag{I-27}
\end{equation*}
$$

will cause a voltage across this impedance

$$
\begin{equation*}
V(t)=\left(1-e^{-a t}\right) U(t) \tag{I-28}
\end{equation*}
$$

This will be expressed by the following notation:

$$
\begin{equation*}
Z(p) U(t) \equiv\left(1-e^{-a t}\right) U(t) \tag{I-29}
\end{equation*}
$$

Applying this transformation to expression (I-24) gives
$Z_{i g I I} U(t) \equiv \frac{\left(1-\varepsilon_{g}\right) R_{g}}{E\left(p_{1}-p_{2}\right)}\left[-\left(\begin{array}{c}1 \\ p_{1}\end{array}+A\right)\left(1-e^{p_{1} t}\right)+\left(\frac{1}{p_{2}}+A\right)\left(1-e^{p_{2} t}\right)\right] U(t)$
This can be rearranged and finally written:
$Z_{i g I I} U(t) \equiv\left(1-\varepsilon_{g}\right) R_{g}\left[1-\frac{1}{2}(1-K) e^{p_{1} t}-\frac{1}{2}(1+K) e^{p_{2} t}\right] U(t),(I-30)$
where

$$
\begin{equation*}
K=\frac{2 A-B}{B \sqrt{1-4 E / B^{2}}} \tag{I-31}
\end{equation*}
$$

Now, expression (I-22) can be evaluated, remembering that the response to a unit-step function $U\left(t-t_{o}\right)$ is the same as that to a unit-step function $U(t)$, provided the time scale is shifted by replacing t by $t-t_{o}$. Thus:

$$
\begin{align*}
& Z_{i g I I} I_{i}=-\alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}\left[\left\{1-\frac{1}{2}(1-K) e^{p_{1} t}-\frac{1}{2}(1+K) e^{p_{2} t}\right\} U(t)-\right. \\
& \quad-\left\{1-\frac{1}{2}(1-K) e^{p_{1}\left(t-t_{o}\right)}-\frac{1}{2}(1+K) e^{p_{2}\left(t-t_{o}\right)}\right\} U\left(t-t_{o}\right) \tag{I-32}
\end{align*}
$$

In the same way it can be deduced that the transformation of the impedance $Z_{g I I a I}$ is

$$
\begin{equation*}
Z_{g I I a I} U(t) \equiv \varepsilon_{a} R_{g}\left\{1-\frac{1}{2}(1-P) e^{p_{1} t}-\frac{1}{2}(1+P) e^{p_{2} t}\right\} U(t) \tag{I-33}
\end{equation*}
$$

where

$$
\begin{equation*}
P=\frac{2 T-B}{B \sqrt{1-4 E / B^{2}}} \tag{I-34}
\end{equation*}
$$

Then, expression (I-23) will be:

$$
\begin{equation*}
Z_{g I I a I} I_{a}=\varepsilon_{a} R_{g} I_{a o}\left\{1-\frac{1}{2}(1-P) e^{p_{1} t}-\frac{1}{2}(1+P) e^{p_{1} t}\right\} U(t) \tag{I-35}
\end{equation*}
$$

The total voltage between $G_{I I}$ and earth during the first phase of the dynamic condition, as given by expression (I-21), will be the following time-function:

$$
\begin{gather*}
V_{g I I}(t)=V_{g I I o}-\alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}\left[\left\{1-\frac{1}{2}(1-K) e^{p_{1} t}-\frac{1}{2}(1+K) e^{p_{2} t}\right\}\right. \\
\left.U(t)-\left\{1-\frac{1}{2}(1-K) e^{p_{1}\left(t-t_{o}\right)}-\frac{1}{2}(1+K) e^{p_{g}\left(t-t_{o}\right)}\right\} U\left(t-t_{o}\right)\right]+\varepsilon_{a} R_{g} I_{a o} \\
\left\{1-\frac{1}{2}(1-P) e^{p_{1} t}-\frac{1}{2}(1+P) e^{p_{2} t}\right\} U(t) \tag{I-36}
\end{gather*}
$$

(2) The voltage between A_{I} and earth (fig. 6-2)

This voltage will be:

$$
\begin{equation*}
V_{a I}(t)=V_{a I o}+Z_{i a I} I_{a}+Z_{a I g I I} I_{i} \tag{I-37}
\end{equation*}
$$

The transformation of the impedance $Z_{i a I}$ into a time function is:
$Z_{i a I} U(t) \equiv\left(1-\varepsilon_{a}\right) R_{a}\left\{1-\frac{1}{2}(1-L) e^{p_{1} t}-\frac{1}{2}(1+L) e^{p_{2} t}\right\} U(t) \quad(\mathrm{I}-38)$ where

$$
\begin{equation*}
L=\frac{2 D-B}{B \sqrt{1-4 E / B^{2}}} \tag{I-39}
\end{equation*}
$$

