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FOREWORD 

The uses to which high frequency energy are put have been very 

greatly extended in the last twenty years; the frequencies and power 

used in the new applications have been constantly increased. 

The classical transmitting valve, i.e. the triode or tetrode is not always 

capable of delivering the required output at such very high frequencies 

and a new family of tubes has appeared on the scene (klystrons, 
travelling wave tubes, magnetrons, backward-wave oscillators, amplitrons 

and so on) which are being more and more widely used. Of these 

"transit-time" tubes the magnetron was one of the first to be employed 

commercially on a large scale. 

It is hoped that this little book will prove useful as an introduction to 

the problems arising in the applications of magnetrons in particular and 

microwaves in general, and more especially as an aid to a better 

understanding of the physical background of this kind of tube. 

November 1960 K. HINKEL 
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I. INTRODUCTION 

The multicavity magnetron has now been in use for more than 15 years. 
It is used as a source of high frequency energy in pulsed radar, linear 
accelerators, diathermy equipment, industrial heating and so on. 

In many cases the magnetron is preferred to other types of tube such as 
the klystron, because of its low cost, simple operation and relatively low 
internal resistance. 

Interest in the magnetron has fallen off in recent years, however, par-
ticularly among designers of new radar equipment, the main reason for 
this being the fact that there is a limit to the extent to which magnetrons 
can be electronically tuned. 

On the other hand the demand for these tubes for use in civil radar 
installations and for various industrial purposes has steadily increased; 
developments in the design of magnetrons for the millimetric wave range 
have resulted in the appearance on the market of a precision radar unit for 
navigational purposes, known as the "ship-shape" radar because the shape 
of the vessel is recognisable on the screen. Microwaves are also being used 
to an increasing extent for heating purposes in industry, and mention should 
also be made of the "radar oven" in which food can be cooked in a few 
minutes. 

Experience has shown that there are many who have only a very vague 
idea of magnetrons and microwaves, but who are nevertheless directly 
concerned with their applications; and it is probable that there will be many 
more such persons in the near future. 

The object of this book is to enlighten these persons as to the properties 
of magnetrons, as well as their physical background; students of electronics 
and microwave technology will also find in it a valuable source of information 

1.1 General description of the magnetron 

A magnetron is a piece of equipment that is capable of converting electrical 
energy in the form of direct current into high frequency electrical energy of a 
certain wavelength. Dependent on the design of the magnetron, this wave-
length will be approximately between 1 metre and 1 millimetre. At the 
longer wavelengths, the efficiency of the conversion is about 80%, but this 
drops steeply to only some 2 or 3 per cent at 1 mm. The attainable pulsed 
power output is several megawatts in a band of approximately 10 cm to 
100 cm; at 3 cm the present limit is 1 MW whilst, in the region of 1 mm, it 



2 INTRODUCTION [1 

is not possible to obtain more than a few hundred watts. Magnetrons 
intended for continuous operation do not develop more than a few kilowatts 
(Figs. 1 and 2). 
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Fig. 1. The pulsed power obtainable from a magnetron as a function of frequency. 

The magnetron is in effect a diode, the input electrodes being a cathode 
and an anode. Usually the high frequency energy is taken from it by means 
of either a coaxial connection or a waveguide, but sometimes special radiators 
are incorporated in the magnetron for directing the high frequency energy. 
In order to function in the manner described, the magnetron must have 
within it a certain magnetic field, and there are two ways of achieving this. 
The magnet can either be attached to the tube to form a complete unit, in 
which case we speak of a "packaged" magnetron (Fig. 3) or the magnet 
may be separate, that is, mounted in the equipment in which the magnetron 
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is to operate; in this case we refer to an "unpackaged" magnetron. The latter 

type is generally used for high output power ratings and for the longer 

wavelengths, as the great weight of the magnet would otherwise render the 

assembly unmanageable (Fig. 4). 
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Fig. 2. The output of some "continuous wave" magnetrons plotted against frequency. 

In a certain sense the magnetron has the same characteristics as a complete 
radio frequency transmitter; it is not necessary to connect to a magnetron 
the inductors and capacitors usually required to obtain the desired frequency; 
these are already contained in the magnetron. All that is necessary is to 
apply electric power to the input and to connect the load to the output side. 

This is the great advantage from the point of view of the user, that he need 

not concern himself with frequency adjustments or transformation of the 
load. 
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Before discussing the components of a magnetron in greater detail let us 
first consider the manner in which the conversion of direct current to high 
frequency alternating current takes place in the magnetron. It is essential to 
understand this in order to appreciate the functions of the various com-
ponents. 



II. THE ELECTRICAL MECHANISM 

2.1 Principle of the magnetron 

We have seen then that, stated briefly, magnetrons are capable of converting 
direct current to alternating current of a certain frequency; hence the 
magnetron contains the means of determining the frequency, i.e. self induc-
tances and capacitances. These are contained in the anode, and this combi-
nation is connected to the output of the magnetron by means of a loop in 
the case of coaxial coupling, or a slot for coupling to a waveguide (Fig. 5). 
In this way, a high frequency voltage is made available at the output side 
of the magnetron when the oscillatory circuits in the anode are brought into 
oscillation. 

In practice, neither the oscillatory circuit nor the coupling system are 
entirely free from losses, which means that the available power is not all 
effectively utilised. 

If Wo denotes the power passed to the load and W, represents Wo plus 
the losses in the circuit and coupling system, the circuit efficiency ~~ can be 
expressed as: 

W o

= W 
(1) 

Practical values of ~~ lie between 50 and 95% for various types of mag-
netron. 

Let us now see how the oscillatory circuit in the tube is brought into a state 
of oscillation. In this process the electrons emitted by the cathode act as the 
intermediary. They draw energy from the source of direct current and pass 
some of it to the oscillatory circuit to cause this to oscillate; the rest of the 
energy which the electrons still retain is dissipated as heat at the anode. 

It is thus possible to speak of the electronic efficiency, fie, which is the 
ratio of the power W, delivered to the circuit in the anode as electromagnetic 
field energy, to the power W taken from the source, at the input: 

W e
~e = W 

It is possible to measure the value of ~e indirectly for every magnetron. 
The amount of power taken from and delivered to an electric field by 

electrons calls for some explanation. Let us consider a capacitor with a 
voltage V applied to the electrodes; between the plates there is an electron 
of mass m and charge a (Fig. 6). 

(2) 
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Fig. 6. An electron of mass m and charge a between the plates of a 
capacitor, under the influence of an electric field. 

Let 1 denote the spacing of the electrodes. The electron in the electric 
field between the electrodes will then be subjected to a force K, so that: 

V 
K=e 1 (3) 

Under the influence of this force the electron moves towards the positive 
plate (equivalent to the anode of the magnetron), and, when it has travelled 
the whole distance from plate to plate the battery will have imparted an 
amount of energy eV to the electron (owing to the flow of current). This 
energy is converted wholly to kinetic energy in the electron, hence: 

m va 

e V= 2 
(4) 

where vo denotes the velocity of the electron after the passage of current 
(see also 12). 

In this example the electron derives energy from the electric field; let us 
now consider the case where the electron imparts energy to the electric field. 
To do this we shall imagine the positive plate to have a hole in it (Fig. 7) and 
suppose that an electron is shot through the capacitor from the positive 
plate towards the negative plate. 

I, 
•-e 

Fig. 7. An electron injected into a capacitor and 
decelerated by the electric field. 

When the electron arrives in the space between the electrodes at a velocity 

of v1, its kinetic energy will be 2 18. In its passage from one side to the 
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other it is slowed down by the electric field and, the direction of the motion 
being from + to —, the counteracting force will be from — to + . 

On completion of the journey the velocity of the electron will have dropped 

to v2. A current e V will have flowed through the battery, but in the opposite 

direction from that in the first example, and this current must therefore have 
the effect of charging the battery. When the electron reaches the negatively 

mv22
charged electrode of the capacitor, at a velocity of v2, its kinetic energy 

2 
will be converted to heat in the plate. The difference, 

2 
(v12 — v22), in the 

kinetic energies on entering the capacitor and on striking the electrode at 
the other side is delivered up to the electric field. 

m 
Hence, 

2 
(v12 — v22) = e V. 

where e V is the amount of energy imparted to the field. 
The electronic efficiency of this process is: 

e ' V v12—v 22 v22

7e = 

m  2 

= v12 — 1 
vj•  (5)

vl 2 

It is seen that ~e can be unity if, at the end of its passage through the 

field, the electron comes to a standstill (v2 = 0). 
We may therefore say that when an electron passes through an electric 

field from — to +, it absorbs energy which then appears as kinetic energy 
in the electron itself. On the other hand if an electron passes through the field 
from + to —, it is retarded and the loss in kinetic energy is taken up by the 
field as electrical energy. 1:rE _ ~~, . ., ,, .4 , , ~; -

The action of a magnetron can thus be visualised as follows. Electrons 
from the cathode (— ve plate) move towards the anode (+ ve plate). 

On their way they are diverted through the oscillatory circuits at the anode, 
to ensure that they are retarded by the R.F. field of these circuits, and so 
impart energy to the field. This energy is taken from the output side of the 
magnetron by way of a coupling loop or a slot. 

The overall efficiency i of a magnetron can now be written as: 

Wo Wo Wo

So far nothing has been said of the manner in which the electrons, on 

their way from the cathode to the anode, are made to pass through the 

oscillatory circuits in such a way that they are retarded by the electric field 

(6) 
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and so made to yield energy. This is achieved by means of a magnetic field, 
the lines of force of which lie parallel to the axis of the cathode. 

In order to understand this fully let us now for a moment consider the 
movements of the electrons in electric and magnetic fields. 

2.2 The movements of charges in electric and magnetic fields 

As a full treatment of this subject would be beyond the scope of this book 
we refer the reader to textbooks of physics and electrotechnology. Here we 
shall mention enough to explain the behaviour of electrons in a magnetron. 

We have already seen that an electrically-charged particle (charge e) in an 
electric field, the strength of which is E, encounters a force K, so that 

K = e E (7)* 

The direction of the force is parallel to that of the electric lines of force. 
If the charge is positive, the force will be in the direction from + to — in the 
field; the force operates in the opposite direction on a negative charge. 

Under the influence of this force K the movement of the charge is accele-
rated, the acceleration a being expressed as: 

k eE 
a=

-=-

m m 
(8) 

where m is the mass of the charged particle. 
If the force K operates on the particle for a time dt, the velocity v will 

undergo a change dv: 

dv = a dt (9) 

z 

The kinetic energy W0 = 2  then changes to the extent of: 

d(Wv)=m•v dv (10) 

Now v = dt, where s is the distance travelled by the particle. Equation (10) 

together with (9) thus becomes 

ds 
d(W„)=m dt a dt=K ds=e E ds 

" The Lorentz force is disregarded here; this is permissible when considering the pheno-
mena taking place in a magnetron. See W. Kleen, Mikrowellen Elektronik I, pp. 4 & 5. 
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The total kinetic energy is found to be: 

Wq = J d(W„)= J e•E•ds=e•V L1 ' 2) 

whereby f E ds =V is the voltage to which the particle has been subjected. 
Equation (12) thus gives the amount of the kinetic energy of a charged 
particle converted to field energy, and vice versa. 

From equation (12) we can also calculate the velocity of the charged 
particle after it has been subjected to the voltage V. assuming zero initial 
velocity: 

U
2 e V 

v=  
m 

(13) 

Substituting the values of m and a for an electron we obtain: 

v= 5.9 10' \/ V cm sec-1 with Vin volts (14) 

Let us now see what the effect is of a magnetic field on the electrically-
charged particles. 

In general, the direction of motion of such a particle will contain a com-
ponent parallel to a line of force of the magnetic field at the point where the 
particle happens to be, and also a component perpendicular to the magnetic 
field (see Fig. 8). By thus dividing the direction of motion of the elec-
trons into its components it is a simple matter to define the effect of the 
magnetic field. 

On the basis of the fundamental equations used in electrodynamics it may 
be said that: 

1. The motion of electrically-charged particles moving through a magnetic 
field in a direction parallel to the lines of force is unaffected by the field. 

2. An electrically-charged particle, the motion of which is normal to a 
line of force in a magnetic field will encounter a force at that point. 

The direction of this force is normal both to the magnetic field and to the 
direction of motion of the particle. The magnitude of the force is propor-
tional to the charge, to the velocity of the particle and to the magnetic field 
strength. 

In other words the direction of the force acting on a particle in a magnetic 
field always lies in a plane normal to the magnetic line of force at that 
particular point. 

Expressed mathematically this is as follows: 

K=e•v•B•sin( v•B) (15) 

where B is the magnetic field strength and ( v B) the angle between the 
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direction of travel of the particle and the direction of the magnetic field, 
as shown diagrammatically in Fig. 8. 

The direction of the particle and that of the magnetic field lie in the plane 
of the drawing; the angle between the two is . 

The particle possesses a component v, of the velocity v, which is in a 
direction parallel to the magnetic field: 

v, = v cos. 99 

This component has no effect on the particle. 
There is also another component, v~, normal to the direction of the 

magnetic field: 
vt = v sin q~ 

as a result of which the particle encounters a force in accordance with (15): 

K= B e v sincp 

The direction of this force is normal to the plane of the drawing, dependent 
on the sign of the charge a*. 

vt=v.sin {o 

Fig. 8. Movement of a charged particle in a magnetic field. v, is the component of the 
velocity parallel to the field and v, the component normal to it. 

Thus it is seen that the force acting on an electrically-charged particle 

moving through a magnetic field is always normal to the direction of motion 
of the particle. 

Now that we have seen what forces electric and magnetic fields exert on 
electrically-charged particles we shall proceed to an investigation of the 
path followed by such particles under certain conditions. 

* See Physic van Westphal, pp. 349-1947. 



2.3] THE "CYCLOTRON" MOTION 11 

2.3 The "cyclotron" motion 

Let us now see what movements an electrically-charged particle performs 
when it is injected with a velocity v into a uniform magnetic field of strength 
denoted by B. 

We shall assume that the direction of v is normal to the direction of B, 
and that the path of the particle under the above conditions is circular. 
To prove that it will be circular, we ascertain the force acting on the particle 
as it travels along such a path. (Fig. 9). 

Fig. 9. Circular path of a particle in a magnetic field B. m is the mass of the particle 
e its charge, v its velocity and R the radius of the path. 

The particle is subjected to a centrifugal force Km, so that 

mv2
Km 

R 
(16) 

where m is the mass and v the velocity of the particle, and R the radius of 
the path. It will be possible for the particle to describe this path if the cen-
trifugal force Km is equal to the force KB exerted on the particle by the 
magnetic field, that is, when 

mv2
—=e v B 
R 

Thus the radius of the path is found to be 

m•v 
R = 

e B 

(17) 

(18) 

In our example, the magnetic field is uniform, so that B and v are constant 
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at any point along the path; therefore R is also constant, which means that. 
the path is a closed one and circular. 

Having seen that the particle does describe a circular path under the above 
conditions we can now find out how many times it completes the circuit per 
unit of time. Let us call this the "revolution frequency". It can be computed 
quite simply. 

The distance involved in one revolution is 

s = 2~rR (19) 

The velocity of the particle is v. To travel round the path s once, the time 
required, To, is: 

S 
To = -. 

V 

Taking (20), (19) and (18) together we then have: 

m 
T0 2r 

eB 

Hence the revolution frequency may be written as: 

1 1 eB 

f0 — T0 2'r m 

(20) 

(21) 

(22) 

Now equation (22) reveals a remarkable fact, namely that the revolution 
frequency f 0 of the particle does not depend on its velocity within the mag-
netic field. Apart from the characteristics of the particle (e, m), f 0 is deter-
mined only by the field strength B. 

