INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh and metal-backed screen, primarily intended for use in compact oscilloscopes with 25 to 50 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$V_{g 8}(\ell)$	10 kV
Display area		$100 \times 80 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	M_{x}	$12,8 \mathrm{~V} / \mathrm{cm}$

SCREEN
Metal-backed phosphor

Useful screen dimensions	$\geqslant 100 \times 80 \mathrm{~mm}^{2}$	
Useful scan horizontal vertical	\geqslant	100 mm
Spot eccentricity in horizontal and vertical directions	\leqslant	80 mm
HEATING		

300 mA
MECHANICAL DATA
Mounting position: any
he tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass	approx. 1000 g
Base	14 pin, all glass
Final accelerator contact	small ball (JEDEC J1-25)

Dimensions and connection

See also outline drawing

Overall length
Face dimensions

Accessories

Socket, supplied with tube
Mu-metal shield
Final accelerator contact connector
FOCUSING
DEFLECTION
x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and horizontal axis of the face

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	7 pF
$\left.\mathrm{C}_{\mathrm{x} 2(\mathrm{x}}\right)$	7 pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	4 pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	4 pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$2,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	6 pF
C_{k}	$4,5 \mathrm{pF}$

* The tube is provided with a rotation coil, concentrically wound around the tuhe neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 350Ω. Under typical operating conditions, max. 35 ampere-turns are required for the \max. rotation of 5°. This means the required current is max. 35 mA at a required voltage of max. 12 V .

Notes to the drawings on opposite page.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape
3. The centre of the contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
4. The length of the connecting leads of the rotation coil is min .350 mm .

DIMENSIONS AND CONNECTIONS

For notes to the drawings see bottom of opposite page

bottom view ${ }^{\text {2278120 }}$