Expression (I-37), therefore, will be

$$
\begin{align*}
V_{a I}(t) & =V_{a I O}+\left(1-\varepsilon_{a}\right) R_{a} I_{a o}\left\{1-\frac{1}{2}(1-L) e^{p_{1} t}-\frac{1}{2}(1+L) e^{p_{2} t}\right\} U(t)- \\
& -\alpha C_{c} \varepsilon_{a} R_{g}\left\{1-\frac{1}{2}(1-P) e^{p_{1} t}-\frac{1}{2}(1+P) e^{p_{2} t}\right\} U(t)- \\
& \left.-\left\{1-\frac{1}{2}(1-P) e_{1}^{p}{ }^{\left(t-t_{o}\right)}-\frac{1}{2}(1+P) e^{p_{2}\left(t-t_{o}\right)}\right\} U\left(t-t_{o}\right)\right] . \quad(I-40) \tag{I-40}
\end{align*}
$$

(3) The voltage between G_{I} and earth (fig. 6-3)

$$
\begin{equation*}
V_{g I}(t)=V_{g o I}+Z_{i g I}\left(I_{i}+I_{g}\right), \tag{I-41}
\end{equation*}
$$

where

$$
I_{i}+I_{g}=\left(-\alpha C_{c}+I_{g o}\right) U(t)+\alpha C_{c} U\left(t-t_{o}\right)
$$

and

$$
V_{g I o}=o .
$$

Thus:

$$
\begin{gather*}
V_{g I}(t)=\left(-\alpha C_{c}+I_{g o}\right)\left(1-\varepsilon_{g}\right) R_{g}\left\{1-\frac{1}{2}\left(1-\mathrm{K}^{\prime}\right) e^{p_{1}^{\prime t} t}-\right. \\
\left.-\frac{1}{2}\left(1+K^{\prime}\right) e^{p},^{\prime}\right\} U(t)+\alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}\left\{1-\frac{1}{2}\left(1-K^{\prime}\right) e^{p_{1}^{\prime\left(t-t_{o}\right)}-}\right. \\
\left.-\frac{1}{2}\left(1+K^{\prime}\right) e^{p_{2}^{\prime}\left(t-t_{o}\right)}\right\} U\left(t-t_{o}\right) \tag{I-42}
\end{gather*}
$$

(4) The voltage between $A_{I I}$ and earth (fig. 6-3)

$$
\begin{gather*}
V_{a I I}(t)=V_{a I I o}+Z_{a I I g I}\left(I_{i}+I_{g}\right) \tag{I-43}\\
V_{a I I}(t)=V_{a I I o}+\left(-\alpha C_{o}+I_{g o}\right) \varepsilon_{a} R_{g}\left\{1-\frac{1}{2}\left(1-P^{\prime}\right) e^{p_{1}^{\prime} t}-\right. \\
\left.-\frac{1}{2}\left(1+P^{\prime}\right) e^{p_{s}^{\prime} t}\right\} U(t)+\alpha C_{c} \varepsilon_{a} R_{g}\left\{1-\frac{1}{2}\left(1-P^{\prime}\right) e^{p_{1}^{\prime}\left(t-t_{o}\right)}-\right. \\
\left.-\frac{1}{2}\left(1+P^{\prime}\right) e^{p_{2}^{\prime}\left(t-t_{o}\right)}\right\} U\left(t-t_{o}\right) \tag{I-44}
\end{gather*}
$$

K^{\prime} is found from K by substituting $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}$ and A^{\prime} for p_{1}, p_{2} and A resp., where A is given by expression ($\mathrm{I}-8$) and A^{\prime} is derived from A by substituting $T_{a I I}$ for $T_{a I}$. (see expressions ($\mathrm{I}-3$) and ($\mathrm{I}-13$)).
$p_{1}{ }^{\prime}$ and $p_{2}{ }^{\prime}$ are derived from p_{1} and p_{2} by replacing $T_{a I}$ by $T_{a I I}, T_{g I l}$ by $T_{g I}$ (see expressions ($\mathrm{I}-1$) and (I-12)).
P^{\prime} is derived from P by replacing Index I by II and vice versa.