This is most important and is, in fact, one of the things that has made 
possible the evolution of the cyclotron, which is a kind of particle ac-
celerator.* The quantity 

eB 
2~rfo = wc = —

m 
(23) 

is known as the "cyclotron frequency". It is seen from equation (23) that 
this cyclotron frequency is 2~r times the revolution frequency. 

Fig. 10 shows the graph of equation (22) as applied to the electron. 

# In the cyclotron the process that takes place in the magnetron is to some extent re-
versed; here energy is taken from a high frequency electric field and is converted to 
kinetic energy in electrically-charged particles. 
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Fig. 10. Revolution frequency f o plotted against the 
magnetic field strength B. 
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The vertical axis represents the revolution frequency in Mc/s and the 
horizontal axis the magnetic field strength in gauss. 

For practical purposes equation (22) is sometimes used in a slightly 
modified form. If we regard f o as the frequency of an electrical oscillation, 

its wavelength in free space will be: 

C 

f0 

where c is the speed of light in free space. 
Combining (22) and (24) we then obtain: 

(24) 

C e B 
or 

2•x•c•m 
B • ~~ _  = constant (25) 

e 

which means that the product of the wavelength of the cyclotron motion 

and the magnetic field strength is constant. 
We can now calculate the value of the constant in (25) for the electron: 

B•2  = 10.7 [K r . cm] (26) 

where B is expressed in kilogauss and 2 in cm. Equation (26) is easy to 

remember and is therefore often used in practical calculations for mag-

netron circuits. 
Lastly, let us for a moment consider the path of an electrically-charged 
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particle in a uniform magnetic field, this time in a direction which is not 
normal to the magnetic field. This involves the two components v9  and vt. 
(see page 10). 

As a result of the effect of vt the particle will follow a cyclotron path of 
radius R in accordance with Eq. 18: 

vt m 
R = 

Th e 

The particle will at the same time execute a uniform movement at a 
velocity v9  in the direction of the magnetic field. 

The actual motion is a combination of both paths and takes the form of a 
spiral of constant pitch, with radius R. 

The pitch may be expressed as: 

h=vv'T0=2'r 
'

e•B 
from which we obtain: 

h v D

R v t

This kind of motion of electrically-charged particles along a line of force 
is not very important when dealing with magnetrons, but it plays a significant 
part in such applications as magnetic focusing. 

2.4 Movement of a particle in crossed electric and magnetic fields 

We shall now consider the movement of an electrically-charged particle when 
it is simultaneously subjected to a magnetic and an electric field. 

In so doing we shall assume the magnetic field to be uniform, and the 
electric field to have components only in a plane normal to the direction 
of the magnetic field. These limitations are such as to meet conditions which 
prevail in a magnetron. 

For convenience let us imagine a capacitor having a voltage V across 

B00000 

A r 

1 
Iv 

Fig. 11. Path of a charged particle in electric 
and magnetic fields. The initial velocity is zero. 
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L its electrodes and a magnetic field of strength B between them. (Fig. 11). 
The direction of the magnetic field is normal to the plane of the drawing. 

To ascertain the path of an electrically-charged particle let us assume 
that the particle commences at the capacitor electrode A, at zero velocity. 
At that moment it will be subjected only to a force due to the electrical field. 
It now commences to move at right angles from the electrode. As the 
velocity increases, the effect of the magnetic field comes into play and the 
particle is deflected in its path. As long as the particle is moving towards the 
other electrode its velocity will increase and this means that the force exerted 
by the magnetic field on the particle also increases. At a certain point in 
the path of the particle this magnetic force exceeds the force exerted by the 
electric field and the particle is then deflected back towards the electrode 
from which it originated, ultimately arriving there with zero velocity. Let us 
assume that the path described by the particle under such conditions is 
cycloidal. A cycloid is the figure described by a point on a circle when the 
latter is rolled along a plane (Fig. 12). 

- X ► 

Fig. 12. Cycloidal path of an electrically-charged particle in 
intersecting electric and magnetic fields. The initial velocity is zero. 

To uphold these assumptions we shall first determine the path of the 
particle by analysis. 

Let the vertical axis of a system of co-ordinates be denoted by Yand the 
horizontal axis by X; then, 

y=R(1—cosi ) 
x = R (q7 — sin 97) 

where q is the angle through which the hypothetical circle has turned; 
R is the radius of the circle. 

With constant angular velocity: = w t 
where t is the time. A cycloidal path is thus described by parameters: 

y = R (l — cos wt) (27) 

x = R (wt — sin wt) (28) 
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The particle in tracing its path must comply with the energy law, i.e. that 
its kinetic energy W„ must be equal to the energy WE absorbed from the 
electrical field. According to Eq. (12): 

W9 =e V 

In our case V = E • y, so 

mv2
W9= 

2 
=e•E•y 

For the velocity v we use the general formula 

ds V dx2 + dy2 _ a v 
dt 

1~x -~- y2 
dt — 

hence (29) becomes 

x2 -+ 2 =2 E— e •y 
m 

(29) 

(30) 

dx dy 
with x = 

dt  y dt 

Because of the energy law, then, the path of the particle must conform 
to Eq. (30). 

We shall now see whether this path, which is expressed in terms of (27) 
and (28), conforms to Eq. (30). For x and y we write: 

y= R w sin w t (31) 

x = R w (1 — cos wt) (32) 

With Eq. (30) this gives 

2R2w2 (1 — cos wt) = 
— 

• R (1— cos wt) or 
m 

eE = m R w2 (33) 

Eq. (33) shows that the path of the particle will conform to the law of 
energy only if e, E, m, R and w satisfy this equation. As the time does not 

appear in this equation, the law of energy is met at every point along the 
path. The second requirement to be imposed on the path is that the sum of 
all the forces acting on the particle at every point along the path shall be zero. 
These forces are as follows; by the electric field a force KE = e E in the 
direction of the y axis; by the magnetic field KE = e v B normal to the 

direction of the path; the force of inertia Km = m 
dt 

in the direction 
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opposed to that of the motion and, finally, the centrifugal force Knx = m • 
normal to the path; Rk is the radius of the path. k 

It will be sufficient to see in how far the path satisfies this requirement at 
one point only, namely at the highest point of the path, where wt = n. 

The velocity at that point is: 

v = V' 2 + .v2 = Rw V2 (1 — cos wt) = 2Rw (34) 

In general, the following applies to the radius Rk of the path: 

[1 + 

( )2]

2 (2 
+ y 2)

Rk 
— d2y — yx' (35) 

dx2

Inserting the values for the path: 

Rk = 2R 1'2 (1 — cos wt) 

and wt = r for the top of the path: 

Rk =4R 

(36) 

(37) 

At that point the path is parallel to the x axis, so we write for the forces 
involved (Fig. 13): 

V2
eE+m R  =e V.B 

k 

eEL 
m v2
GR 

~e.vB 

(38) 

Fig. 13. Cycloidal path of an electrically-charged particle. The forces acting on the 
particle at the highest point of the path are in accordance with Eq. (38). 

Combining (33), (34) and (37) with (38) we then have: 

eB 
w = (39) 

m 

which shows that the sum of all the forces acting on the particle is zero 
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only when the angular velocity for the cycloidal motion is equal to (39). It 
is also seen that the right hand term of (39) is the same as (23), which means 
that: 

and, with 
w = wo

Em 

B2 e 

(33) 

(41) 

Thus it is proved that, under the conditions described, the path of the 
particle is cycloidal. 

The cyclotron frequency is the same as the angular frequency of the rolling 
circle. The speed vx at which the centre point of the circle travels along the 
x axis is obtained by (33) and (34): 

E 
vx=R'co~=—

B 

teE
Path of the particle 

~ e•v.B 

(42) 

Fig. 14. Forces acting on an electrically-charged particle travelling in a straight path 
within intersecting electric and magnetic fields. 

Thus it may be said that the particle makes a movement at constant 
velocity along the x axis and simultaneously a rotary movement, the angular 
frequency of which is the cyclotron frequency. 

Let us now ascretain the conditions under which an electrically charged 
particle will travel through a capacitor, along a path parallel to the capacitor 
electrodes. The magnetic field in the capacitor is again uniform, (see Fig. 14). 

The particle is subjected to the following forces: 

KE=e.E and KB=e v B. 

The required condition is 

KE=KB ore E=e v B 

We find that the velocity is: 
E 

V = B

(43) 

(4 4) 

A charged particle passing at this velocity through the capacitor along 
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a path parallel to the electrodes will be able to contine travelling and will 
not bend towards either of the electrodes. 

Now, if we vary the velocity of the particle by an amount dv (e.g. 
accelerate it), it will not be able to maintain a straight path, but will be deflected 
towards one of the electrodes of the capacitor. Under these conditions the 
following again applies (see (38)): 

v2
eE+m R =e v B 

Rk 

In this equation, Rk > 0 would indicate that a negatively charged particle 
is deflected towards the negative electrode. Rk < 0 would show that it is 
moving towards the other electrode. 

We shall now calculate the radius of curvature Rk for the case where the 
velocity v differs from (44). It follows from (38) that: 

With v = 
B 

+ d v and 

R 
m v2

Rk (45) 
v B—eE 

~dv~~ 

Rk dv 

E 

B 

mE2

=eB3

we obtain 

>0 (46) 

Equation (46) shows that the product Rk dv is always positive, so that, 
if the velocity is increased (d v > 0), Rk is positive. If the velocity is reduced 
(dv < 0), Rk will be negative. Applying (46) to an electron, we may 
conclude that if the electron is travelling along a path parallel to the capacitor 
electrodes, and is accelerated, it will be deflected towards the negatively 
charged electrode and, conversely, if it is decelerated, it will move towards 
the positive electrode. 

This phenomenon is very important from the point of view of the principle 
on which magnetrons operate and we shall refer to it again later. 

So far we have dealt only with the movements of a charged particle in a 
parallel plane capacitor; we shall now examine the path of the particle in a 
cylindrical or wound type of capacitor (Fig. 15). 

The electrical field strength in this type of capacitor is represented by: 

E= R V0R (47) 

in z 
R1 
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where V° is the voltage between the inner and outer electrodes. For the vol-
tage across the inner electrodes at a point R from the axis we write: 

R 

V = 
J 

EdR = V0 • log 
R 

(48) 

Ri R2 Rllog —
R1

Denoting the path of the particle in polar co-ordinates: 

R = R (t) 

= m (t) 
mv2

we again have Equation (12) = 
2 

= eV 

(49) 

(50) 

The following applies to v2: 

(ds)2

R2 p2 + n2 (51)

where and k denote the derivatives with respect to time. Equations (49) 
and (50) must now satisfy the differential equation: 

R 

m log R 

2 (R2 ~ 2 + R2) = e V0 Rl. (52)2 
_ log 
R1 

Equation (52) may be interpreted for the path of a particle in a cylindrical 
capacitor in the same way as (30) for the plane capacitor. 

Fig. 15. Path of an electrically-charged particle under the influence of electric and mag-
netic fields in a cylindrical capacitor. The direction of the magnetic field is normal to the 
plane of the paper. Rl and R2 are the radii of the inner and outer electrodes respectively. 
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It would take us too far afield to work out Equation (52) here, but it 
will be found that the path described is much like the cycloid shown in 
Fig. 15. 

Again we see that on leaving the inner electrode the particle first makes 
an excursion towards the outer electrode and finally returns to the inner one. 

Now that we have noted the path of an electrically-charged particle in 
intersecting electric and magnetic fields we may pass to the subject of the 
cut-off parabola. 

2.5 The cut-off parabola 

We have seen above that under certain conditions in a capacitor, electri-
cally charged particles follow a path such that they return to the electrode 
from which they started out. In effect this means that no current flows 
through the capacitor; in a certain sense a magnetic field plays the part of a 
control grid, i.e. the current is cut off by the magnetic field. The more the 
magnetic field is reduced the closer the paths of the particles will approach 
the opposite electrode of the capacitor; ultimately there will be a certain 
combination of magnetic field and voltage at which the particles just touch 
the opposite electrode and a current will flow through the capacitor. 

Let us now see in the case of the plane capacitor what the conditions will 
have to be for the charged particles just to reach the opposite electrode. 

From the previous chapter we have seen that the radius R of the cycloidal 
path is: 

Em 

B2 e 
(41) 

The particle moves a maximum distance d = 2 R from the electrode 
from which it departs, during which interval it passes through a potential: 

We may therefore write: 

or, 

V=2RE=d E 

V m 
2R2 = -—

B2 e 

mV 
d2 = 2 e • —

Solution of (54) with respect to V gives: 

d2 . e . B2 
V = 

2m 

(54) 

(55) 
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which shows the relationship between the particle magnitudes (e, m), the 
capacitor (d) and V or B when the particles are just able to pass through 

the capacitor. The particles then reach the electrode tangentially. 
Inserting the values for the electron in Eq. (55): 

V = 8.8 10-2 d2 B2

with V in volts, B in gauss and din cm. 

0 100 200 300 400 500 
B 

Fig. 16. Cut-off parabola plotted in accordance with Eq. 56. 

(56) 

This is shown plotted in Fig. 16 for the case where d = 1 cm. 
A very similar relationship applies also to the cylindrical type of capacitor; 

in its ultimate form this is: 

e 

RA2 RC 2 2 
V=—-  

m 
. 

8 
. [1 — RAl . B2 (57) 

This equation was derived in the first instance by Hall, after whom it 
has been named. In it RA is the radius of the outer electrode, RC the radius of 
the inner electrode. 

Inserting RC = RA — din Eq. (57) and taking RA — c Eq. (57) becomes 
Eq. (55). 

Substituting the values for the electron in (57) we have: 

R  \212 
V=2.2•  10-2 . RA2 . [i__2)   A  B2 (58) 

with V in volts, B in gauss, RA and RC in cm. 
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When (57) is plotted with B on the horizontal axis and V on the vertical 
axis Eq. (57) reveals a parabola. This is known as the cut-off parabola, 
because it gives the values of B and V at which the capacitor just ceases to 
pass current. Points above the parabola represent combinations of V and 
B at which current will flow, whereas points below it give those values at 
which no current can pass (Fig. 16). 

Let us now see what the angular velocity of the charged particles will be 
on reaching the anode. 

The particles will have passed through a potential V (57). According to 
(13), then, the velocity v is: 

2m 

2 
v 

2m 
RA 

L1 - \RA/ J 
B 

The angular velocity is given by: 

w 
RA A 

v 
=—=-

2m 
=2m• I1 —I —I I B (58a) 

which gives us for every point in the cut-off parabola the angular velocity 
of the charged particle at the moment of reaching the anode. It is seen that w 
is proportional to the magnetic field strength. 

Sufficient has now been said to give the reader some idea of the movements 
of electrically-charged particles in crossed electric and magnetic fields. 
We now therefore pass on to a discussion of the high frequency electric field 
within the space between the cathode and the anode. 



III. THE CIRCUIT 

3.1 The anode as a delay line 

It has been shown (p 6) that when an electron is decelerated by an electric 
field it delivers energy to the field. Now, in order to generate high frequency 
oscillations in this manner, matters must be so arranged that the electric 
field of these high frequency oscillations is present in the space where the 
electrons are free to move, that is, between cathode and lanode, this space 
being known as the interaction space; only in this way can the electrons 
interact with the field. 