Appendix II. Calculation of $V_{a I I}$ in the second phase
Expression (6-29) can be evaluated if the expression $\frac{Z_{\text {iaII }}}{Z_{\text {iaII }}+\gamma_{a}}$ and the time function $V_{a I I}(t)_{1}+\mu V_{g I I}(t)$ are known. The first expression results from ($\mathrm{I}-19$) by interchanging the indices I and II:

$$
\begin{equation*}
\frac{Z_{i a I I}}{Z_{i a I I}+r_{a}}=\frac{\left(1-\varepsilon_{a}\right) R_{a}\left(1+D^{\prime} p\right)}{\left(1-\varepsilon_{a}\right) R_{a}\left(1+D^{\prime} p\right)+r_{a}\left(1+B^{\prime} p+E^{\prime} p^{2}\right)} \tag{II-1}
\end{equation*}
$$

Calling

$$
\begin{equation*}
\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}} D^{\prime}+\frac{r_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}} B^{\prime}=F^{\prime} \tag{II-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{r_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{u}} E^{\prime}=G^{\prime}, \tag{II-3}
\end{equation*}
$$

expression (II-1) can be written

$$
\begin{equation*}
\frac{Z_{\text {iaII }}}{Z_{i a I I}+r_{a}}=\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}} \frac{1+D^{\prime} p}{1+F^{\prime} p+G^{\prime} p^{2}} . \tag{II-4}
\end{equation*}
$$

The time function $V_{a I I}(t)_{1}+\mu V_{g I I}(t)$ can be found from expressions $(6-14)$ and $(6-11)$. It is the sum of a constant term V_{o} and a time function $V(t)$

$$
\begin{equation*}
V_{a I I}(t)_{1}+\mu V_{g I I}(t)=V_{o}+V(t) . \tag{II-5}
\end{equation*}
$$

From expression (6-28) it follows that

$$
\begin{equation*}
V_{a I I}\left(t_{I I}\right)_{1}+\mu V_{g I I}\left(t_{I I}\right)=0 . \tag{II-6}
\end{equation*}
$$

or:

$$
\begin{equation*}
V_{o}+V\left(t_{I I}\right)=0 . \tag{II-7}
\end{equation*}
$$

Subtracting (II-7) from (II-5) gives

$$
\begin{equation*}
V_{a I I}(t)_{1}+\mu V_{g I I}(t)=V(t)-V\left(t_{I I}\right) . \tag{II-8}
\end{equation*}
$$

$V(t)$ is a sum of exponential functions

$$
\begin{equation*}
V(t)=\Sigma j V_{j} e^{p_{j} t}=V_{5} e^{p_{1}^{\prime} t}+V_{6} e^{p_{2}^{\prime} t}+\mu V_{2} e^{p_{1} t}+\mu V_{3} e^{p_{2} t} \tag{II-9}
\end{equation*}
$$

V_{5}, V_{6}, V_{2} and V_{3} are given in chapter 6.
Thus:

$$
V(t)-V\left(t_{I I}\right)=\Sigma j V_{j}\left(e^{p_{j} t}-e^{p_{j} t_{I I}}\right),
$$

or: $\quad V_{a I I}(t)_{1}+\mu V_{g I I}(t)=\Sigma j\left[-V_{j} e^{p_{j} t_{I I}}\left\{1-e^{p_{j}\left(t-t_{I I}\right)}\right\}\right]$.
Transformed into a p-function, this becomes:
$\left\{V_{a I I}(t)_{1}+\mu V_{g I I}(t)\right\} U\left(t-t_{I I}\right) \equiv \Sigma j\left\{-V_{j} e^{p_{j} t_{I I}} \frac{-p_{j}}{p-p_{j}} U\left(t-t_{I I}\right)\right\} .(I I-11)$
The evaluation of expression $(6-29)$ is now reduced to the calculation of time functions, corresponding to an operational expression of the following form :

$$
\begin{equation*}
f_{j}\left(t-t_{I I}\right) \equiv \frac{1+D^{\prime} p}{1+F^{\prime} p+\overline{G^{\prime} p^{2}} \frac{-p_{j}}{p-p_{j}} U\left(t-t_{I I}\right), ~(t)} \tag{II-12}
\end{equation*}
$$

Expression (II-12) can be split up into partial fractions, the result being:

$$
f_{j}\left(t-t_{I I}\right) \equiv-\frac{p_{j}}{G^{\prime}} \frac{X_{1^{j}}}{p-p_{3}}+\frac{X_{2^{j}}}{p-p_{4}}+\frac{X_{3^{j}}}{p-p_{j}} U\left(t-t_{I I}\right) .(\mathrm{II}-13)
$$

where

$$
\begin{align*}
& p_{3}=-\frac{F^{\prime}}{2 G^{\prime}}\left\{1-\sqrt{1-\frac{4 G^{\prime}}{F^{\prime 2}}}\right\} \tag{II-14}\\
& p_{4}=-\frac{F^{\prime}}{2 G^{\prime}}\left\{1+\sqrt{1-\frac{4 G^{\prime}}{F^{\prime 2}}}\right\} \tag{II-15}
\end{align*}
$$

p_{3} and p_{4} are negative, real quantities.

$$
\begin{align*}
X_{1^{j}} & =\frac{1+D^{\prime} p_{3}}{\left(p_{3}-p_{4}\right)\left(p_{3}-p_{j}\right)} \tag{II-16}\\
X_{2^{j}} & =\frac{1+D^{\prime} p_{4}}{\left(p_{4}-p_{3}\right)\left(p_{4}-p_{j}\right)} \tag{II-17}\\
X_{3^{j}} & =\frac{1+D^{\prime} p_{j}}{\left(p_{j}-p_{3}\right)\left(p_{j}-p_{4}\right)} \tag{II-18}
\end{align*}
$$

The time functions, corresponding to the p-functions in expression (II-13) are well-known exponential functions, thus:

$$
\begin{align*}
f_{j}\left(t-t_{I I}\right)=- & \frac{p_{j}}{G^{\prime}}\left[\frac{X_{1^{j}}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{I I}\right)}\right\}+\frac{X_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{I I}\right)}\right\}+\right. \\
& \left.+\frac{X_{3^{j}}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{I I}\right)}\right\}\right] U\left(t-t_{I I}\right) \tag{II-19}
\end{align*}
$$

Substituting expressions (II-4), (II-11) and (II-12) in (6-29) gives:

$$
\begin{equation*}
V_{a I I}(t)=V_{a I I}(t)_{1}-\left[\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}} \Sigma j\left\{-V_{j} e^{p_{j} t_{I I}} f_{j}\left(t-t_{I I}\right)\right\}\right] U\left(t-t_{I I}\right) \tag{II-20}
\end{equation*}
$$

Finally, expression (II-19) must be substituted, giving:

$$
\begin{align*}
V_{a I I}(t)= & V_{a I I}(t)_{1}-\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}} \Sigma j \frac{V_{j} p_{j}}{G^{\prime}} e^{p_{j} t_{I I}}\left[\frac{X_{1^{j}}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{I I}\right)}\right\}+\right. \\
& \left.+\frac{X_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{I I}\right)}\right\}+\frac{X_{3^{j}}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{I I}\right)}\right\}\right] U\left(t-t_{I I}\right) . \quad \text { (II-21) } \tag{II-21}
\end{align*}
$$

For the asymmetrical multivibrator there are four terms, constituting the sum in expression (II-21), because there are four reciprocal time constants p_{j}, viz. $p_{1}, p_{2}, p_{1}{ }^{\prime}, p_{2}{ }^{\prime}$.
To p_{1} corresponds:

$$
\begin{gather*}
V_{j}=\mu V_{2}=\mu\left\{\frac{1}{2} \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1-K)\left(1-e^{-p_{1} t_{o}}\right)-\right. \\
\left.-\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1-P)\right\} \tag{II-22}
\end{gather*}
$$

To p_{2} corresponds:

$$
\begin{gather*}
V_{j}=\mu V_{3}=\mu\left\{\frac{1}{2} \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1+K)\left(1-e^{-p_{2} t_{o}}\right)-\right. \\
\left.-\frac{1}{2} I_{a o} \varepsilon_{a} R_{g}(1+P)\right\} . \tag{II-23}
\end{gather*}
$$

To $p_{1}{ }^{\prime}$ corresponds:

$$
\begin{equation*}
V_{j}=V_{5}=\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}\left(1-P^{\prime}\right)\left(1-e^{-p_{1}^{\prime} t_{o}}\right)-\frac{1}{2} I_{g o} \varepsilon_{a} R_{g}\left(1-P^{\prime}\right) \tag{II-24}
\end{equation*}
$$

To $p_{2}{ }^{\prime}$ corresponds:

$$
\begin{equation*}
V_{j}=V_{6}=\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}\left(1+P^{\prime}\right)\left(1-e^{-p_{2}{ }^{\prime} t_{o}}\right)-\frac{1}{2} I_{g o} \varepsilon_{a} R_{g}\left(1+P^{\prime}\right) \tag{II-25}
\end{equation*}
$$

For the symmetrical multivibrator there are only two terms in the sum of expression (II-21) corresponding to p_{1} and p_{2}, respectively.

$$
\begin{gather*}
V_{j}=\mu V_{2}+V_{5}=\left\{\frac{1}{2} \mu \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1-K)+\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}(1-P)\right\} \\
\left(1-e^{-p_{1} t_{o}}\right)-\left(\mu I_{a o}+I_{g o}\right) \varepsilon_{a} R_{g}(1-P) \tag{II-26}\\
V_{j}=\mu V_{3}+V_{6}=\left\{\frac{1}{2} \mu \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1+K)+\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}(1+P)\right\} \\
\left(1-e^{-p_{2} t_{o}}\right)-\frac{1}{2}\left(\mu I_{a o}+I_{g o}\right) \varepsilon_{a} R_{g}(1+P) \tag{II-27}
\end{gather*}
$$