We must also see that the electrons deliver energy to the field for as long 
as possible (preferably for several cycles of the high frequency oscillations) 
i.e. that they are decelerated or delayed by the field. Expressed otherwise, it 
may be said that the electrons must remain in phase with the high frequency 
electric field. This condition will obtain if the velocity at which the electrons 
travel through the interaction space is equal to the phase velocity of the 
high frequency field. 

It is known that, under certain conditions, the phase velocity of an electric 
field along a straight conductor is equal to the speed of light. If the high 
frequency electric field in a magnetron were propagated along a straight 
conductor, the velocity of the electrons would thus have to be equal to 
the speed of light in order to remain in phase with the field, but it is not 
possible to accelerate electrons to this extent. 

In the magnetron, then, the phase velocity of the high frequency field 
must be delayed to enable the electrons to keep abreast of it. 

To do this we guide the electric field along a conductor which has the 
property of delaying the phase velocity of the high frequency field and which 
is known as a delay line or circuit. A few remarks will now be devoted to such 
delay circuits. 

Most magnetrons have a cylindrical anode with a concentric cathode, 
which implies an annular, closed delay circuit. The fact that this circuit is 
closed has several important consequences for the characteristics of the 
magnetron itself, but we shall return to this subject later. 

3.2 General considerations concerning non-homogeneous delay circuits 
In the following we shall consider certain properties of delay circuits of 
periodic structure; for a detailed review reference may be made to existing 
literature. 

Fig. 17a is a diagram of a non-homogeneous delay circuit; it can be 
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regarded as being built up from four elements, which can be approximated 
by the equivalent circuit shown below. 

Fig. 17a. Straight periodic delay circuit of 4 elements. 

V 

ii
0 

t~ 
_f 0 0 0 0'L-

O 

Co

i o
0 

t o

0 

Va

Fig. 17b. Equivalent circuit diagram of an element as in Fig. 17a. 

i and V are respectively the current and voltage measured at the input and 
output. 

It is true of course that an equivalent circuit diagram such as that in 
Fig. 17b only represents an approximation of the real characteristics of the 
actual circuit, but the value of such an approximation lies in the fact that, 

on the one hand, it facilitates a qualitative understanding of the properties 
of the approximated structure and, on the other hand, it enables us to study 
the effects of modifications to the delay circuit, as will presently be shown 
by an example. 

The circuit in Fig. 17b can also be presented in a more general form 
(Fig. 17c). 

ii — Zt~—

vi Vo

Fig. 17c. The general form of a four-pole network, as in Fig. 17b. 
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The single element in the circuit is here represented as a four-terminal 
network; at the two left-hand terminals a voltage V1 and a current i1 will 
be measured, in the directions shown. A voltage Vo with current i o appear 
at the right-hand terminals. 

To calculate those characteristics of the four-pole network in which we 
are interested it is first necessary to determine the relationship between Vz
and i1 as a function of Vo and 10. To simplify the procedure we can divide 

the four-pole network into three parts (Fig. 17d). 

1, , ► 
ZL 2 

O O 

Fig. 17d. Four-pole network as in Fig. 17c divided into 3 elementary networks. 

The following three equations can at once be derived from this diagram: 

V = V1 (59a) V1 = V2 + ZL ' 12 (59b) V2 = V0 (59c) 

is = YT V1 + i 1 (60a) 11 = 12 (60b) i2 = VT V0 + io (60c) 

Combining (59a) and (60a) with (59b) and (60b) we have: 

Vi=V2+ZL' 12 
i==YTV2+(I+ZLYT)12 

} with and (59c) and (60c) : 

Vi = (l + ZLYT) V0 + ZL 10 (61) 
11 = YT (2 + ZLYT) V0 + (1 + ZLYT) Zo (62) 

Thus (61) and (62) show the dependence of the current and voltage at the 
input of the four-pole network upon the current and voltage at the output. 

We shall now show that an angle and an impedance Z 0 can be found, 
such that: 

1 + ZLYT = cos q (63) 

ZL = y Zo sin tp (64) 

YT (2 + ZLYT) = J ' Z stn q (65) 
0 

The question is whether the value of q in (63 or (65) will satisfy the well-
known equation: 

cost 
c 

+ sine = 1 
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It is found that 

cost  q2 _ (1 + ZLYT)2 = 1 + 2ZLYT + ZL2 YT2 (67) 

From (64) and (65): 

Sine q' _ — ZLYT (2 + ZLYT) _ — 2ZLYT — ZL2 YT2 (68) 

and from (67) and (68) : 

cost q + sine' = 1 

For Zo, Eq. (64) and (65) give us: 

Z°s YT (2 + ZLYT) YT (2YL + YT) 
with YL = ZL (66) 

Having shown the validity of (63), (64) and (65) we may now write (61) and 
(62) in the following form: 

Vt = Vo cos q' + jZoio sin ry (69) 

1 
i t = Vo j z  sin q' + io cos (70) 

0 

with cos = 1 + ZLYT (63) 

z1 = YT (2YL + YT) (66) o2 and 

Let us now see how an impedance Z2 at the output (right hand) side of 
the four-pole network can be referred to the input side. 

From (69) and (70) we obtain by division: 

V{ Z2 cos + 1Zo sin V°
— Z — Z • , (71) with Z2 = — (71) 

i; 1 ° JZ2 sin c  + Zo cos 9' io

It appears, then, that Eq. (71) is identical with the following: 

Zi = Zo 
jZ2 sin - 1-1- Zo cos - 1 

Ag Ag 

which shows the manner in which the impedance Z2 at the output of an 

ordinary line, having a characteristic impedance of Zo, a length 1, and at a 

frequency with wavelength Ag on the line, is transformed to the input. 

2~c 2n 
Z2 cos — 1 + jZo sin — 1 

Ag Ag 
(72) 
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Zl is therefore the impedance that exists at the input terminals of our line if 
an impedance ZZ is connected to the output. 

From the identity of Eq. (71) and (72) with q = 
Rg 

• 1(73) it follows that 

the four-pole network in Fig. 17c at a certain frequency behaves as an 
ordinary line of length 1, wavelength A, and characteristic impedance Z0. 
There is this difference between the four-pole network and the line, however, 
that the characteristic impedance of the four-pole network is dependent on 
frequency and that of the line is not. It follows, then, that at different 
frequencies four-pole networks can be replaced by lines of different length 
and characteristic impedance. 

This fact, that an element in a delay circuit can be replaced by an ordinary 
transmission line, at any rate for a certain range of frequencies, considerably 
simplifies our study of the electrical conditions in a delay circuit. 

If we now terminate the four-pole network in Fig. 17c with its charac-
teristic impedance Z0, the input impedance, according to Eq. (71) will be: 

Zi =Z0 with Z2 =Zo

Hence the impedance at the input is the same as at the output. 
This being so, the voltage and current at the input are (from (69) and (70)): 

Vz = V( cos + j sin c) = Voe"P (74) 

rt = ip (cos 97 + j sin q~) = i oe'P (75) 

The amplitudes are the same; only the phase is displaced to the extent of p. 
If we denote the physical length of our four-pole network by L and the 

phase difference in the voltage as between the input and output by q' (see 74) 
we can speak of a phase velocity vs,, in accordance with: 

L w 
vP =— 2~c f=L•-

97 97 

where f is the frequency at which the phase difference q, occurs: 
Nowf•2=c, so: 

L 2asc c q A 
V ' = 

2 q 
or 

vP 2~ L 

(77) 

(76a) 

c 
The value of — in Eq. (76) indicates how much less the phase velocity of 

vP 

the wave on the delay line is than the speed of light c. 
According to Eq. (63), 97 is a function of A, and we can therefore calculate 

the value of as a function of A for any given four-pole network. 
vP 
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By plotting 
v 

on the vertical axis of a system of coordinates with 
L 

on the 
D 

horizontal axis the properties of the four-pole network with respect to the 
phase velocity can be shown (see Fig. 18a). The resultant curve is called a 
dispersion curve. According to Eq. (76a) the curves for = constant are, 
in effect, straight lines passing through the origin. 

Besides the phase velocity vD it is also necessary to consider the group 
velocity vg, by which is meant the velocity at which energy is propagated 
through the four-pole network. The group and phase velocities in a trans-
mission line, for example, are both equal to the speed of light and are 
independent of the frequency. If there is any dispersion in the line, however, 
that is if the phase velocity is dependent on frequency, then vD vg. Text-
books on physics tell us that vD bears the following relationship to vg: 

1 d (9:\ 1 dq~ 

vg dcv L/ L dw 

where c  represents the phase difference in the four-pole network and L 
its physical length. 

Taking the case of four-pole networks in general it is conceivable that: 

dw>0 or -<0 
dw 

(78) 

If 
dw 

> 0 the group velocity has the same direction as the phase velocity, 

in which case the energy and the phase of the electromagnetic wave 
travel in the same direction through the four-pole network. We then speak of 

a forward wave. Where 
dT 

< 0 the group velocity has the opposite di-

rection to the phase velocity and we have what is called a backward wave. 

cp=Q 

Fig. 18a. Dispersion curve of a delay line. The phase and energy of the fundamental 
wave proceed in the same direction. 
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The group velocity v, can be found at once from Fig. 18a for any 
2 c 

value of — 
v

. If the tangent to the curve is drawn at point A to the axis 

c 
(point B), the distance from the origin to point B will be equal to —. When 

2 vp

the tangent intersects the 
L 

axis between the point of contact A and the 

point of intersection B, we have a backward wave (Fig. 18b); but if there is 
2 

no point of intersection with the 
L 

axis, the wave is forward (Fig. 18a). 

A 
VP

i -- , ,,f 

C ✓ L 
Yg ; ✓ 

r 
s 

y=o 

Fig. 18b. Dispersion curve of a delay line. The phase and energy of the fundamental 
wave proceed in opposite directions. 

In the above we have referred to the phase difference that occurs when 
a wave is propagated through the four-pole network, and by this is meant 

the measurable phase difference of the wave as between the input and output. 

It is conceivable that a wave having such a measurable difference in phase (q~) 

is in actual fact rotated to the extent of q ± 2n on its way through the 

network; moreover, as measurements cannot be effected within the four-pole 

network itself, it is even possible that, where there is measurable phase 
difference q, the phase really varies about the value: 

, +m - 2r m=0,±1,±2,t. . . (79) 

on the way through the four-pole network. 
Again denoting the length of the four-pole network by L, and the phase 

velocity by vD, such waves may be written as: 

w c 
v„=L   and—== 

q~+m 2z v, \2r +m/ L 
(76b) 

from which it is seen that the waves pass through the network at different 
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phase velocities. The wave in respect of which m = 0 will have the greatest 

phase velocity; the higher the value of m the less the phase velocity. 
The group velocity vg of the energy transported by the waves is obtained 

from: 

1 d fr  + m • 
2~c1 

1 dq~ 

vD dco L I L dw 
(80) 

so vg is the same for all the waves. 
It is seen, then, that at one particular frequency an infinite series of waves 

can pass through our four-pole network; the group velocity of all these 
component waves is the same, but the phase velocity differs in each case. 
That component for which m = 0 is usually refered to as the fundamental 
wave; the phase velocity is greater than that of all the other components. 
Waves for which m ~ 0 are known as spatial harmonics, but the word 
harmonic can be misleading as there is no question of different frequencies; 
the phenomenon occurs only at one definite frequency. 

\ 

\ 

\ 

i 

gyp= 211 

Fig. 19. Dispersion curve of a delay line. The figure shows the fundamental wave 
and the components m = +1 and m = —1. (See also Eq. 76b). 
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Such component waves can also be included in the diagram showing 

v as
 

 a function of—. 
 
If the curve of the fundamental is known, the lines for 

9 

the component waves can be derived from it in accordance with Eq. (76b) 
(Fig. 19). It will be seen that the component waves fall into two groups, viz. 
one of forward waves and one of backward waves. Thus any non-uniform 
delay line may transmit both forward and backward waves. 

The amplitude ratios of all these component waves are determined by the 
geometrical form of the delay line or four-pole network. If the electric field 
in the direction of propagation of the wave were sinusoidal, only the funda-
mental wave would be produced, but, as the field in the region of the vanes 
in the line departs very considerably from the sinusoidal, component waves 
must necessarily occur. Near the straight section of the line the departure 
from the sinusoidal is not so pronounced and the field of the component 
waves accordingly not so strong. In general it can be said that the field 
strength of the component waves penetrates less deeply into the space between 
the vanes and straight conductor according as m increases. 

Lastly, it should be noted that no isolated component wave can occur in 
the line; if energy is injected into the field of one of the component waves 
this energy is distributed among all the components in such a way that their 
amplitudes are related to one another in accordance with the geometrical 
form of the line. 

Having now determined certain characteristics of a fourpole network 
as shown in Fig. 17b and 17c, which are important from the point of view 

of our investigation, let us now finally compute as a function of co. 
It follows from Fig. 17b that YT = jwC0

w 1 
Z L - .I w12Ci  

wi

where wit = L1C1 
With Eq. (63) and (66): 

cos q — 1 

l2 

Co \w1/ 

Cl  ( w ) 2
1-

wi

(81) 

(82) 
Z o2 12Co2 

= 2 ' CO [1 — 
~wi / 2i — ~wi~2 
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OUTPUT 

Fig. 3. Packaged magnetron, Philips type 7091. This tube delivers 2 kW continuous 
wave at 2450 Mc/s. 



INPUT 

OUTPUT TUNING MECHANISM 

Fig. 4. Unpackaged magnetron, Philips type 5J 26. This is a tunable magnetron for pulsed 
operation delivering 500 kW. Frequency variable from 1220 to 1350 Mc/s. 

Fig. 5. The anode of a magnetron, 
showing the components which deter-
mine the frequency and the output 
coupling slot. 

COUPLING SLOT 
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Equation (81) shows that cos is C 1 only in the range of frequencies: 

\2 
0 C 

\~/ 
~  2C1 

col  2C1 + C0 

At these frequencies Z0 is real. 
z 

At frequencies 
()\ 

G• 2C2 C  , Icosq>1. 
1 1 0  2 2C 

The physical meaning of this is that, in the range 0 C w G 2C { C , 1 1 0 
electric waves can travel through fourpole networks without attenuation; 

2 

they undergo only a shift in phase. With ) > 
2C2 C 

the voltage at 
1 1 0 

cascp 
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Fig. 20. Phase difference cos per a ement of a delay line as shown in 
Figs. 17a and 17b as a function of w/wl with C01 C1 as parameter. 



34 

1 

Z0~w12002

2.0 

1.9 

7.8 

7.7 

1.6 

15 

7.6 

13 

THE CIRCUIT 

I 1• 

11 

1.0 

09 

08 

07 

06 

0.5 

04 

0.3 

0.7 
0 

-01 

--0.2 

-0. 
-04 

-0.5 

818 av 70 

3 

Fig. 21. Characteristic impedance Zo plotted against w/wl for the delay line shown in 
Figs. 17a and 17b with C0/C1 as parameter. 

the output is less than that at the input and, moreover, the characteristic 
impedance then becomes complex. 

The fact that waves are propagated without attenuation within a certain 
range applies in general to all delay circuits. Actually there is a number of 
such pass bands, but only that containing the lowest frequency is of any 
importance in magnetron techniques. 

In Figs. 20 and 21 Equation (81) and (82) are shown plotted at different 

values of C0
Cl

At this point we pass on to a study of closed annular delay circuits. 
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3.3 The closed ring-shaped delay circuit 

Let us imagine a straight delay circuit comprising N identical elements, 
terminated with its characteristic impedance. If we apply to the input a 
voltage V at a frequency f in the pass-band we know that waves will be 

propagated in the circuit whereby the phase difference per element of the 
circuit is: 

q~+2mn m=0,+1,+2,±.. . 