For this case, the complete expression for $V_{a I I}$ will be given, expressions (II-26) and (II-27) being substituted into expression (II-21):

$$
V_{a I I}(t)=V_{a I I}(t)_{1}-\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}}\left[\frac{p_{1}}{G^{\prime}} e^{p_{1} t_{I I}}\right.
$$

$\left\{\left\{\frac{1}{2} \mu a C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1-K)+\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}(1-P)\right\}\left(1-e^{-p_{1} t_{o}}\right)-\right.$

$$
\left.-\frac{1}{2}\left(\mu I_{a 0}+I_{g o}\right) \varepsilon_{a} R_{g}(1-P)\right\}\left\{\frac{1+D p_{3}}{-p_{3}\left(p_{3}-p_{4}\right)\left(p_{3}-p_{1}\right)}\left(1-e^{p_{3}\left(t-t_{I I}\right)}\right)+\right.
$$

$$
\frac{1+D p_{4}}{-p_{4}\left(p_{4}-p_{3}\right)\left(p_{4}-p_{1}\right)}\left(1-e^{p_{4}\left(t-t_{I I}\right)}\right)+\frac{1+D p_{1}}{-p_{1}\left(p_{1}-p_{3}\right)\left(p_{1}-p_{4}\right)}
$$

$$
\left(1-e^{\left.p_{1}\left(t-t_{I I}\right)\right)}\right\}+\frac{p_{2}}{G^{\prime}} e^{p_{2} t_{I I}}\left\{\left\{\frac{1}{2} \mu \alpha C_{c}\left(1-\varepsilon_{g}\right) R_{g}(1+K)+\frac{1}{2} \alpha C_{c} \varepsilon_{a} R_{g}\right.\right.
$$

$$
\left.(1+P)\}\left(1-e^{-p_{2} t_{o}}\right)-\frac{1}{2}\left(\mu I_{a o}+I_{g o}\right) \varepsilon_{a} R_{g}(1+P)\right\}
$$

$$
\left\{\frac { 1 + D p _ { 3 } } { (- p _ { 3 } (p _ { 3 } - p _ { 4 }) (p _ { 3 } - p _ { 2 }) } \left(1-e^{\left.p_{3}^{\left(t-t_{I I}\right)}\right)+\frac{1+D p_{4}}{-p_{4}\left(p_{4}-p_{3}\right)\left(p_{4}-p_{2}\right)}, ~\left(\frac{1}{2}\right.}\right.\right.
$$

$$
\left.\left(1-e^{p_{4}\left(t-t_{I I}\right)}\right)+\frac{1+D p_{2}}{-p_{2}\left(p_{2}-p_{3}\right)\left(p_{2}-p_{4}\right)}\left(1-e^{\left.p_{2}\left(t-t_{I I}\right)\right)}\right\}\right] U\left(t-t_{I I}\right)(\text { II }-28)
$$

Appendix III. Calculation of $V_{g I}$ in the second phase
The voltage between G_{I} and cathode during the second phase of the dynamic condition will be the sum of the value derived for the first phase and a component produced by the response of the network of fig. III-1 to the voltage source:

$$
\begin{align*}
V_{c}(t) & =-\left[V_{a I I}(t)_{1}+\mu V_{o I I}(t)\right] U\left(t-t_{I I}\right) \equiv \\
& \equiv \Sigma j V_{j} e^{p_{j} t_{I I}} \frac{-p_{j}}{p-p_{j}} U\left(t-t_{I I}\right) . \tag{III-1}
\end{align*}
$$

according to expression (II-11).
Comparison of fig. III-1 with fig. 6-3 will make clear that

Now it can be deduced by simple application of Kirchhoff's laws that the response to $V_{c}(t)$ causes a component:

$$
\begin{equation*}
V_{g I}^{*} I(t)=\frac{Z_{g I} Z_{a I I}}{\left(Z+Z_{g I}\right) Z_{a I I}+r_{a}\left(Z+Z_{g I}+Z_{a I I}\right)} V_{0}(t) . \tag{III-5}
\end{equation*}
$$