The various values of m relate to the component waves. At the output, 
then, there will be a total phase difference +y in accordance with: 

' = N (q~ + 2mn) (83) 

It is seen from Eq. (63) that q is a function of the frequency f; hence ' 
is also a function of the frequency: 

~Y=N'q(f)=~'(f) (84) 

If f is taken throughout the pass-band, q' varies between zero and n. 
With m = 0, Eq. (83) thus gives: 

N 
0< 

(f)oC2 
2c (85) 

from which it is seen that there are several discrete frequencies f n at which 
the phases at the input and output of the line are the same. These frequencies 
f„ can be ascertained from the following equation: 

N 
N q~ ( f„) = n 2c n = 0, 1, 2, . . . 2  (86) 

n N 
(87) 

At all frequencies at which f ~ f, the input and output voltages are not in 
phase. Also, at the frequencies f„ from Eq. (86) not only the fundamental 
wave, whereby m = 0, yields the same phase at input and output, but all 
the component waves do so as well. For, from Eq. (87) in respect of the phase 
difference of the component wave per element of the line: 

n lac 
~ ( f„) = 

N 
• 2n -}- m • 2^c = 

N 
(n -{- mN) 

(87a) 

Hence the phase difference at the end of the line comprising N elements is: 

( f„) = N ( f n) = n • 2z m N 2~c = (n { mN) 2n (88) 
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Now, since 
y = n + mN (89) 

is a whole number, (f) is a multiple of 2~r. 
If we now imagine the input terminals of the line connected to the output 

terminals we shall have a closed ring-shaped delay line (see Fig. 22), through 
which only the frequencies f n in Eq. (87) and all their component waves will 
be able to travel. For, in respect of these frequencies, there is no phase 
difference as between the input and output of the original line; the fact that 
the input is now connected to the output makes no difference — other 

frequencies at which f ~ f„ will not be able to develop in the closed circuit. 

The result of joining the ends of the delay line is that it is now capable 

of oscillations at a number of discrete frequencies f i in accordance with 

Eq. (87). 
This can be explained by so connecting the delay line in Fig. 17a. It 

follows from Eq. (87) that: 

0 Gn G2 

hence 

4'n=o = 0; ~,=i = 
2 

4'n=2 = r and from Eq. (81) 

VC1  y2 Cl 
.f=o= 0; ,fn=.fi ' Co + Cl 

fn=2 =fi ' 2C1-f- Co• 

When referring to the various resonances of the closed delay line we 

usually mean the values of n in Eq. (82). Thus we speak of the "2nd mode" 

when we mean the resonance occurring at frequency f„=2. In practice, 

one exception is made, namely in relation to the resonance at n = N, which 

is known as the "'r-mode", since in this case the phase shift occasioned by 

one element in the line at this frequency is equal to r radians; from Eq. (87) 
N 

it follows that for n = 
2 

the angle q =

We have now seen, then, that a number of discrete frequencies can be 

attributed to a closed delay line, so that we may speak of a certain "mode 

spectrum". The position occupied by the various resonant frequencies 

within the entire range is determined solely by Eqs. (63) and (87), which 
implies that the number of elements and the geometrical form of the line 
are the deciding factors. 
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We are now confronted with the curious fact that a system comprising N 
N 

elements has only 
2 

+ 1 resonant frequencies. 

A system of this kind might otherwise be expected to have N resonances 

and in fact, this is so; the resonances whereby n = 1, 2, . . . 
N

— 1 occur in 

the form of doublets, but we shall refer to this again later. Only those 
N 

resonances for which n = 0 and n = — do not occur in the doublet form. 
2 

N 1 
In all, then, there are 2 — 1 f + 2 = N different possibilities of reson-

ance, as anticipated. / 
Under the conditions as described (the form of the delay line) two doublet 

frequencies are in each case the same. 
To illustrate the above it may be useful to calculate the values of y for a 

closed delay circuit comprising 8 elements. The 5 possible resonances 
N 

2 
+ 1 will be denoted by 0, 1, 2, 3 and 4; each fundamental wave contains 

an infinite number of spatial harmonics designated as y 

y=n+m N 

The following values can thus be attributed to the 0 mode: 

yo = 0, ± 8, ± 16, ± 32 etc. 

The first mode gives: 

yl = 1, + 9,-7,±17,-15, 

The second mode: 

72 = 2, +10, —6, +18, —14, 

and the 3rd and 4th modes give respectively: 

y 3 = 3, +11,-5,  +19, —13, 

Ya = 4, + 12, —4, +20, -12,  

It is seen that each natural quantity occurs in one of the series. 

3.4 The phase velocity in the closed delay circuit 

As starting point we shall assume a closed delay circuit of N elements; 
in Fig. 22, N = 8. 
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It has been shown in the previous chapter that a line of this kind will be 
capable of oscillating at a number of discrete frequencies. Let); be one such 
frequency. We shall now ascertain the phase velocity at which the waves will 
be propagated along the line at this frequency. 

0 

Fig. 22. Closed ring-shaped delay line of 8 elements. 

We know that, at this frequency);, there will be an infinite series of values 
for y to indicate the phase shift ~s per element in the line. According to (87a): 

n ?ac 
4'i= 2r' N+m)=N'Ye (87a) 

Now the time T required for a variation in phase of 2n to take place is the 
period of oscillation of the frequency);: 

1 
T=—lL 

To compute the phase angle q from Eq. (87a) we thus require a time t: 

T T 
t= '9'a= N'Yi 
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By the time the wave has passed an element in the line it will have travelled 
2~r 

a distance S = 
N 

R,I (RA = radius of anode) at a phase velocity v=; hence 

S 2r RA 1 
2n c RA (91) v=—=  = 

t Ty

where c = speed of light and 2i = wavelength of the frequency j in air. 
The angular phase velocity w can now be derived from the phase velocity 

V. 1 
w= —=tar c  

RA
(92) 

From this it follows that with a given resonant frequency of the line (that 
is, a given value of 2) the various spacial harmonics progress at different 
angular frequencies. The most rapid of these is the fundamental wave, for 
the value of ya is the lowest. 

The fact that each resonant frequency means an infinite number of discrete 
values of the angular frequency w of the phase introduces certain compli-
cations in the working of magnetrons. 
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4.1 Electrons synchronised with the r.f. electric field 

On p 24 it was shown that it is essential in the operation of a magnetron 
for the electrons to be in phase with the r.f. electric field. We shall now 
ascertain the conditions under which this is fulfilled. 

Equation (58a) shows that for every point (V, B) on the cut-off parabola 
(57), the angular velocity w of the electrons, at the moment of reaching the 
anode is: 

e RC 2 

w=—• 1— — B 
2m RA

(58a) 

The angular phase velocity w of an r.f. field of wavelength A in free space 
was found to be: 

2~xc 
w= 

V~ 
(92) 

Apparently, then, there is a point V*, B* on the cut-off parabola whereby 
the electrons, at the point in their path which is as close as possible to the 
anode, are synchronised with the field: 

or 

27rc e 

2_ • yt 2m 

B* = 4nc 

Cl — 
2 

\RA1J 

m 1 

e 
1 ' V: L1 — 

\RAI2J 

B* 

(93) 

Inserting the speed of light and the values relative to the electron we then 
have: 

21.4 
B* = 

r 
(RC)21 

103 (gauss) 

A; y; I 1 — 
\RA J 

(94) 

B* is the lowest value of the magnetic field at which synchronism with the 
electric field (defined by Ai and y,) is possible and this is known as the 
"characteristic magnetic field". 
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From Eq. (57) the appropriate value V* is found to be: 

z 
V * = 2 • 

m 
• (~rc)z ( 

RA J 
(95) 

e AMY% 

With the electron values this becomes: 

Z 
V* = 1.01 10 IRA (volts) (96) 

2zvi 

and V* is called the characteristic voltage of the magnetron at wavelength At
with y; indicating the mode. 

The combination (V*, B*) contains the lowest values of V and B at which 
synchronism between the electrons and the field (defined by ) and y,) can 
exist. 

From Eqs. (94) and (96) it is seen that the characteristic quantities B* 
and V*, apart from certain dimensions of the magnetron (RC and RA), 
are dependent only on the product At • yt. It is therefore possible for various 
modes of a magnetron to yield the same, or practically the same, value of the 
product Ay. For example, if the 'r-mode of a particular magnetron gives the 
same value of this product Ay as any other mode, it may be expected that 
the working of this magnetron will not be stable, seeing that the fields of 
both modes are synchronised with the electrons. 

So-called missing lines will then occur in the r.f. spectrum owing to the 
fact that at any given moment no energy will be delivered in the it-mode. 

An example may make this clear. The wavelength of the 7r-mode in a 
16-cavity magnetron is 3.2 cm, that of the 7th mode (the ar-mode is the eighth) 
being 2.85 cm. 

The values of y8 for the ir-mode are: 

ys = n + m N = ±8, ±24, ±40, etc. 

and those of the 7th mode: 

y~ = 7, +23, —9, +39, —25, etc. 

Hence for the fundamental wave of the a-mode we have: 

A„ y8 =3.2 8=25.6 

whilst the first spatial harmonic of the 7th mode is 

y~ = 2.85 . 9 = 25.65 

The two products are thus practically the same and the magnetron 
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would not function properly. A modification to the geometrical form of the 
delay line would improve matters; if the wavelength of the 7th mode were 
reduced slightly whilst retaining that of the n-mode, the product would be 
sufficiently different for the magnetron to work effectively. 

So far we have investigated only the synchronisation of electrons with the 

electric field in respect of values of V and B on the cut-off parabola. 

It is quite as important, however, to know the condition under which 

synchronisation will occur for values of V and B which are greater than the 

characteristic values. The solution to this problem cannot be given here but 

the result will suffice. With a wave whose characteristic values are V* and B* 

the electrons and the electric field will be synchronised so long as the voltage 

V and the magnetic field B satisfy the equation: 

l B 
V=V*12--1~ (97) 

Equation (97) shows the manner in which the anode voltage of a magnetron 

depends on the magnetic field. The relationship between V and B is linear 

and Eq. (97) will therefore appear in the V-B diagram as a straight line. 

At the same time Eq. (97) represents the tangent to the cut-off parabola at 
the point (V*B*), and we shall now give the proof of this. 

According to Eq. (57) the cut-off parabola may be written as: 

e RAs r — zl z 
V=a•Bswherea=m• 

8 
• Ill — 

(RJ] 

The slope of the tangent is given by 

dV 
tan gy =dB=2aB 

and with Eq. (93), tan 9 at the point Bx is: 

2 

tan i4 = 2aBx = ncRA2 
1i_(1 1 RC 

f 1  (98) 
RA ~cYs 

dV 

dB 
for the straight line to Eq. (97) is (with (94) and (95)): 

dV V* (RCIs 1 

d8 
2 • 

B* 
= IrCRA2 1 — 

\RA/ iYc 
(99) 
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Equations (98) and (99) mean that the slope of the tangent to the cut-off 
parabola at point (V*B*) is the same as that of the straight line according 
to (97). But ( V*B*) is also a point in Eq. (97), so (97) must be the tangent to 
the cut-off parabola at V*B*. 

The practical application of Eq. (97) can now be explained with the aid of 
an example. Assuming a magnetron with N = 16 cavities, anode radius 
RA = 0.437 cm., cathode radius RC = 0.277 cm., and a wavelength of the 
'r-mode of 3.2 cm., what is the relationship between the anode voltage V 
and the magnetic field B? This is calculated from Eq. (97) and is then 
plotted graphically. 

25 

V(kb 

15 

70 

Gut off oara¢o 

~D5 (L4. B —1) 

0 t 2 3 4 5 6 
--- 8(kr) 

Fig. 23- Cut-off parabola and Eq. 101 for the n mode: Philips magnetron type 6972. 
The electrons and the r.f. electric field are synchronised. 
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From Eq. (96): V* = 2.95 kV; B* from Eq. (94) = 1.4k 1. 
With Eq. (97) then: 

V= 2.95 (1.43B — 1) ( Vin kV; B in k l) (101) 

The cut-off parabola and Eq. (101) are shown plotted in Fig. 23. 
To return for a moment to the significance of the spatial harmonics 

occurring in the oscillations of a magnetron. We have seen that every mode 
of oscillation, with the exception of the fundamental wave, contains an 
infinite number of spacial harmonics (p 31), these being designated by a 
number given by y = n + m N where n is the mode number, m a random 
natural number and N the number of elements in the delay line. According 
to Eq. (92) spatial harmonics of given mode are propagated at different 
angular velocities. Now, if the line oscillates at a frequency f in the nth-mode, 
all the spatial harmonics of this mode will occur simultaneously. This is due 
to the fact that the electromagnetic field has to expand along the line with 
all its angles and corners. 

If the electrons are synchronised with one of the spatial harmonics, 
energy is delivered to the field of that harmonic. 

As an outcome of the geometry of the delay line this energy is uniformly 
distributed among all the harmonics, including the fundamental wave. 
It is therefore possible to generate a mode by synchronism between the 
electrons and the field of one of the spatial harmonics. If the anode voltage 
V. the magnetic field B in the space between anode and cathode, and the 
wavelength A of the oscillation are known, we can calculate the value y of the 
driven spatial harmonic. According to Eq. (97) and (57) : 

V 
B*=B (i_Vi_- ) (102) 

where V is the anode voltage in volts and B is the magnetic field in gauss. 
According to (58) a is: 

2 
a = 2.2 10 2 . RA2 [1 — 

(R)2
]with R in cm. 

With Eq. (94) the solution for B* with respect to y is: 

21.4 103
y =  

r 

l2 (A in cm., B* in gauss) (103) 

A• B*. 
L1— (Ral J 

Thus, with the aid of Eq. (102) and (103) it is possible to ascertain with 
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which spatial harmonic the electrons interact at an anode voltage V. with 
magnetic field B and the wavelength A of the oscillation generated. 

To conclude this chapter some formulae are given by means of which 
the effect of small variations in RA, RC and B on the anode voltage V can be 
calculated. From (97) : 

* * 

dV = (--1   dV* + 2 
V* 

dB — 2 B B 
dB* (104) 

and further, in accordance with (93) and (95) : 

dV*= \RAdRA— d)f V* (105) 

and 
2 

dB* = RA2RRC2dRo-2I RA)  1 RC 2 dRA— 
dRJ 

B* (106) 

\ RA [1 — 
(RAI J 

Using Eq. (104), (105) and (106) the effect of tolerances on RA, RC, B and A 
on the anode voltage can be computed. 

4.2 Elimination of unfavourably-phased electrons 

In the previous chapters we have been concerned only with the condition 
under which the electrons can be synchronised with the electric field. 
Synchronisation, however, is not in itself sufficient to result in oscillation. 
The whole surface of the cathode emits electrons continuously and there are 
therefore just as many electrons delivering energy to the electric field as 
there are electrons absorbing energy from it. In order to deliver to the field 
more energy than is withdrawn from it we must see that those electrons 
which absorb energy from the field are eliminated as quickly as possible 
from the space between the anode and cathode. 

This elimination of unwanted electrons in magnetrons is effected in the 
following manner. Electrons which on leaving the cathode take energy from 
the r.f. field move at a higher velocity than is necessary for synchronisation. 
Now, on p 19 it was seen that in such cases the electron travels back to 
the cathode; the energy absorbed by it from the r.f. field is then dissipated 
as heat at the cathode because of this bombardment. In general, the power 
returned to the cathode by such bombardment represents a few per cent of 
the input power. Hence, many magnetrons, when in the oscillating condition, 
require a lower heating voltage to maintain a particular cathode temperature 
than if they were not oscillating. 
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The collisions between the returning electrons and the cathode cause a 
large number of secondary electrons to be liberated, and, in the case of the 
pulsed type of magnetron, in particular, this is very advantageous. Other-
wise, the cathode would not be capable of delivering the required peak 
current on the basis of thermal electrons only. 

The proportion of secondary electrons to the total emission current is 
not exactly known, but it is certain that some 50% or more is provided by 
secondary electrons. 

On this basis it is possible to form a qualitative idea of the distribution 
of electrons in the space between the cathode and the anode. In the immediate 
neighbourhood of the cathode the r.f. field has little or no effect; the cathode 
is surrounded by a circle of electrons which rotate round it. 

Fig. 24. Schematic diagram of the rotating "wheel" formed by 
the electrons in a magnetron oscillating in the n mode. 

In the space between cathode and anode the elimination of unwanted 
electrons occurs and the remaining electrons appear to be distributed in the 
manner of spokes of a wheel. The space beyond these "spokes" will be only 
sparsely populated with electrons. Fig. 24 illustrates this condition diagram-
matically as applied to the r-  mode.*) The r.f. electric field has a focusing 

• The "spoked" ring of electrons rotates at the angular velocity of the field. 
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effect on the "spokes" in that it tends to hold the electrons together. 
According as the current is increased, however, the repulsion of the electrons 
in the "spokes" may exceed the focusing effect because of the increased 
density of the charge, in which case oscillation ceases. 

4.3 Unwanted modes of oscillation 

We have seen (p 36) that a magnetron having a delay circuit of N elements 
N 

can oscillate at 
2 

+ 1 different frequencies, but it is, of course, not desirable 

that a magnetron should generate more than one frequency. In general, 
oscillation in the n -mode is preferred as this ensures the greatest electronic 
efficiency, and every precaution must therefore be taken that all other modes 
of oscillation are suppressed. This is dealt with in the next chapter, but it 
should be added here that there is no known method of complete suppression 
of all unwanted modes of oscillation. A percentage of some 0.001% of 
pulses missing the n -mode is attainable and such pulses are accordingly 
called "missing pulses" or "missing lines". 

In practical forms of the magnetron there is besides the delay circuit an 
output coupling for the r.f. energy, which has certain effects on the mode of 
oscillation of the magnetron. 

It has already been shown (p 27) that one element of the delay line will 
have the following characteristics: 

Vi = Vo cos 92 + jZoio sin 9) (69) 

ii = j — sin q + io cos q (70) 
o 

With two such elements coupled together Eqs. (69) and (70) give us: 

V1 = Vo cos 2 92 + Zoio sin 2 92 (107) 

1 
li = j Z Vo sin 292 + io cos 2 92 (108) 

0 

if a number of elements are coupled in succession the voltage Vi and 
current ii at the beginning of the line will bear the following relationship 
to the voltage Vo and current ii at the end: 

Vi = Vo cos N 9) + j Zoio sin N 9) (109) 

1 
ii = j Z Vo sin N 9) + io cos N 9) (110) 

0 
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On closing the circuit by connecting the ends of the line together Vz = V0

and i; = i0, hence: 
0= V0 (cos Ncp — 1) -1- jZoio sin Nq (111) 

0=j  
Z 

V0 sin Nq~ + i0 (cos Nq~ — 1) (112) 
0 

In the case of V0 ~ 0 and i0 ~ 0 we obtain the following solutions for qua: 

(cos N cpa — 1) + sin2N cps = 0 
or 

cos N py = 1 
or 

(113) 

(114) 

n N 
(115) q~= N 2z • 0<n<  ~. 

Now Eq. (115) is the same as (87) and tells us nothing new, but we have 

so far not taken into account the coupling of the output load to the mag-

netron. We shall assume that a load j YL is connected across the terminals 

of the final element in the line (Fig. 25). j YL then represents a certain asym-

metry in the otherwise symmetrical line. 

=o -
vt 
Io-

2 

Fig. 25. Equivalent circuit diagram of a straight delay line terminated 
with an admittance

V= and it are now found to be (see also Fig. 17d): 

Vz = V0 (cos N q~ — ZO YL sin N q~) + jZ0 i0 sin N9 (116) 

ii = j • Z (sin N92 + ZO YL cos N92) + 10 cos N9 (117) 
0 

If we now close the circuit (input to output), Vi must again equal V0 and 
the angles q must comply with the following: 

0 = V0 (cos N cp — ZO YL sin N q~ — 1) + jZoi o sin N (118) 

0 = j 
Z  

(sin Ncp + YLZO cos N ) + i0 (cos N — 1) (119) 
0 

These equations have two possible solutions. If we admit V0 = 0, i0 ~ 0, 



Fig. 30b. Magnetronanode for 
A = 8,6 mm. 

"RISING SUN" STRUCTURE 

DELAYCIRCUIT 

ST RAP RINGS 

COUPLING SLOT 

Fig. 37. Delay line with four strap 
rings and coupling-out slot. 



Cutaway view of 32 mm magnetron showing the following components: a. anode block; 
b. and c. iron end pieces, serving as pole pieces; d. and e. femico rings for hard-glass 
seals; k. cathode; f. connections for cathode and filament; h. transformer slot in copper 
disc; 1. output waveguide; m. fernico cap with hole for glass output window; p. brass 

connection flange; q. and r slots functioning as RF chokes. 
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phase angles qua for modes of oscillation are obtained which will not couple 
with the load jYL. No current then flows through jYL, seeing that V° = 0. 
Then 

0 = jZ°i° sin Ng: (118a) 

0 = i° (cos Nq — 1) (119a) 
with i° ~ 0. 

Both expressions yield the same solution: 

Fl N 
q= -2r 0<n<

2
(120a) 

The phase angles q in Eq. 120a thus produce modes of oscillation which 
will not couple with the load. 

The second solution, qua* with V° 0 and i° /  0 is obtained by writing 
(118) and (119) in the form: 

= —? arc tan Z°YL } 
n 

2~ n = 0, . . Nor 
N N N 2 

92t* _ — 
N 

arc tan Z  2 L +q'1 (120b) 

Each mode number n from (120a) and (120b) can thus correspond to two 
modes of oscillation of slightly different frequencies, which implies that each 
mode occurs in the form of a doublet, one component of which couples with 
the load j YL and one of which does not. It will now be shown that there are 
wot exceptions to this. The 0-mode and the a-mode do not give doublets; 
both will at all times couple with the load. If we assume that V° = 0 for a 
certain element in the line, the voltage V, at the input of that element will 

be in accordance with Eq. (69) : 

V; = jZ°i° sin 9' 

Now, in the 0-mode = 0 and in the 'r-mode qp ='r, so in both cases: 

V = 0, where i° ~ 0. 

This means that the voltage is zero throughout the delay line, i.e. that no 
oscillation takes place. 

All this has a very important effect on our delay line, namely that the 
introduction of asymmetry in the line (the load represents asymmetry) 
results in modes of oscillation that will not couple with that asymmetry. 
Where there is a load as only asymmetry, then, certain modes of oscillation 
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are not damped and these must have an adverse effect on the behaviour of a 
magnetron oscillating in the (necessarily damped) yr-mode. 

It can be demonstrated, however, that if a second source of asymmetry is 
included in the delay line at a certain distance from the first, the two 
modes of oscillation of certain doublets will in every case couple with the 
two asymmetries. 
In this way the two modes of the most troublesome doublet of the mode 
n = N— 1 (adjacent to the v-mode) can always be coupled out and so 
also damped. A suitable point for introducing the second asymmetry is at a 

N 
distance equal to  elements from the output coupling. 

Thus the introduction of asymmetry at certain points results in the dam-
ping of various modes of oscillation. Similar considerations to those men-
tioned above can be applied to different values of N and optimum positions 
for the introduction of asymmetry can be devised, but suffice it to say that 
even in symmetrically constructed lines there is always some asymmetry 
due to physical tolerances. Such asymmetry is distributed statistically, with 
the result that both components of the unwanted mode are more or less 
coupled out. It is for this reason that it has been possible to make good 
magnetrons with the "symmetrical" delay lines so far employed. 

Another possible method of suppressing unwanted modes of oscillation 
would consist in what is known as selective damping; the introduction into 
the magnetron block of materials with high losses has the effect of damping 
to a large extent such unwanted modes of oscillation. At the same time, the 

n -mode itself must not be affected by such high-loss materials, which means 
that these materials must be introduced at points where the unwanted modes 
have an associated electric field, but where the n -mode has no such field. 
In most practical forms of delay line this is not feasible, for which reason 
this method is of little importance. Certain forms of delay circuits have 
been suggested, however, in which selective damping might be successfully 
employed. 

Having dealt briefly with the effect of the delay line on the occurrence of 
unwanted modes of oscillation we shall now mention one or two other 
important points, and, in the first place, the modulator which is used for 
supplying the necessary voltage pulses to the magnetron. Experience has 
shown that the modulator should have a low internal impedance to ensure 
effective working of the magnetron in the fl-mode, the reason being that in 
this case the voltage on the magnetron does not rise to any extent when 
little or no current is taken by the magnetron. If the anode voltage in respect 
of an unwanted mode of oscillation is sufficiently separated from that of the 
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n-mode the interfering voltage does not develop and the unwanted mode is 
not excited. It is found that when a magnetron is operated with a modulator 
of low R2 a pulse having a much steeper wave-front can be used than if R~ 
were high. 

The emissive properties of the cathode of the magnetron itself are also 
important; in general, good primary emission promotes effective working 
in the n-mode, although cases are known where magnetrons with very poor 
primary emission have also worked well in this mode. 

Another factor affecting the stability of operation in the n-mode is the 
ratio RC/RA, for which an optimum value exists; it appears that the electronic 
efficiency drops with increasing values of RC/RA. 

Lastly, it may be said that a certain irregularity in the diameter of the 
cathode improves the starting propertiels of the magnetron. Fig. 26 shows one 
possible design. It is quite feasible that the cloud of electrons rotating round 
the cathode also has a protuberance which initiates synchronisation with 
the r.f. field and so brings the rest of the electrons into the wheel-like pattern 
mentioned above. 

Fig. 26. Cylindrical cathode with ridge to ensure better excitation of the n-mode. 

One very essential feature of effective n-mode operation is the spectrum 
of the modes. The spectrum may be regarded as satisfactory so long as the 
value of yA, which according to Eq. (92) is related to the angular velocity of 
the electric field, is higher for the n-mode than for the neighbouring mode 
and its first spatial harmonic. The requisite, then, is: 

or 

> \2 + 1/ 2N-1 2 

A 
~IT >1+—

N N-I
2 

(121) 

(122) 

If (122) is met, the anode voltage required for producing the mode the 
N 

number of which is 2  — 1 is higher than that needed for the n-mode. 

(See also Eq. (94), (96), and (97)). 
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Only if the magnetron for some reason does not commence oscillation in 

the at-mode can the voltage rise, thus making synchronisation in the 
N

-1 
mode possible. 



V. EXAMPLES OF PRACTICAL DELAY LINES 
AND CATHODES 

5.1 The most common delay lines in magnetrons 

a) The unstrapped delay line 

In the preceding section the condition for the separation of the n-mode 
from the adjacent mode is given as: 

2"  >1 -{ 
2 

(122) 
2N N 

2 1

and in the following paragraphs we shall compute the mode spectra of a 
number of delay lines and check their usefulness against Eq. (122). 

In relation to the line shown in Fig. 17a on p25 we have already obtained 
the formula for cos q in respect of this line (Eq. 81, p 32). 

cos q' = 1 

z 

Co \cull 
a Cl

(81) 

Further, Eq. (87) on p 35 gives us the means of ascertaining the mode 
frequencies. From (87) and (81) we can now find the frequency cu„ of the n 
mode: 

1 

1+ C0 ! 

CI n 
1 —cos -2 

N 

(123) 

and Fig. 27 shows the mode spectrum of a delay line of 12 elements in 

accordance with Eq. (123). Here is taken to be unity. 
A 1 

To calculate . we may write the general formula: 

2 

wN 2-1 
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Fig. 27. Mode spectrum of an unstrapped delay line as shown in Fig. 17b. Aar is the 
wavelength of the n-mode, an the wavelength of the n mode. For Co and C1 see Fig. 17b. 

b 

N-12 

and Eq. (123) then gives us: 

2N_ 1
2 

 - l - 4 C N2 
1 

(124) 

It is seen that separation of the modes depends on ° and, also, that 
1

AN I for our line is in every case less than unity. This means that the 
2 

line is unsuitable for use in a magnetron. Eq. (124) also shows that with 
higher values of N the wavelength of the it-mode approaches more closely 
to the adjacent mode. For a delay line of 16 elements the separation is only 

about 1% for C = 1. 
1 

It should be noted, however, that the characteristics of the line in Fig. 17a 
are represented qualitatively by the equivalent circuit in Fig. 17b only in the 
band of frequencies where 0 C w G oh. To investigate the behaviour of the 
line above w1 the cavity resonator in the line line must be depicted rather 
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differently; ZL cannot be represented as consisting of L1 and C1; instead we 
must employ a short-circuited transmission line of length L and characteristic 
impedance 1. L c 

Thus we obtain: ZL =j1   tan w - and, with w1 = 
2 L 

xw 
ZL = j 1 tan 

2 w 
(125) 

I 

cos c of a single element is obtained from Eq. (63): 

~w 
cos q = 1 — 1wCo tan 

2 w 1 

cor9 

Fig. 28. Phase difference q of an element in an unstrapped delay line plotted against 
co/o, (see also p 33). 
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and, with 
1 

w1Co =-
~o 

w 1 ~r w 
cos q~ = 1 — — —t  tan — — 

w1 S~ 2a 1
(126) 

This is shown graphically in Fig. 28 for = 1, from which it is seen that 

in the zone of 0 <a) <a)1, the curves in Figs. 20 and 28 are qualitatively 
w 

the same. In Fig. 28, it appears, however, that for — > 1 there are also 
w1

fro 

25 

2.0 

1.5 

t0 

0.5 

0 1 2 3 4 S 6 
I, 

Fig. 29. Mode spectrum of an unstrapped 12-cavity magnetron: i indicates the order 
of the resonance, n the mode. 
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zones where cos q I < 1 i.e. where waves are propagated along the line. 
Equation (87), in the form q = q(f) then gives no unequivocal solution for 
f with a certain value of cp =

= 9 (J) k = 0, 1 . . . oo (127) 

The frequencies f,;, where i > 1 are called resonances of the order of i; 
they occur because a short-circuited transmission line is capable of resonating 
at an infinite number of frequencies. In practical applications of the mag-
netron, however, such forms of oscillation have no significance. 

By means of Fig. 28 we can now ascertain the mode spectrum of a delay 
line comprising 12 elements; from Fig. 29 it is seen that resonances up to the 
2nd order have been included. Fig. 29 agrees qualitatively with Fig. 27. 

b) The "rising-sun" structure. 

If we now modify the delay line in Fig. 17b by enlarging every other element 
(Fig. 30) we have what is known as the rising-sun structure. The dotted lines 
in Fig. 30 indicate that each element of the line thus obtained can be regarded 

I 

I i 
I I 
t I 
I 1 

r I 

Fig. 30a. Rising sun structure. 

as consisting of a small cavity resonator, flanked on each side by half a 
large resonator. The equivalent circuit of an element of this type is shown in 
Fig. 31, from which it is apparent that this figure is derived from Fig. 17c by 
adding an impedance ZLL on the left and right hand sides. 