After introducing expressions (III-2), (III-3) and (III-4), this gives finally:

$$
\begin{equation*}
V_{o I}^{*}(t)=\frac{R_{g}\left(1-\varepsilon_{a}\right) R_{a}(1+T p)}{\left(R+R_{g}\right)\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\}\left(1+F^{\prime} p+G^{\prime} p^{2}\right)} V_{c}(t), \tag{III-6}
\end{equation*}
$$

where F^{\prime} and G^{\prime} correspond to the values given in appendix II by expressions (II-2) and (II-3) resp. Introducing expression (III-1) gives:

$$
\begin{align*}
V_{g I}^{*}(t)= & \frac{R_{g}\left(1-\varepsilon_{a}\right) R_{a}}{\left(R+R_{g}\right)\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}} \Sigma_{i}-V_{j} e^{p_{j} t_{I I}} p_{j} \\
& \frac{1+T p}{\left(p-p_{j}\right)\left(p-p_{3}\right)\left(p-p_{4}\right)} U\left(t-t_{I I}\right) . \tag{III-7}
\end{align*}
$$

where p_{3} and p_{4} are given by expressions (II-14) and (II-15).
In an analogous way to the method of appendix II, by splitting the p function into partial fractions, the sum can be written:

$$
\Sigma j-V_{j} e^{p_{j} t_{I I}} p_{j}\left(\frac{Y_{1^{j}}}{p-p_{3}}+\frac{Y_{2^{j}}}{p-p_{4}}+\frac{Y_{3^{j}}}{p-p_{j}}\right) U\left(t-t_{I I}\right) .
$$

which gives for $V^{*}{ }_{g I}$ as a function of time:

$$
\begin{array}{r}
V_{g I}^{*}(t)=-\frac{R_{g}\left(1-\varepsilon_{a}\right) R_{a}}{\left(R+R_{g}\right)\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}} \Sigma j V_{j} p_{j} e^{p_{j} t_{I I}}\left[\frac{Y_{1 j}}{-p_{3}}\right. \\
\left\{1-e^{\left.p_{3}\left(t-t_{I I}\right)\right\}}+\frac{Y_{2^{j}}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{I I}\right)}\right\}+\frac{Y_{3^{j}}}{-p_{j}}\left\{1-e^{\left.p_{j}\left(t-t_{I I}\right)\right\}}\right] U\left(t-t_{I I}\right)\right. \tag{III-8}
\end{array}
$$

The Y-functions have the following form:

$$
\begin{align*}
Y_{1^{j}} & =\frac{1+T p_{3}}{\left(p_{3}-p_{4}\right)\left(p_{3}-p_{j}\right)} \tag{III-9}\\
Y_{2^{j}} & =\frac{1+T p_{4}}{\left(p_{4}-p_{3}\right)\left(p_{4}-p_{j}\right)} \tag{III-10}\\
Y_{3 j} & =\frac{1+T p_{j}}{\left(p_{j}-p_{3}\right)\left(p_{j}-p_{4}\right)} . \tag{III-11}
\end{align*}
$$

The total voltage at G_{I} in the second phase will be:

$$
\begin{equation*}
V_{g I}(t)=V_{g I}(t)_{1}+V_{g I} *(t) . \tag{III-12}
\end{equation*}
$$

Appendix IV. Calculation of the transients at $A_{I I}, G_{I}$ and A_{I} in the third phase

Expression (6-33) is of the same kind as the second right-hand term of expression (6-29), and consequently can be evaluated by the same procedure as was applied in Appendix II. By analogy with expression (II-10), we can write:

$$
\begin{equation*}
\mu V_{g I I}(t)=-\Sigma j V_{j} e^{p_{j} t_{s}}\left\{1-e^{p_{j}\left(t-t_{s}\right)}\right\} . \tag{IV-1}
\end{equation*}
$$

The sum consists of only two components, viz. for $p_{j}=p_{1}$ and $p_{j}=p_{2}$, corresponding to:

$$
\begin{equation*}
V_{j}=\mu V_{2} \tag{IV-2}
\end{equation*}
$$

(of expression II-22) and

$$
\begin{equation*}
V_{j}=\mu V_{3} \tag{IV-3}
\end{equation*}
$$

(of expression II-23), respectıvely.
The calculation of expr. (6-33) will lead to a form similar to that of the second right-hand term of expression (II-21), viz.:

$$
\begin{align*}
& V_{a I I}^{* *}(t)=\frac{\left(1-\varepsilon_{a}\right) R_{a}}{\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}} \Sigma j V_{j} p_{j} e^{p_{j} t_{s}}\left[\frac{X_{1 j}}{-p_{3}}\left\{1-e^{p_{3}\left(t-t_{s}\right)}\right\}+\right. \\
& \left.\quad+\frac{X_{2 j}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{s}\right)}\right\}+\frac{X_{3 j}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{s}\right)}\right\}\right] U\left(t-t_{s}\right) \tag{IV-4}
\end{align*}
$$

Here the sum contains two terms ($p_{j}=p_{1}$ and $p_{j}=p_{2}$ resp.). For expr. (6-34) it will be found by analogy with expr. (III-8):

$$
\begin{align*}
V_{g I}^{* *}(t)= & \frac{R_{g}\left(1-\varepsilon_{a}\right) R_{a}}{\left(R+R_{g}\right)\left\{\left(1-\varepsilon_{a}\right) R_{a}+r_{a}\right\} G^{\prime}} \Sigma_{j} V_{j} p_{j} e^{p_{j} t_{s}}\left[\frac { Y _ { 1 j } } { - p _ { 3 } } \left\{1-e^{\left.p_{3}\left(t-t_{s}\right)\right\}}+\right.\right. \\
& \left.+\frac{Y_{2 j}}{-p_{4}}\left\{1-e^{p_{4}\left(t-t_{s}\right)}\right\}+\frac{Y_{3 j}}{-p_{j}}\left\{1-e^{p_{j}\left(t-t_{s}\right)}\right\}\right] U\left(t-t_{s}\right) \quad(\text { IV }-5 \tag{IV-5}
\end{align*}
$$

For calculating expression (6-35), reference is made to expr. (I-5), (I-6), from which it follows that:

$$
\begin{equation*}
\frac{Z_{a I}}{Z+Z_{a I}}=\beta_{a} \frac{1+T p}{1+T_{n} p} . \tag{IV-6}
\end{equation*}
$$

where

$$
\begin{gather*}
\beta_{a}=\frac{R_{a}}{R+R_{a}} \tag{IV-7}\\
T_{n}=\beta_{a} T+\left(1-\beta_{a}\right) T_{a I} \tag{IV-8}
\end{gather*}
$$

$V_{g I I}$ is given by expression (6-11):

$$
\begin{equation*}
V_{g I I}(t)=V_{1}+V_{2} e^{p_{1} t}+V_{3} e^{p_{2} t}, \tag{IV-9}
\end{equation*}
$$

which is equivalent to expression (IV-1) divided by μ. (see also expressions (6-15), (6-16), and (6-17).

At $t=t_{s}, V_{g I I}(t)=0$.
thus:

$$
\begin{equation*}
0=V_{1}+V_{2} e^{p_{1} t_{s}}+V_{3} e^{p_{2} t_{s}} \tag{IV-10}
\end{equation*}
$$

or:
$V_{g I I}(t) U\left(t-t_{s}\right)=\left[V_{2} e^{p_{1} t_{s}}\left\{e^{p_{1}\left(t-t_{s}\right)}-1\right\}+V_{3} e^{p_{2} t_{s}}\left\{e^{p_{2}\left(t-t_{s}\right)}-1\right\}\right] U\left(t-t_{s}\right)$. Transformed into a p-function:

$$
\begin{equation*}
V_{g I I}(t) U\left(t-t_{s}\right) \equiv V_{2} e^{p_{1} t_{s}} \frac{p_{1}}{p-p_{1}}+V_{3} e^{p_{2} t_{s}} \frac{p_{2}}{p-p_{,}} \tag{IV-11}
\end{equation*}
$$

Now expression (6-35) can be written:

$$
\begin{equation*}
V_{a I}^{* *}(t)=\beta_{a} \frac{1+T p}{1+T_{n} p}\left(-V_{2} e^{p_{1} t_{s}} \frac{p_{1}}{p-p_{1}}-V_{3} e^{p_{2} t_{s}} \frac{p_{2}}{p-p_{2}}\right) U\left(t-t_{s}\right) . \tag{IV-12}
\end{equation*}
$$

Determination of the corresponding time function results in:

$$
\begin{align*}
& V_{a I}^{* *}(t)=\beta_{a} p_{n}\left[p _ { 1 } V _ { 2 } e ^ { p _ { 1 } t _ { s } } \left\{\frac{1+T p_{n}}{-p_{n}\left(p_{n}-p_{1}\right)}\left(1-e^{p_{n}\left(t-t_{s}\right)}\right)+\frac{1+T p_{1}}{-p_{1}\left(p_{1}-p_{n}\right)}\right.\right. \\
& \left.\left(1-e^{p_{1}\left(t-t_{s}\right)}\right\}\right\}+p_{2} V_{3} e^{p_{2} t_{s}}\left\{\frac{1+T p_{n}}{-p_{n}\left(p_{n}-p_{2}\right)}\left(1-e^{p_{n}\left(t-t_{s}\right)}\right)+\frac{1+T p_{2}}{-p_{2}\left(p_{2}-p_{n}\right)}\right. \\
& \left.\left.\left(1-e^{p_{2}\left(t-t_{s}\right)}\right)\right\}\right] U\left(t-t_{s}\right) . \tag{IV-13}
\end{align*}
$$

where,

$$
\begin{equation*}
p_{n}=-\frac{1}{T_{n}} . \tag{IV-14}
\end{equation*}
$$

Appendix V. Discussion of the method of calculating the influence of $C_{a g}$ on the trigger sensitivity