Here the relationship between Vi and i 2, Vo and io is given by: 

Vi = Vo cos ?p + jZoio sin 1p (128) 

i; = Vo • Z sin p + io cos Y' (129) 
0 

so that 
cos _ (1 -1- ZLYT) (1 + ZLLYT) + ZLLYT (130) 



58 EXAMPLES OF PRACTICAL DELAY LINES AND CATHODES [V 

If we write: 

ZLYT
cos ~1 = 1 + 

2 
(131) 

COS 9)2 = 1 + ZLLYT (132) 

►'o 

Fig. 31. Equivalent circuit diagram of a large and 
small rising sun cavity. 

Eq. (130) can be put in the form: 

COS2 
2 

= COS 9)1 COS 'P2 (133) 

The significance of cos 'P1 and cos 'p2 can be seen from the following. 

According to Eq. (63): cos 'p1 = 1 -( 
ZLYT 

i 
 2

 s the phase shift between the 

input and output voltage of a four-pole network terminated with its charac-
teristic impedance, as shown below. 

Fig. 32. Equivalent circuit diagram of a small rising-sun cavity. 

Further, cos 9)2 = 1 -f- ZLLYT gives the phase shift of the following 
four-pole network. 

ZL 2ZLL 

YT YT 

2 2 

Thus cos 'P2 and cos '1 represent respectively the characteristics of the 
large and small cavity resonators in our delay line in conjunction with 

2T. It follows from (133) that where q = 9)2, cv = 29)1. This must be so for, 
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where = 92, we have 2 identical cavity resonators in series, so that 
the angle as measured across the 2 elements must be twice cpl. 

To ascertain the mode spectrum, 
2 

in Eq. (133) is replaced by: 

2 = N 
• 2'r where Nis the number of cavity resonators; the mode spectrum 

is then given by: 

n N 
cos2 

N 
2 z = cos q 1 cos q 2 n= 0,1,. . .— 

2 
(134) 

Real solutions of this are possible only if cos 1 and cos q'2 are both either 
positive or negative. To calculate the mode spectrum we must also know 
cpl and q 2 as a function of the frequency and for this purpose we shall assume 
that: 

w 
ZL = j 1 tan 2 (135) 

1 

ZLL = j 
2• 

— tan-S— 2   (136) 
2 

YT = jwC0 (137) 

Eq. (135) tells us that the centre cavity resonator in Figs. 30 and 31 is 
to be regarded as a short-circuited transmission line of characteristic 
impedance 1 with wl as its lowest resonant frequency. 

Similarly, Eq. (136) shows that the second cavity resonator will be regarded 
as a short-circuited transmission line with a lowest resonant frequency of 
w2 and characteristic impedance of 2. We regard YT as a capacitance Co
(between the cathode and the vane.) 

To determine the mode spectrum as a function of 
wl 

(as a function of the 
w 2

"detuning" of the large cavities with respect to the small ones) we may 
write Eq. (135) to (137) as: 

n w 
ZL = j 1 tan (138) 

2 

S2 Z w 
ZLL = j Z tan- ~ a 

1 
w l

with a = - (139) 
1 2 

YT = j 
w 

w1Co = j i with o = 1 (140) 
wi wi wico 
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Making use of (131) and (132) we then obtain: 

1 w 1 7 cu 
cos q~1 = 1 — 2 tan 2 — (141 ) 

1 0 1 

1 O) w 
cos = 1 — 2 — — tan 2 — • a (142} 

1 0 1 

Fig. 33 shows cos 
2 

plotted against 
w 

for a = 3 and
1 =o 

= 0.2. 
1 0 

I I I I

W2 

1.0 

0.5 

0 

eas~ 

-0.5 

1.0 

 L 

05 06 07 0.8 09 01 01 03 06 
W 
WI 

Fig. 33. Phase difference cos 
2 

plotted against 
w 

for - = 3. 
i 
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From this the mode spectrum can be derived by determining  with 
n wl

= 2 N  27r. 

~.r

ss 

Aa 

10 

a„ 
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to 

Fig. 34. Mode spectrum of the rising-sun structure with N = 18 cavities, 

plotted against ~'2. 
wl

Fig. 34 shows the mode spectrum of a rising-sun anode of N = 18 

elements, with ~~ on the horizontal axis and  on the vertical axis. „ is the 
wi o 

wavelength of the nth mode and Aaco that of the 7r-mode with a = 1 (delay 
line with equal elements). wl is regarded as constant. 



62 EXAMPLES OF PRACTICAL DELAY LINES AND CATHODES [V 

CU 
It will be noticed that the n-mode (n = 9) for 

s 
= 0.4 is well separated 

(O1

from the n = 8 mode, also that the wavelength of the latter is shorter than 

that of the n-mode, thus satisfying Equation (122). 

Hence the rising sun type of anode is suitable for a magnetron. 
It should be noted, however, that it is desirable to employ a value of N 

that is divisible by 2 but not by 4. If N is divisible by 4, Equation (134) tells 
N 

us that for mode n = —: 
4 

cos qi = 0 or cos = 0 

It then follows from (131) and (132) that 

1+ZLYT=-1 and 1+2ZLLYT=-1 

N 
in other words that mode n = — is a doublet and that the field in both cases 

4 N 
will be in accordance with the 'x-mode for an anode of — elements with all 

2 
N 

the large or small cavity resonators filled in with metal. Modes with n = 
4 

N 
would be easily excited and operation in the desired n = 

2 
mode would be 

difficult. 
Another feature of the rising-sun anode is that the 0-mode interferes 

with the electric field between the cathode and anode when it is operating 

in the st-mode. This is shown as follows: 

Fig. 35. Equivalent circuit diagram as in Fig. 31, divided into three sections. 

Fig. 35 is seen to be the same as Fig. 31 except that YT is now divided in 
halves, one half being added to ZLL and the other to ZL. The separation in 
Fig. 35 is identical with that of the delay line by the vanes (see Fig. 30). 

For the v-mode: Vo = V{ = 0 and ip = i t ~ 0. We now calculate the 
current i* passing across the vane between the small and large cavity reso-

nators. With Vo = 0 and io ~ 0: 
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ZLLYT) 
2  io 

Now, with the rising-sun anode operating in the 7r-mode: 

ZLL YT 
~ —1, hence 

(143) 

(144) 

It should be pointed out here that no current passes across the vanes of a 
delay line in which all the elements are the same. 

It appears from (144) that with the r-mode a current i* flows in all the 
vanes, in the same direction, which means that the field of the rr-mode is 
interfered with by that of the 0-mode. The greater the difference between 
the resonant frequency of the large cavity resonators and that of the small 
ones, the greater the interference. 

The fact that a current flows across the vanes can also be seen from a 
drawing of the distribution of the charge in the rr-mode as shown in Fig. 36. 

+ + _+ _+ 
~~=jt j 

Fig. 36. Occurrence of the 0 mode in the rising sun structure. 
The arrows indicate the direction of the current. 

In this figure the current is shown by means of arrows; it passes all 
the vanes in the same direction and the consequence of this is that, under 
certain conditions, the electronic efficiency of the magnetron drops 
sharply. If the cyclotron frequency of the magnetron corresponds to the 
frequency of the r-mode, energy is absorbed from the r.f. field and the effi-
ciency accordingly drops. Equation (26) shows the relationship between the 
magnetic field B and the wavelength 2 of the cyclotron motion. To ensure a 
reasonable degree of electronic efficiency for a magnetron design, therefore, 
a magnetic field must be employed such that ~ B is either much lower or 
much higher than 11 Krcm. approx. 

c. The strapped anode 

As we have already seen, the delay line shown in Fig. 17b produces an un-
satisfactory mode spectrum. 

Supposing that an anode of this type were oscillating in the yr-mode, 
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the r.f. potential would be the same upon alternate vanes. Now, if the vanes 
of like r.f. potential were to be interconnected by conductors this could be 
done by means of 4 rings in the manner shown in Fig. 37. At each side of the 
anode there would then be two such rings or "straps". 

It will be appreciated that for the er-mode these straps function as a 
capacitance for each of the cavity resonators and that the frequency of the 
or-mode in the strapped system will be lower than without the straps. 

For other modes than the a-mode those points which are connected by 
the straps would be at different r.f. potentials in the unstrapped magnetron. 
A current therefore flows through the straps and the effect on resonant 

frequency of these modes will be different. 
To ascertain the qualitative effect of the straps it is necessary to consider 

once more the characteristics of a single element in the delay line, as fitted 
with straps. But, in order to arrive at a suitable equivalent circuit diagram 
the unstrapped, closed, delay line must now be regarded in a different light. 

Fig. 22 may be regarded as a cross-section of an infinitely long wave-
guide. In such a wave-guide various modes can be propagated; each H-mode 
would have an electric field in the plane of the paper in Fig. 22 and would 
therefore be identical with one of the modes of the unstrapped magnetron. 
In common with all wave-guides our wave-guide will have a certain cut-off 
wavelength for each mode. It is known that the wavelength ~g in the wave-
guide will be infinite if the cut-off frequency is passed into it. It follows from 
this that the r.f. voltage in the direction of propagation undergoes no 
variation in amplitude or phase and, hence, that the frequencies of the 
modes in the unstrapped line must be identical with the cut-off wavelengths 
of the H-modes for the wave-guide associated with those modes. 

The element in the line shown in Fig. 22 can therefore also be regarded 
as a wave-guide, the characteristic impedance ,. of which is: 

(145) 

Eo is dependent on the L : C ratio of the resonator. 
If a wave of wavelength I travels along this line and the length of the line 

is h, the phase angle O, between input and output will be: 

2 2nh il /l\2 
Or 

R
. h 

A l R 
(146) 

The single unstrapped element of the delay line can therefore be regarded 
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as a conductor having a characteristic impedance e in accordance with 
Eq. (145) and a length h ("height" of the line). The 4 straps can be regarded 
as a transmission line above and below each element of the unstrapped line 
and this gives us the following equivalent circuit (Fig. 38). 

~̀j5 r 0 S `~ s • ~s 

Fig. 38. Equivalent circuit diagram of an element in a delay line 
strapped on each side with two rings. 

The characteristic impedance of this transmission line is denoted by , 
and the electrical length O, by: 

2~c 
20,= ~ •s (147) 

where s is the length of the section of strap per resonator. If we now calculate 
the phase shift as a function of frequency we find that: 

cos 92 = cos 
2rrs 

+ a 
2 2rrs rch A 2

F  — 1 sin tanh 
~- 

) —1 
e e 

with a = 
2 

(148) 
0 

When determining the mode frequencies we must bear in mind the fact 
that for the Tr-mode the phase shift g~„ along the straps is zero. In general 
we may write for angle p of the n mode: 

N 
n (149) 

~"` — N\2 
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In Eq. (148) the coefficient a indicates whether the strapping is "heavy" 
or "light". If a low value is chosen for  (deep straps, close together), a 
will be small with constant o. This represents heavy strapping. A high value 
of a indicates light strapping. 
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Fig. 39. Phase difference cos q per element of a strapped delay line as in Fig. 38, 
plotted against A/ar, with a as parameter. 

In Fig. 39 cos is shown plotted in accordance with Eq. (148) for various 
values of a in the region which is of the most interest. It will be seen that 
where A = A~ (the frequency of the x-mode of the unstrapped line) the 

2aas 
curves for every value of a pass through the point cos q, = cos . The 
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heavier the strapping (a -~ 0), the greater the wavelength of the n-mode 
becomes (point of intersection with cos cp = 1). 

From the point of view of practical operation it is important to know in 
what manner the mode spectrum changes when the frequency R~ of the 
n-mode of the strapped magnetron is kept constant and a is varied. Between 
a and 2 the following relationship must exist: 

1/ ( X12

1=cos~ s +a  f — 1 sin 2 s tank 2~y 
(2)2

— 1 

or 

2ns 
1—cos 

a 

1.5 

£0 

0.5 

a=  
(AIT) 2 .12ns nh „ 2

— — 1 sin — tanh — V(—~ — 1 
IT 

(150) 

 i 
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1—cos -~•S 
a—

Vy-1 . sin $S •tank 1
C n' n G 

16 17 19 

ac 
Fig. 40. Relationship between a, a~ and ) with a1  constant. 

The curve of Eq. (150) is shown in Fig. 40 for f = 0.0675 and = 0.198. 

Eq. (148) should then be rewritten in the form: 
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2ns A~ 
cos 92 = cos 

"IT A 
+ 

( 
A \ 2 A~ 2 2ns A„ 7h A 1/I2\ 2 /A\2 

+ 
a 

\ A 1 
— 1 sin , • 

-- 
tanh 

A, A \ Awl \ Ail — 1. 

(151) 

If we now insert in Eq. (151) combinations of a and —" from (150) we shall 
A 

have the curve of cos q' as a function of with a as parameter and this is 
s h 

reproduced in Fig. 41. For — and — we have taken: 

s h 
= 0.0675 --=O.198 

A~ A„ 

That part of the mode spectrum which is of the greatest interest to us, 
with a = 0.5, can be derived from Fig. 41 for a magnetron with, for example, 
16 strapped elements. For the modes 8, 7 and 6 we then take the values of 

9' (Eq. 149) to be: 

9'8= 0 927 =22.5° 928=45 °

For the wavelength of these modes this gives us: 

A"=1.18>1+ =1.125 

and 

(152) 

2" = 1.55 (152a) 
Ae

It thus appears that Eq. (152) conforms to the condition in (122) for a 
satisfactory mode spectrum. 

In conclusion it may be added that by far the most magnetrons in use 
today operate on either the strapped line or the rising-sun principle. 

5.2 The Cathode 

In the preceding chapters we have seen how the movement of electrons in a 
delay line produces r.f. energy. At this point we shall examine in greater 
detail the source of electrons, i.e. the cathode. 

First we will consider the requirements to be met by the cathode of a 
magnetron. These requirements are of course closely related to such para-
meters as wavelength, average power output, pulsed output, type of delay 
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Fig. 41. Phase difference per element of a strapped delay line as a 

function of ~~ with a constant and a as parameter. 
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line used and so on. In particular, two quantities define the operating 
conditions of the cathode, namely, the current density at the surface (in 
A/cm2) and the input per unit area (W/cm2). The "input" is understood to be 
the power applied between the anode and cathode; this is a measure of the 
bombardment of the cathode by returning electrons that the cathode will 
have to withstand. It can be assumed that some 5 to 10% of the input returns 
to the cathode in the form of bombardment. Let us take magnetron type 6972 
as an example. At a wavelength of 3.2 cm this tube delivers 80 kW pulsed 
output and an average of 80 W. The pulse current is 15 A and the anode 
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voltage 15 kV. The cathode area is approximately 1.1 cm2, so the current 
density at the cathode surface is 13.5 A/cm2. 

The input per cm2 is about 200 W/cm2, which is not very high. 
The most important features can at once be obtained from these data, 

namely that the cathodes of magnetrons for pulsed operation must be capable 
of carrying high current densities and also that they must be able to with-
stand considerable bombardment by electrons and sometimes also by ions. 
An emissive coating is therefore required which will quickly recover in the 
event of poisoning and which is also highly conductive, electrically and 
thermally; otherwise the potential difference across the emissive coating, 
due to the high pulse current, would result in breakdown through the coating. 
Good thermal conductivity is necessary to prevent the surface of the cathode 
from becoming overheated. 

To some extent these are conflicting requirements. Good thermal con-
ductivity necessitates a thin coating, but recovery from poisoning demands 
a large reserve of emissive material, in other words a thick coating; special 
methods of construction have been adopted in present-day magnetrons to 
meet both requirements as far as possible. 

In the case of the magnetrons used for industrial heating purposes very 
considerable mismatching of the load is permitted as compared with radar 
magnetrons. This means that relatively more energy is returned to the cathode 
by bombardment, for which reason a cathode material with a very high 
melting point has to be used in such magnetrons, to ensure that overloads 
do not result in melting of the cathode. 

The Philips "dispenser" cathode satisfies this requirement very well, the 
materials for this cathode being porous tungsten and molybdenum; the 
emissive substance is a barium compound. Two different types are in use, 
namely the "cavity-type dispenser cathode" and the "impregnated cathode"; 
Fig. 42 illustrates an example of the cylindrical "cavity" type. 

8O Wo (porous) 

 S. 

Fig. 42. Schematic diagram of Philips cylindrical cavity type of dispenser cathode. 

It will be seen that the cylindrical part, of porous tungsten, and the molyb-
denum of the cathode support together form a cavity into which pellets of a 
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suitable barium compound can be introduced. The emissive part is of 
tungsten. 

The two rings, one on each side of the porous tungsten, have a bundling 
effect on the electrons and prevent electrons from disappearing in the dir-
ection of the pole pieces. The cathodes of nearly all types of magnetron are 
equipped with such rings. 

An example of the cylindrical impregnated cathode, the other type of 
dispenser cathode, is depicted in Fig. 43. 

Wo (porous) 

i t t 

Fig. 43. Schematic diagram of Philips cylindrical dispenser cathode. 

In this case there is no separate cavity for the barium emissive material; 
this is incorporated in the porous tungsten itself. To achieve this the barium 
compound is melted and drawn into the porous tungsten in the liquid state 
by capillary action. 

Here, too, molybdenum is used to support the porous tungsten. There 
is some freedom of choice as to the emissive material used; materials are 
available which yield very little barium and consequently ensure a low rate 
of evaporation of barium. 

Both the above-mentioned types of cathode are used in magnetrons. 
Where the cathode is of small dimensions (for example in 8 mm magnetrons) 
the impregnated type is preferred to the cavity type, as the construction of a 
recess for the barium would present difficulties. Both types of cathode are 
suitable for magnetrons for a wavelength of 3 cm. 

MATRIX 

_I_-

Fig. 44. Schematic diagram of a cylindrical matrix cathode. 

Another kind of cathode frequently used is known as the nickel matrix 
cathode, an example of which is shown in Fig. 44. These cathodes are made 
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by sintering a large quantity of nickel granules to a nickel or molybdenum 
support to provide a spongy, highly conductive layer about 200 microns in 
thickness, in which the emissive material is then incorporated. The area of 
this type of cathode is not very clearly defined but this is not necessarily 
always an objection. Because of its simple construction and excellent pro-
perties, the nickel matrix cathode is widely employed. 

There are also many other kinds of cathode, viz, pressed cathodes, spiral 
tungsten-thorium cathodes, variations of the matrix cathode and so on, 
but the use of these is limited to certain special types of magnetron; they are 
not suitable for universal application. 

Mention may be made here of an effect known as end emission. This 
refers to electrons which reach the anode without taking any part in the 
interaction with the r.f. electric field. These electrons usually originate 
from points on the cathode outside the zone in which emission is required, 
and the phenomenon generally takes place after the magnetron has been in 
operation for some tens of hours. There may be various reasons for this. 
For example, migration along the surface or along crystal faces may result 
in displacement of the emissive material; or again, evaporation or sputtering 
may cause emissive material to be deposited at points on the cathode where 
its presence is undesirable. End emission can be kept within acceptable 
limits by ensuring a suitable design from the point of view of temperature 
distribution and by using certain materials such as zirconium or carbon 
which have the effect of suppressing emission. 

The modulator in which the magnetron is used may also be a determining 
factor as to the occurrence of end emission. A voltage pulse with a long 
"tail" tends to produce more end emission than a short-tail pulse. End 
emission can also be suppressed by applying between pulses a potential of 
about + 200 V to the cathode with respect to anode; this can be obtained 
quite easily from the anode current of the magnetron itself. 

In the above remarks the cathode has necessarily been considered only 
from the aspect of operation of the magnetron, as a more general treatment 
would be beyond the scope of this book. For further details the reader is 
referred to the literature on this subject. 



VI. THE CHARACTERISTICS 
OF MAGNETRONS 

6.1 The Performance Chart and Rieke Diagram 

A number of parameters have to be decided upon in order to fix the working 
point of a magnetron; at the input side the magnetic field B, the anode 
current IA and the anode voltage VA. As we have already seen, VA is de-
pendent on B, so the working point for the input side is in effect determined 
by the independent variables B and IA. The input power, frequency and 
efficiency are also important. 

A load is of course coupled to the output side and this can be defined by 
two mutually independent quantities, i.e. q I (the absolute value of the 
voltage reflection coefficient of the load) and (the phase angle of the 
reflection coefficient). 

The characteristics of the magnetron can be fully delineated by indicating 
the interdependence of these various parameters and of the many possibilities 
of so doing, the performance chart and the "Rieke" or load diagram re-
present the most widely employed practical methods. 

The performance chart is a two-dimensional representation of the anode 
voltage VA (vertical axis) plotted against the anode current (horizontal axis) 
with the magnetic field as parameter. As far as the load is concerned, this 
must be matched to the output waveguide (hence ( q I = 0). Fig. 45 shows a 
typical performance chart. 

In order to show the dependence of the output power (with matched load) 

4 (kY) 

►!A (A) 

Fig. 45. Performance chart. Graphical form of VA = VA (iA) 

with magnetic field strength B as parameter. 
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on the input parameters, lines of constant output power are included in the 
diagram. Lines of constant efficiency are sometimes also drawn in the 
diagram. 

Hence a performance chart enables us to see, for example, what anode 
voltage, anode current and magnetic field are required to make available a 
certain amount of power for a given matched load. To give an actual example, 
Fig. 46 shows the performance chart of magnetron type 6972. 

VAP 
(kV) ?5~ 

-20 

15 

10 

50kW 
.75kW 

25kW 
GAU$Z i' 

2 

100kW 125kW 150kW 175kW 

REGION OF 840 SPECTRUM-

10 12 16 16 1@ 20 L (A) 

Fig. 46. Performance chart of Philips magnetron type 6972. 

If we wish to know the characteristics of a magnetron under different 
loading conditions we make use of a Rieke diagram. The procedure is as 
follows. Every load can be defined by the phase and the voltage reflection 
coefficient; the latter is determined in the following manner. The load is 
coupled to the end of the waveguide and the standing wave ratio a and phase 
angle c  of the line are measured with the aid of a probe and signal generator. 

Now, 

Q_Vmax
Tf 

>l

'mm 

AL 
(p = 47r 

d 
in radians 

0 

(153) 

(154) 
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AL 
= 720 

A 
in degrees 

a 

Here, AL is the distance from the first standing wave minimum to the 
reference plane, usually taken as the coupling flange of the magnetron, but 
in any case always clearly indicated in the published data. 

The angle 9, according to Eq. (154) is identical with the phase angle of 
the reflection coefficient of the load. 

The absolute value I q I of the reflection coefficient is related to the standing 
wave ratio v under test as follows: 

Iql— a-~1 

v-1 
(155) 

If we now consider a system of polar co-ordinates in which the radius r 
is equal to the absolute value q of the reflection coefficient, the angle will be 
equal to that of the phase angle of the load (Fig. 47). 

r 

Fig. 47a. Rieke diagram: reflection coefficient q = q J e=q) plotted on polar co-ordinates. 

In this manner any given load can be represented by a point within the 
circle of radius 1. For example, the matched load lies at the centre of the 
circle; a short circuit would be r = 1, q = 180°. 

All the parameters for the input are now fixed (these are indicated in the 
Rieke diagram) and the phase angle and reflection coefficient are varied, 
with the result that the output power and frequency will also vary. Lines of 
constant frequency and power are drawn in the polar system of coordinates 
referred to above. A diagram of this kind relating to the magnetron type 
6972 is reproduced in Fig. 48. 

It will be seen from this figure that with a reflective load both frequency 
and output power are very dependent on the phase angle. For practical 
purposes it is important to fix the relationship between the frequency drift 



76 THE CHARACTERISTICS OF MAGNETRONS [VI 

Fig. 47b. Impedance diagram (Smith chart) based on Fig. 47a. Every point in the diagram 
represents a certain reflection coefficient q as given in Fig. 47a. 

and mismatching in the form of a single value; accordingly the maximum 
frequency variation that can occur with a reflection coefficient of 0.2 
and phase rotation of 360° is known as the pulling figure of the magnetron. 
This figure can be easily obtained from the load diagram. A load diagram 
may also include the indication "minimum towards load", by which is 
meant that AL in Eq. (154), which determines the phase angle, is measured 
as the distance from the reference plane to the next successive minimum in 
the direction of the load. 

The performance chart and Rieke diagram are indispensable for assessing 
the suitability of a magnetron for a given task. Certain zones will often be 
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THE PERFORMANCE CHART AND RIEKE DIAGRAM 

LOAD DIAGRAM PH/LIPS 6972 
lusec. Du 0.001 1A 15mA 
FREQ 9385Mc/s HEATER VOLTAGE 7.5V 
PULLING 10 Mc/s 

180 

360 

Fig. 48. Rieke diagram for Philips magnetron type 6972. 
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found in the diagram in which the magnetron should not be operated as the 
performance would be poor or the life too short. 

In the following, those zones in the performance chart in which the mag-
netron should not be operated are discussed. 

a. In general, magnetrons do not operate well in the n-mode at very low 
anode currents. As rule this applies at a current of from 0 to approximately 
0.3 times the nominal current rating, although magnetrons for c.w. will 
usually continue to oscillate at lower values. 
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On the other hand the anode current should not be too high as this may 
easily lead to flashover; the maximum permissible anode current is therefore 
always stated in the published data. 

In the case of magnetrons for pulsed operation we accordingly speak of 
the "stable range" of the anode current. 

b. Magnetrons not equipped with their own magnets ("unpackaged"), 
in contrast to "packaged" magnetrons, the magnet of which is an integral 
part of the tube, can be used with almost any desired magnetic field, although 
stable operation is ensured only within limits; if the field strength is too low 
either the magnetron will oscillate in another mode than the a-mode, or the 
efficiency will be very low. If the field strength is too high the appropriate 
anode voltage will also be too high, with risk of flashover. 

The magnetic field of packaged magnetrons is adjusted by the manu-
facturer; care should be taken to see that no magnetic components are 
placed too close to the magnetron as these might attenuate the field and 
adversely affect the operation of the magnetron. 

In the Rieke diagram, too, certain zones can be indicated in which the 
magnetron cannot operate properly. 

For each type of magnetron the maximum standing wave ratio v of the 
load is given, at which the tube may be operated; beyond the corresponding 
zone there will be a considerable increase in the bombardment of the cathode 
by returning electrons, with a consequent reduction in the life of the tube, 
that is, if the working point is such that the output power is lower than with 
matched loading. 

Again, if a magnetron is operated within a zone in the Rieke diagram 
corresponding to higher output power than with matched loading it will 
readily tend to oscillate in some other mode than the yr-mode. Moreover, 
the frequency (owing to the pronounced convergence of the lines of constant 
frequency in that area) will vary appreciably with slight changes in the load; 
in the case of pulsed magnetrons there is then a marked degeneration of the 
pulse spectrum: In tunable magnetrons frequency transients may also occur 

6.2 The "Q" value 

In Chapter III it was pointed out that the geometrical dimensions of the 
delay line determine the frequency at which the magnetron will operate. 
We have also seen that under conditions of oscillation electromagnetic 
waves travel along the line; in other words that electromagnetic energy is 
distributed along the line. The delay line thus functions as a means of 
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storing electromagnetic energy. Let us denote the quantity of energy so 
stored by E°

It is also known that the oscillating magnetron delivers power to the load 
(effective power) and that losses occur in the line (heating of the line). 
The amount of energy delivered to the load during one cycle of the r.f. oscil-
lation is Eb and the energy absorbed by the circuit in the form of losses is E. 

Three quantities can now be defined: 

Qu = 2m E° (Q unloaded) (156) 

E 
Qe = 2n • 

E 
(Q external) (157) 

b 

QL = 2 Eb +  Ec (Q loaded) (158) 

These Q-values accordingly give 2ar times the ratio of the field energy in 
the delay line to the energy dissipated per cycle of the oscillation. 

A high value of Q therefore means that the line is lightly damped; 
conversely a low value of Q indicates heavy damping. 

From Eqs. (156) to (158) we can at once write: 

1 1 1 

QL Qe + Qa 

(159) 

Thus two known values of Q enable us to calculate a third. Further, it 
will be seen that the circuit efficiency (see also Eq. (1)) can be expressed in 
terms of Q, viz. 

,7e = 

Eb QL 
Eb + E,, Qe 

(160) 

The stability of the frequency of a magnetron against variations in the load 
or in the space charge will be greater, the higher the values of Q. The 
reason for this is that the field energy E°, to give a mechanical example, 
plays the same part as the kinetic energy in the flywheel of an engine. 

Eqs. (156) to (158) can be converted by introducing the power Wb and W~ 
in place of Eb and E~, for 

Wb =./ E b

W,=f•E~ 

f denotes the frequency of the r.f. oscillations. 

(161) 

(162) 
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which gives us the following values of Q 0

E 
Q

_ o 

u—Co• W c 

E Q _ o 
e —0) 

W b 

(163) 

(164) 

E 
QL = w   (165) 

W0 + Wb 

The values of Q can also be expressed in another form on the basis of the 
following: 

The magnetron is represented by L with C in parallel (Fig. 49), with R 
as the internal circuit losses and a resistance as load. 

Fig. 49. Equivalent circuit of the cold magnetron for frequencies in the region of the 
~r-mode. L and C represent the delay line, R the losses in the magnetron and the 

load resistance. 

Now, if the LC circuit oscillates at a voltage V = V0 sin cot, the electro-
magnetic field energy will be: 

the circuit losses: 

and the effective power: 

V 2
E0=--C 

2 

V 2
W = o 

e 2R 

V 2_ 0 Wb 
2 

According to Eqs. (163) to (165) the values of Q will thus be: 

Qu = R C w (169) 

Qe = 'C'w (170) 

R E 
QL = 

R + 
C w (171) 
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All these Q values are characteristics of the circuit only and can therefore 
be measured with the magnetron in the cold, i.e. static condition. Methods 
of measurement will be given later. 

6.3 The "cold" pulling 

As we have seen, the delay line is the factor which determines the frequency 
at which magnetrons operate. Now the line is coupled to the load by means 
of a transformer, so variations in the load interact with the line and tend to 
affect the frequency of the oscillation. 

Suppose that a load is coupled to a magnetron with a reflection coefficient 
of: 

q = I qI e'9' (172) 

and q is varied from 0 to 360°; the magnetron frequency will then vary 
between two limits. The difference between these limits AF depends on the 
absolute value I q I of the reflection coefficient as well as on the character-
istics of the magnetron. This relationship is calculated in the following man-
ner. 