Referring to fig. 6-1, which represents the multivibrator circuit at the start of the first phase of the dynamic condition, it can be seen that several current generators operate on the circuit. The basic cause, which starts all transient phenomena occurring in the whole triggering action, is the application of the input trigger voltage according to fig. 3-2. This trigger voltage is transformed into a current pulse I_{i}, (chapter 6). It causes a current step $I_{a o}$ between the anode of tube I and earth and another current step $I_{g o}$ between grid I and earth. Of the three current sources mentioned, $I_{a 0}$ is by far the most important, and it is this, in fact, which enables the multivibrator to be definitely triggered. This current source $I_{a \circ}$ gives rise to a rather steep and large voltage change at A_{I}. The voltage change at $A_{I I}$ will be much smaller as no current source is directly operating at $\mathrm{A}_{I I}$. Only the current source $I_{g o}+I_{i}$ at G_{I} will cause, via the coupling network $R C$, a modest change in potential at $A_{I I}$ (compare figs. $7-3$ and 7-4).
The influence of the anode-to-grid capacitances is to feed back a fraction of the anode-voltage changes to the corresponding grids and via the $R C$-coupling elements to the other anode. The change in grid voltage because of this feedback is much more important than that at the anodes, when determining the times t_{I} and $t_{I I}$ (expressions 8-5 and 8-6), as the influence of the anode voltage changes is reduced by a factor μ. Moreover, to a first approximation the feedback in tube I is the only one to consider because the voltage change at A_{I} is the most important. However, as may be seen from section 8 , in the case of the symmetrical multivibrator, it is wise to consider the feedback in both tubes, as this leads to a more elegant solution of the problem of finding the minimum trigger-voltage amplitude.

LIST OF SYMBOLS

A time constant (p. 64);
constant of the dimension voltage (p. 43).
$B \quad$ time constant (p. 64)
b ratio of capacitances (p. 42).
C capacitance
$C_{a} \quad$ capacitance between the anode and the cathode of a tube.
$C_{g} \quad$ capacitance between the grid and the cathode of a tube.
$C_{a g}$ capacitance between the anode and the grid of a tube.
D time constant (p. 65).
$E \quad$ square of a time constant (p. 65).
E base of natural logarithm (2.71828...) (p. 24).
$F \quad$ time constant (p. 69).
$G \quad$ square of a time constant (p. 69).
$g_{m} \quad$ transconductance of a tube (p. 46)
I current
$I_{a} \quad$ anode current of a tube
$I_{a o}$ anode current in the static condition of a multivibrator.
I_{g} grid current of a tube.
$I_{g o}$ grid current in the static condition of a multivibrator.
K ratio of time constants (p. 66).
$L \quad$ ratio of time constants (p. 67).
p operation of dimension frequency or reciprocal time (p. 64).
$P \quad$ ratio of time constants (p. 67).
R resistance.
$R_{a} \quad$ anode-load resistance of a tube.
$R_{g} \quad$ grid-leak resistance of a tube.
r_{a} internal anode resistance of a tube.
$r_{g} \quad$ internal grid resistance of a tube.
t time.
$t_{0} \quad$ rise time of the trigger pulse $V i(\mathrm{p} .11)$.
$t_{I I}$ instant at which the second phase of the dynamic condition commences (p. 12).
t_{s} instant at which the third phase of the dynamic condition commences (p. 13).
T time constant.
$U(t)$ unit-step function: $U(t)=0$ at $t<0$ $U(t)=1$ at $t>0$.
V voltage.
V_{a} voltage between the anode and the cathode of a tube.
$V_{g} \quad$ voltage between the grid and the cathode of a tube.
$V_{i} \quad$ trigger voltage at the grids of the tubes of a multivibrator circuit (p. 11).
$V_{o} \quad$ amplitude of trigger pulse $V i(\mathrm{p} .11)$; constant voltage (p. 20, 69).
$X \quad$ constant (p. 70).
$x \quad$ abbreviation of an exponential time function (p. 43).
Y constant (p. 74).
$Z \quad$ impedance.
a slope of the leading flank of the trigger pulse $V i$ (p. 11); slope of characteristic curve (fig. 4-3).
$\beta \quad$ ratio of resistances (p. 75).
$\mu \quad$ amplification factor of a tube.
$\varepsilon \quad$ ratio of resistances (p. 18, 19).
$\gamma \quad$ ratio of time constants (p. 43).
$\infty \quad$ infinite (time) (p. 25).