Taking first the conditions in a wave-guide terminated with a load whose 
reflection coefficient is q, with a wave 

V,.= V° cos wt 

at the input of the line, the load reflects a wave 

V2= Vo' g I ' eta' cos oft 

(173) 

(174) 

A current wave is also propagated along the line in the direction of the 
load: 

and reflected as: 

ii = cos wt 

i I I V02 e 9̀' cos wt - ~ q ' 

(175) 

(176) 

Hence the admittance A at the input depends on I q I and in the following 
manner: 

A— 
i t +i 2 _ 1 

1-IgIe`~'_X . (177) 
Vi+V2 

1+Igle`q' 
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Substituting: 

e+4' = cos q~ + j sin q (178) 

the imaginary part of A gives us: 

1 2~gjsinq 

I'  l+jq~ 2 + 2 ~gIcosgo 
(179) 

If we now vary c from 0 to 360° the maximum value of Y will be: 

1 2lgj 
'max—* 

1—Iq~2 

In the previous chapter it was shown that the magnetron can be repre-
sented as a parallel circuit, particularly in the neighbourhood of the resonant 
frequency. 

If a load having a reflection coefficient q is now connected and the phase 
rotated, the maximum downward variation df in the frequency can be 
expected when Ym is connected to the magnetron. 

Now, 

I ' max = 12l~glz=w•dCand 

_[=_'=  
d  l q l 

.f0 24 C'w(1— ~q12) 

With the phase angle 99 of the reflection coefficient such that — Ym~ is 
presented to the magnetron, the frequency will be f 0 plus df, thus making the 
total difference in frequency: 

(180) 

(181) 

AF= 24f=  21gI 'fo 
Q8(1—IgI2) 

(182) 

(183) 

This expression shows the extent of the maximum frequency swing when 
a load with a reflection coefficient q is connected to a magnetron with a Q 
value of Q 0, and the phase is rotated 360°. 

If we take q I = 0.2, the value of AF, per definition, is the "cold"pulling 
figure of the magnetron. Hence, from Eq. (183): 

4F0.2 = 0.417 • (184) 
e 

In calculating dF we have taken into account only the circuit character-
istics of the magnetron, disregarding possible variations in the space charge. 
Thus Eq. (184) must represent the "cold" pulling figure. 
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The "hot" pulling figure, as measured with the magnetron in oscillation 
may accordingly differ from the "cold" value, but experience has shown 
that the difference is not more than 10% as a rule. 

6.4 Effect of a long transmission line 

We shall now examine the effect of the distance between the reflecting load 
and the magnetron when this distince is large compared with the wavelength. 
The phenomenon arising from this is called "long line effect". 

When a voltage wave is applied to the input of the line: 

2ir 
V= Vo • sin wt — • x) (185) 

a load of reflection coefficient q will reflect a voltage wave: 

V = Vo . q • sin Iwt -} 
~ 

• x) (186) 

There will be the sum of the two on the line, viz. 

V = V + V = Vo q [sin (wt 
+~ 

x) + sin (wt — 
--  

x)] + 

+ Vo (1 — q) • sin (cut — x) (187) 

which can be converted to: 

V = 2Vo q • sin wt cos 
~2  

x + Vo (1 — q) • sin (wt — 
2~ 

x) (188) 

Here the second term on the right-hand side represents a wave of amplitude 
Vo (1 — q) travelling in the direction from the input to the load. 

The first term of Eq. (188) shows that there is also a standing wave on the 
line, the maximum amplitude of which is 2V q. Owing to the presence of 
this standing wave a quantity of electric field energy is stored in the 
transmission line and does not reach the load. A line of this kind thus 
behaves in the same way as an oscillatory circuit with load, as this also 
stores energy in the L and C, whilst energy is dissipated in the load. 

Let us now evaluate the stored energy E. 
If the characteristic impedance of the line is denoted by the capacitance 

of the line per unit of length will be: 

io 1O 
C=  (189) 
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The energy E is now computed from the distribution of voltage along the 
line, in accordance with Eq. (188) : 

E = 6
to 

J 
4V02g 2cos2 -- x dx (190) 

A 
The integral with respect to limits x = 0 and x = 

2 
will now give us the 

energy E° stored per (average) unit length of the line. 

E0 = s' 10-10 
V02 

q 2 (191) 

A line of length L will thus store: 
2. 2 

E = 3 10-10 • j/° q  • L (192) 

The power W dissipated in the load R is given by: 

W _ 
V02 (1 - q 2) 

2 
(193) 

In other words, in accordance with Eq. (163) the line behaves as an oscil-
latory circuit with Qu

2 

Qu = 
s 

• 10-10 . co • q  L (194) 
1—q 2

To obtain some idea of practical values of Q we shall assume that 
L = 100 cm, q = 0.2, co = 6.28 x 1010, and hence A = 3 cm. Eq. (194) then 
gives us Qu = 35. 

Even a fairly short line, therefore, has quite marked resonant character-
istics, and in the following we shall show the effects of this on the operation 
of the magnetron. 

Take the case of a magnetron to which a reflecting load is connected by a 
long transmission line (Fig. 50). 

MAGNETRON i LOAD 
I 
I 

I
I 

A 

f - 

Fig. 50. Long-line effect. In the plane A, the oscillating magnetron must conform to —A = A. 
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The system will oscillate only when in plane A the following holds: 

A+A=0 (195) 

where A is the admittance as seen at the plane A looking towards the magne-

tron; A is the admittance at that plane when looking towards the load. 
With the aid of Eq. (195) the resonant frequency of the system can be ascer-
tained. 

To simplify calculation we shall assume the plane A to be at a point as 
close to the magnetron as possible, where the plane will function as a parrallel 

resonator. The admittance A as a function of the frequency is then: 

1 1 2Qe df 1 
f+ R 

(196) 
0 

where Qe is the external Q of the magnetron, f o its resonant frequency 
and 4f the departure from the resonant frequency. 

y 

We now calculate the admittance A with respect to the load, at plane A, 
also as a function of the frequency. 

It is known that the wavelength is dependent on the frequency: 

Ag = 
Ao

(197) 

where 2, is the wavelength of the waveguide, Ae its cut-off wavelength and 
Ao the wavelength in space. Differentiation then gives us: 

dAe = — 
X02 • f = —

2 ' f • df (198) 
c 

where c is the speed of light. 
According to Eq. (198) the wavelength varies to the extent of dAg when the 

frequency is varied by an amount df. If the length of our transmission line is 
N wavelengths, then, a point where the phase is the same is displaced by 
N dAg with a variation in frequency of df. So: 

As — 
N 

\A0! f 

The phase shift is accordingly: 

(199) 

A1 
~ =-4 N  (- 2 .f~ •  • 

A9 f 
(radians) (200) 

0 
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or: 
2 

_ —720 N ( • f (degrees) (201) 
A0 f 

According to Eq. (179): 
(-g) 

- 2df 
2~qf •sin4~•N• 1

A _  
2i .f 

df 
1 + I q ~2 + 2 I q cos 4~c N( _)$ 7

,f 

(202) 

From Equations (202), (196) and (195) the possible resonant frequencies 
can accordingly be obtained. In Eq. (195) only the imaginary part of (196) 
is included and the solution of this equation is best found by graphical means. 
We have assumed the following in Fig. 51: 

A 
Qe = 1O0,N=20, = 1.4, ~q~ =0.2. 

It is seen from the diagram that the resonator line and the load line inter-
sect, and under such conditions the system will have only one resonant 
frequency. However, if the magnetron be detuned (by displacing the magne-

0.5 Qs =100 

-0.5 

a= 7.5 
N=20 
(ay) 

Fig. 51. Long-line effect. The point of intersection of the straight magnetron line with the 
load line shows the possible conditions of oscillation. 
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tron line along the f -axis), or if we change the phase of the load (by 
displacing the load line along the f -axis) the magnetron line may be found to 
intersect the load line at two or three places. The frequency of the magnetron 
will then jump from the one extreme to the other; the centre point is a point 
of instability, at which the magnetron can never operate (dotted line in 
Fig. 51). 

This frequency jumping is one of the possible forms of long line effect 
and it may be encountered when a tuned magnetron is detuned for measure-
ment of the pulling figure. 

It will be noticed from Fig. 51 that such frequency jumping may be 
expected when the load line is steeper than the line of the magnetron. 

Differentation of Eq. (202) shows that the greatest possible slope of the 
load line is: 

d(A'E) __  2q g 2 
~c 

d (df) (1 — q)2 

4 • N 

f max 

whilst Eq. (196) gives the slope of the magnetron line as: 

F 
d (A) 
  2 Qe 

d(fJ

Both will run parallel as in: 

2 

Qe = 4z  
4 

(1 q)2 N 
\~ 

(203) 

(204) 

(205) 

If N is greater than is compatible with Eq. (205) frequency jumping may 
be expected. 

In practice, however, it is more usual to work with the standing wave ratio 
u in place of the reflection coefficient q: 

and, with Eq. (205) : 

iqi-
a-1 

2 

Qe = r (a2 — 1) ' N ' 

(206) 

(207) 

In Fig. 52, N is shown plotted as a function of Q e for various values of 



SS THE CHARACTERISTICS OF MAGNETRONS [VI 

2 

(u2 — 1). ( ; if the transmission line is any longer than as given by Fig. 52 

frequency jumping will take place. 
With a line only slightly shorter than would be in accordance with Eq. 

(207), once the unfavourable phase angle has been passed, the spectrum 
will tend to widen, owing to the fact that the stability of the frequency of 
the whole system is then only low. 

6.5 Measurement of Q values 

We have shown in the foregoing that certain important circuit charac-
teristics of a magnetron are revealed by the Q values. We shall now concern 
ourselves with the experimental measurement of these values. 

It should be said at once that a large number of methods of measurement 
have been evolved and published. The greater the accuracy of measurement, 
the longer the time needed for the work; we shall here describe a method 
which is particularly suitable for routine measurements and which accord-
ingly saves time. The attainable accuracy of measurement is within 10%. 
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Qe 

Fig. 52. Long-line effect. Curve used for determining the theoretical maximum permissible 
distance between magnetron and reflection. 

The measuring equipment, which is shown schematically in Fig. 53, consists 
of an oscillator klystron KL the frequency of which is modulated at 50 c/s 
over the whole range of oscillation by applying the horizontal deflection 
voltage of a cathode ray oscilloscope O to the reflector. 
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The signal thus obtained is taken via an attenuator to a standing wave 
detector which is terminated by the "cold" magnetron M. A wavemeter W is 
included in the circuit to measure the frequency. The signal picked up by the 
probe is detected by means of a crystal and is then applied to the vertical 
deflection plates of the oscilloscope. 

Now, before describing the practical method of measurement, let us 
consider the theory. 

In a given plane in the test line the magnetron functions as a parallel 
resonator, so in that plane the admittance A is: 

(208) 

We may also write: 

A = ' (J ' 2 Qe ' f f  G~ (209) 

where f = f0 + df, (210) 
1 

is the characteristic impecdane of the measuring line and G = the real 

admittance produced by the losses in the magnetron; f 0 is the resonant 
frequency of the magnetron. 

According to definition the reflection coefficient q of the termination of a 
transmission line is dependent on the admittance in accordance with: 

1 —As 
q=1+Asp=IqI e'~' (211) 

If we now combine Eq. (211) with (209) for the solution of the phase angle q~: 

tan q _ 

/If 
4Q 

fo 

The solution for Qe is then: 

2 

1 — 4 Qe2 ( 
 
— (G)2

0 

fo I 1 z —  1 1 
tan g~J 

(212) 

(213) 
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If R > , then ~° > 0.5, and 

1 
a 

where v is the standing wave ratio at the resonant frequency f 0. 
In this case: 

Jo [ 1 1 _  1 1 

tan cpJ 

For the less common case where R < and ~° < 0.5: 

JO 1 2 _  1  1 
Qe — 2d f 

[+ 1'tan2 q, + 1 —a tan q~J 

(214) 

(215) 

(216) 

From Eq. (215) the following methods of measurement of Qe can be 
derived. The relationship = (f) in the region of the resonant frequency 
is determined experimentally by means of the test layout shown in Fig. 53. 

KL W 

0 

M 

Fig. 53. Block diagram of circuit for measurements on a cold magnetron. 

Then, if we locate the points q' = ± 90° from the curve = (J') and read 

off the values (1k) Eq. (215) gives: 
/ifq = 90° 

QB = 
1 . 

\dfl 
(217) 

To compute Qe therefore, we must also determine v (the standing wave 
ratio of the magnetron at the resonant frequency). 
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In order to use more points on the curve cp = g'(f ) for the determination 
of Qe the points for cp = + 110° and q _ + 130° can also be located. 
Eq. (216) then gives us: 

`Ge = 2 . ( f  o ) • (0.364 ± 
1/1.132 

 — 2) (218) 
df ~=110° a 

Q = 
4f = 130° (fo\

(0.840 + 1/ 1.705—  2) (219) e 2 
1 / ~ ~ 

To facilitate the calculation of Q8 in accordance with Eqs. (217) to (219) 

the factors 1/ i — 
6  

, (0.364 ±1/1.132 1.132 — 
a  

) and (0.840 +j/  1.705

are shown plotted as a function of o in Fig. 54. 

210-

2A0 

1.90 

1.80 

1.70 

1.60 

7.50 

1.40 

7.30 

7.20 

1.10 

too 

0.90 

1180   
0.70 

0.60 

050 

0.407 1

4840+V1.705-  d 2

364+ VF. 2-~ 2

2 3 4 5 6 7 8 9 2 1 2 3 4 5 6 7 8 9 
_ ~ a 

3 1 2 3 4 5 

Fig. 54. Table for use in calculating Qe and Q„ in accordance with Eqs. (217, (218) and (219). 

If sufficient accuracy is observed, the three values of QE will be found to 
differ only very slightly and the results may be regarded as reliable. 

However, a quicker method can be derived from Eq. (215). 
A certain value for df is chosen such that: 

fo = (220) 
df 
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and the accompanying value of is determined. 
Thus: 

_ 1 . 
L'e - 2 

( 1 

tang q 

1 1 
Q2 tan 978 

[VI 

(221) 

If a can be measured, Qe can be obtained from (221) and, in order to sim-

9 
h 

120° 
118° 
1160 

114 0

112° 
1100 
108° 
106° 
1040

102° 
1000 

98° 

96° 
94° 

920 
90° 
88° 
86° 

84° 

82° 
800 

U L6 18 20 25 30 35 
0 pu. 

Fig. 55. Chart based on Eq. (222), used for the quick calculation of Q, and Q„ in the 
manufacture of magnetrons. 

z~ = 1.7 10-3

plify the calculation, it is helpful to plot q = q (v) with Qe and Qu as para-
meter (Fig. 55). For this purpose use is made of Eq. (212) : 



6.5] MEASUREMENT OF Q VALUES 93 

1 
4Qe

tan q , = ± 
4Qe2 1 

1 
~2 ~2 

(222) 

By inserting the particular value of , with certain values of Q, as para-
meter (100, 200, 300 etc.), we then evaluate q = q (Q) and plot the curve. 

The method of measurement is as follows. Ascertain the resonant frequency, 

measure Q (standing wave ratio at df = 0), measure at f = + ; for the 

last-mentioned the measuring accuracy is greatest when is so chosen that 

q2 ̂  110°. 

Qe and Qu are then read from the chart for the values obtained. This 
method is particularly suitable for measuring large numbers of magnetrons 
which do not differ greatly from one another. 

It should be noted when determining the angle q, however, that the wave-
length is dependent on the frequency; owing to the finite distance between 
the test probe and the magnetron the plane where q = constant does not 

remain in the same place in the test circuit when the frequency is varied. 
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